
Randomized Greedy Algorithms for Covering Problems
Wanru Gao

Optimisation and Logistics

School of Computer Science

The University of Adelaide

Adelaide, Australia

Tobias Friedrich

Algorithm Engineering

Hasso Plattner Institute

Potsdam, Germany

Frank Neumann

Optimisation and Logistics

School of Computer Science

The University of Adelaide

Adelaide, Australia

Christian Hercher

Mathematics and Didactics

University of Flensburg

Flensburg, Germany

ABSTRACT
Greedy algorithms provide a fast and often also effective solution

to many combinatorial optimization problems. However, it is well

known that they sometimes lead to low quality solutions on cer-

tain instances. In this paper, we explore the use of randomness in

greedy algorithms for the minimum vertex cover and dominating

set problem and compare the resulting performance against their

deterministic counterpart. Our algorithms are based on a parame-

ter γ which allows to explore the spectrum between uniform and

deterministic greedy selection in the steps of the algorithm and our

theoretical and experimental investigations point out the benefits

of incorporating randomness into greedy algorithms for the two

considered combinatorial optimization problems.

ACM Reference Format:
Wanru Gao, Tobias Friedrich, Frank Neumann, and Christian Hercher.

2018. Randomized Greedy Algorithms for Covering Problems. In Proceedings
of the Genetic and Evolutionary Computation Conference 2018 (GECCO ’18).
ACM, New York, NY, USA, 7 pages. https://doi.org/

1 INTRODUCTION
Randomization plays a key role when designing high performing al-

gorithms. Many algorithmic studies in theoretical computer science

show that incorporating the right dose of randomness can be crucial

for solving computational problems. Let us recall three examples: (1)

polynomial identity testing has only exponential time deterministic

algorithms, but simple polynomial-time randomized algorithms,

(2) counting the number of tilings of an n-by-n grid by dominos

is a problem, where the best known deterministic algorithms are

exponential time, but there are efficient randomized approximation

algorithms [11]), and (3) the dining philosophers problem from

distributed computations always ends up in a deadlock for deter-

ministic programs [4], but simple randomized algorithms can break

the problem’s symmetry [10].

There are similar trends within heuristic optimization:Many pop-

ular heuristic search algorithms strongly rely on random decisions

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO ’18, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s).

as key components of their algorithms. Examples are evolutionary

algorithms [6], ant colony optimization [5], or greedy randomized

adaptive search procedures [7].

We study the impact of using randomness in greedy algorithms.

(Deterministic) greedy algorithms often provide an effective and

fast approach when dealing with combinatorial optimization prob-

lems. On the other hand, it is well-known that they have a bad

approximation behavior on problems such as the minimum vertex

cover problem for some instances. A certain move which is the

best option for the current stage may only lead to the local opti-

mum rather than the global optimum. Randomizing the greedy step

might help to prevent the algorithm from producing bad solutions

for these instances.

We explore the use of randomization in simple greedy algo-

rithms for two well-known NP-hard combinatorial optimization

problems, namely the minimum vertex cover (MVC) and minimum

dominating set (MDS) problem [8]. For MVC it is well known that

the greedy algorithm picking in each step a node that covers the

largest number of still uncovered edges, obtains only a Θ(logn)-
approximation of an optimal solution for a certain class of bipartite

graphs. We provide a theoretical analysis of a randomized greedy

approach and show that choosing the the next node to be added to

the set proportional to the number of edges that it covers, results

in expectation in a 2-approximation for every problem instance

of MVC. Furthermore, we provide a trade-off result in terms of a

number of repeated runs and approximation quality and show that

an α-approximation, 1 ≤ α < 2, is obtained in 2 ln(2) · 2(2−α)· |OPT |
repeated runs with probability at least 1/2.

In order to gain some insight about the randomized selection

scheme in practical aspect, we embed it into the greedy algorithm

for another covering problems, which is the minimum dominating

set problem. The greedy approach for this problem selecting the

node with the maximum number of uncovered neighbours. We take

this problem as another example where the randomized selection

scheme is applied to the deterministic greedy approach and analyse

the experimental results.

The test cases cover well-known benchmark problems and large

real world graphs. The experimental results from the randomized

greedy algorithms are compared with the deterministic greedy

algorithm. We show that the deterministic greedy algorithm easily

gets stuck in locally optimal solution. Due to its nature of favoring

https://doi.org/

GECCO ’18, July 15–19, 2018, Kyoto, Japan Wanru Gao, Tobias Friedrich, Frank Neumann, and Christian Hercher

the best option at a certain step, the deterministic greedy approach

highly likely ends up with optimizing along the wrong direction.

With the randomized selection scheme, the algorithm keeps the

possibility of get away from the local optimum.

The experimental results demonstrate that the randomized

greedy approach improves the performance of the deterministic

greedy approach in most test cases. With simple repeated runs,

the randomized approach can provide better results for different

covering problems, especially for large and sparse graphs.

There exist some state-of-the-art algorithms for MVC that are

based on the simple greedy approach [1, 2]. The randomized mech-

anism could provide ideas to further improve them.

