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Abstract. Evolutionary algorithms are bio-inspired algorithms that can
easily adapt to changing environments. In this paper, we study single-
and multi-objective baseline evolutionary algorithms for the classical
knapsack problem where the capacity of the knapsack varies over time.
We establish different benchmark scenarios where the capacity changes
every τ iterations according to a uniform or Normal distribution. Our
experimental investigations analyze the behavior of our algorithms in
terms of the magnitude of changes determined by parameters of the cho-
sen distribution, the frequency determined by τ and the class of knapsack
instance under consideration. Our results show that the multi-objective
approaches using a population that caters for dynamic changes have a
clear advantage on many benchmarks scenarios when the frequency of
changes is not too high.

1 Introduction

Evolutionary algorithms [1] have been widely applied to a wide range of combi-
natorial optimization problems. They often provide good solutions to complex
problems without a large design effort. Furthermore, evolutionary algorithms
and other bio-inspired computing have been widely applied to dynamic and
stochastic problems [2,3] as they have the ability to easily adapt to changing
environments.

Most studies for dynamic problems so far focus on dynamic fitness func-
tions [4]. However, in real-world applications the optimization goal such as maxi-
mizing profit or minimizing costs often does not change. Instead of this, resources
to achieve these goal change over time and influence to quality of solutions
that can be obtained. In the context of continuous optimization, dynamically
changing constraints have been investigated in [2][5]. Theoretical investigations
for combinatorial optimization problems with dynamically changing constraints
have recently been carried out [6,7] and the goal of this paper is to contribute
to this research direction from an experimental perspective.

In this paper, we investigate evolutionary algorithms for the knapsack prob-
lem where the capacity of the knapsack changes dynamically. We design a bench-
mark set for the dynamic knapsack problem. This benchmark set builds on clas-
sical static knapsack instances and varies the constraint bound over time. The
change in the constraint bound is done randomly every τ iterations where τ is



a parameter determining the frequency of changes. The magnitude of a change
is either chosen according to a uniform distribution in an interval [−r, r] where
r determines the magnitude of changes. Furthermore, we examine changes ac-
cording to the normal distribution N (0, σ2) with mean 0 and standard deviation
σ. Here σ is used to determine the magnitude range of changes and large values
of σ make larger changes more likely. We investigate different approaches ana-
lyzed theoretically with respect to their runtime behavior in [7]. The algorithms
that we consider are a classical (1+1) EA and multi-objective approaches that
are able to store infeasible solutions as part of the population. Furthermore, the
range of feasible and infeasible solutions stored in the multi-objective algorithms
can be set based on the anticipated change of the constraint bound.

In our experimental investigations, we start by examining the knapsack prob-
lem where all weights are set to 1 and vary the constraint bound. This matches
the setting of the optimization of a linear function with a dynamic uniform
constraint analyzed in [7]. Our experimental results match the theoretical ones
obtained in this paper and show that the multi-objective approaches using a pop-
ulation to cater for dynamic changes significantly reduce the offline error that
occurred during the run of the algorithms. For the general setting we investi-
gate different classes of knapsack problem such as uniformly chosen weights and
profits and bounded strongly correlated instances, we examine the behaviour of
the algorithms in dependence of the frequency and magnitude of changes. Our
results show that the (1+1) EA has an advantage of the multi-objective algo-
rithms when the frequency of changes is high. In this case the population of the
multi-objective approaches is too slow to adapt to the changes that occur. On
the other hand, a lower frequency of changes plays in favor of the multi-objective
approaches when the weights and profits are not correlated to make the instances
particularly difficult to solve.

The outline of the paper is as follows. Section 2 introduces the problem def-
inition and three algorithms we studied. The dynamic knapsack problem and
experimental setting is presented in Section 3. In Section 4 we analyze the ex-
perimental results in detail followed by a conclusion in Section 5

2 Preliminaries

In this section, we define the Knapsack Problem (KP) and further notations
using in the rest of the paper. We present (1+1) EA and two multi-objective
algorithms called MOEA and MOEA D that are considered in this paper.

