
Sensitivity of Parameter Control Mechanisms
with Respect to Their Initialization

Carola Doerr1 and Markus Wagner2

1 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, 75005
Paris, France

2 Optimisation and Logistics, University of Adelaide, Adelaide, SA 5005, Australia

Abstract. The parameter setting problem constitutes one of the major
challenges in evolutionary computation, and is subject to considerable
research effort. It is widely acknowledged that the optimal parameter
values can change during the optimization process. Efficient parameter
control techniques that automatically identify and track reasonable pa-
rameter values can therefore bring substantial performance gains.
One complication of dynamic parameter selection is the fact that every
control mechanism itself introduces a new set of hyper-parameters, which
needs to be tuned for the problem at hand. The general hope is that the
performance of an algorithm is much less sensitive with respect to its
hyper-parameters than with respect to its original parameters. For the
parameter update rules this belief is backed up by a number of empirical
and theoretical results. What is less understood in discrete black-box
optimization, however, is the influence of the initial parameter value. We
contribute with this work an empirical sensitivity analysis for three se-
lected algorithms with self-adjusting parameter choices: the (1+1) EAα,
the 2-rate (1 + λ) EA2r,r/2, and the (1 + (λ, λ)) GA.

Keywords: Parameter Control · Evolutionary Algorithms · Discrete
Black-Box Optimization · Initialization.

1 Introduction

Every evolutionary algorithm (EA) and, more generally, every discrete black-
box optimization heuristic, comes with a set of parameters that needs to be set
in order to run it. Among the most influential parameters are the population
sizes, the mutation rates, the crossover probabilities, and the selective pressure.
The choice of any of these parameters can have a significant impact on the
performance of the EA under consideration. It is therefore not surprising that
the parameter selection question has evolved into an important research stream
within the evolutionary computation community, cf. [17] for detailed discussions.

The last forty years of research on the parameter setting problem have con-
tributed to a significant gain in performance, and have been a major building
block for the success of evolutionary computation methods. According to the
seminal work of Eiben, Hinterding, and Michalewicz [12] the parameter setting
literature can be classified into two main research streams:

2 C. Doerr and M. Wagner

– Parameter tuning addresses the question how to efficiently identify good pa-
rameter values through an initial set of experiments. After their identifica-
tion, these parameter values are not further adjusted during the optimization
process, but remain fixed instead. Among the most-widely applied tools for
parameter tuning are irace [18], SPOT [3], SMAC [14], ParamILS [15], and
GGA [2].

– Parameter control, in contrast, studies ways to adjust (“control”) the param-
eter values during the run of the optimization, to benefit from an adaptation
to the different stages of the optimization process. Using such non-static pa-
rameter values, the EAs can, for example, evolve from a rather exploratory
globally acting heuristic to a more and more locally exploiting one. Among
the best-known parameter control techniques are the step size and covariance
matrix adaptation in the CMA-ES [13] and variants of the 1/5-th success
rule [5, 19,20].

The focus of our work is on parameter control for discrete black-box optimiza-
tion, a topic that has been somewhat neglected in the evolutionary computation
community: a quote of [16, Section VIII] says that “controlling EA parameters
on-the-fly is still a rather esoteric option”. A potential reason for this situa-
tion may be the common critique that parameter control mechanisms add yet
another level of complexity to the algorithms. The influence of the parameter
control mechanisms are indeed difficult to grasp analytically, so that only few
theoretical works addressing the parameter control question exist [7]. A related
critique of parameter control is the fact that on-the-fly parameter selection tech-
niques come with their own hyper-parameters, which need to be set to determine
the exact update rules. From a high-level perspective one may feel that not much
can be gained by replacing a parameter by one or more hyper-parameters, but
the general hope is that the influence of these hyper-parameters is much less im-
portant than that of the original parameter values. Several studies confirm this
hope for some specific settings, empirically as well as in rigorous mathematical
terms, cf. the surveys [1, 7, 12,16] and references therein.

