
Runtime Analysis of Randomized Search Heuristics
for the Dynamic Weighted Vertex Cover Problem
Feng Shi

Central South University

School of Info. Sci. and Engineering

Changsha, China

Frank Neumann

�e University of Adelaide

School of Computer Science

Adelaide, Australia

Jianxin Wang

Central South University

School of Info. Sci. and Engineering

Changsha, China

ABSTRACT
Randomized search heuristics such as evolutionary algorithms are

frequently applied to dynamic combinatorial optimization prob-

lems. Within this paper, we present a dynamic model of the classic

Weighted Vertex Cover problem and analyze the performances

of the two well-studied algorithms Randomized Local Search and

(1+1) EA for it, to contribute to the theoretical understanding of

evolutionary computing for problems with dynamic changes. In

our investigations, we use an edge-based representation based on

the dual formulation of the problem and study the expected run-

times that the two algorithms require to maintain a 2-approximate

solution when the given weighted graph is modi�ed by an edge-

editing or weight-editing operation. Considering the weights on

the vertices may be exponentially large with respect to the size

of the graph, the step size adaption strategy is incorporated. Our

results show that both algorithms can recompute 2-approximate

solutions for the studied dynamic changes e�ciently.

CCS CONCEPTS
•Mathematics of computing → Evolutionary algorithms;
•�eory of computation→ Random search heuristics; •General
and reference→ General conference proceedings;

KEYWORDS
runtime analysis, weighted vertex cover, dynamic graph-editing,

evolutionary algorithm

1 INTRODUCTION
Over the past decades, randomized search heuristics such as evolu-

tionary algorithms and ant colony optimization have been applied

successfully in various areas, including engineering and economics.

To understand well the behaviors of evolutionary algorithms, many

theoretical techniques for analyzing their expected runtimes are

presented [1, 10, 16]. And using these techniques, evolutionary

algorithms designed for some classic combinatorial optimization

problems have been studied. In particular, the Vertex Cover problem

plays a crucial role in the area [6, 8, 11, 15, 20].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’18, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-x-xxxx-xxxx-x/YY/MM. . .$15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

Given an instance of a considered combinatorial optimization

problem, and a solution (optimal or approximated) to the instance.

If an operation on the instance results in a new instance, which is

not very “far away” from the original one (the “distance” between

the two instances depends on the operation), then an interesting

problem arises: is the solution to the new instance “far away” from

the original solution? In other words, how much runtime does a

speci�c algorithm take to get the target solution starting with the

original one? �is se�ing is referred as dynamic combinatorial

optimization problems.

Studying the performances of evolutionary algorithms for dy-

namic combinatorial optimization problems is an emerging �eld

[7, 14, 17, 19, 21]. Within this paper, we present a dynamic model

of the Weighted Vertex Cover problem (WVC), which is named

Dynamic Weighted Vertex Cover problem (DWVC). Our goal is to

analyze the behaviors of the well-studied algorithms Randomized

Local Search (RLS) and (1+1) EA designed for it. Speci�cally, we

study the expected runtimes (the expected number of �tness eval-

uations) they need to recompute a 2-approximate solution when

the given weighted graph is edited by a graph-editing operation,

starting with a 2-approximate solution to the original graph.

For the Vertex Cover problem, it is well-known that under the

unique games conjecture [12], there does not exist an approxima-

tion algorithm with a constant ratio r < 2, unless P = NP [13]. �e

best-known 2-approximation algorithm for the Vertex Cover prob-

lem is based on the maximal matching: construct a maximal match-

ing by greedily adding edges, then let the vertex cover contain both

endpoints of each edge in the matching. For WVC, Hochbaum [9]

presented the best-known approximation algorithm, who showed

that a 2-approximate solution can be found by using the Linear

Programming (LP) result of the Fractional WVC. Du et al. [5] found

that a maximal solution to the dual form [22] of the LP formula-

tion (simply called dual formulation) for the Fractional WVC also

directly induces a 2-approximate solution. Using this conclusion,

Bar-Yehuda and Evan [2] presented a linear-time 2-approximation

algorithm for WVC. �e essential di�erence between (the primal

form of) the LP formulation and the dual formulation for the Frac-

tional WVC is: the LP formulation considers the problem from the

perspective of vertices; the dual formulation considers that from

the perspective of edges.

Pourhassan et al. [19] presented a dynamic model of the Ver-

tex Cover problem, in which the graph editing operator adds (or

removes) exactly one edge into (or from) the given unweighted

graph, and analyzed evolutionary algorithms with respect to their

abilities tomaintain a 2-approximate solution (i.e., a maximal match-

ing). �ey examined di�erent variants (node-based representation

and edge-based representation) of RLS and (1+1) EA. If using the

GECCO ’18, July 15–19, 2018, Kyoto, Japan Shi et al.

node-based representation, they gave classes of instances where

both algorithms behave badly (the two algorithms cannot get the

2-approximate solution in polynomial time with high probability).

If using the edge-based representation, they showed that RLS and

(1+1) EA can maintain 2-approximations easily if the algorithms

start with a maximal matching of the original unweighted graph

and use the �tness function given by Jansen et al. [11], which pe-

nalizes edges sharing vertices (RLS can maintain the quality of the

solution in linear timeO (m) when an edge is added or deleted; (1+1)
EA can maintain the quality of the solution in linear time O (m)
when an edge is added).

Inspired by the work of Pourhassan et al. [19] and the essential

di�erence between the LP formulation and dual formulation for

the Fractional WVC, we utilize the dual formulation to analyze

DWVC. �us DWVC studied in this paper, is formulated as: given

a weighted graph G = (V ,E,W) and a maximal solution to the

dual formulation of the Fractional WVC on G, the goal is to �nd a

maximal solution to the dual formulation of the Fractional WVC

on the weighted graphG∗ = (V ∗,E∗,W ∗), whereG∗ is obtained by

one of the following four graph-editing operations on G: (1) add a

new edge-set E+ into E; (2) remove an edge-subset E− from E; (3)
increase the weights on the vertices in V + ⊆ V ; (4) decrease the
weights on the vertices in V − ⊆ V . To study the in�uences of the

graph-editing operations on the performances of the algorithms, we

denote the exact sizes of E+, E−, V +, and V − by variable D ∈ N+.
Recently Pourhassan et al. [18] studied WVC using the dual

formulation for the Fractional WVC. Considering the weights on

the vertices may be exponentially large with respect to the size of

the weighted graph, they incorporated the Step Size Adaption strat-

egy [3] into their (1+1) EA (see Algorithm 4 in their paper). However,

their (1+1) EA was shown to take exponential expected runtime

with high probability to get a 2-approximate solution. �ere are two

reasons for the long runtime of their algorithm. First, for a mutation

M constructed by their (1+1) EA, there may exist two edges selected

byM whose weights are increased and decreased respectively. �e

randomness leads to the relatively small probability for M to be

accepted. Second, for a mutationM that is rejected by their (1+1)

EA, the step sizes of all the edges selected byM would be decreased.