The outline of the paper is as follows. In Section 2, we introduce

the general set up for greedy algorithms and the kind of random-

ization that we consider. In Section 3, we study the randomized

greedy approach for the minimum vertex cover problem from a

theoretical and experimental perspective. We investigate the ran-

domized greedy approach for minimum dominating set through

experimental investigations in Section 4. Finally, we finish with

some concluding remarks.

2 GREEDY ALGORITHMS AND
RANDOMIZATION

Greedy algorithms play an important role for solving many opti-

mization problems. They often provide a fast solution to the problem

at hand which can be implemented in a very simple way.

Consider an optimization problem P where a potential solution

consists of a subset of n components C = {C1, . . . ,Cn }. A greedy

algorithm starts with an empty set S = ∅ and adds in each step t a
componentCi ∈ Ct

to the solution set S . HereCt
denotes the set of

available components at time step t . To do this, a reward r (Ci) ≥ 0,

Ci ∈ Ct
, is assigned to each available component

The deterministic greedy algorithm chooses in step t a compo-

nent with maximum reward r t (Ci), i.e
Ci = arg max

Cj ∈C t
r t (Cj).

We can randomize the deterministic greedy approach by selec-

tion in step t a component Ci ∈ Ct
according to the probability

distribution given by

p(Ci) = r (CI)γ /
∑

Ci ∈Ct
∈ Cr (Ci)γ | Ci ∈ Ct

(1)

Here γ ≥ 0 is a parameter that determines the amount of greedi-

ness.

For the special case of γ = 0, a component Ci ∈ Ct
is chosen

uniformly at random. γ = 1 implies that the probability of choosing

a component is proportional to its reward, and γ → ∞ approaches

the behavior of the deterministic greedy algorithm where ties are

broken uniformly at random.

Note that if γ > 0, we can use r (Ci) = 0 for Ci < C
t
and work

with the set C instead of Ct
in Equation 1 and obtain the same

probability distribution.

3 VERTEX COVER PROBLEM
Vertex Cover is one of the most fundamental and most studied

combinatorial optimization problems. Given an undirected graph

Algorithm 1: Greedy algorithm for Vertex Cover

1 S := ∅;
2 repeat
3 Choose a node u ∈ argmaxv ∈G[S]{deд(v,G[S])}}

covering a maximum number of uncovered edges. ;

4 S := S ∪ {u}
5 until S is a vertex cover of G;

6 Return S ;

Algorithm 2: Randomized greedy algorithm for Vertex Cover

1 S := ∅;
2 repeat
3 Choose a node u in G[S] according to probability

p(u) = deд(v,G[S])γ /∑u ∈G[S] deд(v,G[S])γ ;
4 S := S ∪ {u}
5 until S is a vertex cover of G;

6 Return S ;

G = (V ,E), the goal is to find a minimum set of verticesV ′
such that

every edge e ∈ E is covered, i.e. e ∩V ′ , ∅ holds for all e ∈ E. We

denote by deд(v,G) the degree of node v in graph G. Furthermore,

we denote by G[S] = (V ,E ′) where E ′ = E \ {e | e ∩ S , ∅} the
subgraph obtained fromG by removing all edges covered by a node

in the vertex set S .
Given an algorithm A for a minimization problem P , the

(worst case) approximation ratio of algorithm A is given by

maxI A(I)/OPT (I) where A(I) and OPT (I) where A(I) denotes the
objective value achieved by algorithm A and OPT (I) denotes the
optimal objective value for instance I . The expected (worst case)

approximation ratio is the worst case ratio maxI E[A(I)]/OPT (I)
where E[A(I)] denotes the the expected objective value that algo-

rithm A achieves on instance I .

3.1 Greedy Algorithms
We study simple vertex-based greedy algorithms. It is folklore that

a deterministic vertex-based greedy algorithm (cf. Alg. 1) for ver-

tex cover only achieves a Θ(logn)-approximation. As our aim is

understanding how randomization can help the greedy algorithm.

For this, we consider a randomized (vertex-based) greedy algo-

rithm. Our randomized greedy algorithm starts with an empty set

of nodes and adds vertices until a vertex cover has been obtained.

In each step, uncovered edges are selected at random and a random

endpoint of the chosen edge is added to the vertex cover. While

the deterministic vertex-based greedy algorithm can be fooled to a

Θ(logn)-approximation, the randomized vertex-based greedy algo-

rithm achieves in expectation a 2-approximation:

3.2 Analysis
We now analyze the randomized greedy algorithm for the minimum

vertex cover problem. We do this for γ = 1. The following results

shows that the randomized greedy algorithm with γ = 1 achieves

an expected approximation ratio of 2.

Randomized Greedy Algorithms for Covering Problems GECCO ’18, July 15–19, 2018, Kyoto, Japan

Theorem 3.1. Let γ = 1, then the randomized greedy algorithm
given in Algorithm 2 has an expected approximation ratio of 2.

Proof. Let OPT be a minimimum vertex cover. The probability

of selecting a node v ∈ OPT in the next step is given by∑
v ∈OPT

deд(v,G[S])/
∑
v ∈V

deд(v,G[S])

.