1.1 Our Contribution

Complementing our recent work on the sensitivity of parameter control mecha-
nisms with respect to their choice of the hyper-parameters that determine the
update strength [11], we consider in this study their sensitivity with respect
to initialization. More precisely, we analyze for three different EAs with self-
adjusting parameter selection the influence of the initial value on the perfor-
mance: the (1+1) EAα proposed in [11], the 2-rate (1 + λ) EA2r,r/2 from [10],
and the (1 + (λ, λ)) GA [6, 8]. In the first two algorithms the mutation rate is
controlled by a success-based update rule. In the (1 + (λ, λ)) GA the adapta-
tion of λ influences the offspring population sizes, the mutation rate, and the
crossover bias, cf. Section 3. For all three algorithms we test the influence of
extreme initialization, i.e., p = 1/n vs. p = 1/2 for the (1 + 1) EAα and the
(1 + λ) EA2r,r/2, and λ = 1 vs. λ = n for the (1 + (λ, λ)) GA. Our selection

Sensitivity of Parameter Control wrt Initialization 3

is clearly theory-biased, i.e., we favor those algorithms for which mathematical
analyses of their running time behavior are available. This allows us to chose
update mechanisms which are known to be (close to) optimal, so that our sen-
sitivity analysis of the initial parameter values is not biased by a non-sensible
choice of hyper-parameters.

Our testbed are the well-known OneMax and LeadingOnes benchmark
functions, again with the motivation to not bias the result by a non-suitable
control mechanism, and to allow for a comparison with known optimal dynamic
parameter values. The OneMax problem is the problem of maximizing a func-
tion of the type Omz : {0, 1}n → [0..n], x 7→ |{i ∈ [n] | xi = zi}|, where
z ∈ {0, 1}n is of course unknown to the algorithm. While OneMax is a sep-
arable function, and thus in general easy to hill climb for greedy algorithms,
the LeadingOnes problem is non-separable, and requires a quadratic num-
ber of function evaluations, on average, by standard evolutionary algorithms.
The LeadingOnes problem is the problem of optimizing functions of the type
Loz,σ : {0, 1}n → N, x 7→ max{i ∈ [0..n] | ∀j ∈ [i] : xσ(j) = zσ(j)}, where z
is a length-n bit string and σ : [n] → [n] a permutation of the index set [n].
We acknowledge that these simplified benchmark problems may not be very
representative for real-world optimization challenges. In accordance with [21]
we nevertheless believe that they can test several important features of reason-
able parameter control mechanisms, and give first indications into which update
schemes to favor under which conditions.

Our results indicate quite stable performances for the (1 + 1) EAα and the
(1 + λ) EA2r,r/2. Even when initialized with extreme mutation rates, the dy-
namic choice very quickly converges to optimal mutation rates and the incurred
performance loss of a sub-optimal initialization is small. The situation is differ-
ent for the (1 + (λ, λ)) GA. The number of function evaluations grows linearly
with the value of λ (more precisely, up to 2λ offspring are evaluated per itera-
tion), a cost that the additional drift towards the optimum cannot compensate
for. This situation of a too large λ value does not last very long, as we observe
again fast convergence of the parameter towards its optimal (dynamic) setting.
It nevertheless causes significant and non-negligible performance losses: for the
1000-dimensional OneMax problem, for example, the worst initialization λ = n
yields a performance that is around 69% worse compared to that of the optimal
initial parameter choice λ = 1.

2 Sensitivity Analysis for the (1+1) EAα

In [11] we have presented a (1 + 1) EA variant with success-based multiplica-
tive mutation rate updates, the (1 + 1) EAα. This algorithm starts the opti-
mization process with a random initial solution and an initial mutation rate
p = p0 ∈ (0, 1/2]. In every iteration one new solution candidate is created from
the current-best solution through a conditional standard bit mutation with mu-
tation rate p. The condition requires that at least one bit is changed, to avoid
useless function evaluations. In practice, this conditional mutation operator can

4 C. Doerr and M. Wagner

be implemented by first sampling a number ` from the conditional binomial
distribution Bin>0(n, p) and then choosing uniformly at random and without
replacement the ` positions in which the bits are flipped. If the so-created off-
spring is at least as good as its predecessor, it replaces the latter. In this case
the mutation rate is increased to min{Ap, 1/2}, where A > 1 is a constant that
remains fixed during the execution of the algorithm. If, on the other hand, the
offspring is strictly worse than its parent, it is discarded and the mutation rate
decreased to max{bp, 1/n2}, where 0 < b < 1 is another constant.