Because of the two reasons, the step sizes of the edges cannot be

increased enough to overcome the exponentially large weights on

the vertices. �at means, the step size adaptation strategy is nearly

invalid for their (1+1) EA.

Drawing on the experience of Pourhassan et al. [18], we give two

algorithms (1+1) EA and RLS for DWVC, with step size adaption

as well. �e two algorithms employ a novel way to prevent the

invalidation of the step size adaption strategy that happens in

the algorithm of [18]. We show that the (1+1) EA and RLS take

expected runtimeO (αm log
2

α (D ·Wmax)) to solve the four versions
of DWVC, wherem denotes the number of edges in G∗,Wmax ≥ 1

denotes the maximum weight that the vertices in G andG∗ have,
and α ∈ N+ denotes the increasing/decreasing rate of the step size

(i.e., the increment of the weight on each edge can be exponentially

increased by multiplying α , or decreased by multiplying 1/α).
�e rest of the paper is structured as follows. We start by giving

related de�nitions and the problem formulations in Section 2. �en

we present the (1+1) EA and RLS for DWVC in Section 3, and

analyze their expected runtimes in Section 4. Finally conclusions

are presented in Section 5.

2 PRELIMINARIES
Given a weighted graph G = (V ,E,W) with a vertex-set V =
{v1, . . . ,vn }, an edge-set E = {e1, . . . , em }, and a weight function

W : V → N+. For any vertex v ∈ V , denote by NG (v) the set

containing all neighbors of v inG , and by EG (v) the set containing
all edges incident to v in G. For any vertex-subset V ′ ⊆ V , let
EG (V ′) =

⋃
v ∈V ′ EG (v). For any edge e ∈ E, denote by EG (e) the

set containing all edges in G that have a common endpoint with e .
For any edge-subset E ′ ⊆ E, let EG (E ′) =

⋃
e ∈E′ EG (e) \ E ′.

A vertex-subset Vc ⊆ V is a vertex cover of G if for each edge

e ∈ E, where e can be represented by its two endpoints v and v ′ as
[v,v ′], at least one of v and v ′ is in Vc . �e weight of Vc is de�ned

as the sum of the weights on all vertices inVc , wri�en
∑
v ∈Vc W (v).

�e Weighted Vertex Cover problem (WVC) on the weighted graph

G asks for a vertex cover of G with the minimum weight.

Using the node-based representation (i.e. the search space is

{0, 1}n and for any solution x = x1 . . . xn the node vi is chosen
i� xi = 1), the Integer Linear Programming (ILP) formulation for

WVC is given as follows.

min
n∑
i=1

W (vi) · xi

st . xi + x j ≥ 1 ∀ [vi ,vj] ∈ E

xi ∈ {0, 1} i = 1, ...,n

By relaxing the constraint xi ∈ {0, 1} to xi ∈ [0, 1], the Linear

Programming (LP) formulation for the Fractional WVC is obtained.

Hochbaum [9] showed that a 2-approximate solution can be found

by using the LP result of the Fractional WVC — include all vertices

vi for which xi ≥
1

2
. �e dual form of the LP formulation (or called

dual formulation) for the Fractional WVC is given as follows, where

Y : E → R+ ∪ {0} denotes a weight assignment on the edges.

max
∑
e ∈E

Y (e)

st .
∑

e ∈EG (v)

Y (e) ≤W (v) ∀ v ∈ V

�e weight assignment Y is called a dual-solution of G in the

paper. Vertex v ∈ V satis�es the dual-LP constraint with respect to

the dual-solution Y if

∑
e ∈EG (v) Y (e) ≤W (v). Edge e ∈ E satis�es

the dual-LP constraint with respect to Y if both its endpoints satisfy

the dual-LP constraint with respect to Y . �e dual-solution Y of

G is feasible if all vertices in G satisfy the dual-LP constraint with

respect toY , otherwise, infeasible. Vertexv ∈ V is tightwith respect
to Y if

∑
e ∈EG (v) Y (e) =W (v), and edge e ∈ E is tight with respect

to Y if at least one of its two endpoints is tight with respect to Y .
Given a dual-solutionY ofG , denote byVG (Y) the set containing

all vertices in G that do not satisfy the dual-LP constraint with

respect to Y , and by EG (Y) the set containing all edges in G that

are incident to v ∈ VG (Y).
A maximal feasible dual-solution (MFDS) of G is a feasible dual-

solution such that none of the edges can be assigned with a larger

weight under the dual-LP constraint. For any MFDS Y of G, it
induces a vertex cover ofG with ratio 2 directly, which contains all

Runtime Analysis for Dynamic Weighted Vertex Cover Problem GECCO ’18, July 15–19, 2018, Kyoto, Japan

tight vertices with respect to Y (a formal proof about the ratio can

be found in �eorem 8.4 of [5]).

Four versions of DWVC are studied in this paper. �ey are all

given a weighted graph G = (V ,E,W), an MFDS Yorig of G, and
a graph-editing operation. �eir aims are to �nd an MFDS of G∗,
where G∗ is the weighted graph obtained by the corresponding

operation on G. Due to the space limit, their full formulations are

not given, only the corresponding graph-editing operations.

(1) DWVC-E+: add a new edge-set E+ into E;
(2) DWVC-E−: remove an edge-subset E− from E;
(3) DWVC-W+: increase the weights on the vertices

in V + ⊆ V (i.e.,W + (v) >W (v) for each v ∈ V +,
andW + (v) =W (v) for each vertex v ∈ V \V +);

(4) DWVC-W−: decrease the weights on the vertices

in V − ⊆ V (i.e.,W − (v) <W (v) for each v ∈ V −,
andW − (v) =W (v) for each vertex v ∈ V \V −).