We have

∑
v ∈OPT deд(v,G[S]) ≥ E[S] as all nodes inOPT are still

covering all edges and

∑
v ∈V deд(v,G[S]) = 2 · E[S]. This implies∑

v ∈OPT
deд(v,G[S])/

∑
v ∈V

deд(v,G[S]) ≥ 1/2

.

A vertex cover is produced if all nodes of OPT are selected, but

may be produced earlier. As in each step a node in OPT is selected

with probability at least 1/2 unless a vertex cover has already been

founded, the expected number of nodes that the algorithm selects

until a vertex cover is produced is at most 2 · |OPT|. □

Repeated runs or often used for randomized algorithms to a

solution of good quality. As a node of OPT is always included with

probability 1/2 as long as a vertex cover has not been obtained, the

previous idea can be generalized when considering repeated runs.

Theorem 3.2. Let 1 ≤ α < 2 and γ = 1. Then the randomzed
greedy algorithm given in Algorithm 2 obtains with probability at
least 1/2 in 2 ln(2) · 2(2−α)· |OPT | runs an approximation of α .

Proof. The number of nodes in OPT selected in the first x =
2(α − 1)|OPT| steps of Algorithm 2 is at least

x
2
= (α − 1)|OPT|

with probability at least
1

2
: In each step the probability of selecting

a node in OPT is at least
1

2
and thus a binomial distributed random

variable B(x , 1
2
) is a lower bound for the number of selected nodes

in OPT. But because of symmetry of B(x , 1
2
) the probability of at

least
x
2
selected nodes in OPT is at least

1

2
.

If at least
x
2
= (α − 1) |OPT| nodes in OPT were selected after

the first x steps a vertex cover is found if all the other at most

y = (2−α) |OPT| nodes are selected, too. The probability of selecting
them in the next y steps of the algorithm is at least

(
1

2

)y
. Therefore

Algorithm 2 produces a vertex cover of size at most x +y = α |OPT|

with probability P ≥
(
1

2

)
1+(2−α) |OPT |

.

After
ln(2)
P ≤ 2 ln(2) · 2(2−α) |OPT | repeated runs of Algorithm 2

the probability that neither of these runs found a vertex cover of

size at most α |OPT| is at most (1 − P)
ln(2)
P < e− ln(2) = 1

2
. □

We have shown from a theoretical perspective that repeated

runs of the randomized greedy algorithm with γ = 1 are highly

beneficial. In the following, we investigate the behaviour of the

randomized greedy algorithm for a wide range of settings of γ in

connection with repeated runs.

3.3 Experimental Results
In this section, we include our finding from experiments for ap-

plying the randomization mechanism to greedy algorithm of the

minimum vertex cover problem.

Figure 1: The worst case vertex cover of greedy algorithm.
The global optimum solution is the upper vertex set but the
greedy algorithm can only find the lower set which is larger
than the upper one.

All of the experiments are executed on a machine with 48-core

Authentic AMD 2.80GHz CPU and 128GByte RAM; note that the

program uses only a single core.

There are many well-known benchmarks for covering problems.

In this paper, the different approaches are evaluated based on tests

on selected graphs from the DIMACS benchmark, BHOSLIB prob-

lems and some real world graphs.

The DIMACS benchmark is one of the well-known benchmarks

used to test algorithms working on graph problems. It is a set of

challenging problems coming from the Second DIMACS Imple-

mentation Challenge for Maximum Clique, Graph Coloring and

Satisfiability [9].

The BHOSLIB (Benchmarks with Hidden Optimum Solutions)

problems are generated from translating the binary Boolean Satisfi-

ability problems randomly generated based on the model RB [15].

These instances have been proven to be hard to solve, both theoret-

ically and practically.

Some undirected unweighted real world graphs are selected from

the Network Data Repository [13]. These graphs are sparser and

larger in size than the benchmark problems. Since they are extracted

from real world networks, they reflect the characteristics of realistic

networks and attract more and more attention of the researchers.

The two algorithms 1 and 2 are implemented in Java and com-

piled with JDK 8. The running time of the two algorithms on the

same test case is comparable, therefore not reported.

3.3.1 Worst case example of deterministic greedy algorithm.
There exists a counterexample which is widely used to disprove

the greedy vertex cover algorithm is 2-approximated. As shown in

Figure 1, consider a bipartite graph Gb = U ∪ D,E, where |U | = n.
For i = n, · · · , 2, add set Di with ⌊n/i⌋ vertices to set D and make

all vertices in Di have degree i by connecting them with distinct

node in setU .

In the worst case for greedy algorithm, the original greedy algo-

rithm is not able to achieve a 2-approximated solution for such a

bipartite graph. The global optimum for this problem is the upper

set U but Algorithm 1 is only able to find the lower set D. In Algo-

rithm 2, the introduced randomness makes it possible to achieve

the global optimum solution for this kind of problem.

GECCO ’18, July 15–19, 2018, Kyoto, Japan Wanru Gao, Tobias Friedrich, Frank Neumann, and Christian Hercher

0.1 0.2 0.5 0.8 1 5 10 50 100 500 1000 1500 2000 2500 3000

Gamma

0

100

200

300

400

500

600

700

800

900

1000

S
ol

ut
io

n
si

ze

Greedy Worst Case

optimal solution
greedy average

Figure 2: The experimental results from the greedy algo-
rithm with randomization for an example worst case graph.
The global optimum solution is of size 200 and indicated
with the red horizontal line. The minimum vertex cover
found by deterministic greedy algorithm is indicated with
a green line.