Altogether, the (1+1) EAα has three hyper-parameters: the update strengths
A and b as well as the initial mutation rate p0. It was demonstrated in [11]
that the (1 + 1) EAα(A, b, 1/n) performs very well on the classic benchmark
functions OneMax and LeadingOnes for a broad choice of values for A and b.
For example, in 78% of all tested combinations of A ∈ (1, 2.5] and b ∈ [0.4, 1) the
(1 + 1) EAα(A, b, 1/n) achieved a better average running time than RLS (!) on
the 250-dimensional LeadingOnes function. About 90% of the configurations
outperform the (1+1) EA>0 (which is the (1 + 1) EAα(1, 1, 1/n)) on the 1000-
dimensional OneMax function. We will analyze how sensitive this performance
is with respect to the choice of the initial mutation rate p0.

2.1 Optimal Mutation Rates for OneMax and LeadingOnes

Before we present our empirical findings, we summarize in this section what is
known on the optimal mutation rates for OneMax and LeadingOnes.

OneMax. In [9] it was shown that the RLS variant flipping in every step
the number of bits that maximizes the expected progress cannot be significantly
worse than the best unary unbiased algorithm, which is the one minimizing in
every step the expected remaining running time. Denoting by kopt,OM(n,Om(x))

the choice that maximizes the expected Om-progress E
[

max{Om(mut`(x)) −

Om(x), 0}
]

:=
∑`
i=d`/2e

(n−Om(x)
i)(Om(x)

`−i)(2i−`)
(n
`)

of flipping ` bits in bit string x, the

following is known. kopt,OM(n,Om(x)) decreases monotonically with increasing
function value Om(x). It is n/2 for Om(x) = n/2 and converges to 1. Flipping
one bit per iteration is optimal for all x with Om(x) ≥ n/3.

The expected OneMax value of a random initial solution x is n/2 for One-
Max, and with high probability Om(x) lies in the interval [n/2 ±

√
n]. The

exact average optimal mutation rate is
∑n
i=1 P[Om(x) = i]kopt,OM(n, i). We do

not have any closed form for the drift maximizing value kopt,OM(n, i), but we
can evaluate this expression numerically. For n = 1000 the sum evaluates to
500.0252.

LeadingOnes. For LeadingOnes the situation is much better under-
stood. The optimal mutation rate of the classic (non-resampling) (1 + 1) EA is
1/(Lo(x) + 1) [4] and the optimal number of bits to flip is kopt,LO(n,Lo(x)) :=
bn/(Lo(x) + 1)c [11, Lemma 1].

The expected LeadingOnes value of the random initial solution x is∑n
i=0 iP[Lo(x) = i] =

∑n
i=0 i2

−(i+1) = 1− 1/2n, and the average optimal initial

Sensitivity of Parameter Control wrt Initialization 5

(a) Om n = 1000 (b) Om n = 1500 (c) Lo n = 100 (d) Lo n = 250

Fig. 1: Relative difference (T (A, b, 1/n)−T (A, b, 1/2))/T (A, b, 1/n) of the average
running time for 120 configurations of the (1 + 1) EAα with 1 < A ≤ 2.5 and
0.6 ≤ b < 1

mutation rate equals
∑n
i=0 kopt,LO(n, i)P[Lo(x) = i] =

∑n
i=0 bn/(i+ 1)c2−(i+1).

For n = 100 (250, 1, 000) this value is around 69 (173, 693).