3 ADAPTIVE (1+1) EA AND RLS
Given two weighted graphs G = (V ,E,W) and G∗ = (V ∗,E∗,W ∗),
whereG∗ is obtained by one of the four graph-editing operations on
G. We study the runtimes that the (1+1) EA and RLS considered in

the paper need to �nd an MFDS ofG∗, starting with a given MFDS

Yorig of G (not from scratch). �e general idea of the (1+1) EA and

RLS is: if the given MFDS Yorig of G is also a feasible dual-solution

of G∗, then the two algorithms directly increase the weights on

the edges in G∗ until the weight on any edge cannot be assigned

with a larger value under the dual-LP constraint (i.e, an MFDS of

G∗ is found if the claimed condition is met); otherwise, they �rst

decrease the weights on the edges in EG∗ (Yorig), aiming to get a

feasible dual-solution Yt of G
∗
as soon as possible (because only

the vertices inVG∗ (Yorig) do not satisfy the dual-LP constraint with

respect toYorig), then increase the weights on the edges inG∗ to get
an MFDS based on Yt . �us we give a sign function below, wri�en

siдn(Y), to judge whether the considered solution Y is a feasible

dual-solution ofG∗. According to siдn(Y), the two algorithms know

what they should do at the next step, increasing or decreasing the

weights on the edges.

siдn(Y) =

{
−1 if VG∗ (Y) , ∅
1 otherwise

Note that for any mutation generated by the two algorithms,

the weights on the edges selected by the mutation are either all

increased or all decreased. �us we always have that

siдn(Y) ·
∑
e ∈E∗

(
Y ′(e) − Y (e)

)
≥ 0 ,

where Y ′ is the dual-solution obtained by a mutationM on Y . Con-
sequently, the function f (Y ′,Y) comparing the �tness of Y ′ and Y
is only required to pay more a�ention to the feasibilities of Y and

Y ′, and the edges whose weights are changed by the mutationM :

f (Y ′,Y) ≥ 0 if Y ′ is not worse than Y ; f (Y ′,Y) < 0 otherwise.

f (Y ′,Y) = 2|E∗ | ·Wmax · (siдn(Y) − 1) ·
∑

e ∈E∗\EG∗ (Y)

(
Y (e) − Y ′(e)

)
+

(
siдn(Y ′) − siдn(Y)

)
As the general idea of the two algorithms given above, if Y is

a feasible dual-solution of G∗, then the two algorithms directly

Algorithm 1: (1+1) EA
1 Initialize Y and σ ;

2 Determine siдn(Y) ;

3 while the termination not satis�ed do
4 Y ′ := Y and I := ∅ ;

5 for each edge e ∈ E∗ do
6 with probability 1/m do
7 Y ′(e) := max{Y (e) + σ (e) · siдn(Y), 0} ;

8 I := I ∪ {e} ;

9 Determine siдn(Y ′) and f (Y ′,Y) ;

10 if f (Y ′,Y) ≥ 0 then
11 Y := Y ′ ;

12 σ (e) := α · σ (e) for all e ∈ I ;

13 else
14 if siдn(Y) > 0 then
15 Let I ′ be the subset of I such that each edge e ∈ I ′

has an endpoint that violates the dual-LP

constraint in Y ′, and no other edge in I shares the
endpoint with e ;

16 and σ (e) := max{
σ (e)
α , 1} for all e ∈ I

′
;

increase the weights on the edges, aiming to get an o�spring Y ′

of Y that is a feasible dual-solution of G∗ such that

∑
e ∈E∗ Y

′(e) ≥∑
e ∈E∗ Y (e). �us, if Y ′ is infeasible, then let

f (Y ′,Y) = siдn(Y ′) − siдn(Y) = −2 < 0 ,

otherwise,

f (Y ′,Y) = siдn(Y ′) − siдn(Y) = 0 .

If Y is an infeasible dual-solution of G∗, then they decrease the

weights on the edges �rstly, aiming to get a feasible dual-solution

of G∗. Remark that the edges in E∗ \ EG∗ (Y) satisfy the dual-LP

constraint with respect to Y , so the weights on these edges do not

need to be decreased. �us the �rst term of f (Y ′,Y),

2|E∗ | ·Wmax · (siдn(Y) − 1) ·
∑

e ∈E∗\EG∗ (Y)

(
Y (e) − Y ′(e)

)
,

penalizes the mutation that decreases the weights on the edges in

E∗ \ EG∗ (Y), which hence guides the mutation to decrease only

the weights on the edges in EG∗ (Y) (if we do not restrict that the
weights on the edges in E∗ \ EG∗ (Y) cannot be decreased, then the

feasible dual-solution we get may be further away from the MFDS

of G∗). Once a feasible dual-solution Y ′ is found by a mutation on

the unfeasible dual-solution Y , then

f (Y ′,Y) = siдn(Y ′) − siдn(Y) = 2 ≥ 0 .

�e two algorithms for DWVC, (1+1) EA and RLS, are given in

Algorithm 1 and 2 respectively. �ey run in a similar way, except

the mechanism selecting edges for mutation. �e (1+1) EA selects

each edge in E∗ with probability 1/m at each iteration (m = |E∗ |),
resulting an edge-subset I containing all selected edges (see step 8

of the (1+1) EA), and increases (or decreases) the weights on the

edges in I . RLS di�ers from the (1+1) EA by selecting exactly one

edge in e ∈ E∗ in each round.

GECCO ’18, July 15–19, 2018, Kyoto, Japan Shi et al.

Algorithm 2: RLS
1 Initialize Y and σ ;

2 Determine siдn(Y);

3 while the termination not satis�ed do
4 Y ′ := Y ;

5 Choose an edge e ∈ E∗ uniformly at random ;

6 Y ′(e) := max{Y ′(e) + σ (e) · siдn(Y), 0} ;

7 Determine siдn(Y ′) and f (Y ′,Y) ;

8 if f (Y ′,Y) ≥ 0 then
9 Y := Y ′ and σ (e) := α · σ (e) ;

10 else
11 if siдn(Y) > 0 then
12 σ (e) := max{

σ (e)
α , 1} ;

To deal with the case that the weights on the vertices are expo-

nentially large with respect to the size of the graph, the Step Size

Adaption strategy [3] is incorporated into the two algorithms (see

steps 10-16 of the (1+1) EA and steps 8-12 of RLS): the increment

on the weights of the edges can exponentially increase or decrease.

Let σ : E∗ → N+ be the step size function that keeps the step size

for each edge in E∗, and let σ be initialized as σ : E∗ → 1.

For a mutation of RLS, if it is accepted, then the step size of

the chosen edge e is multiplied by a factor α ∈ N+; otherwise,
multiplied by 1/α if siдn(Y) > 0. For a mutation of the (1+1) EA,

if it is accepted, then the step size of each edge e ∈ I is multiplied

by α , otherwise, the step size of each edge e ∈ I ′ is multiplied by

1/α if siдn(Y) > 0, where I ′ is a subset of I such that each edge

e ∈ I ′ has an endpoint that violates the dual-LP constraint with

respect to the dual-solution Y ′, and no other edge in I shares the
endpoint with e (see step 15 of the (1+1) EA). �e reason why we

de�ne the subset I ′ of I is that we can ensure that the step size of

each edge in I ′ is un�t for Y . For each edge e in I \ I ′, there are two
cases: (1) neither its two endpoints violates the dual-LP constraint

with respect to Y ′; (2) there is another edge e ′ ∈ I \ {e} that has
a common endpoint with e such that the common endpoint of e
and e ′ violates the dual-LP constraint with respect to Y ′. For case
(1), we should not decrease its step size. For case (2), the step size

of e may be �t for Y if it is considered independently. If we adopt

a “radical” strategy decreasing the step sizes of all the edges in I
if the mutation is rejected, then the algorithms take much time

on increasing the step sizes of the edges (in some extreme case,

the step size cannot be exponentially increased, resulting that the

expected runtime to get an MFDS is exponential [18]). �us, we

adopt a “conservative” strategy: only decrease the step sizes of the

edges in I ′.
Note that for any mutation of the (1+1) EA or RLS that is re-

jected, the step sizes of the edges selected by the mutation are not

decreased if siдn(Y) < 0. Because the rejection of the mutation is

caused by the selection of the edges, not the violation of the dual-LP

constraint.