As an example, the two algorithms are run on a bipartite graph

with two sets of verticeswhere each set has 200 and 898 vertices. The

results with different parameter γ in Algorithm 2 comparing with

the greedy approach are shown in Figure 2. The red horizontal line

represents the global optimum results and the green line indicates

the solution size from deterministic greedy approach. The boxplots

come from 10 independent repeated runs. The global optimum is of

size 200 as indicated with a red vertical line. The green line indicates

the solution size from the deterministic greedy approach, which is

898 in numerical value.

As analyzed in the previous section, when the value of γ is very

small, the algorithm performs like a uniform random algorithm.

In the figure, when γ ≤ 1, the solution size from Algorithm 2

decreases as γ gets larger. From the figure, it is clear that with a

γ in the range of 20 to 1000, the randomized greedy algorithm is

able to find the global optimum solution. When a very large γ is

given, the algorithm tends to perform like the deterministic greedy

algorithm which only be able to get a solution of size 898.

This experiment shows that with a reasonable randomness, the

greedy algorithm is able to escape the local optima.

3.3.2 Benchmarks and real world graphs. These two algorithms

are then tested on some more general test cases including the DI-

MACS benchmarks, BHOSLIB problems and small real world graphs.

The experimental results are gathered from 20 independent repeated

runs each case. The minimum and average solution size from the

20 runs of Algorithm 2 are reported.

Table 1 shows the experimental results from the deterministic

greedy algorithm and the greedy algorithm with randomized selec-

tion scheme on some selected vertex cover problem. The γ values

are selected in the range of [1, 500]. The results from the randomized

Algorithm 3: Randomized greedy algorithm for the Dominat-

ing Set Problem

1 S := ∅;
2 repeat
3 Choose a node u ∈ {x | w(x) = maxu ∈V {w(u)}};
4 S := S ∪ {u}
5 until � white nodes;

6 Return S ;

greedy approach that are better than that from the deterministic

approach are in bold and the best solutions are colored in blue.

The DIMACS benchmarks and BHOSLIB problems are widely

used to test vertex cover algorithms. These test cases are designed

to be hard test cases. The deterministic greedy approach can obtain

nearly optimum solutions for most cases. For the brock family, the

randomized approach outperforms the deterministic approach in

5 out of 6 graphs when γ ≤ 20. The randomized algorithm has a

better average performance in most test cases when γ increases.

The brock graphs are designed with the aim to defeat greedy

heuristics by including low degree nodes into the global optimum

vertex cover. The deterministic greedy approach tends to select the

node with higher degree during the process, which is easily trapped

in the local optimum. The randomized approach improves that.

The real world graphs are usually large but sparse graphs. The

randomized greedy algorithm shows the same performance or

weakly outperforms the deterministic approach in most graphs

with γ = 10. Increasing γ improves the performance of Algorithm 2

in most cases.

4 DOMINATING SET PROBLEM
Another example problem studied in this paper is the problem of

finding a dominating set of a given graph. The dominating sets prob-

lem has many real world applications in different areas, especially

in computer and mobile networks [3, 14]. It has been proved that

finding a minimal dominating set is NP-hard [8]. In this research,

we focus on the approximated solutions.

Definition 4.1 (Dominating Set Problem). Given an undirected

graph G = (V ,E), a dominating set D is a subset D ⊆ V where for

all v ∈ V , either v ∈ D or a neighbor u of v is in D.

One of the approximated algorithms for finding dominating set

is the greedy algorithm. The algorithm starts with an empty set

and adds nodes until a dominating set is achieved. The node to be

included is decided based on the number of uncovered nodes in the

neighbourhood.

Definition 4.2. In the Dominating Set problem, We call nodes in

set D black, nodes that have neighbor in D gray and all uncovered

nodes white. AssumeW (v) represents the set of white nodes among

the direct neighbors of v .w(v) = |W (v)| is called the span of v .

4.1 Greedy Algorithms
The simple greedy algorithm starts with an empty set and covers

one of the nodes with the maximum span in each iteration until a

dominating set is found. The span of each node is updated every

Randomized Greedy Algorithms for Covering Problems GECCO ’18, July 15–19, 2018, Kyoto, Japan