2.2 Evaluating the Relative Average Improvement

In light of the discussion in Section 2.1, one might wonder if significant gains are
possible for the (1 + 1) EAα when the mutation rate is initialized as p0 = 1/2.
As a first step towards analyzing the sensitivity of the (1 + 1) EAα(A, b, p0)
with respect to this initialization, we compute for each of the 120 configura-
tions with A ∈ {1.1, 1.2, . . . , 2.5} and b ∈ {0.6, 0.65, . . . , 0.95} the average opti-
mization time of 101 independent runs of the (1 + 1) EAα(A, b, 1/2). We com-
pare this average value to that of the same configuration (A, b) for p0 = 1/n,
and we compute the relative gain of the p0 = 1/2 initialization. That is, de-
noting by T (A, b, p0) the average optimization time of the (1 + 1) EAα(A, b)
with initialization p0, we calculate for each configuration (A, b) the value
(T (A, b, 1/n)−T (A, b, 1/2))/T (A, b, 1/n). This data is displayed in the heatmaps
of Figure 1 for 1000- and the 1500-dimensional OneMax problem and the 100-
and 250-dimensional LeadingOnes problem, respectively. We observe that the
data is rather unstructured, and that a good relative gain in one dimension does
typically not apply to the other.

The relative gains range from a negative −10% (−8%) to a positive 8% (7%)
improvement for OneMax of dimension n = 1000 (n = 1, 500), and from −7%
(−4%) to 5% (4%) for the 100-(250-)dimensional LeadingOnes problem. Note
that here the relatively low number of repetitions has to be taken into account.
The average gain of the p0 = 1/2 initialization over the p0 = 1 initialization in
all 120 (A, b) configurations is about 0.17% (0.21%) for the OneMax problem
of dimension n = 1000 (n = 1500) and is about −0.13% (−0.05%) for Leadin-
gOnes in dimension n = 100 (n = 250). These small values indicate that the
influence of the initial parameter value is not very important. It may be sur-
prising that the average gain is negative for the LeadingOnes problem, but
we suspect that this is an effect of the problem size that may vanish in larger
dimension.

6 C. Doerr and M. Wagner

2.3 Testing for Statistical Significance

While the results displayed in the heatmaps do not suggest that we should ex-
pect important performance gains from a better initialization, this data does
not answer the question whether the (dis-)advantages are statistically signifi-
cant. We therefore investigate a few selected configurations in more detail, and
use the Wilcoxon rank-sum tests to test for significance. Precisely, we run each
of the four selected configurations (A = 1.2, b = 0.85), (1.3, 0.75), (2.0, 0.5),
and (1.11, 0.66) investigated in [11] 1, 001 independent times on the OneMax
problem of dimension n ∈ {500, 1000, 2000} and on the LeadingOnes problem
of dimensions n ∈ {100, 250, 500}. For each (configuration, function, dimen-
sion) triple we test whether there is a significant difference between the opti-
mization times of the (1 + 1) EAα(A, b, 1/2) and the (1 + 1) EAα(A, b, 1/n).
The results are summarized in Table 1 and 2. The reported p-values are for
the test “T (A, b, 1/2) < T (A, b, 1/n)?”; i.e., small p-values indicate a strong
support for the null hypothesis that the running time distribution of the
(1 + 1) EAα(A, b, 1/2) is dominated by that of the (1 + 1) EAα(A, b, 1/n).
Put differently, a small p-value is a strong evidence for the hypothesis that the
(1+1) EAα(A, b, 1/2) is faster than the (1+1) EAα(A, b, 1/n). We recall that the
result of the Wilcoxon rank-sum test for the other one-sided null hypothesis (i.e.,
the hypothesis that T (A, b, 1/2) > T (A, b, 1/n)) is 1− p. We therefore highlight
in Tables 1 and 2 p-values that are smaller than 5% or larger than 95%.

n A b T (A, b, 1/n) T (A, b, 1/2) (T1/n − T1/2)/T1/n p(1/2 < 1/n)

