Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180
© by the Massachusetts Institute of Technology

Particle Swarm Optimization for Single
Objective Continuous Space
Problems: A Review

Mohammad Reza Bonyadi mrbonyadi@cs.adelaide.edu.au, rezabny@gmail.com
Department of Computer Science, The University of Adelaide, Adelaide,

SA 5005, Australia. Also with the Centre for Advanced Imaging (CAI),

the University of Queensland, Brisbane, QLD 4067, Australia, and

Complexica Pty Ltd, Adelaide, SA 5021, Australia.

Zbigniew Michalewicz zbyszek@cs.adelaide.edu.au
Department of Computer Science, The University of Adelaide, Adelaide, SA 5005,
Australia. Also with Institute of Computer Science, Polish Academy of Sciences,
Warsaw, Poland, Polish-Japanese Institute of Information Technology, Warsaw,
Poland, and Complexica Pty Ltd, Adelaide, SA 5021, Australia.

doi:10.1162/EVCO_r_00180

Abstract

This paper reviews recent studies on the Particle Swarm Optimization (PSO) algorithm.
The review has been focused on high impact recent articles that have analyzed and/or
modified PSO algorithms. This paper also presents some potential areas for future
study.

Keywords

Particle swarm optimization, stability analysis, local convergence, invariance, topology,
parameter selection, constrained optimization.

1 Motivation

Particle swarm optimization (PSO) is a stochastic population-based optimization
method proposed by Kennedy and Eberhart (1995). It has been successfully applied
to many problems such as artificial neural network training, function optimization,
fuzzy control, and pattern classification (Engelbrecht, 2005; Poli, 2008), to name a few.
Because of its ease of implementation and fast convergence to acceptable solutions, PSO
has received broad attention in recent years (Poli, 2008). Since 1995, different aspects of
the original version of PSO have been modified and many variants have been proposed.
Although a few review articles on PSO (see Section 2 for details) have been published
already (Banks et al., 2007, 2008; Hu et al., 2004; Parsopoulos and Vrahatis, 2002b; Poli,
2008; Poli, Kennedy;, et al., 2007; Song and Gu, 2004), there are two important reasons
for an additional review paper:

1. The latest comprehensive review paper on PSO was published in 2008; how-
ever, many new articles on PSO have been published since then. To estimate the
growth of the number of publications in this field, we conducted a search for
the exact match of “particle swarm optimization” in the title of documents in
five recognized scientific databases (Scopus, Google Scholar, Springer, Web of

Manuscript received: July 30, 2014; revised: February 21, 2015, November 9, 2015, and January 23, 2016;

accepted: February 2, 2016.
© by the Massachusetts Institute of Technology Evolutionary Computation xx(xx): 1-54



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolo.giil .
M. R. Bonyadi and Z. Michalewicz

M Scopus ™ Google scholar  ®Springer M Web of science  ® IEEEXplore

4096
2048

1024

N
w1
(<]

iy
N
o5}

w
N

Number of articles
(=2}
N

=
(<]

Figure 1: The number of published articles with “particle swarm optimization” in their
title in Scopus, Google Scholar, Springer, Web of Science, and IEEE Xplore databases.

Science, and IEEE Xplore; see Fig. 1!). The ratio of the number of articles pub-
lished since 2008 to the ones published before 2008 in Scopus, Google scholar,
Springer, Web of science, and IEEE Xplore databases is 3.07, 2.39, 3.09, 2.34, and
2.23, respectively. In total, almost 75% of the articles on PSO have been published
since 2008. As the latest comprehensive review paper on PSO was published in
2008, the need for a new review paper seems justified.

2. Several limitations were identified in standard PSO in recent years that have not
been analyzed in earlier review papers (see Section 2 for more details). These
limitations are related to the sensitivity of search to transformations (rotation,
translation, and scale), local convergence, stability, first hitting time, and biases
(Auger et al., 2009; Clerc and Kennedy, 2002; Hansen et al., 2008; Lehre and
Witt, 2013; Spears et al., 2010; Van den Bergh and Engelbrecht, 2010; Wilke et al.,
2007). Addressing these limitations is very important because as long as these
limitations exist, good performance of PSO will not be transferable to a wide
variety of optimization problems (Hansen et al., 2008, 2011). Therefore, there is
a need to review advances that address these limitations in detail.