2.1 Problem Definition

We investigate the performance of different evolutionary algorithms on the knap-
sack problem under dynamic constraint. There are n items with profits {p1, · · · , pn}
and weights {w1, · · · , wn}. A solution x is a bit string of {0, 1}n which has the
weight W (x) =

∑n
i=1 wixi and the profit P (x) =

∑n
i=1 pixi. We denote the max-

imum profit among the items by pmax. The constraint is the weight capacity of



Algorithm 1: (1+1) EA

1 x← previous best solution;
2 while stopping criterion not met do
3 y ← flip each bit of x independently with probability of 1

n
;

4 if f1+1(y) ≥ f1+1(x) then
5 x← y;

the knapsack and denoted by C. The goal is to find a set of items with the total
weight less than or equal to C and the maximum profit:

max
x∈{0,1}n

n∑
i=1

pixi

s.t.

n∑
i=1

wixi ≤ C.

We consider two types of the this problem according to the weights. Firstly, we
assume that all the weights are one and we have uniform dynamic constraint. In
this case, the limitation is on the number of items chosen by a solution and the
optimal solution is to pick C number of items with the highest profits. Next we
consider the general case where the profits and weights are linear integers under
linear constraint on the weight.

2.2 Algorithms

We investigate the performance of three algorithms in this paper. The initial
solution for all these algorithms is a solution with items chosen uniformly at
random. After a dynamic change happens, the algorithms update the solution(s)
and start the optimization process with the new capacity. This update is to
deal with the fact that after a dynamic change, current solutions may become
infeasible or it get as far as the new capacity that isn’t worth to be kept anymore.
(1+1) EA (Algorithm 1) flips each bit of the current solution with the probability
of 1

n as the mutation step. Afterward, it picks the solution with higher fitness
function between the original solution and the mutated one. The fitness function
that we used in (1+1) EA is as follows:

f1+1(x) =

n∑
i=1

p(i) · x(i)− (n · pmax + 1) · v(x)

where v(x) = max {0, (
∑n
i=1 w(i) · x(i))− C} is the constraint violation of x. If

x is a feasible solution, then W (x) < C and v(x) = 0. Otherwise, v(x) is the
weight distance of W (x) from C. The algorithm aims to maximize f1+1 which
consists of two terms. The first term is the total profit of the chosen items and



Algorithm 2: MOEA

1 Update C;
2 S+ ← {z ∈ S+ ∪ S−|C < w(z) ≤ C + δ};
3 S− ← {z ∈ S+ ∪ S−|C − δ ≤ w(z) ≤ C};
4 if S+ ∪ S− = ∅ then
5 q ← best previous solution;

6 if C < w(q) ≤ C + δ then
7 S+ ← {q} ∪ S+;
8 else if C − δ ≤ w(q) ≤ C then
9 S− ← {q} ∪ S−;

10 while a change happens do
11 if (S+ ∪ S− = ∅) then
12 Initialize S+ and S− by Repair(q,δ,C);
13 else
14 choose x ∈ S+ ∪ S− uniformly at random;
15 y ← flip each bit of x independently with probability 1

n
;

16 if (C < w(y) ≤ C + δ) ∧ (@w ∈ S+ : w <MOEA y) then
17 S+ ← (S+ ∪ {y}) \ {z ∈ S+|y � z};
18 if (C − δ ≤ w(y) ≤ C) ∧ (@w ∈ S− : w <MOEA y) then
19 S− ← (S− ∪ {y}) \ {z ∈ S−|y � z};

the second term is the applied penalty on the infeasible solutions. The amount
of penalty guarantees that a feasible solution always dominates an infeasible
solution. Moreover, between two infeasible solutions, the one with closer weight
to C dominates the other one.

The other algorithm we consider in this paper is a multi-objective evolu-
tionary algorithm (Algorithm 2) which is inspired from the a theoretical study
on the performance of evolutionary algorithms in reoptimization under dynamic
uniform constrain[7]. Each solution x in the objective space is a two-dimensional
point fMOEA(x) = (w(x), p(x)). We say solution y dominates solution x w.r.t.
fMOEA, denoted by y <MOEA x, if |y|1 = |x|1 ∧ f(1+1)(y) ≥ f(1+1)(x).

