Conference Papers
-
A. Nikfarjam, Bossek, A. Neumann, F. Neumann (2021):
Computing Diverse Sets of High Quality TSP Tours by EAX-Based Evolutionary Diversity Optimisation.
In: Foundations of Genetic Algorithms XVI, FOGA 2021, ACM Press.
[CoRR abs/2108.05005]
-
A. V. Do, M. Guo, A. Neumann, F. Neumann (2021):
Analysis of evolutionary diversity optimisation for permutation problems.
In: Genetic and Evolutionary Computation Conference, GECCO 2021, ACM Press.
(Nominated for Best Paper Award in the track "Genetic Algorithms")
[CoRR abs/2102.11469]
-
W. Reid, A. Neumann, S. Ratcliffe, F. Neumann (2021):
Advanced mine optimisation under uncertainty using Evolution.
GECCO 2021 Workshop Industrial Applications of Metaheuristics
In: Genetic and Evolutionary Computation Conference, GECCO 2021, Companion, ACM Press.
[CoRR abs/2102.05235]
-
Y. Xie, A. Neumann, F. Neumann (2021):
Heuristic strategies for solving complex interacting large-scale stockpile blending problems.
In: IEEE Congress on Evolutionary Computation, IEEE CEC 2021.
[CoRR abs/2104.03440]
-
A. Neumann, J. Bossek, F. Neumann (2021):
Diversifying greedy sampling and evolutionary diversity optimisation for constrained monotone submodular functions.
In: Genetic and Evolutionary Computation Conference, GECCO 2021, ACM Press.
[CoRR abs/2010.11486]
-
A. Nikfarjam, Bossek, A. Neumann, F. Neumann (2021):
Entropy-based evolutionary diversity optimisation for the traveling salesperson problem.
In: Genetic and Evolutionary Computation Conference, GECCO 2021, ACM Press.
[CoRR abs/2104.13538]
-
Y. Xie, A. Neumann, F. Neumann, A. M. Sutton (2021):
Runtime analysis of RLS and the (1+1) EA for the chance-constrained knapsack problem with correlated uniform weights.
In: Genetic and Evolutionary Computation Conference, GECCO 2021, ACM Press.
[CoRR abs/2102.05778]
-
Y. Xie, A. Neumann, F. Neumann (2021):
Heuristic strategies for complex interacting stockpile blending problems with chance constraints.
In: Genetic and Evolutionary Computation Conference, GECCO 2021, ACM Press.
[CoRR abs/2102.05303]
-
J. Bossek, A. Neumann, F. Neumann (2021):
Breeding diverse packings for the knapsack problem by means of diversity-tailored evolutionary algorithms.
In: Genetic and Evolutionary Computation Conference, GECCO 2021, ACM Press.
[CoRR abs/2104.13133]
-
J. Bossek, A. Neumann, F. Neumann (2021):
Exact Counting and Sampling of Optima for the Knapsack Problem.
In: The 15th Learning and Intelligent Optimization, LION 2021, Springer.
[CoRR abs/2104.13133]
-
A. Neumann, F. Neumann (2020):
Human interactive EEG-based evolutionary image animation.
In: IEEE Symposium Series on Computational Intelligence, IEEE SSCI 2020.
[CoRR abs/2104.13133]
-
A. Neumann, F. Neumann (2020):
Optimising chance-constrained submodular functions using evolutionary multi-objective algorithms.
In: Parallel Problem Solving from Nature XVI, PPSN 2020.
[CoRR abs/2006.11444]
-
J. Bossek, A. Neumann, F. Neumann (2020):
Optimising tours for the weighted traveling salesperson problem and the traveling thief problem: A structural comparison of solutions.
In: Parallel Problem Solving from Nature XVI, PPSN 2020.
[CoRR abs/2006.03260]
-
J. Bossek, C. Doerr, P. Kerschke, A. Neumann, F. Neumann (2020):
Evolving sampling strategies for one-shot optimization tasks.
In: Parallel Problem Solving from Nature XVI, PPSN 2020.
[CoRR abs/1912.08956]
-
A. V. Do, J. Bossek, A. Neumann, F. Neumann (2020):
Evolving diverse sets of tours for the travelling salesperson problem.
In: Genetic and Evolutionary Computation Conference, GECCO 2020, ACM Press.
[CoRR abs/2004.09188]
-
Y. Xie, A. Neumann, F. Neumann (2020):
Specific single- and multi-objective evolutionary algorithms for the chance-constrained knapsack problem.
In: Genetic and Evolutionary Computation Conference, GECCO 2020, ACM Press.
[CoRR abs/2004.03205]
-
H. Assimi, O. Harper, Y. Xie, A. Neumann, F. Neumann (2020):
Evolutionary bi-objective optimization for the dynamic chance-constrained knapsack problem based on tail bound objectives.
In: 24th European Conference on Artificial Intelligence, ECAI 2020.
[CoRR abs/2002.06766]
-
V. Doskoc, T. Friedrich, A. Göbel, A. Neumann, F. Neumann, F. Quinzan (2020):
Non-Monotone submodular maximization with multiple knapsacks in static and dynamic settings.