Because of a large number of published articles related to PSO we designed two
criteria to select articles for review purposes as follows:

1. Criterion C1(y, imp, hind, c) is met for an article if:

This data was collected in August 2015. Note that more and more articles have started to use the
term “PSO” rather than particle swarm optimization in their titles. However, we did not consider this
in our analysis because the term “PSO” might refer to a different topic irrelevant to the particle swarm
optimization. Usage of “PSO” might be one of the reasons why the trend of the number of articles per
year in the topic has fallen recently.

2 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

(a) it has been published in the year y or later, and

(b) it has been published in a journal for which the impact factor? (reported by
Thomson Reuters) is larger than imp, or the article has been cited more than
¢ times, or

(c) it has been published in a conference for which the h-5? index (reported by
the Google Scholar metric measure?) is higher than hind, or the article has
been cited more than ¢ times.

2. Criterion C2(y, r) is met for an article if:
(a) it has been published before the year y, and
(b) it has been cited at least r times.

The main source for the number of citations for the articles was the Google Scholar.
We used the software Harzings Publish or Perish® extended by some manual procedures
to find articles and check whether they meet the criteria. Criterion C1 is used to select
high quality articles® that have been published recently (it concentrates on articles
published in the year y or later). Note that because a recently published article might
not have a high number of citations, we have designed this criterion in such a way
that highly cited articles or the articles that have been recently published in recognized
journals/conferences are included in our review. Criterion C2 ensures that older articles
that have played a significant role in developing the algorithm to the level that it is seen
today are also selected. Note that PSO variants that belong to the family of Bare-Bones
PSO (Blackwell, 2012; Kennedy, 2003) are not reviewed in this study as this topic needs
a separate review paper on its own.

We have categorized the articles included in this review into three groups:

Group 1: Articles which have analyzed PSO variants from a theoretical point of view
(including proper proofs in the analyses) and have identified a limitation in a PSO
variant (either standard PSO or other variants). No criteria is used in this group
to filter the articles,

Group 2: Articles which have proposed new variants to improve the performance
of the algorithm to solve “single objective static Unconstrained Optimization Prob-
lems,” UOPs.” The articles for review in this group are filtered by C1(2008, 2, 30, 30)
or C2(2008, 300),

2See http:/ /wokinfo.com/essays/impact-factor/ for the definition of the impact factor. This mea-
sure is reported annually for the journals which have been indexed by the Thomson Reuters Web of
Science.

%h-5 index is the largest number (h) such that h articles published in the previous 5 years have at
least h citations each.

4 Available at http:/ /scholar.google.com.au/citations?view_op=top_venues&hl=en&vq=eng_evolu
tionarycomputation.

5 Available online at http:/ /www.harzing.com/pop.htm, version 4.4.5 was used.

®The designed criteria are of course not optimal as it is possible to find low-quality papers at a
high-impact journal. However, due to the large number of articles in the area of PSO, we needed to
design a preliminary filter to ensure the review spends more effort on articles most likely to be of higher
quality.

7 Although large scale optimization and niching are some types of UOPs, we will not review the
papers in these topics because of the extensive number of articles, which do not fit in one single review
paper.

Evolutionary Computation ~ Volume xx, Number xx 3



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolo.giil .
M. R. Bonyadi and Z. Michalewicz

Group 3: Articles which have modified PSO to deal with “single objective static Con-
strained Optimization Problems,” COPs (see Michalewicz, 1995 and Michalewicz
and Schoenauer, 1996 for definition of COPs). The articles for review in this group
are filtered by C1(2008, 2, 20, 20) or C2(2008, 150).

The reason behind changing the parameters for each criterion in different groups
is that articles in different groups have different potential to be cited. For example, it
is probable that a paper which has analyzed coefficients of the algorithm to deal with
UOPs (categorized in Group 1) is cited in a paper that is related to COPs. Thus, a higher
number of citations is expected for the articles in Group 2 in order to be included in
this survey. Also note, for reasons of space, articles which have investigated /applied
PSO for/to a specific application, such as solving the knapsack problem (Bonyadi
and Michalewicz, 2012) or the traveling salesman problem (Chen et al., 2010), are not
reviewed in this study. Articles in each aforementioned group are divided into several
subgroups (topics) and each subgroup is discussed in one subsection. At the end of each
subsection, a summary of the discussed topic together with challenges and potential
future directions related to that topic are given.