According to the definition of <MOEA, two solutions are comparable only if
they have the same weight. Note that if x and y are infeasible and comparable,
then the one with higher profit dominates the other one. MOEA uses a param-
eter denoted by δ which determines the number of individuals stored around
the current constraint bound. For any weight in [C − δ, C + δ], MOEA keeps a
solution. It helps the algorithm to prepare for the dynamic change by storing
even infeasible solutions which may become feasible after the next change. How-
ever, a large δ causes a large number of solutions to be kept that decreases the
probability of choosing each one. Since the algorithm chooses only one solution
to mutate in each iteration, this affects the performance of MOEA in finding
the optimal solution. After each dynamic change, MOEA updates the sets of
solutions. If the value of a change be in a range that all the previous solutions



Algorithm 3: Repair

input : Initial solution q, δ, C
output: S+ and S− such that |S+ ∪ S−| = 1

1 while |S+ ∪ S−| = 0 do
2 y ← flip each bit of q independently with probability of 1

n
;

3 if f1+1(y) ≥ f1+1(q) then
4 q ← y;
5 if C < w(q) ≤ C + δ then
6 S+ ← {q} ∪ S+;
7 else if C − δ ≤ w(q) ≤ C then
8 S− ← {q} ∪ S−;

become out of [C − δ, C + δ], then the algorithm initializes a single solution
with the previous best solution and uses Repair function (Algorithm 3), which
behaves similar to (1+1) EA, until find a solution with distance δ from C.

To handle the slow improvement of MOEA caused by a large δ, we defined a
new dominance procedure. We say solution y dominates solution x, denoted by
<MOEA D, if w(y) ≤ w(x) ∧ p(y) ≥ p(x). This new algorithm called MOEA D
is obtained by replacing lines 14-19 of Algorithm 2 with Algorithm 4. It should
be noticed that if y is an infeasible solution then it is only compared with other
infeasible solutions and it is the same when y is feasible solution. The new
definition of dominance only keeps the solutions which are not dominated by
other solutions. Hence, not only MOEA D keeps fewer solutions than MOEA,
but also the quality of kept solutions are higher, since they are non-dominated
solutions among all other solutions.

Algorithm 4: MOEA D (Dominance and Selection)

14 choose x ∈ S+ ∪ S− uniformly at random;
15 y ← flip each bit of x independently with probability 1

n
;

16 if (C < w(y) ≤ C + δ) ∧ (@w ∈ S+ : w <MOEA D y) then
17 S+ ← (S+ ∪ {y}) \ {z ∈ S+|y � z};
18 if (C − δ ≤ w(y) ≤ C) ∧ (@w ∈ S− : w <MOEA D y) then
19 S− ← (S− ∪ {y}) \ {z ∈ S−|y � z};

3 Benchmarking for the Dynamic Knapsack Problem

In the following section, the dynamic version of KP used for the experiments is
described and we explain how the dynamic changes occur during the optimiza-
tion process. Moreover, the dynamic benchmarks and the experimental settings
are presented.
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Fig. 1: Examples for constraint bound C over 10000 generations with τ = 100 using
uniform and normal distributions. Initial value C = 4815

3.1 The Dynamic Knapsack Problem

In the dynamic version of KP considered in this paper, the capacity dynamically
changes during the optimization process according to a preset factor denoted
by τ . A change happens every τ generation i.e. the algorithm has τ genera-
tions to find the optimum of the current capacity and to prepare for the next
change. In the case of uniformly random alterations, the capacity of next inter-
val is achieved by adding a uniformly random value in [−r, r] to C. Moreover,
we consider another case in which the amount of changes are chosen under the
Gaussian distribution N (0, σ2). Figure 1 illustrates how dynamic changes from
different distributions affect the capacity.Note that the scale of the subfigures
are not the same. For example the total change after 100 dynamic changes under
N (0, 1002) is less than 1000 (Figure 1a) while the capacity reached almost 45000
with dynamic changes under U(−10000, 10000). This depicts that there are dif-
ferent type of challenges according to the dynamic changes that the algorithms
must deal with. The combination of different distributions and frequencies brings
interesting challenges for the algorithms. In an environment where the constraint
changes with a high frequency, the algorithms has less time to find the optimal
solutions. Hence, it is more probable that an algorithm which tries to improve
only one solution, perform better than another algorithm that needs to optimize
among a bunch of solutions. Furthermore, the uniform distribution guarantees
upper and lower bounds on amount of changes. This property could be beneficial
for the algorithms which keep a number of solutions in each generation, to get
ready and behave faster after a dynamic change. However, if the changes happen



under a Normal distribution, there is no strict bound on the value of a change
which means it is not easy to predict which algorithms perform better in this
type of environments.