500 1.11 0.66 3,045 3,019 0.9% 0.096
500 1.2 0.85 3,063 2,994 2.3% 0.028
500 1.3 0.75 3,039 2,998 1.3% 0.092
500 2 0.5 3,035 2,980 1.8% 0.005

1000 1.11 0.66 6,780 6,788 -0.1% 0.231
1000 1.2 0.85 6,787 6,645 2.1% 0.009
1000 1.3 0.75 6,802 6,595 3.0% 0.001
1000 2 0.5 6,752 6,682 1.0% 0.086

2000 1.11 0.66 14,962 14,895 0.4% 0.112
2000 1.2 0.85 14,834 14,854 -0.1% 0.478
2000 1.3 0.75 14,839 14,768 0.5% 0.369
2000 2 0.5 15,297 15,133 1.1% 0.238

Table 1: Average running times of the (1 + 1) EAα(A, b, p0) on OneMax for
1,001 independent repetitions and results of the one-sided Wilcoxon rank-sum
tests for the null hypothesis that T (A, b, 1/2) < T (A, b, 1/n).

We observe that for OneMax the p-values for the one-sided Wilcoxon rank-
sum test are smaller than 0.5 for all tested configurations and problem dimen-
sions, indicating that, if at all, there is a bias towards rejecting the null hypoth-
esis and towards supporting that the (1 + 1) EAα(A, b, 1/2) is faster than the
(1+1) EAα(A, b, 1/n). For three of the four configurations the p-values are much

Sensitivity of Parameter Control wrt Initialization 7

larger for problem dimension n = 2000 than for the smaller dimensions. For the
1/5-th success rule configuration (A = 1.11, b = 0.66) the p-value is largest for
n = 1000. We do not have an explanation for this, but did not investigate further
as the value does not indicate a statistically significant difference.

For LeadingOnes, the situation is different. Some p-values are rather large,
and one value even larger then 95%, which might indicate that in this setting
the initialization with p0 = 1/n may be more suitable than the initialization
p0 = 1/2. We recall, however, from Section 2.1 that the average optimal initial
value is rather around 69/100. The absolute and relative differences in running
time are all very small.

n A b T (A, b, 1/n) T (A, b, 1/2) (T1/n − T1/2)/T1/n p(1/2 < 1/n)

100 1.11 0.66 4,493 4,508 -0.3% 0.602
100 1.2 0.85 4,125 4,105 0.5% 0.183
100 1.3 0.75 4,141 4,144 -0.1% 0.574
100 2 0.5 4,182 4,245 -1.5% 0.954

250 1.11 0.66 28,348 28,130 0.8% 0.081
250 1.2 0.85 25,386 25,513 -0.5% 0.708
250 1.3 0.75 25,720 25,954 -0.9% 0.884
250 2 0.5 26,142 26,302 -0.6% 0.796

500 1.11 0.66 112,583 113,135 -0.5% 0.882
500 1.2 0.85 102,018 101,605 0.4% 0.082
500 1.3 0.75 102,862 102,903 0.0% 0.528
500 2 0.5 105,329 105,129 0.2% 0.375

Table 2: Average running times of the (1+1) EAα(A, b, p0) on LeadingOnes for
1,001 independent repetitions and results of the one-sided Wilcoxon rank-sum
tests for the null hypothesis that T (A, b, 1/2) < T (A, b, 1/n).

2.4 Visualizing the Mutation Rate Adaptation

Finally, we investigate the evolution of the mutation rate. To this end, we have
tracked for 100 independent runs the number of bits that have been flipped in
each iteration, along with the function value of the corresponding parent. From
this data we compute the average number of bit flips per function value. This
data is plotted against the optimal mutation rates kopt,f(n, f(x)) described in
Section 2.1. Figure 2 summarizes this data. Note that we zoom in both plots
into the interesting initial part of the optimization process.

We observe that the curves for p0 = 1/2 have a better fit with kopt than those
for p0 = 1/n. We also see that for the 1000-dimensional OneMax problem it is
around Om(x) = 560 that the two curves converge. They are indistinguishable
thereafter since the underlying adaptation rule is the same. For LeadingOnes
the two curves do not differ by more than one for all Lo(x)-values greater than
11.