Instance name

Deterministic

greedy

Randomized greedy

γ = 1 γ = 5 γ = 10 γ = 20 γ = 30 γ = 50 γ = 100 γ = 200 γ = 500

brock200_2 192 196 196.9 192 193.8 192 193.2 191 192.4 190 191.9 191 192.1 190 192.0 190 193.0 190 191.9
brock200_4 188 193 194.7 189 190.6 187 188.4 186 187.7 186 187.5 186 187.9 186 187.9 187 188.3 186 187.9
brock400_2 379 389 392.7 384 386.1 380 383.3 379 381.8 380 382.0 376 381.0 379 381.3 377 381.0 379 380.7

brock400_4 380 390 392.4 383 386.2 380 383.0 379 381.7 379 381.2 378 380.1 378 380.0 379 380.3 378 380.5

brock800_2 788 793 794.5 787 789.4 786 787.4 783 785.6 784 785.9 782 785.2 783 785.1 782 785.1 783 785.3
brock800_4 787 793 794.8 789 790.2 786 787.5 785 786.5 784 786.2 784 785.6 784 786.0 783 786.1 784 785.6
C125.9 93 103 107.3 93 96.4 92 94.3 91 92.9 92 93.3 92 92.8 92 93.1 92 93.3 92 92.9
C500.9 453 475 480.8 457 463.6 453 459.1 454 457.7 454 457.4 453 457.3 452 456.8 452 456.6 451 456.5

frb45-21-1 913 928 930.6 917 920.6 914 917.6 914 916.2 912 915.6 913 915.1 913 914.6 912 914.8 912 914.9

frb45-21-2 916 928 930.6 916 919.5 914 917.9 914 916.9 915 916.4 915 916.7 915 916.6 915 916.9 914 916.5

frb45-21-3 917 926 929.7 918 920.3 916 918.5 914 917.1 916 917.0 914 917.2 916 917.4 915 917.3 914 917.1

frb45-21-4 913 927 929.9 916 918.9 912 915.1 912 915.1 913 914.6 912 914.2 912 913.6 911 913.8 912 913.4

frb45-21-5 917 927 931.3 919 921.2 915 917.9 916 917.5 914 916.8 914 916.9 915 916.6 915 916.6 914 916.6

soc-wiki-vote 411 489 503.4 415 419.9 411 415.3 412 414.0 410 414.1 411 414.2 410 414.2 411 413.0 411 414.1

web-polblogs 246 292 307.7 248 250.4 245 247.9 246 246.8 246 247.0 245 246.8 246 246.8 246 246.9 246 247.3

bio-celegans 255 288 298.9 257 262.3 254 258.8 256 258.8 256 258.8 255 258.3 255 258.1 255 258.4 256 258.3

bio-dmela 2667 3424 3476.3 2707 2719.6 2661 2673.4 2662 2667.6 2663 2668.0 2662 2668.2 2662 2667.0 2662 2668.0 2664 2668.9

soc-douban 8719 15371 15760.6 8737 8750.5 8717 8722.6 8716 8719.6 8715 8719.2 8716 8718.8 8715 8718.2 8717 8718.6 8717 8718.5
soc-epinions 9860 12111 12203.5 9966 9993.1 9865 9877.7 9855 9867.4 9849 9865.5 9858 9866.4 9853 9865.7 9854 9864.9 9848 9864.9

Table 1: The experimental results comparing the performance of deterministic greedy algorithm and the one with random-
ization on vertex cover problem. The results come from 20 independent repeated runs. The minimum vertex cover size and
mean size are reported in the left and right column under each parameter setting. The minimum solutions for each problem
are colored in blue.

Algorithm 4: Randomized greedy algorithm for the Dominat-

ing Set Problem

1 S := ∅;
2 repeat
3 Choose a node u in G according to probability

p(u) = w(v)γ /∑u ∈V w(u)γ ;
4 S := S ∪ {u}
5 until � white nodes;

6 Return S ;

iteration. The pseudo code is included as Algorithm 3. The deter-

ministic greedy algorithm has a worst-case approximation ratio of

1 + lnn. Furthermore, it is NP-hard to approximate the minimum

dominating set problem with a ratio of c · lnn, where c < 1 is some

constant [12].

In order to study the power of randomization, a greedy algorithm

with a parameter related probability of selecting white node is

introduced. As shown in Algorithm 4, each white node is given a

certain selection probability based on its span. The parameter γ is

similar to the randomized greedy algorithm for vertex cover which

controls the randomness. One white node is selected to be included

to the solution set in one iteration until all nodes are covered.

With a proper γ value, the randomized greedy algorithm in-

troduces randomness in the selection process and increases the

possibility of escaping the local optima where the deterministic

greedy approach may get stuck.

4.2 Experimental Results
The randomized greedy algorithm for dominating set problem with

different parameter settings is tested on a range of unweighted

undirected graphs, including DIMACS benchmarks and some mid-

dle to large-size real world graphs. Each instance is tested with

different parameter settings for 10 repeated runs in order to gather

statistics.

Both Algorithm 3 and 4 are implemented in Java and compiled

with JDK 8. The hardware used for generating the experimental

results is the same with the previous section.

Table 2 and 3 shows the comparison of results from Algorithm 3

and 4. The parameter γ for the randomized approach is chosen from

{1, 10, 20, 30, 50, 100, 200, 500, 1000}.
The first single column in the two tables reports the minimum

dominating set size found by the deterministic greedy algorithm.

Same as the vertex cover problem, the minimum results and average

results from the randomized greedy algorithm are reported for each

parameter γ in the tables. The results obtained by the randomized

greedy approach that are better than those from the corresponding

deterministic greedy approach are highlighted in bold. In this study,

we do not focus on whether the algorithm can achieve the global

optimum solutions or not. Therefore, the global optimum solution

sizes are not reported.