In: 24th European Conference on Artificial Intelligence, ECAI 2020.
Paper
[CoRR abs/1911.06791]
-
B. Doerr, C. Doerr, A. Neumann, F. Neumann, A. M. Sutton (2020):
Optimization of chance-constrained submodular functions.
In: Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020.
[CoRR abs/1911.11451]
-
J. Bossek, P. Kerschke, A. Neumann, M. Wagner, F. Neumann, H. Trautmann: (2019):
Evolving diverse TSP instances by means of novel and creative mutation operators.
In: Foundations of Genetic Algorithms XV, FOGA 2019, ACM Press.
Paper
-
A. Neumann, W. Gao, M. Wagner, F. Neumann: (2019):
Evolutionary diversity optimization using multi-objective indicators.
In: Genetic and Evolutionary Computation Conference, GECCO 2019, ACM Press.
(Nominated for Best Paper Award in the track "Genetic Algorithms")
[CoRR abs/1811.06804, Paper]
-
Y. Xie, O. Harper, H. Assimi, A. Neumann, F. Neumann: (2019):
Evolutionary algorithms for the chance-constrained knapsack problem.
In: Genetic and Evolutionary Computation Conference, GECCO 2019, ACM Press.
[CoRR abs/1902.04767]
-
B. Alexander, D. Hin, A. Neumann, S. Ull Karim (2019): Evolving Pictures in Image Tran- sition Space.
In: International Conference on Neural Information Processing, ICONIP 2019.
[CoRR abs/1902.04767]
-
V. Roostapour, A. Neumann, F. Neumann, T. Friedrich (2019):
Pareto optimization for subset selection with dynamic cost constraints.
In: Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019.
[CoRR abs/1811.07806], AAAI version
-
V. Roostapour, A. Neumann, F. Neumann (2018):
On the performance of baseline evolutionary algorithms on the dynamic knapsack problem.
In: Parallel Problem Solving from Nature XV, PPSN 2018.
Paper
-
A. Neumann, W. Gao, C. Doerr, F. Neumann, M. Wagner (2018):
Discrepancy-based evolutionary diversity optimization.
In: Genetic and Evolutionary Computation Conference, GECCO 2018, ACM Press.
[CoRR abs/1802.05448]
-
A. Neumann, C. Pyromallis, B. Alexander (2018): Evolution of Images with Diversity and Constraints Using a Generator Network.
In: International Conference on Neural Information Processing, ICONIP 2018.
[CoRR abs/1802.05448]
-
A. Neumann, F. Neumann (2018):
On the use of colour-based segmentation in evolutionary image composition.
In: IEEE Congress on Evolutionary Computation, IEEE CEC 2018.
Paper
-
A. Neumann, Z. L. Szpak, W. Chojnacki, F. Neumann (2017):
Evolutionary image composition using feature covariance matrices
In: Genetic and Evolutionary Computation Conference, GECCO 2017, ACM Press.
[CoRR abs/1703.03773]
-
B. Alexander, J. Kortman, A. Neumann (2017): Evolution of Artistic Image Variants Through Feature Based Diversity Optimisation.
In: Genetic and Evolutionary Computation Conference, GECCO 2017, ACM Press: 171-178, (CORE A).
[CoRR abs/1703.03773]
-
A. Neumann, B. Alexander, F. Neumann (2017):
Evolutionary image transition using random walks.
In: International Conference on Computational Intelligence in Music, Sound, Art and Design, EVOMUSART 2017.
Paper
-
M. El Yafrani, S. Chand, A. Neumann, B. Ahiod, M. Wagner (2017): Multi-objectiveness in the Single-objective Traveling Thief.
Problem.
In: Genetic and Evolutionary Computation Conference, GECCO (Companion) 2017, ACM Press.
Paper
-
W. Li, E. Ozcan, J. R. Drake, A. Neumann, M. Wagner (2017): A Modified Indicator-based Evolutionary Algorithm (mIBEA).
In: IEEE Congress on Evolutionary Computation, CEC 2017, IEEE Press.
Paper
-
A. Neumann, B. Alexander, F. Neumann (2016):
The evolutionary process of image transition in conjunction with box and strip mutation.
In: International Conference on Neural Information Processing, ICONIP 2016.
[CoRR abs/1608.01783]
Journal Papers
-
V. Roostapour, A. Neumann, F. Neumann, T. Friedrich (2021):
Pareto optimization for subset selection with dynamic cost constraints.
Artificial Intelligence.
[CoRR abs/1811.07806]
-
A. Neumann, B. Alexander, F. Neumann (2020):
Evolutionary image transition and painting using random walks.
Evolutionary Computation Journal.
[CoRR abs/2003.01517, Videos]
-
A. Neumann, F. Neumann, T. Friedrich (2019): Quasi-random Agents for Image Transition and Animation.
Australian Journal of Intelligent Information Processing Systems, Volume 16, Number 1, 10-18.
Available:
[CoRR abs/1710.07421]
|
|
|
|