�e selection mechanism implies the following lemma.

Lemma 3.1. For any dual-solution Y ′ obtained by a mutation of
the (1+1) EA or RLS on a given dual-solution Y , siдn(Y ′) ≥ siдn(Y)
if Y ′ is accepted.

Proof. Since siдn(Y ′) ≥ −1, siдn(Y ′) ≥ siдn(Y) obviously
holds if siдn(Y) = −1. For the case that siдn(Y) = 1, we assume

that siдn(Y ′) = −1. By the de�nition of f (Y ′,Y),

f (Y ′,Y) = siдn(Y ′) − siдn(Y) = −2 < 0 ,

and neither the (1+1) EA nor RLS would acceptY ′. �us the assump-

tion siдn(Y ′) = −1 is incorrect, and siдn(Y ′) = 1 = siдn(Y). �

�e following lemmata show that once a feasible solution

has been obtained, all later accepted solutions will be feasible.

Lemma 3.2 can be directly derived from Lemma 3.1.

Lemma 3.2. If (1+1) EA or RLS starts with a feasible dual-solution
Y ofG∗ = (V ∗,E∗,W ∗), then during the process from Y to the output
MFDS, all dual-solutions accepted by the algorithm are feasible.

Lemma 3.3. If (1+1) EA or RLS starts with an infeasible dual-
solution Y of G∗ = (V ∗,E∗,W ∗), where Y (e) ≤ Wmax for each
e ∈ E∗, then during the process from Y to the output MFDS, there
exists an accepted feasible dual-solutionYt such that all dual-solutions
accepted a�er Yt are feasible.

Proof. Let Y ′ be the dual-solution obtained by a mutation on

Y that selects an edge e ∈ E∗ \ EG∗ (Y). Since Y is an infeasible

dual-solution of G∗, Y ′(e) ≤ Y (e) for each e ∈ E∗ \ EG∗ (Y). �us,∑
e ∈E∗\EG∗ (Y)

(
Y (e) − Y ′(e)

)
≥ Y (e) − Y ′(e) ≥ 1 and

2|E∗ |·Wmax ·(siдn(Y)−1)·
∑

e ∈E∗\EG∗ (Y)

(
Y (e) − Y ′(e)

)
≤ −4|E∗ |·Wmax ,

where |E∗ | andWmax are assumed not less than 1.

Combining the obvious fact that 0 ≤ siдn(Y ′) − siдn(Y) ≤ 2, we

have that if the mutation decreases the weight on some edge in

E∗ \ EG∗ (Y), then f (Y ′,Y) is always less than 0, and Y ′ cannot be
accepted by the algorithm. �at is, to get a feasible dual-solution

of G∗, only the weights on the edges in EG∗ (Y) can be decreased.

It is easy to see that if the weights on the edges in EG∗ (Y) are de-
creased to 0, then a feasible dual-solution ofG∗ can be found. �us

if the algorithm starts with Y , and keeps decreasing the weights

on the edges in EG∗ (Y), then it can �nd a feasible dual-solution Yt ,
which can be accepted. By Lemma 3.2, all dual-solutions accepted

a�er Yt are feasible. �

4 RUNTIME ANALYSIS
Given an edge e in the weighted graph G∗ = (V ∗,E∗,W ∗), a muta-

tion of the (1+1) EA or RLS is a valid mutation on e if it results an
increase or decrease on the weight of e , or on the step size σ (e). In
this section, we �rst study the behaviors of the (1+1) EA and RLS

on a speci�c edge e = [v1,v2] in G∗ = (V ∗,E∗,W ∗). �en using

the results obtained for the edge e, we study the runtimes of the

(1+1) EA and RLS for the four versions of DWVC seperately.

Lemma 4.1. Starting with a feasible dual-solution
Y of G∗, (1+1) EA (or RLS) takes expected runtime
O

(
αm logα (Y ∗ (e) − Y (e))

)
to get a feasible dual-solution Y ∗

of G∗ with respect to which e is tight.

Runtime Analysis for Dynamic Weighted Vertex Cover Problem GECCO ’18, July 15–19, 2018, Kyoto, Japan

Proof. We �rst consider the (1+1) EA. Since Y is a feasible dual-

solution of G∗, by Lemma 3.2, the sign function siдn() keeps to
be equal to 1 during the process from Y to Y ∗, indicating that the
weight on e is increased from Y (e) to Y ∗ (e).

Let Y ′ be the o�spring obtained by a mutationM on Y , and let I
be the set containing all the edges selected byM . In the following

discussion, we �rst analyze how the mutationM in�uences the step

size σ (e) of e. Apparently if e < I , then M cannot in�uence σ (e).
�us we assume that e ∈ I .

Case (1). σ (e) ≤ Y ∗ (e) − Y (e). IfM is accepted by the (1+1) EA,

then σ (e) is multiplied by the factor α . IfM is rejected by the (1+1)

EA, then the analysis is divided into the following three subcases.

Case (1.1). An endpoint of e violates the dual-LP constraint

with respect to Y ′. Since σ (e) ≤ Y ∗ (e) − Y (e), there exists an

edge e′ ∈ EG∗ (e) ∩ I such that the common endpoint of e and e′

violates the dual-LP constraint with respect to Y ′. According to the
de�nition of the edge-set I ′ (see step 15 of the (1+1) EA), we have

that e < I ′, andM does not in�uence σ (e).
Case (1.2). No endpoint of e violates the dual-LP constraint with

respect to Y ′. According to the de�nition of the edge-set I ′, we also
have that e < I ′, andM does not in�uence σ (e).

By the above analysis, any mutation of the (1+1) EA cannot

decrease σ (e) to σ (e)/α for Case (1).

�e mutation that only selects the edge e can be generated by

the (1+1) EA with probability Ω(1/m), which can be accepted under

Case (1). �us for Case (1), the (1+1) EA takes expected runtime

O (m) to increase the weight on edge e from Y (e) to Y (e)+σ (e), and
increase the step size σ (e) of e to α · σ (e).