8 C. Doerr and M. Wagner

(a) OneMax n = 1, 000 (b) LeadingOnes n = 250

Fig. 2: Average number of bit flips of the (1 + 1) EAα(A = 2, b = 0.5, p0) in
iterations starting with a parent individual of fitness f(x)

3 Sensitivity of the Self-Adjusting (1 + (λ, λ)) GA

We also test the relevance of the initial parameter value for the self-adjusting
(1 + (λ, λ)) GA. This algorithm had been presented in [8] and has later been
analyzed in [6]. It stores in the memory a current-best solution, creates from it
λ offspring by mutation, and another λ offspring by a biased recombination of
the best of the mutated offspring with its parent. The best recombined offspring
replaces the parent individual if its function value is at least as good.

Using the recommended parametrization p = λ/n and c = 1/λ for the
mutation rate and the crossover bias, respectively, the only parameter of the
(1+(λ, λ)) GA becomes the population size λ. In [8] the following multiplicative
update rule was suggested to control λ: If an iteration was successful, i.e., if
at the end of the iteration we have identified a strictly better search point, we
decrease λ to λ/F . We increase λ to λF 1/4 otherwise. According to experiments
reported in [8] the influence of the update strength F is not very pronounced.
In line with common implementations of the 1/5-th success rule and the recom-
mendations given in [6, 8], we set F equal to 3/2. It was proven in [6] that the
self-adjusting (1 + (λ, λ)) GA achieves a linear expected running time on One-
Max [6]. This is asymptotically optimal among all possible parameter settings,
and strictly better than what any static parameter choice can achieve [6].

We note that as in the (1+1) EAα, and unlike the experiments reported in [8],
we enforce that at least one bit is flipped in the mutation phase. In addition, we
evaluate a recombined offspring only if it is different from both of its parents.
This can be tested efficiently and avoids useless function evaluations.

To test the influence of the initialization of λ, we perform 1, 001 runs of the
algorithm on OneMax instances of dimension n = 500, n = 1000, and n = 2000
with three different initialization rules: λ0 = 1, λ0 = lnn, and λ0 = n.

Quite surprisingly, the average optimization times vary drastically. To test
for statistical significance, we first employ the Kruskal-Wallis test, which is an
extension of the Wilcoxon rank-sum test for more than two data sets3. The

3 We remark that a one-way ANOVA is not applicable as the Shapiro-Wilk normality
test returns that the data is not normally distributed.

Sensitivity of Parameter Control wrt Initialization 9

outcomes of the Kruskal-Wallis test of zero (or effectively zero) provide strong
evidence that the outcomes are not identically distributed. This is confirmed by
the pairwise Wilcoxon rank-sum tests, whose values are also reported in Table 3.

n λ0 T KW test p(1 < lnn) p(1 < n) p(lnn < n)

500 1 3,293
0 0.178 0 0500 lnn 3,309

500 n 5,562

1000 1 6,715
0 0.004 0 01000 lnn 6,6780

1000 n 11,366

2000 1 13,716
2.29E-155 0.556 2.49E-105 9.11E-1062000 lnn 13,736

2000 n 18,357

Table 3: Results for the self-adjusting (1+(λ, λ)) GA with different initialization.
Nearly all differences are statistically significant.

To visualize the adaptation of λ, we plot in Figure 3 its evolution in de-
pendence of the Om(x)-value against the asymptotically optimal choice of
λopt = d

√
n/(n−Om(x))e for the n = 1, 000-dimensional OneMax instance.

The reported values are averages of 100 independent runs. In the middle range
650 < Om(x) < 850 the average parameter values are all very close to the opti-
mal ones. We therefore plot only the averages for the beginning of the optimiza-
tion process, n/2 = 500 < Om(x) ≤ 650, and its end, 850 ≤ Om(x) ≤ n = 1000,
respectively. We observe that for values Om(x) > 624 the curves are almost not
distinguishable. In line with the empirical observations made in [6, 8] we also
see that all curves track the increase of the optimal λ-value towards the end of
the optimization process very well. This confirms that our modification of the
(1 + (λ, λ)) GA does not harm, but rather improves its performance.