3.2 Benchmark and Experimental Setting

In this experiment we used benchmarks eli101, which originally generated for
Traveling Thief Problem [8], by ignoring the cities and only using the items.
The weights and profits are generated in three different classes. In Uncorrelated
(uncorr) instances, the weights and profits are integers chosen uniformly at ran-
dom within [1, 1000]. Uncorrelated Similar Weights (unc-s-w) have uniformly
distributed random integers as the weights and profits within [1000, 1010] and
[1, 1000],respectively. Finally, we have Bounded Strongly Correlated (bou-s-c)
which is the hardest instance and comes from the bounded knapsack problem.
The weights of this instance are chosen uniformly at random within [1, 1000]
and the profits are set according to the weights within the weights plus 100. In
addition, in section 4.1, where the weights are one, we change the weights to one
and considered the profits as they are in the benchmarks. The initial capacity
in this version is calculated by dividing the original capacity by the average of
the original profits. Dynamic changes add a value to C each τ generations. Four
different situations in terms of frequencies are considered: high frequent changes
with τ = 100, medium frequent changes with τ = 1000, 5000 and low frequent
changes with τ = 15000.

In the case that weights are 1, the value of dynamic changes are chosen
uniformly at random within the interval [−r, r] where are r = 1, 10. In the
case of general weights, when changes are uniformly random, we investigate two
values for r: r = 2000, 10000. Moreover, the situation that changes are from
normal distribution is also experimented with σ = 100, 500.

We used the offline errors to compute the performance of the algorithms. In
each generation, we record ei = P (x∗i ) − P (xi) where x∗i and xi are optimal
solution and best achieved feasible solution in generation i, respectively. If the
best achieved solution is infeasible, then we have ei = C−

∑n
i=1 w(i) · x(i) which

is negative. The final error for m generations would be
∑m
i=1 ei/m.

The benchmarks for dynamic changes are thirty different files. In randomly
uniform changes each file consists of 100000 numbers in [−r, r] generated uni-
formly at random. Similarly, there are thirty files with 100000 numbers generated
under the normal distribution N (0, σ2). Algorithms start from the beginning of
each file and picks the amount of changes from the files. Hence, for each setting,
we run algorithms for thirty times with different dynamic benchmark and record
the total offline error of each run.

In order to establish a statistical comparison of the results among different
algorithms we use multiple comparisons test. In particularity, we focus on the
method that compare against a set of algorithms. For statistical validation we
use the Kruskal-Wallis test with 95% confidence. Afterwards, we apply the Bon-
ferroni post-hoc statistical procedures that are used for multiple comparison of



a control algorithm to two or more algorithms. For more detailed description on
the statistical tests we refer the reader to [9].

Our results are summarized in the Tables 1, 2 and 3. The columns repre-
sent the algorithm (1+1) EA, MOEA, MOEA D with the corresponding mean
value and standard deviation. Note X(+) is equivalent to the statement that
algorithm in the column outperformed algorithm X, and X(−) is equivalent to
the statement that X outperformed the algorithm given in the column. In the
case if the algorithm X not appears this means that no significant difference was
determined between algorithms.

4 Experimental Results

In this section we describe the initial setting of the algorithms and analyze their
performance according to the statistical tests. The initial solution for all the algo-
rithms is a pack of items which are chosen uniformly at random. Each algorithm
runs initially for 10000 generations without any dynamic change. Afterward, the
first change happens and algorithms perform one million generations with dy-
namic changes in every τ generations. In multi-objective algorithms it is needed
to initially set δ. These algorithms keep at most δ feasible solutions and δ in-
feasible solutions which might help them to perform efficiently in dealing with
a dynamic change. When the dynamic changes come from U(−r, r), it is known
that the capacity will change at most r. Hence, we set δ = r. In case of changes
from N (0, σ2), δ is set to be 2σ since 95% of values will be in the distance of
2σ from the mean value. Note that larger δ increases the population size of the
algorithms and there is a trade-off between the size of population and speed of
algorithm in reacting to the next change.