Case (2). σ (e) > Y ∗ (e) − Y (e). Since e ∈ I , then the mutationM
would be rejected by the (1+1) EA.

Case (2.1). �ere is an edge e′ ∈ I sharing the endpoint of e that

violates the dual-LP constraint with respect to Y ′. Because of the
existence of e′, e < I ′ andM does not in�uence σ (e).

Case (2.2). �ere is no edge in I that shares an endpoint with e

such that their common endpoint violates the dual-LP constraint

with respect to Y ′. Apparently, for this subcase, e ∈ I ′, and σ (e) is
decreased to σ (e)/α .

�e mutation that only selects the edge e belongs to Case (2.2),

which can be generated by the (1+1) EA with probability Ω(1/m).
�us for Case (2), the (1+1) EA takes expected runtime O (m) to
decrease step size σ (e) of e to σ (e)/α .

Now we are ready to analyze the expected runtime that the (1+1)

EA takes to increase the weight on e from Y (e) to Y ∗ (e), using
the above results. �e process is divided into two phases: (I). the

σ (e)-increasing phase; (II). the σ (e)-decreasing phase.
During the σ (e)-increasing phase, σ (e) can only increase. �e

σ (e)-decreasing phase follows the σ (e)-increasing phase, during

which σ (e) may increase or decrease, but the general trend is de-

creasing. Assume that σ (e) is initialized as αp , where p ≥ 0. If

αp > Y ∗ (e)−Y (e), then we are already at the σ (e)-decreasing phase.
In the following discussion, we assume that αp ≤ Y ∗ (e) − Y (e).

(I). �e σ (e)-increasing phase. Let q be the integer such that

q∑
i=p

α i ≤ Y ∗ (e) − Y (e) , and
q+1∑
i=p

α i > Y ∗ (e) − Y (e) .

It is easy to see that σ (e) can be increased from αp to αq+1 during
this phase. �us the number of valid mutations on e during this

phase is q − p + 1, where

q − p + 1 =

⌊
logα

(
(Y ∗ (e) − Y (e)) (α − 1)

αp
+ 1

)⌋
.

Combining the analysis for Case (1), the σ (e)-increasing phase takes

expected runtime O
(
m logα (Y ∗ (e) − Y (e))

)
(because p may be 0).

(II). �e σ (e)-decreasing phase. During this phase, the weight on
e is increased from Y (e) +

∑q
i=p α

i
to Y ∗ (e), and σ (e) is decreased

from αq+1 to 1. Similar to the analysis for the σ (e)-increasing
phase, we analyze the number T of valid mutations on e during the

σ (e)-decreasing phase.
To simplify the analysis, we consider the number ti of valid

mutations on e with σ (e) = α i (0 ≤ i ≤ q + 1) among the T valid

mutations on e (since σ (e) can increase or decrease during the σ (e)-
decreasing phase, there may be more than one valid mutation on e

with σ (e) = α i). Obviously T =
∑q+1
i=0 ti .

We �rst consider tq+1. Since the valid mutation on e with σ (e) =

αq+1 cannot be accepted, σ (e) will be decreased to αq . Observe
that if a valid mutation on e with σ (e) = αq is accepted, then σ (e)
would be increased to αq+1. �us tq+1 ≤ 1 + (α − 1) = α , because
there are at most α − 1 valid mutations on e with σ (e) = αq among

the T valid mutations on e that can be accepted by the algorithm.

For any 1 ≤ i ≤ q, since there are at most α − 1 valid mutations

on e with σ (e) = α i among the T valid mutations on e that can be

accepted, and at most α valid mutations on e with σ (e) = α i that
can be rejected (use the analysis given above for σ (e) = αq+1), we
can get that ti ≤ 2α − 1.

If σ (e) = 1, then the weight on e is between Y ∗ (e) − α + 1 and
Y ∗ (e). If the weight on e equals Y ∗ (e), then the σ (e)-decreasing
phase is over, and t0 = 0. If the weight on e is between Y ∗ (e)−α + 1
and Y ∗ (e) − 1, then t0 ≤ α − 1.

�e above analysis gives

T =

q+1∑
i=0

ti ≤ (2α − 1) (q + 1) .

Combining the analysis for Case (1-2), the σ (e)-decreasing phase

takes expected runtime O
(
αm logα (Y ∗ (e) − Y (e))

)
.

�erefore, there are at most 2α (q+1) valid mutations on e during

the process from Y to Y ∗, for which the (1+1) EA takes expected

runtime O
(
αm logα (Y ∗ (e) − Y (e))

)
.

Since we only consider the mutation selecting exactly one edge

in the analysis for the (1+1) EA, it is easy to get that the conclusions

for the (1+1) EA also apply to RLS. �

Now we turn to analyze the expected runtimes that the two

algorithms take to make the edge e satisfy the dual-LP constraint,

if they start with an infeasible dual-solution with respect to which

e does not satisfy the dual-LP constraint.

Lemma 4.2. Starting with an infeasible dual-solution Y ofG∗ with
respect to which edge e does not satisfy the dual-LP constraint, the
(1+1) EA (or RLS) takes expected runtime O

(
m logα (Y (e) − Y ∗ (e))

)
to get the �rst dual-solution Y ∗ ofG∗ with respect to which e satis�es
the dual-LP constraint.

GECCO ’18, July 15–19, 2018, Kyoto, Japan Shi et al.

Proof. We �rst consider the (1+1) EA. Since Y is infeasible, the

(1+1) EA decreases the weight on e to get Y ∗.
Assume that σ (e) is initialized as αp (p ≥ 0). Note that the value

of σ (e) will not be decreased during the process fromY toY ∗, hence
there exists an integer q such that

∑q
i=p α

i = Y (e) − Y ∗ (e). �us

during the process, σ (e) is increased from αp to αq+1, and there

are q − p + 1 valid mutations on e, where

q − p + 1 = logα

(
(Y (e) − Y ∗ (e)) (α − 1)

αp
+ 1

)
.

�e mutation that only selects the edge e can be generated by

the (1+1) EA with probability Ω(1/m), which is a obviously valid

mutation on e. Hence the (1+1) EA takes expected runtimeO (m(q+

1)) = O
(
m logα (Y (e) − Y

∗ (e))
)
to get Y ∗ (because p may be 0). �e

above conclusions for the (1+1) EA also apply to RLS. �

4.1 Analysis for DWVC-E+
In this subsection, we study the performances of the two algorithms

for DWVC-E
+
.

Theorem 4.3. �e expected runtime of the (1+1) EA (or RLS) for
DWVC-E

+ is O (αm log
2

α (D ·Wmax)).

Proof. Given a DWVC-E
+
instance {G = (V ,E,W),Yorig,E

+}.