The main aim of this survey is to review the presented ideas, categorize and link
the most recent high-quality studies (based on the criteria we introduced previously),
and provide a vision for directions that might be valuable for future research. Some
conclusions derived by the authors of the included articles are difficult to evaluate as
significant additional effort would be required to fully investigate their different aspects.
However, we briefly discuss some of these methods from two perspectives: theoretical
(convergence to local optima, transformation invariance, and the time complexity of
the methods) and experimental (validity of statistical tests (Derrac et al., 2011), number
of test cases, and potential biases in test cases). Although such analyses are high-level,
they may assist the reader in determining to what extent the findings in these articles
are reliable and how they can be tested to be confirmed or disproved.

The rest of this review study is organized as follows. Section 2 provides some
information about the original form of PSO as well as earlier reviews on the PSO
topic. Section 3 reviews articles which have identified limitations in PSO. Section 4
reviews articles which have modified PSO to have a better performance in solving
UOPs, whereas Section 5 reviews articles which have extended PSO to deal with COPs.
Section 6 concludes this paper.

2 Original PSO and Earlier Review Papers
In this paper, a UOP (minimization) is defined as:
find X € § € R? such that Vy € S, (%) < f(3), (1)

where § is the search space defined by {y : [; < y; < u;}, y; is the i dimension of the
vector y, u; and /; are upper bound and lower bound of the i"* dimension, respectively, d
is the number of dimensions, and f(.) is the objective function. The surface represented
by the function f(.) is called the landscape of the problem.

PSO (Kennedy and Eberhart, 1995) is based on a population (referred to as a swarm)
of n > 1 particles;® each particle is defined by the following three d-dimensional vectors:

8In theoretical studies (see Section 3), the number of particles is sometimes set to 1 to simplify the
analyses.

4 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

e Position (¥,')—is the position of the i"" particle in the ¢"" iteration. The quality
of the particle is determined by this vector,

e Velocity (‘7,i )—is the direction and length of movement of the i particle in the
" iteration,

e Personal best (p!)—is the best position® that the i"" particle has visited in its
lifetime (up to the " iteration). This vector serves as a memory to store the
location of highest quality solutions found so far (Eberhart and Kennedy, 1995).

All of these vectors are updated at every iteration ¢ for each particle i:

Vi, =@, V], Ni)foralli @)

¥, =@, V) foralli 3)

. ¥, fGL) < f(Phand ¥, €S

Pip1 = { :Ll ! . ' o for all i 4)
! otherwise.

In Eq. (2), N/, known as the neighbor set of particle i, is a subset of personal best
positions of the particles that contribute to the velocity update rule of particle i at
iteration t, i.e., N/ = {pX|k € {T! € {1,2,...,n}}} where T/ is a set of indices of particles
which contribute to the velocity update rule of particle i at iteration ¢. Clearly, the
strategy to determine 7 might be different for various types of PSO algorithms and
it is usually referred to as the topology of the swarm. Many different topologies have
been defined for PSO to date (Mendes et al., 2004), for example, global best topology,
ring topology, wheel topology, pyramid typology; each of these have some advantages
and disadvantages (Clerc, 2006; Mendes et al., 2004). Topology in fact determines the
set of particles from which a particle should learn' (connect to). The function s(.)
calculates the new velocity vector for particle i according to its current position, current
velocity V/, and neighbor set Ni. In Eq. (3), £(.) is a function which calculates the new
position of particle i according to its previous position and its new velocity. Usually
(%, V) = % + V!, is used for updating the position of particle i. In Eq. (4), the new
personal best position for particle 7 is updated according to the objective value of its
previous personal best position and the current position. In PSO, the three update rules
(Egs. 2, 3, and 4) are applied to all particles iteratively until a predefined stopping
criterion is met (e.g., the maximum number of iterations is achieved or a sufficiently
good objective value is found). Also, X and ‘76 are generated either randomly or by
using a heuristic method and pj is initialized to X} for all particles.

In the first version of PSO (Kennedy and Eberhart, 1995), called “Original Particle
Swarm Optimization,” OPSO, the set N/ contained only two vectors that were the per-
sonal best position of the i’" particle (p) and that of the best position in the whole swarm
ferred to as the global best particle throughout the review). This topology is called
global best topology for PSO. Also, the function u(.) in Eq. (3) was defined (Kennedy

Personal best can be a set of best positions, but all PSO types listed in this article use a single
personal best.