4.1 Dynamic Uniform Constraint

In this section we validate the theoretical results on the performance of (1+1) EA
and Multi-Objective Evolutionary Algorithm. Shi et al. state that the multi-
objective approach perform better than (1+1) EA in reoptimizing the optimal
solution of dynamic KP under uniform constraint [7]. Although MOEA that we
used in this experiment is not completely similar to the multi-objective algorithm
studied previously and they only considered the reoptimization time, but the
experiments show that multi-objective approaches outperform (1+1) EA in case
of uniform constraints.

An important reason for this clear remarkable performance is the relation of
optimal solutions in different weights. In this type of KP, the difference between
the optimal solution of weight w and w + 1 is one item. Hence, keeping non-
dominated solutions near the constrained bound helps the algorithm to find the
current optimal more efficient and behave faster after a dynamic change.

Moreover, according to the results, there is no significance in using MOEA
and MOEA D in this type of KP. A probable reason is that the size of population
in MOEA remains small when weights are one. Hence, MOEA D, which stores



Table 1: Mean, standard deviation values and statistical tests in regards to the
offline error for (1+1) EA, MOEA, MOEA D based on uniform distribution with
all the weights are one shown in each column.

n r τ (1+1) EA (1) MOEA (2) MOEA D (3)
mean st stat mean st stat mean st stat

uncor 100 5 100 4889.3888 144.4195 2(−),3(−) 1529.9976 120.7599 1(+) 1486.8485 122.9978 1(+)

100 5 1000 1194.2316 86.5164 2(−),3(−) 44.7524 8.9564 1(+) 46.6889 8.5070 1(+)

unc-s-w 100 5 100 4990.8004 144.8678 2(−),3(−) 1545.3579 115.1507 1(+) 1500.0710 106.7000 1(+)

100 5 1000 1160.2355 130.3224 2(−),3(−) 41.9020 6.1326 1(+) 43.0584 7.2187 1(+)

bou-s-c 100 5 100 13021.9789 780.7601 2(−),3(−) 4258.5330 580.7689 1(+) 4190.5479 573.1300 1(+)

100 5 1000 3874.7641 911.5027 2(−),3(−) 177.6196 83.1647 1(+) 175.1415 80.7294 1(+)

fewer items because of its dominance definition, has no advantage in this manner
anymore. In addition, constraint is actually on the number of the items. Thus,
both definitions for dominance work the same in many cases.

4.2 Dynamic Linear Constraint

In this section, we consider algorithms in more difficult environments where
weights are arbitrary under dynamic linear constraint. As it is shown in Section
4.1, the multi-objective approaches outperform (1+1) EA in case of weights are
one. Now we try to answer to this question: Does the similar fact holds when
weights are arbitrary? The data in Table 2 shows the experimental results in
case of dynamic linear constraints under a uniform distribution. It can be seen
that (as expected) the mean of errors decreases by increasing τ . Larger τ gives
more time to the algorithm to get closer to the optimal. Moreover, starting from
a solution which is near to the optimal of the previous capacity, might help the
process of finding the new optimal solution in many cases.

We first consider the results in case of dynamic changes under uniform dis-
tribution. The interesting observation from Table 2 is that unlike the case of
uniform constraint, in almost all the settings, MOEA had the worst performance
among all the algorithms. The first reason might be that items selected in op-
timal solutions with close weights are close to each other in terms of Hamming
distance. In other words, when weights are one, we can achieve the optimal of
weight w by adding an item to the optimal of weight w + 1 or deleting an item
from the optimal of w − 1. However, in case of arbitrary weights, the optimal
solutions of weight w and w + d could have completely different items, even if
d is small. The other reason could be the effect of having a large population. A
large population may cause the optimization process to be longer and it could
get worst according to the definition of <MOEA which only compares solutions
with equal weights. If s be a new solution and there is no solution with w(s) in
the set of solutions, MOEA keeps s whether s is a good solution or not i.e. is
it really a non-dominated solution or it would be dominated by other solutions
in the set? This comparison doesn’t consider if s has any good properties to be
inherited to the next generation. Moreover, putting s in the set of solutions de-
creases the probability of choosing all other solutions, even those solutions that