We �rst consider the expected runtime of the (1+1) EA to obtain

an MFDS of G∗ = (V ,E ∪ E+,W), starting with the MFDS Yorig
of G = (V ,E,W). For each edge e ∈ E+, Yorig (e) and σ (e) are
initialized as 0 and 1 respectively. Apparently Yorig is a feasible

dual-solution of G∗. �us any mutation on Yorig would be rejected

if Y is an MFDS of G∗, and the algorithm would keep Y forever.

In the following, we assume that Yorig is not an MFDS of G∗.
Observe that the weights on the edges in E cannot be increased.

�us by Lemma 3.2, we have that Y ∗ (e) = Yorig (e) for each edge

e ∈ E, and Y ∗ (e) ≥ Yorig (e) for each edge e ∈ E+, where Y ∗ is an
arbitrary MFDS of G∗ obtained by the (1+1) EA starting with Yorig.

Now we analyze the expected runtime that the (1+1) EA takes to

get Y ∗. Denote Y ∗ (e)−Yorig (e) by ∆(e) for each e ∈ E
+
, and denote

the number of valid mutations on e required to increase the weight

on e from Yorig (e) to Y
∗ (e) by β (e). Let Eβ,0 = {e ∈ E

+ |β (e) , 0}.

For the

∑
e ∈Eβ,0 β (e) valid mutations on the edges in Eβ,0, we

have that

∑
e ∈Eβ,0 Yorig (e) is increased by

∑
e ∈Eβ,0 ∆(e). �us the

expected increment for each valid mutation on the edges in Eβ,0 is∑
e ∈Eβ,0 ∆(e)∑
e ∈Eβ,0 β (e)

.

�e mutation selecting exactly one edge in Eβ,0 is an obviously

valid mutation on the edges in Eβ,0, which can be generated by

an iteration of the while-loop with probability Ω(
|Eβ,0 |
e ·m). �us the

expected increment of

∑
e ∈Eβ,0 Yorig (e) made by each iteration of

the while-loop is at least

|Eβ,0 |

e ·m
·

∑
e ∈Eβ,0 ∆(e)∑
e ∈Eβ,0 β (e)

.

Now we analyze the lower bound of

|Eβ,0 | ·
∑
e∈Eβ,0

∆(e)

e ·m ·
∑
e∈Eβ,0

β (e) . By

Lemma 4.1, for each edge e ∈ Eβ,0, we have that

β (e) ≤ 2α
⌊
logα ((α − 1) · ∆(e) + 1)

⌋

≤ 2α blogα (α · ∆(e))c = 2α
(
blogα ∆(e)c + 1

)
.

�us,

∑
e ∈Eβ,0

β (e) ≤ 2α
*..
,
|Eβ,0 | +

∑
e ∈Eβ,0

logα ∆(e)
+//
-

≤ 2α
*..
,
|Eβ,0 | + |Eβ,0 | · logα

∑
e ∈Eβ,0

∆(e)
+//
-
.

�e maximum value and minimum value that

∑
e ∈Eβ,0 ∆(e) can

take are D ·Wmax and 1 respectively, hence

|Eβ,0 | ·
∑
e ∈Eβ,0 ∆(e)

e ·m ·
∑
e ∈Eβ,0 β (e)

≥

∑
e ∈Eβ,0 ∆(e)

2e · αm
(
1 + logα (D ·Wmax)

) .
�eMultiplicative Dri� Analysis [4] gives that the (1+1) EA takes

expected runtime O (αm log
2

α (D ·Wmax)) to �nd an MFDS Y ∗ of
G∗.

Since we only consider the mutations selecting exactly one edge

in the above analysis for the (1+1) EA, the above conclusions for

the (1+1) EA also apply to RLS. �

4.2 Analysis for DWVC-E−
Given an instance {G = (V ,E,W),Yorig,E

−} of DWVC-E
−
. Obvi-

ously, the endpoints of the edges in E− may not be tight with respect

to the MFDS Yorig ofG once the edges in E− ⊆ E are removed (note

that the domain of de�nition for Yorig and the weight functionW

would be modi�ed as E \E− a�er the edges in E ′ are removed). �us

the weights on the edges in EG∗ (E
−) have the room to be increased.

Theorem 4.4. �e expected runtime of the (1+1) EA (or RLS) for
DWVC-E

− is O (αm log
2

α (D ·Wmax)).

Proof. We consider the expected runtime of the (1+1) EA (or

RLS) to obtain an MFDS of G∗ = (V ,E \ E−,W), starting with the

MFDS Yorig of G = (V ,E,W). Apparently Yorig is a feasible dual-

solution of G∗. If Yorig is an MFDS of G∗, then any mutation of

the (1+1) EA (or RLS) on Yorig would be rejected, and the algorithm
keeps Yorig forever. �us in the following discussion, we assume

that Yorig is not an MFDS of G∗.
Let Y ∗ be an arbitrary MFDS of G∗ obtained by the (1+1) EA (or

RLS) starting with Yorig. Observe that the weights on the edges in

E \
(
E− ∪ EG∗ (E

−)
)
cannot be increased. �us we have thatY ∗ (e) =

Yorig (e) for each edge e ∈ E \
(
E− ∪ EG∗ (E

−)
)
, and Y ∗ (e) ≥ Yorig (e)

for each edge e ∈ EG∗ (E
−).

Since all the edges in EG∗ (E
−) are incident to the endpoints of

the edges in E−, where the number of the endpoints of the edges in

E− can be bounded by 2D,
∑
e ∈EG∗ (E−) Y

∗ (e) can be upper bounded

by 2D ·Wmax , and∑
e ∈EG∗ (E−)

(Y ∗ (e) − Yorig (e)) ≤
∑

e ∈EG∗ (E−)

Y ∗ (e) ≤ 2D ·Wmax .

Runtime Analysis for Dynamic Weighted Vertex Cover Problem GECCO ’18, July 15–19, 2018, Kyoto, Japan

Using the reasoning similar to that for�eorem 4.3, the (1+1) EA (or

RLS) can obtainY ∗ in expected runtimeO (αm log
2

α (D ·Wmax)). �

4.3 Analysis for DWVC-W+
Given an instance {G = (V ,E,W),Yorig,V

+,W +} of DWVC-W
+
.

�e following lemma shows that the sum of the increments of the

weights on the edges can be bounded.

Lemma 4.5. For any MFDS Y ∗ obtained by the (1+1) EA (or RLS)
for instance {G = (V ,E,W),Yorig,V

+,W +},∑
e ∈E

(
Y ∗ (e) − Yorig (e)

)
≤

∑
v ∈V +

(
W + (v) −W (v)

)
.