Learning from a particle refers to gathering information from that particle (either personal best of
that particle or its current position).

Evolutionary Computation ~ Volume xx, Number xx 5



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolo.giil .
M. R. Bonyadi and Z. Michalewicz

and Eberhart, 1995) as:

Vi = Vi + iRy, (P — X)) + @2 Ry, (8 — X)), ®)
where ¢; and ¢, are two real numbers (usually positive) called cognitive and social
weights, also known as acceleration coefficients,!! and pi and g, are the personal best (of
particle i) and the global best vectors, respectively, at iteration ¢. The role of vector factors
Cl = pi — X! (Cognitive Influence) and SI = g, — X! (Social Influence) is to attract the
particles to move toward known quality solutions, that is, personal and global best. R!,
and R}, aretwod x d diagonal matrices'? (Clerc, 2006; Montes de Oca et al., 2009), where
their elements are random numbers distributed uniformly in [0, 1], thatis, U(0, 1). Note
that matrices R}, and R}, are generated at each iteration for each particle separately.
There is no initialization method for velocity that is superior to other methods in a
general case; however, it has been recommended by Engelbrecht (2012) that velocity be
initialized to zero.

In 1998, Shi and Eberhart (1998a) introduced a new coefficient w, called inertia
weight, to control the influence of the previous velocity value on the updated velocity.

Vti+1 = wvti + (leit(l-)’; - )_é;) + ¢2R£t(§t - )_é;) (6)

Thus, the coefficients w, ¢1, and ¢, control influences of the previous velocity, cognitive
influence, and social influence on the particle movement. This variant is called “Stan-
dard Particle Swarm Optimization,” SPSO, throughout the paper. As in OPSO, Rj, and
R}, are random diagonal matrices generated for each particle at each iteration. If the
random numbers on the diagonal of matrices R, and R}, are set to equal values, then
these matrices scale the vectors only (pi — /) and (g, — X!) along their directions. This
setup (considering similar random numbers on the diagonal of the random matrices)
was introduced as a common error in the implementation of PSO in Clerc (2006, chapter
3, section 2). However, some studies have considered this setup to be another variant of
PSO called “Linear Particle Swarm Optimization,” LPSO (Bonyadi et al., 2013) which
is reviewed later in this review. The gray rectangles in Figure 2 represent the areas in
which the terms ¢ R} (pi — X!) and ¢, R}, (8 — X!) may be found. Clearly, by applying
R, and Rj, to CI and SI, the resulting vectors can differ from the original ones.

A number of review articles on PSO have been published to date (Banks et al., 2007,
2008; Hu et al., 2004; Parsopoulos and Vrahatis, 2002b; Poli, 2008; Poli, Kennedy;, et al.,
2007; Song and Gu, 2004). In 2002, seven years after the original PSO was introduced,
the first review paper was published (Parsopoulos and Vrahatis, 2002b). The perfor-
mance of several PSO variants in locating global optimum, jumping out of local optima,
dealing with noise, solving multi-objective optimization problems, etc. were reviewed.
In addition to the review part of that article, a PSO variant was proposed that used a
function stretching approach (Vrahatis et al., 1996) to jump out of local optima.

In 2004, another review article (Hu et al., 2004) on PSO was published that con-
sisted of four main parts: the basic PSO algorithm, discrete PSO, multi-objective PSO,
and applications. The first part contained different strategies for determining param-
eters of the velocity update rule (inertia, cognitive, and social weights). In the second

HThese two coefficients control the effect of personal and global best vectors on the movement
of particles and they play an important role in the convergence of the algorithm. They are usually
determined by a practitioner or by analyzing the dynamics of particle movement.

12Alternatively, these two random matrices are often considered as two random vectors. In this case,
the multiplication of these random vectors by CI and SI is element-wise.

6 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

A

R (P, ~ X))

(a) (b)

Figure 2: The gray areas are the areas in which ¢; R}, (p! — X!) and ¢, R}, (g, — X/) may be
found, (a) SPSO, (b) LPSO.

part, several PSO variants for solving combinatorial optimization problems were sum-
marized. In the third part, some existing studies related to multi-objective PSO variants
were outlined. Some applications of the algorithm in different domains (e.g., feature
selection (Agrafiotis and Cedeno, 2002), neural networks (Yao, 1999)) were discussed
in the last part.