Fig. 3: Average value of λ per Om(x)-value for the self-adjusting (1 + (λ, λ)) GA
with update strength F = 3/2 and different initial parameter values values λ0

10 C. Doerr and M. Wagner

n λ G(r = 1) G(r = n/4) (Gn/4 −G1)/G1 p(1 > n/4)

5000 100 2,234 2,217 -0.74% 0.1144
5000 500 1,056 1,037 -1.73% 1.97E-22
5000 1000 852 834 -2.04% 3.16E-10

50000 100 63,627 62,666 -1.51% 0.6737
50000 500 65,139 65,722 0.90% 0.6833
50000 1000 62,814 61,567 -1.99% 0.2120

Table 4: Results for the average of 1001 independent runs of the (1+λ) EAr/2,2r

on OneMax

4 The (1 + λ) EAr/2,2r with 2-Rate Standard Bit
Mutation

In [10] a novel idea how to control the mutation rate in a (1 + λ) EA has
been presented. Their (1 + λ) EAr/2,2r stores a parameter r and creates in
every iteration half of the offspring by standard bit mutation with mutation rate
r/(2n), while the other offspring are created with mutation rate 2r/n. At the
end of the iteration the value of r is updated as follows. With probability 1/2 it
is replaced randomly by either r/2 or 2r and with the remaining 1/2 probability
it is set to the value that the winning individual of the last iteration has been
created with. Finally, the value r is capped at 1 if it is smaller, and at n/4, if it
exceeds this value. As before, we implement this algorithm with the conditional
standard bit mutation that enforces to flip at least one bit.

For the (1 + λ) EAr/2,2r we test two different initializations: r0 = 1 and
r0 = n/4. Because of an efficient implementation, which samples waiting times
instead of actually running the problem on the OneMax function, we can test
the influence of these initial values for the (1+λ) EAr/2,2r on OneMax instances
of much larger dimensions n = 5, 000 and n = 50, 000. We perform tests for
different values of λ: λ = 100, λ = 500, and λ = 1000. The results are summarized
in Table 4. Note here that in contrast to all results presented above we report
the average number of generations until an optimal solution has been evaluated
for the first time, not the number of function evaluations. To obtain the latter,
the G(r)-values need to be multiplied by λ.

The Wilcoxon rank-sum single-sided test for G(A, b, r = 1) < G(A, b, r =
n/4) shows a small but significant difference between the two distributions when
n = 5, 000 for two values of λ. However, it vanishes for n = 50, 000, and while
there appear to be differences, they are not significant anymore as the optimiza-
tion time distributions now overlap more.

We plot again the evolution of the r-values in Figure 4 and observe that the
curves are quite similar for the two settings.

Sensitivity of Parameter Control wrt Initialization 11

(a) λ = 100 (b) λ = 500

Fig. 4: Average value of r per Om(x)-value for the (1 +λ) EAr/2,2r on the 5000-
dimensional OneMax problem

5 Conclusions and Future Work

We have analyzed the influence of the initialization of success-based multiplica-
tive update schemes on the performance of three different evolutionary algo-
rithms. For all tested settings, we could observe that the parameter values con-
verge very quickly, even if initialized in their extreme points. The different ini-
tialization could nevertheless lead to statistically significant performance gaps.
In the case of the (1 + 1) EAα and the (1 +λ) EAr/2,2r the relative performance
losses of non-optimal initial parameter values are, however, rather small. In the
case of the (1 + (λ, λ)) GA, however, the performance loss could be as large as
69%, suggesting that more care needs to be taken when controlling population
sizes.

We hope that our work encourages researchers and practitioners to experi-
ment with parameter control schemes. Extending our results to more complex
combinatorial optimization problems could be a reasonable next step towards
a better understanding of which parameter control schemes to use under which
conditions.