Proof. SinceYorig is an obviously feasible dual-solution ofG
∗ =

(V ,E,W +), Y ∗ (e) ≥ Yorig (e) for each edge e ∈ E. Let EW + be the

set containing all edges e ∈ E where Y ∗ (e) > Yorig (e). Observe that

the weights on the edges in E \ EG∗ (V
+) cannot be increased. �us∑

e ∈E

(
Y ∗ (e) − Yorig (e)

)
=

∑
e ∈EW +

(
Y ∗ (e) − Yorig (e)

)
. (1)

For each e ∈ EW + , let τ (e) be the endpoint of e that is tight with
respect to Yorig (if both endpoints are tight, then arbitrarily choose

one). Obviously τ (e) ∈ V +. For any v ∈ V +, we have∑
e ∈EW + |τ (e)=v

(
Y ∗ (e) − Yorig (e)

)
≤W + (v) −W (v) ,

and ∑
e ∈EW +

(
Y ∗ (e) − Yorig (e)

)
≤

∑
v ∈V +

(
W + (v) −W (v)

)
. (2)

Combining (1) and (2) gives the claimed inequality. �

Using the reasoning similar to that for �eorem 4.3 and the

bound proved by Lemma 4.5, we have the following theorem.

Theorem 4.6. �e expected runtime of the (1+1) EA (or RLS) for
DWVC-W

+ is O (αm log
2

α (D ·Wmax)).

4.4 Analysis for DWVC-W−

Given an instance {G = (V ,E,W),Yorig,V
−,W −} of DWVC-W

−
.

Since Yorig may be an infeasible dual-solution of G∗ = (V ,E,W −),
it is necessary to consider the process from the infeasible dual-

solutionYorig ofG
∗
to a feasible dual-solution ofG∗ in the following

discussion.

Theorem 4.7. �e expected runtime of the (1+1) EA (or RLS) for
DWVC-W

− is O (αm log
2

α (D ·Wmax)).

Proof. We �rst consider the expected runtime of the (1+1) EA

to obtain an MFDS of G∗ = (V ,E,W −), starting with the MFDS

Yorig of G = (V ,E,W). Obviously if Yorig is a feasible dual-solution
of G∗, then Yorig is also an MFDS of G∗, and any mutation on Yorig
would be rejected. In the following discussion, we assume thatYorig
is an infeasible dual-solution of G∗.

Let Yt be the �rst feasible dual-solution accepted by the (1+1)

EA. By Lemma 3.3, to get a feasible dual-solution of G∗, only the

weights on the edges in EG∗ (Yorig) can be decreased by the (1+1) EA,

where EG∗ (Yorig) ⊆ EG∗ (V
−). �us Yt (e) ≤ Yorig (e) for each edge

e ∈ EG∗ (Y), and Yt (e) = Yorig (e) for each edge e ∈ E \ EG∗ (Yorig).

Denote Yorig (e) − Yt (e) by ∆(e) for each e ∈ EG∗ (Yorig), and
denote the number of valid mutations on e required to decrease

the weight on e from Yorig (e) to Yt (e) by β (e). Let Eβ,0 = {e ∈
EG∗ (Yorig) | β (e) , 0}.

Since

∑
e ∈Eβ,0 Yorig (e) is decreased by

∑
e ∈Eβ,0 ∆(e) for the∑

e ∈Eβ,0 β (e) valid mutations on the edges in Eβ,0, and each itera-

tion of the while-loop generates a mutation selecting exactly one

edge in Eβ,0 with probability Ω(
|Eβ,0 |
e ·m), the expected decrement

of

∑
e ∈Eβ,0 Yorig (e) made by each iteration of the while-loop is at

least

|Eβ,0 |

e ·m
·

∑
e ∈Eβ,0 ∆(e)∑
e ∈Eβ,0 β (e)

.

Now we analyze the lower bound of

|Eβ,0 | ·
∑
e∈Eβ,0

∆(e)

e ·m ·
∑
e∈Eβ,0

β (e) . By

Lemma 4.2, for each edge e ∈ Eβ,0, we have that

β (e) ≤ logα ((α − 1) ∆(e) + 1) ≤ logα ∆(e) + 1.

�us,
∑

e ∈Eβ,0

β (e) ≤
∑

e ∈Eβ,0

logα ∆(e) + |Eβ,0 |

≤
∑

e ∈Eβ,0

logα

∑
e ∈Eβ,0

∆(e) + |Eβ,0 |

= |Eβ,0 | · logα

∑
e ∈Eβ,0

∆(e) + |Eβ,0 | .

�erefore, we have

|Eβ,0 | ·
∑
e ∈Eβ,0 ∆(e)

e ·m ·
∑
e ∈Eβ,0 β (e)

≥

∑
e ∈Eβ,0 ∆(e)

e ·m ·
(
logα

(∑
e ∈Eβ,0 ∆(e)

)
+ 1

) .
Since

∑
e ∈EG∗ (V −) Yorig (e) ≤ D · Wmax and EG∗ (Yorig) ⊆

EG∗ (V
−), we have

∑
e ∈EG∗ (Yorig) Yorig (e) ≤ D ·Wmax , and the max-

imum value and minimum value that

∑
e ∈Eβ,0 ∆(e) can take are

D ·Wmax and 1 respectively. �erefore,

|Eβ,0 | ·
∑
e ∈Eβ,0 ∆(e)

e ·m ·
∑
e ∈Eβ,0 β (e)

≥

∑
e ∈Eβ,0 ∆(e)

e ·m
(
logα (D ·Wmax) + 1

) .
�e Multiplicative Dri� Analysis [4] gives that the (1+1) EA takes

expected runtime O (m log
2

α (D ·Wmax)) to get Yt .
Obviously Yt may not be an MFDS of G∗. �us we also need to

consider the process of the (1+1) EA to get an MFDS ofG∗, starting
with Yt . To simplify the analysis, we aim to transform the process

to an execution of the (1+1) EA for an instance of DWVC-W
+
.

In the following, we �rst construct a weighted graph Gt =

(V ,E,Wt) such that Yt is an MFDS of Gt . Let Vβ,0 contain all

endpoints of the edges in Eβ,0. For each vertex v ∈ V \Vβ,0, let
Wt (v) =W (v), and for each vertex v ∈ Vβ,0, let

Wt (v) =W (v) −
∑

e ∈Eβ,0 |e∩v,∅

∆(e) .

Since Yorig is an MFDS of G, Yt is an obvious MFDS of Gt .

Since Yt is a feasible dual-solution of G∗ but an MFDS of Gt ,

Wt (v) ≤ W − (v) for each vertex v ∈ V . Let V ′ be the subset of

V such that for each vertex v ∈ V ′, Wt (v) < W − (v). �us the

instance of DWVC-W
+
is {Gt = (V ,E,Wt),Yt ,V

′,W −}. Similar to

GECCO ’18, July 15–19, 2018, Kyoto, Japan Shi et al.