Another review study was published by Song and Gu (2004). The paper had two
main parts: performance improvements and applications. In the first part, several pa-
pers which aimed at modifying parameters, increasing diversity, or faster convergence
were reviewed. In the second part, applications of PSO to multi-objective optimization,
electronics, and training neural networks were discussed.

In 2007, the fourth review paper on PSO was published (Banks et al., 2007). The
paper was organized into several sections: a section on the history of the standard
PSO was followed by a discussion on discrete and continuous-space PSO variants. The
authors then outlined the PSO variants which addressed premature convergence, dealt
with dynamic environments, analyzed the swarm behavior with different parameters
values, and investigated parallelization of the algorithm. The second part of Banks
et al. (2007) was published as a separate article (Banks et al., 2008) and it reviewed
hybridization in PSO, combinatorial PSO, constrained optimization using PSO, and
applications of PSO. In the same year (2007), another survey paper was published (Poli,
Kennedy, et al., 2007). The paper was organized into six parts: i) population dynamic:
focused on the original version of PSO, parameters, and analysis of the dynamics of
the particles; ii) topology: divided into static and dynamic topologies; iii) specialization:
including the discrete space PSO; iv) dynamic environments, etc.; v) theoretical analysis:
including deterministic and stochastic models of PSO; and vi) applications of PSO. The
paper concluded with a list of open questions.

In 2008, the last survey article was published (Poli, 2008) that discussed the growth
of the number of publications in the field of PSO. Results from investigating 700 articles
from the IEEE Xplore database showed an expansive growth of publications in the field
of PSO at that time. This growth raised a question “What makes PSO so attractive to
practitioners?” It was argued that one of the main reasons behind the popularity of PSO
was the simplicity of the algorithm that makes it easy to adapt to different applications.
Another reason is that the algorithm delivers reasonable results for many different
applications. In fact, these characteristics (being simple, reliable, and at the same time

Evolutionary Computation ~ Volume xx, Number xx 7



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolo.giil .
M. R. Bonyadi and Z. Michalewicz

delivering reasonable, though not necessarily the best, results) were found desirable by
practitioners who made the algorithm popular (Poli, 2008).

More recently, there have been some other review papers on specific applications
of PSO, for example, applications of PSO in data clustering, applications of PSO in
dispatching problems (Mahor et al., 2009), applications of PSO in solar photovoltaic
systems to name a few. However, they have not been included in this article because
their focus was on a specific area only.

3 Identified limitations of PSO

Several limitations of SPSO have been identified so far. The term “limitation” refers
to an issue that has been proven to prevent the algorithm from performing well in
different aspects of operation such as locating high-quality solutions or being stable.
There are two main areas related to the limitations of PSO: convergence and transformation
invariance (Wilke, 2005) (see also Bonyadi and Michalewicz (2014a) for details of these
limitations in SPSO). In the following two subsections, articles that have analyzed
limitations related to these two topics in PSO are discussed.

3.1 Limitations Related to Convergence

We classify limitations related to convergence in PSO into four groups: convergence to a
point (also known as stability), patterns of movements, convergence to a local optimum, and
expected first hitting time (EFHT); these are defined in the following paragraphs.

One of the earliest convergence analyses of stochastic optimization algorithms was
published by Matyas (1965) and was followed by Baba (1981) and Solis and Wets (1981).
An iterative stochastic optimization algorithm (optimization algorithm for short) is said
to converge to a point X in a search space in probability (to converge in short) if

Ve > 0, lim P(|fc,—5(’<a)=1, (7)
—>00

where P is the probability measure, X, is a generated solution by the optimization
algorithm (a point in the search space) at iteration ¢, and ¢ is an arbitrary positive value.
There are two possibilities for the point X:'

1. X isany point in the search space (including local optima). With this assumption,
Eq. (7) refers to the “convergence to a point,”

2. X is a local optimum of the objective function in the search space.!* With this
assumption, Eq. (7) refers to the “convergence to a local optimum.”

These two types of convergence have been investigated in detail for different op-
timization algorithms (Birbil et al., 2004; Dasgupta et al., 2009; Matyas, 1965; Solis and
Wets, 1981).