The two algorithms are firstly tested on the well-knownDIMACS

benchmarks. There exist many different families in the DIMACS

benchmarks. Initially, they are designed for the clique problem and

intensionally to be hard clique instances with different characteris-

tics. Later on, they are widely used to test other graph problems.

Most test cases in DIMACS benchmarks are small graphs with

node number in the range of 5 to 1000. The deterministic greedy

approach is already able to reach a small dominating set. The ran-

domized greedy algorithm perform similarly as its deterministic

counterpart. Therefore, we only report part of the benchmark set

and eliminate the cases where both approaches can achieve the

same good results.

The graph families reported in this paper are as follows:

• C family: the random graph generated with given number

of nodes and an edge probability.

GECCO ’18, July 15–19, 2018, Kyoto, Japan Wanru Gao, Tobias Friedrich, Frank Neumann, and Christian Hercher

Instance name

Deterministic

greedy approach

Randomized greedy approach

γ = 1 γ = 10 γ = 20 γ = 50 γ = 100 γ = 200 γ = 500 γ = 1000

C125.9 15 22 25.3 14 15.8 14 14.9 14 15.0 14 14.7 13 14.3 14 15.0 14 15.1

C250.9 18 29 31.8 17 18.4 17 17.2 16 16.9 16 17.2 16 17.1 16 17.2 16 17.4
C500.9 21 35 37.3 22 23.9 21 21.8 20 21.0 20 21 21 21.2 20 21.1 21 21.1

C1000.9 25 40 43.8 28 29.4 25 26.1 24 25.1 24 24.6 24 24.9 24 25.0 24 24.6
C2000.5 7 9 10.6 8 8.9 7 7.9 7 7.1 7 7.0 7 7.0 7 7.0 7 7.0

C2000.9 29 47 50.9 34 35.3 31 31.3 29 29.3 28 28.9 28 28.7 28 28.6 28 28.1
C4000.5 8 10 11.6 9 9.8 9 9.0 8 8.0 8 8.0 7 7.9 8 8.0 8 8.0

brock200_2 4 6 7.6 5 5.4 4 4.9 4 4.3 4 4.2 4 4.0 4 4.0 4 4.0

brock200_4 6 9 11.0 7 7.7 6 6.9 5 6.3 6 6.6 6 6.6 6 6.9 6 6.7

brock400_2 10 15 17.6 11 11.5 10 10.1 9 9.8 9 9.6 9 9.9 9 9.7 9 9.7
brock400_4 10 15 16.9 11 11.7 10 10.2 9 9.9 9 9.7 9 9.9 9 9.5 9 9.7
brock800_2 8 12 13.4 10 10.2 9 9 8 8.5 8 8.0 8 8.2 8 8.3 8 8.0

brock800_4 8 12 13.7 10 10.4 8 9 8 8.5 8 8.2 8 8.2 8 8.1 8 8.0

keller4 6 8 9.0 6 6.6 6 6.5 5 6.0 6 6.0 5 6.1 5 5.7 5 6.0

keller5 11 15 17.0 12 12.5 11 11.4 10 11.1 11 11.1 11 11.3 10 10.9 10 11.2

keller6 18 26 28.7 19 20.3 19 19.0 17 17.9 18 18.0 17 17.9 17 18.0 17 17.8

Table 2: Experimental results from testing Algorithm 3 and 4 on dominating set problem from DIMACS benchmarks. The
minimum and average sizes of the dominating set found in the 10 independent runs are shown in the left and right columns
under each parameter setting. The minimum solutions for each problem are colored in blue.

• brock family: the randomly generated graph with cliques

designed to be hidden among relatively low-degree nodes.

• keller family: graphs generated based on Keller’s conjecture

on tilings using hypercubes.

From the statistics obtained from the experiments on sample DI-

MACS benchmarks, withγ >= 10, the randomized greedy approach

achieves better solutions than the deterministic greedy approach in

2 out of 16 test cases. With γ no less than 50, the randomized greedy

approach improves the solutions from the greedy approach in 10

out of 16 test cases. With γ = 50, the randomized greed algorithm

outperforms the deterministic approach in 10 out of 16 test cases

and achieves the same minimum dominating sets in the other test

cases. Compared to the results from deterministic greedy dominat-

ing set algorithm, the randomized approach with a larger parameter

γ increases the possibility to further optimizing the solution even

for the nearly optimal one.

The minimum dominating sets found in the ten repeated runs of

randomized greedy algorithm are never worse than the results from

the deterministic greedy algorithm. From the experimental results,

with γ ≥ 100, repeated randomized greedy approach is very likely

to improve the solution found by its deterministic counterpart. In

the case where no improvement is spotted, the randomized greedy

approach maintains the minimum size of dominating set founded

by the deterministic approach. Increasing the γ value from 100, the

approach with randomized selection scheme can further improve

the size of the minimum dominating set in 4 out of the 16 test cases.

The improvement by introducing the randomization to the

greedy approach is more obvious in the real world test cases. These

graphs are extracted from realistic data gathered from social net-

works. Table 3 shows the results gather from experiments on the

social network graphs. The graphs in the social network have num-

ber of vertices and edges in the range of 60 to 600 000 and 150

to 4,000 000. Due to the characteristics of the social network, the

graphs in this family are likely to include many clusters.