Table 2: Mean, standard deviation values and statistical tests in regards to the
offline error for (1+1) EA, MOEA, MOEA D based on uniform distribution.

n r τ (1+1) EA (1) MOEA (2) MOEA D (3)
mean st stat mean st stat mean st stat

uncor 100 2000 100 5564.3676 463.3906 2(+),3(−) 11386.3961 769.7717 1(−),3(−) 3684.2584 525.4970 1(+),2(+)

100 2000 1000 2365.5625 403.6389 2(+),3(−) 7219.1692 587.5044 1(−),3(−) 776.1434 334.6927 1(+),2(+)

100 2000 5000 1415.4208 167.0792 2(+),3(−) 3598.2916 420.1200 1(−),3(−) 270.9025 121.4351 1(+),2(+)

100 2000 15000 914.5508 102.8162 2(+),3(−) 2004.1563 368.8171 1(−),3(−) 88.8041 43.9791 1(+),2(+)

unc-s-w 100 2000 100 3128.4326 188.3569 2(+),3(−) 5911.1092 534.2422 1(−),3(−) 2106.4485 249.2828 1(+),2(+)

100 2000 1000 606.1364 99.2263 2(+),3(−) 1564.2348 619.9709 1(−),3(−) 302.3365 24.5988 1(+),2(+)

100 2000 5000 147.5547 31.7991 3(−) 174.2289 95.9758 3(−) 60.9423 9.12073 1(+),2(+)

100 2000 15000 64.6549 17.1292 2(−),3(−) 40.6629 15.5060 1(+),3(−) 19.2600 4.0399 1(+),2(+)

bou-s-c 100 2000 100 3271.0735 266.5438 2(+) 5583.5302 337.8083 1(−),3(−) 3036.9726 297.3351 2(+)

100 2000 1000 1483.0084 85.1373 2(+),3(−) 2639.1569 106.4706 1(−),3(−) 617.9195 186.3456 1(+),2(+)

100 2000 5000 796.7658 89.8043 2(+),3(−) 1256.6245 118.2748 1(−),3(−) 251.4120 109.5822 1(+),2(+)

100 2000 15000 538.4494 66.9822 2(+),3(−) 687.9506 116.9149 1(−),3(−) 104.2682 61.0609 1(+),2(+)

uncor 100 10000 100 10256.7191 210.5084 2(+),3(+) 16278.9718 248.4330 1(−),3(−) 11038.0747 236.9141 1(−),2(+)

100 10000 1000 3604.1781 285.7346 2(+) 13340.1982 704.3221 1(−),3(−) 3508.5130 473.4207 2(+)

100 10000 5000 1607.7785 278.6027 2(+),3(−) 10614.4482 1660.3176 1(−),3(−) 1183.5216 411.8305 1(+),2(+)

100 10000 15000 987.6461 219.5262 2(+),3(−) 8006.3515 1612.2042 1(−),3(−) 566.6951 219.537 1(+),2(+)

unc-s-w 100 10000 100 7192.8170 153.9257 2(+),3(+) 12617.6912 318.2268 1(−),3(−) 8057.4438 274.1671 1(−),2(+)

100 10000 1000 1846.4341 115.2344 2(+) 6981.8105 768.7823 1(−),3(−) 1743.1162 364.3832 2(+)

100 10000 5000 539.3859 65.3926 2(+) 3488.2769 819.5125 1(−),3(−) 519.6258 175.2236 2(+)

100 10000 15000 208.7307 36.9058 2(+) 1525.2297 306.7184 1(−),3(−) 201.9746 79.2794 2(+)

bou-s-c 100 10000 100 7187.8013 122.5926 2(+),3(+) 15111.3818 231.5328 1(−),3(−) 12736.5459 229.4770 1(−),2(+)

