Further Enquiries

School of Computer Science
Ingkarni Wardli Building
The University of Adelaide
SA 5005

Telephone: +61 8 8313 5586
Facsimile: +61 8 8313 4366

Optimisation and Logistics at the University of Adelaide

We research artificial intelligence and optimisation methods that are frequently used to solve hard and complex optimization problems. These include linear programming, branch and bound, genetic algorithms, evolution strategies, genetic programming, ant colony optimization, particle swarm optimization, local search, and other related approaches.

In our research related to real-world applications, we pay particular attention to constraint-handling techniques, multi-objectivity, and dynamic environments. These aspects are always present in large-scale industrial problems, in particular, they are important in integrated planning and scheduling decision-support systems which relate to supply-chain operations. Furthermore, we focus on the development of new algorithms for applications in the area of renewable energy and the use of artificial intelligence and optimisation methods in the area of software engineering.

In our theoretical research we analyze how bio-inspired computing methods and other search methods from the area of artificial intelligences work and show in a rigorous way how they are able to deal with different types of problems. Our theoretical research builds up a theory of bio-inspired computing and related search techniques that helps to develop new effective approaches based on theoretical insights. We also investigate problems in the areas of mechanism design and social choice and develop new approaches for dealing with game theoretic problems. Furthermore, we use artificial intelligence for the creation of digital art.


FOGA 2019

The ACM/SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA) is a premier event for research on the theory of evolutionary computation. We and our international collaborators have the following 4 full papers accepted at FOGA 2019:
  • F. Neumann, A. Sutton: Runtime analysis of evolutionary algorithms for the chance-constrained knapsack problem.
  • F. Shi, F. Neumann, J. Wang: Runtime analysis of evolutionary algorithms for the depth restricted minimum spanning tree problem.
  • V. Roostapour, M. Pourhassan, F. Neumann: Analysis of baseline evolutionary algorithms for the Packing While Travelling problem.
  • J. Bossek, P. Kerschke, A. Neumann, M. Wagner, F. Neumann, H. Trautmann: Evolving diverse TSP instances by means of novel and creative mutation operators.

GECCO 2019

The ACM Genetic and Evolutionary Computation Conference (GECCO) is the premier conference for research in the area of evolutionary computation. Each year the best evolutionary computation research outcomes are presented at this prestigious conference. We and our international collaborators have the following 9 full papers accepted at GECCO 2019:
  • F. Neumann, Pourhassan, Witt: Improved Runtime Results for Simple Randomised Search Heuristics on Linear Functions with a Uniform Constraint.
  • Doerr, Doerr, F. Neumann: Fast Re-Optimization via Structural Diversity. [CoRR abs/1902.00304]
  • Bossek, F. Neumann, Peng, Sudholt: Runtime Analysis of Randomized Search Heuristics for Dynamic Graph Coloring.
  • A. Neumann, Gao, Wagner, F. Neumann: Evolutionary Diversity Optimization Using Multi-Objective Indicators. (Nominated for Best Paper Award in the track "Genetic Algorithms") [CoRR abs/1811.06804]
  • Bossek, Grimme, F. Neumann: On the Benefits of Biased Edge-Exchange Mutation for the Multi-Criteria Spanning Tree Problem.
  • Xie, Harper, Assimi, A. Neumann, F. Neumann: Evolutionary Algorithms for the Chance-Constrained Knapsack Problem. [CoRR abs/1902.04767]
  • Neshat, Alexander, Sergiienko, Wagner: A Hybrid Evolutionary Algorithm Framework for Optimising Power Take Off and Placements of Wave Energy Converters. (Best Paper Award in the track "Real World Applications")
  • Brownlee Petke, Alexander, Barr, Wagner, White: Gin: Genetic Improvement Research Made Easy.
  • Jakobovic, Picek, Ribeiro, Wagner: A characterisation of S-box fitness landscape in cryptography. [CoRR abs/1902.04724]

EU COST Action Short Term Scientific Missions

We are an international partner of the EU COST Action CA15140 - Improving Applicability of Nature-Inspired Optimisation by Joining Theory and Practice (ImAppNIO). As part of this, we have the following researchers visiting our group to carry out a Short Term Scientific Mission (STSM):

New ARC Discovery Project and Humboldt Fellowship

AAAI 2019

The AAAI Conference on Artificial Intelligence (AAAI) is one of the two leading conferences on artificial intelligence and takes place every year in North America. We and our international collaborators have the following 4 full papers accepted at AAAI 2019:
  • V. Roostapour, A. Neumann, F. Neumann, T. Friedrich: Pareto optimization for subset selection with dynamic cost constraints. Paper
  • T. Friedrich, A. Göbel, F. Neumann, F. Quinzan, R. Rothenberger: Greedy maximization of functions with bounded curvature under partition matroid constraints. [CoRR abs/1811.05351]
  • F. Neumann, A. M. Sutton: Evolving solutions to community-structured satisfiability formulas. Paper
  • T. Weise, Z. Wu, M. Wagner: An improved generic bet-and-run strategy with performance prediction for stochastic local search.

PPSN 2018

The International Conference on Parallel Problem Solving from Nature (PPSN) is a leading conference on nature-inspired computing which takes place every 2 years in Europe. We and our international collaborators have the following 6 full papers accepted at PPSN 2018:
  • B. Ghasemishabankareh, M. Ozlen, F. Neumann, X. Li: A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow Problems.
  • T. Friedrich, A. Göbel, F. Quinzan, M. Wagner: Heavy-tailed Mutation Operators in Single-Objective Combinatorial Optimization. Preliminary version
  • V. Roostapour, A. Neumann, F. Neumann: On the Performance of Baseline Evolutionary Algorithms on the Dynamic Knapsack Problem. Preliminary version
  • F. Neumann, A. M. Sutton: Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem with Favorably Correlated Weights. Preliminary version
  • C. Doerr, M. Wagner: Sensitivity of Parameter Control Mechanisms with Respect to Their Initialization. Preliminary version
  • D. R. Arbones, N. Y. Sergiienko, B. Ding, O. Krause, C. Igel, M. Wagner: Sparse incomplete LU-decomposition for Wave Farm Designs under Realistic Conditions. Preliminary version

Research Consortium

Our group is a major investigator of the $14.6 million Research Consortium – Unlocking Complex Resources through Lean Processing led by the University of Adelaide and funded through the Research Consortia Program of the State Government of South Australia, 2017-2021. The other Consortium industry, government and supporting partners are: BHP, OZ Minerals, AMIRA International, Australian Information Industries Association (AIIA) IoT Cluster for Mining and Energy Resources, Australian Semi-Conductor Technology Company, Boart Longyear, Consilium Technology, CRC Optimising Resource Extraction, Datanet, Data to Decisions CRC, Eka, Innovyz, Magotteaux, Manta Controls, Maptek, METS Ignited Industry Growth Centre, Mine Vision Systems, Rockwell Automation, SACOME, SAGE Automation, Sandvik, Scantech, South Australian Mining Industry Participation Office (SA MIPO), SRA IT and Thermo Fisher Scientific Australia (Processing Instruments & Equipment), with the University of South Australia as a key research partner.

Research Areas

The Optimisation and Logistics Group has close connections to the company Complexica based in Adelaide. Complexica is a leading provider of Artificial Intelligence software for optimising sales & marketing activities, ranging from promotional planning, pricing, and product mix optimisation, through to sales force automation, CRM, and multi-channel quoting and order processing.