When γ = 10, the randomized greedy approach starts to pro-

duce comparable results with its deterministic counterpart. The

randomized algorithm finds smaller or same size dominating set in

4 graphs which are of relatively small size. With γ increases, the

quality of the results increases.

With γ = 50, the randomized greedy approach is able to obtain

better minimum and average results in 12 and 9 out of the 13 test

cases, respectively. The minimum dominating sets found by the ran-

domized greedy approach are smaller by more than 10 nodes than

the solutions found by the deterministic greedy approach in 6 test

cases. Among them, there are 3 test cases where the improvement

is more than 50 nodes.

For the challenging instance soc-flickr which has 513 969 nodes

and 3 190 452 edges, the randomized greedy approach significantly

outperforms the deterministic greedy algorithm. The minimum

dominating set found by the randomized approach is 125 nodes

smaller than the results from deterministic approach. Similar obser-

vation is found in the case of soc-gowalla graph which is another

large graph. For large graphs, the randomized approach is much

powerful in finding smaller dominating set.

In most of the cases, the choice of parameter γ does not affect the

performance too much when it gets greater than 20. In 9 different

test cases,the parameter γ with which randomized greedy approach

finds the minimum solution sets fall into the range of 20 to 100. The

performance of the randomized selection process is not sensitive

to the different gamma value in that range.

The simple deterministic greedy approach is easy to get stuck on

some local optima, especially in the graph of large scale and sparse

Randomized Greedy Algorithms for Covering Problems GECCO ’18, July 15–19, 2018, Kyoto, Japan

Instance name

Deterministic

greedy approach

Randomized greedy approach

γ = 10 γ = 20 γ = 30 γ = 50 γ = 100 γ = 200 γ = 500 γ = 1000

soc-BlogCatalog 4899 4900 4903.7 4898 4899.6 4897 4899.4 4896 4900.7 4897 4899.8 4897 4899.7 4898 4900.8 4898 4900.2

soc-FourSquare 61345 61390 61405.8 61319 61342.9 61319 61339.1 61308 61337.8 61318 61336.3 61308 61334.1 61323 61339.2 61318 61333.7
soc-LiveMocha 1489 1491 1497.6 1481 1487.8 1481 1485.4 1481 1487.2 1477 1484.8 1482 1487.1 1482 1486.5 1480 1485.7
soc-brightkite 13087 13112 13123.9 13072 13082.1 13068 13078.2 13070 13077.0 13068 13078.6 13070 13078.3 13072 13078.1 13072 13078.1
soc-buzznet 134 131 134.3 132 134.0 130 131.4 131 132.5 129 132.5 130 132 131 132.5 130 132.4
soc-delicious 56059 56148 56175.2 56015 56033.3 55994 56020.8 56002 56007.6 55989 56005.2 56008 56014.1 55999 56007.2 55994 56009.3
soc-digg 66698 66744 66772.5 66744 66772.5 66734 66757.6 66741 66756.9 66722 66750.6 66739 66756.5 66706 66752.4 66724 66758

soc-dolphins 16 16 17.1 15 16.3 16 16.6 15 16.2 15 16.1 16 16.5 15 15.6 15 16.1

soc-douban 8367 8367 8369.0 8366 8366.9 8366 8366.6 8365 8366.5 8366 8366.3 8365 8366.4 8366 8366.8 8366 8366.5
soc-epinions 6504 6513 6519.9 6486 6495.2 6492 6497.5 6485 6494.1 6485 6492.1 6485 6493.3 6482 6491.7 6489 6495
soc-flickr 98786 98991 99020.1 98740 98766.6 98661 98697.6 98681 98700.4 98696 98707.0 98675 98697.5 98677 98697.5 98696 98708.2
soc-gowalla 42581 42752 42784.3 42526 42554.2 42517 42541.6 42508 42525.9 42510 42528.9 42503 42526.0 42511 42529.9 42499 42532.7
soc-wiki-Vote 216 213 216.6 215 216.4 214 216.0 214 216.0 215 216.3 214 217.3 214 216.4 215 216.3

Table 3: Comparison between deterministic greedy algorithm and the algorithm proposed in the paper with different parame-
ter setting. The test cases are extracted from some real world graphs. The first column for each parameter shows theminimum
dominating set found in the 10 repeated runs and the second column shows the average results. The minimum solutions for
each problem are colored in blue.

graphs. Our proposed algorithm which introduces the randomness

to the selection scheme can improve the performance of simple

greedy algorithm in these graphs. By simple repeated runs, the

randomized greedy approach can obtain better results in many

different test cases.