100 10000 1000 2282.8064 219.2362 2(+),3(+) 8301.4260 569.9000 1(−),3(−) 3575.2567 550.5409 1(−),2(+)

100 10000 5000 1370.4793 250.5933 2(+) 5248.4036 1045.7825 1(−),3(−) 1472.1939 493.8786 2(+)

100 10000 15000 955.3767 133.3276 2(+) 3852.0701 752.8415 1(−),3(−) 977.4152 397.7484 2(+)

are very close to the optimal solutions. However, as it can be seen in the Table
2, there is only one case that MOEA beat the (1+1) EA: when the weights are
similar, magnitude of changes are small (2000) which means the population size
is small and finally τ is at its maximum to let the MOEA to use its large size
population to optimize the problem.

Although MOEA does not perform very well in instances with general weights,
multi-objective approach with a better defined dominance, MOEA D, does out-
perform (1+1) EA in many cases. In the following, we compare the performance
of (1+1) EA and MOEA D. In the case that changes are smaller, it can be
seen that the mean of offline errors of MOEA D is smaller than (1+1) EA. The
dominance in MOEA D is defined such that keeps only the dominant solutions.
When a new solution comes, it removes solutions that are dominated by the new
solution and keeps the new solution only if it is not dominated by the other ones.
This process improves the quality of the solutions i.e. increase the probability
of keeping a solution with helpful properties for the next generations. Moreover,
it reduces the size of the population significantly. However, large changes on
the capacity makes the MOEA D to keep more individuals and this is where
(1+1) EA may overtake the MOEA D.

When r = 10000, MOEA D doesn’t have significantly better results in all
cases as the case of r = 2000 and in most of the situations, it performs as good
as (1+1) EA. In all of high frequent conditions where τ = 100, the (1+1) EA has
better performance. It may caused by MOEA D needing more time to optimize
a population with larger size. Moreover, when the magnitude of changes is large,



Table 3: Mean, standard deviation values and statistical tests in regards to the
offline error for (1+1) EA, MOEA, MOEA D based on normal distribution.

n σ τ (1+1) EA (1) MOEA (2) MOEA D (3)
mean st stat mean st stat mean st stat

uncor 100 100 100 2714.7237 106.0564 2(+),3(+) 9016.8293 2392.4802 1(−),3(−) 4271.0873 789.9369 1(−),2(+)

100 100 1000 1386.6581 97.1127 2(+),3(−) 3714.8943 737.1095 1(−),3(−) 412.8864 27.2491 1(+),2(+)

100 100 5000 801.5359 73.6676 2(+),3(−) 1266.3464 119.2522 1(−),3(−) 108.2852 14.21993 1(+),2(+)

100 100 15000 549.7143 78.9796 2(+),3(−) 749.8565 148.0347 1(−),3(−) 61.9285 17.0310 1(+),2(+)

unc-s-w 100 100 100 412.2387 111.0699 2(+),3(+) 1979.6485 914.3548 1(−) 1904.0895 877.5521 1(−)

100 100 1000 85.5528 23.1272 2(+),3(+) 1566.5388 409.3200 1(−) 1482.3743 391.7501 1(−)

100 100 5000 36.9446 13.6068 2(+),3(+) 1414.6565 448.7852 1(−) 1322.3538 414.2754 1(−)

100 100 15000 29.1357 19.6958 2(+),3(+) 1237.6667 665.2746 1(−) 1137.7971 648.7264 1(−)

bou-s-c 100 100 100 1491.3596 260.7184 2(+),3(+) 4625.4912 1302.5213 1(−),3(−) 2903.7694 717.9236 1(−),2(+)

100 100 1000 736.1017 53.9918 2(+),3(−) 1748.6106 189.9375 1(−),3(−) 312.8776 35.5254 1(+),2(+)

100 100 5000 446.9419 39.3630 2(+),3(−) 640.5960 91.2955 1(−),3(−) 101.2059 17.4725 1(+),2(+)

100 100 15000 337.8493 40.4405 2(+),3(−) 469.1578 93.9935 1(−),3(−) 70.1564 22.2599 1(+),2(+)

uncor 100 500 100 13400.8775 305.1443 2(+),3(+) 46395.4430 4565.6075 1(−),3(−) 19218.9393 1035.7244 1(−),2(+)