Lemma 4.5, we give the upper bound that the sum of the increments

of the weights on the edges with respect toW −. We have∑
v ∈V ′

(
W − (v) −Wt (v)

)
≤

∑
v ∈V ′

(W (v) −Wt (v))

≤
∑
v ∈V ′

*..
,

∑
e ∈Eβ,0 |e∩v,∅

∆(e)
+//
-

≤ 2

∑
e ∈Eβ,0

∆(e) ≤ 2D ·Wmax .

By the reasoning similar to that for �eorem 4.3, the (1+1) EA takes

expected runtime O (αm log
2

α (D ·Wmax)) to get an MFDS of G∗

starting with Yt .
Summarizing the above discussion, the (1+1) EA gets an MFDS

of G∗ in expected runtime O (αm log
2

α (D ·Wmax)). �e above time

complexity also applies to RLS. �

5 CONCLUSION
In this paper, we contribute to the theoretical understanding of

evolutionary computing for the Dynamic Weighted Vertex Cover

problem, generalizing the results obtained by Pourhassan et al. [19]

for the Dynamic Vertex Cover problem. Four graph-editing opera-

tions were studied for the dynamic changes of the given weighted

graph, which lead to four versions of the Dynamic Weighted Vertex

Cover problem. �e performances of algorithms (1+1) EA and RLS

with step size adaption strategy for the four versions were analyzed

seperately, which show that they can maintain the quality of the

solution for these studied dynamic changes e�ciently.

Pourhassan et al. [18] studied the Weighted Vertex Cover prob-

lem using the dual form of the LP formulation for the Fractional

Weighted Vertex Cover problem recently. �ey showed that their

(1+1) EA with Step Size Adaptation cannot get a 2-approximate so-

lution in polynomial expected time with high probability. �ere are

two main di�erences between their (1+1) EA and our (1+1) EA: (1).

for the mutationM constructed by their (1+1) EA, there may exist

two edges selected by the mutationM whose weights are increased

and decreased respectively; for the mutationM constructed by our

(1+1) EA, the weights on the edges selected by the mutationM are

either all increased or all decreased; (2). for the mutationM that is

rejected by their (1+1) EA, the step sizes of all the edges selected by

the mutationM are decreased; for the mutationM that is rejected

by our (1+1) EA, only the step sizes of the edges satisfying a speci�c

condition can be decreased.

REFERENCES
[1] A. Auger and B. Doerr. �eory of Randomized Search Heuristics: Foundations and

Recent Developments. World Scienti�c Publishing Co., Inc., 2011.

[2] R. Bar-Yehuda and S. Even. A linear-time approximation algorithm for the

weighted vertex cover problem. Journal of Algorithms, 2(2):198–203, 1981.
[3] H.-G. Beyer and H.-P. Schwefel. Evolution strategies–a comprehensive

introduction. Natural computing, 1(1):3–52, 2002.
[4] B. Doerr, D. Johannsen, and C. Winzen. Multiplicative dri� analysis.

Algorithmica, 64(4):673–697, 2012.
[5] D.-Z. Du, K.-I. Ko, and X. Hu. Design and analysis of approximation algorithms,

volume 62. Springer Science & Business Media, 2011.

[6] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Wi�. Approximating

covering problems by randomized search heuristics using multi-objective

models. Evolutionary Computation, 18(4):617–633, 2010.
[7] T. Friedrich and F. Neumann. What’s hot in evolutionary computation. In AAAI,

pages 5064–5066, 2017.

[8] N. Hansen, S. D. Müller, and P. Koumoutsakos. Reducing the time complexity of

the derandomized evolution strategy with covariance matrix adaptation

(cma-es). Evolutionary computation, 11(1):1–18, 2003.
[9] D. S. Hochbaum. E�cient bounds for the stable set, vertex cover and set

packing problems. Discrete Applied Mathematics, 6(3):243 – 254, 1983.

[10] T. Jansen. Analyzing Evolutionary Algorithms - �e Computer Science Perspective.
Natural Computing Series. Springer, 2013.

[11] T. Jansen, P. S. Oliveto, and C. Zarges. Approximating vertex cover using

edge-based representations. In Proceedings of the twel�h workshop on
Foundations of genetic algorithms XII, pages 87–96. ACM, 2013.

[12] S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
thiry-fourth annual ACM symposium on �eory of computing, pages 767–775.
ACM, 2002.

[13] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2-ε .
Journal of Computer and System Sciences, 74(3):335–349, 2008.

[14] T. Kötzing, A. Lissovoi, and C. Wi�. (1+ 1) ea on generalized dynamic onemax.

In Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms
XIII, pages 40–51. ACM, 2015.

[15] S. Kratsch and F. Neumann. Fixed-parameter evolutionary algorithms and the

vertex cover problem. Algorithmica, 65(4):754–771, 2013.
[16] F. Neumann and C. Wi�. Bioinspired Computation in Combinatorial

Optimization:Algorithms and �eir Computational Complexity. Springer-Verlag
New York, Inc., New York, NY, USA, 1st edition, 2010.

[17] F. Neumann and C. Wi�. On the runtime of randomized local search and simple

evolutionary algorithms for dynamic makespan scheduling. In IJCAI, pages
3742–3748, 2015.

[18] M. Pourhassan, T. Friedrich, and F. Neumann. On the use of the dual

formulation for minimum weighted vertex cover in evolutionary algorithms. In

Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic
Algorithms, pages 37–44. ACM, 2017.

[19] M. Pourhassan, W. Gao, and F. Neumann. Maintaining 2-approximations for the

dynamic vertex cover problem using evolutionary algorithms. In Proceedings of
the 2015 Annual Conference on Genetic and Evolutionary Computation, pages
903–910. ACM, 2015.

[20] M. Pourhassan, F. Shi, and F. Neumann. Parameterized analysis of

multi-objective evolutionary algorithms and the weighted vertex cover problem.

In Proceedings of the 14th International Conference on Parallel Problem Solving
from Nature (PPSN XIV), pages 729–739. Springer, 2016.

[21] F. Shi, M. Schirneck, T. Friedrich, T. Kötzing, and F. Neumann. Reoptimization

times of evolutionary algorithms on linear functions under dynamic uniform

constraints. In Proceedings of the Genetic and Evolutionary Computation
Conference, pages 1407–1414. ACM, 2017.

[22] V. V. Vazirani. Approximation algorithms. Springer Science & Business Media,

2013.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Adaptive (1+1) EA and RLS
	4 Runtime Analysis
	4.1 Analysis for DWVC-E+
	4.2 Analysis for DWVC-E-
	4.3 Analysis for DWVC-W+
	4.4 Analysis for DWVC-W-

	5 Conclusion
	References