Acknowledgments

The authors would like to thank Eduardo Carvalho Pinto and Christian Giessen
for providing their implementations of the (1 + 1) EAα and the (1 + (λ, λ)) GA
and the (1 + λ) EAr/2,2r, respectively.

Our work was supported by a public grant as part of the Investissement
d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH and by the
Australian Research Council project DE160100850.

References

1. Aleti, A., Moser, I.: A systematic literature review of adaptive parameter control
methods for evolutionary algorithms. ACM Computing Surveys 49, 56:1–56:35
(2016)

12 C. Doerr and M. Wagner

2. Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-
based genetic algorithms for algorithm configuration. In: Proc. of International
Conference on Artificial Intelligence (IJCAI’15). pp. 733–739. AAAI Press (2015)

3. Bartz-Beielstein, T., Flasch, O., Koch, P., Konen, W.: SPOT: A Toolbox for Inter-
active and Automatic Tuning in the R Environment. In: Hoffmann, F., Hüllermeier,
E. (eds.) Proceedings 20. Workshop Computational Intelligence. pp. 264–273. Uni-
versitätsverlag Karlsruhe (2010)

4. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates
for the LeadingOnes problem. In: Proc. of Parallel Problem Solving from Nature
(PPSN’10). LNCS, vol. 6238, pp. 1–10. Springer (2010)

5. Devroye, L.: The compound random search. Ph.D. dissertation, Purdue Univ.,
West Lafayette, IN (1972)

6. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the
(1 + (λ, λ)) genetic algorithm. Algorithmica 80, 1658–1709 (2018)

7. Doerr, B., Doerr, C.: Theory of parameter control mechanisms for discrete black-
box optimization: Provable performance gains through dynamic parameter choices.
In: Doerr, B., Neumann, F. (eds.) Theory of Randomized Search Heuristics in
Discrete Search Spaces. Springer (2018), to appear

8. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theoretical Computer Science 567, 87–104 (2015)

9. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-
box analysis. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’16). pp. 1123–1130. ACM (2016)

10. Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1 +λ) evolutionary algorithm with
self-adjusting mutation rate. In: Proc. of Genetic and Evolutionary Computation
Conference (GECCO’17). pp. 1351–1358. ACM (2017)

11. Doerr, C., Wagner, M.: On the effectiveness of simple success-based parame-
ter selection mechanisms for two classical discrete black-box optimization bench-
mark problems. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’18). ACM (2018), to appear. https://arxiv.org/abs/1803.01425

12. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary Computation 3, 124–141 (1999)

13. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation 9, 159–195 (2001)

14. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential Model-Based Optimization
for General Algorithm Configuration, pp. 507–523. Springer (2011)

15. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic
algorithm configuration framework. Journal of Artificial Intelligence Research 36,
267–306 (2009)

16. Karafotias, G., Hoogendoorn, M., Eiben, A.: Parameter control in evolutionary al-
gorithms: Trends and challenges. IEEE Transactions on Evolutionary Computation
19, 167–187 (2015)

17. Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary
Algorithms, Studies in Computational Intelligence, vol. 54. Springer (2007)

18. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The
irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives 3, 43–58 (2016)

19. Rechenberg, I.: Evolutionsstrategie. Friedrich Fromman Verlag (Günther Holzboog
KG), Stuttgart (1973)

20. Schumer, M.A., Steiglitz, K.: Adaptive step size random search. IEEE Transactions
on Automatic Control 13, 270–276 (1968)

https://arxiv.org/abs/1803.01425

Sensitivity of Parameter Control wrt Initialization 13

21. Thierens, D.: Adaptive mutation rate control schemes in genetic algorithms. In:
Proc. of the 2002 Congress on Evolutionary Computation (CEC’02). vol. 1, pp.
980–985. IEEE (2002)

	Sensitivity of Parameter Control Mechanisms with Respect to Their Initialization