100 500 1000 6363.1594 194.5869 2(+),3(−) 25747.0777 1181.1069 1(−),3(−) 2387.6143 151.7328 1(+),2(+)

100 500 5000 3983.0558 254.3827 2(+),3(−) 18004.0285 1243.6619 1(−),3(−) 1467.5810 152.7721 1(+),2(+)

100 500 15000 3112.7330 315.2934 2(+),3(−) 17610.3480 1265.5016 1(−),3(−) 1348.2546 194.7150 1(+),2(+)

unc-s-w 100 500 100 2845.3063 146.8025 2(+),3(+) 11803.9860 1256.9881 1(−) 11438.0432 1247.6191 1(−)

100 500 1000 595.7042 86.1936 2(+),3(+) 8851.3557 1488.5874 1(−) 8478.2106 1313.5508 1(−)

100 500 5000 222.7947 62.2231 2(+),3(+) 7025.4493 2639.3898 1(−) 6488.4662 2335.9254 1(−)

100 500 15000 171.3333 50.2800 2(+),3(+) 7188.6703 4184.8398 1(−) 6278.0973 4146.5429 1(−)

bou-s-c 100 500 100 7444.2316 289.9988 2(+),3(+) 24462.5803 1330.9350 1(−),3(−) 15592.6601 791.6970 1(−),2(+)

100 500 1000 4062.6330 210.4886 2(+),3(−) 12291.6272 589.1772 1(−),3(−) 2781.2022 317.8854 1(+),2(+)

100 500 5000 3013.3515 289.2948 2(+),3(−) 9667.9570 571.3437 1(−),3(−) 1971.5654 220.6273 1(+),2(+)

100 500 15000 2722.2941 342.3943 2(+),3(−) 9308.2817 719.2505 1(−),3(−) 1760.5127 251.5120 1(+),2(+)

it is more probable that the new change, makes MOEA D to remove all of the
stored individuals and start from the scratch.

Now we study the experimental results came from considering the dynamic
changes under the normal distribution (Table 3). The results confirms the better
performance of (1+1) EA in high frequent changes. Skipping the instance with
uncorrelated similar weights and high frequent changes, the MOEA D has been
always the best algorithm in terms of performance and MOEA has bee the
worst. The most noticing behavior is in dealing with instance with uncorrelated
similar weights. (1+1) EA outperforms both other algorithms in this instance.
This happens because of the value of δ and the weights of the instances. δ is
set to 2σ in multi-objective approaches and weights of items are integers in
[1001, 1010] in this type of instance. (1+1) EA is able to freely get closer to
the optimal solutions from both directions, while multi-objective approaches are
only allowed to consider solutions in range of [C − δ, C + δ]. In other words, it
is probable that there is only one solution in that range or even no solution.
Hence, multi-objective approaches have no advantage in these type of instances
according to the value of δ and weights of the items.

5 Conclusions and Future Work

In this paper we studied the evolutionary algorithms for the knapsack problem
where the capacity dynamically changes during the optimization process. In the
introduced dynamic setting, the frequency of changes is determined by τ . The
magnitude of changes are chosen randomly either under uniform distribution



U(−r, r) or under Gaussian distributionN (0, σ2). We compared the performance
of (1+1) EA and two multi-objective approaches with different dominance def-
initions (MOEA, MOEA D). Our experiments in the case of weights set to 1
verified the previous theoretical studies for (1+1) EA and MOEA. It is shown
that multi-objective approach, which use a population in the optimization, out-
performs (1+1) EA. In addition, we considered the algorithms in case of general
weights for different classes of instances with a variation of frequencies and mag-
nitudes. Our results illustrate that MOEA doesn’t perform well in general case
due to its dominance procedure. However, MOEA D which benefits from a pop-
ulation with controlled size and nod-dominated solutions, beats (1+1) EA in
most case. On the other hand, in the environments with high frequent changes,
(1+1) EA perform better than multi-objective approaches. In such cases, the
population slows down MOEA D in reacting after the dynamic change.
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