5 CONCLUSIONS
Greedy algorithms is one of the popular solutions to many op-

timization problems. As an easy algorithmic paradigm, it makes

locally optimal choice at each step with the hope of achieving the

global optimum in reasonable time. However, the drawback is ob-

vious that it is easy to get stuck in local optimal solution. In this

study, we examine the idea of introducing randomization into the

selection stage of the greedy approach. We conduct theoretical and

experimental analysis about how randomization can improve the

deterministic greedy approach in two well-know NP-hard com-

binatorial optimization covering problems, which are minimum

vertex cover and minimum dominating set problem. The results

from analysis show that the randomized greedy approach improves

the original deterministic greedy approach in most cases. The ran-

domization is beneficial in getting away from the local optimum

which traps the deterministic greedy algorithm. The proposed ran-

domization mechanism should be able to be applied to other greedy

algorithms for covering problems.

REFERENCES
[1] Shaowei Cai. 2015. Balance Between Complexity and Quality: Local Search for

MinimumVertex Cover in Massive Graphs. In Proceedings of the 24th International
Conference on Artificial Intelligence (IJCAI’15). AAAI Press, 747–753. http://dl.
acm.org/citation.cfm?id=2832249.2832353

[2] Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. 2013. NuMVC: An Efficient

Local Search Algorithm for Minimum Vertex Cover. J. Artif. Int. Res. 46, 1 (Jan.
2013), 687–716. http://dl.acm.org/citation.cfm?id=2512538.2512555

[3] Yuanzhu Peter Chen and Arthur L. Liestman. 2002. Approximating Minimum Size

Weakly-connected Dominating Sets for Clustering Mobile Ad Hoc Networks. In

Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking
&Amp; Computing (MobiHoc ’02). ACM, New York, NY, USA, 165–172. https:

//doi.org/10.1145/513800.513821

[4] Edsger W. Dijkstra. 1971. Hierarchical Ordering of Sequential Processes. Acta
Inf. 1 (1971), 115–138. https://doi.org/10.1007/BF00289519

[5] Marco Dorigo and Thomas Stützle. 2004. Ant colony optimization. MIT Press.

[6] A. E. Eiben and James E. Smith. 2015. Introduction to Evolutionary Computing.
Springer. https://doi.org/10.1007/978-3-662-44874-8

[7] Thomas A. Feo and Mauricio G. C. Resende. 1995. Greedy Randomized Adaptive

Search Procedures. J. Global Optimization 6, 2 (1995), 109–133. https://doi.org/10.

1007/BF01096763

[8] Michael R. Garey and David S. Johnson. 1990. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,

USA.

[9] David J. Johnson and Michael A. Trick (Eds.). 1996. Cliques, Coloring, and Satisfi-
ability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993.
American Mathematical Society, Boston, MA, USA.

[10] Daniel J. Lehmann andMichael O. Rabin. 1981. On the Advantages of Free Choice:

A Symmetric and Fully Distributed Solution to the Dining Philosophers Problem.

In Eighth Annual ACM Symposium on Principles of Programming Languages (POPL).
133–138. https://doi.org/10.1145/567532.567547

[11] Michael Luby, Dana Randall, and Alistair Sinclair. 2001. Markov Chain Algorithms

for Planar Lattice Structures. SIAM J. Comput. 31, 1 (2001), 167–192. https:

//doi.org/10.1137/S0097539799360355

[12] Ran Raz and Shmuel Safra. 1997. A Sub-Constant Error-Probability Low-Degree

Test, and a Sub-Constant Error-Probability PCP Characterization of NP. In Pro-
ceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing,
El Paso, Texas, USA, May 4-6, 1997, Frank Thomson Leighton and Peter W. Shor

(Eds.). ACM, 475–484. https://doi.org/10.1145/258533.258641

[13] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository

with Interactive Graph Analytics and Visualization. In AAAI. 4292–4293. http:
//networkrepository.com

[14] Jie Wu. 2002. Extended Dominating-Set-Based Routing in Ad Hoc Wireless

Networks with Unidirectional Links. IEEE Trans. Parallel Distrib. Syst. 13, 9 (Sept.
2002), 866–881. https://doi.org/10.1109/TPDS.2002.1036062

[15] Ke Xu, Frédéric Boussemart, Fred Hemery, and Christophe Lecoutre. 2005. A

Simple Model to Generate Hard Satisfiable Instances. In IJCAI-05, Proceedings of
the Nineteenth International Joint Conference on Artificial Intelligence. 337–342.

http://dl.acm.org/citation.cfm?id=2832249.2832353
http://dl.acm.org/citation.cfm?id=2832249.2832353
http://dl.acm.org/citation.cfm?id=2512538.2512555
https://doi.org/10.1145/513800.513821
https://doi.org/10.1145/513800.513821
https://doi.org/10.1007/BF00289519
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/BF01096763
https://doi.org/10.1007/BF01096763
https://doi.org/10.1145/567532.567547
https://doi.org/10.1137/S0097539799360355
https://doi.org/10.1137/S0097539799360355
https://doi.org/10.1145/258533.258641
http://networkrepository.com
http://networkrepository.com
https://doi.org/10.1109/TPDS.2002.1036062

	Abstract
	1 Introduction
	2 Greedy Algorithms and Randomization
	3 Vertex Cover Problem
	3.1 Greedy Algorithms
	3.2 Analysis
	3.3 Experimental Results

	4 Dominating Set Problem
	4.1 Greedy Algorithms
	4.2 Experimental Results

	5 Conclusions
	References