Analysis of convergence to a point is usually conducted for an iterative stochas-
tic optimization algorithm to understand whether the sequence of generated solutions
produced by the algorithm is convergent. Such analysis sometimes leads to a set of
parameter values for the algorithm that guarantee stability. During the convergence

BThere are also different types of stochastic convergence such as convergence in the n’" mean and
almost surely convergence. Interested readers are referred to Rudolph (2013) for more detail on different
types of convergence.

The point ¢ is a local minimum of an objective function f over the search space S if there exists an
openinterval I C S such that¢ € I and Vx € I f(¢) < f(%).

8 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

process, however, the sequence of the solutions found by the algorithm might follow
different patterns, for example, high- or low-frequency movements, larger or smaller
jumps, faster or slower convergence. These patterns can play an important role in the
success of the search process (locating higher quality solutions) as they are closely re-
lated to the exploration/exploitation ability of the algorithm (Bonyadi and Michalewicz,
2016).

Analysis of convergence to a local optimum is conducted to understand whether
the final solution found by the algorithm is at least a local optimum. Although finding
a local optimum is an important (if not essential) property of the algorithm, it is also
important to estimate how long it would take for the algorithm to locate that solution
(Dorea, 1983). Thus, the expected number of function evaluations to visit a point within
an arbitrary vicinity!® of a local optimum (known as expected first hitting time, EFHT)
is analyzed theoretically for optimization methods. This type of analysis, known as
EFHT or runtime analysis, has been conducted for evolutionary algorithms (Rudolph,
1998; Eiben and Rudolph, 1999; He and Yao, 2002) (see also Rudolph, 1997 where
the convergence rate of evolutionary algorithms, as a related topic to EFHT, has been
studied).

Limitations of PSO related to these four topics (convergence to a point, patterns of
movement, convergence to a local optimum, and EFHT) are reviewed in the next four
subsections.

3.1.1 Convergence to a Point

The velocity vector of particles in SPSO grows to infinity for some values of accelera-
tion and inertia coefficients (Clerc and Kennedy, 2002) (this issue is known as swarm
explosion), which causes particles to leave the search space and move to infinity. As the
search space is bounded (as defined in Section 2), moving outside of the boundaries is
not desirable even if there is a better solution (in terms of the objective value) there. One
of the early solutions for this issue was to restrict the value of each dimension of the
velocity to a particular interval [—Viuux, Vinax] (Helwig et al., 2013; Helwig and Wanka,
2007, 2008; Shi and Eberhart, 1998b). However, this strategy does not prevent swarm ex-
plosion in the general case (see Helwig et al., 2013 and Helwig and Wanka, 2007, 2008 for
details) because it restricts only the velocity of particles and not the position of particles.
Hence, some researchers proposed to also restrict the position of the particles (Helwig
and Wanka, 2007). However, even this strategy is not effective because it may restrict
the particles to the boundaries of the search space and prevent effective search. A more
fundamental solution to the swarm explosion issue can be achieved through analysis
of particles” behavior to find out why the sequence of generated solutions might not
be convergent (Clerc and Kennedy, 2002; Trelea, 2003; Van Den Bergh, 2002; Poli, 2009;
Bonyadi and Michalewicz, 2014d; Cleghorn and Engelbrecht, 2014a)—this is known as
stability analysis. The aim of this analysis is to define boundaries for the inertia weight
and acceleration coefficients in such a way that the positions of the particles converge
to a point in the search space, that is, the position is not divergent. These boundaries
are called convergence boundaries throughout this review. !¢

15An arbitrary vicinity of a point is defined by a d-dimensional ball around that point with an
arbitrary radius.

18One should note that determining such boundaries is very helpful for parameter setting purposes
in SPSO. The reason is that coefficients that are outside of the convergence boundaries are usually
not appropriate for optimization purposes as they cause particles to move unboundedly (recall that

Evolutionary Computation ~ Volume xx, Number xx 9



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolo.giil .
M. R. Bonyadi and Z. Michalewicz

The update rules are sometimes simplified for stability analysis purposes. Velocity
and position update rules are analyzed for an arbitrary particle 7 in a one-dimensional
space (we use the notations p and g, instead of p and g, when we analyze p and g in
a one-dimensional space). Also, p! and g, are assumed to be steady during the run.
Further, the topology of the swarm is ignored in the analysis.

One might argue that the convergence boundaries found under these simplifica-
tions are not valid as the simplified system might not exactly reflect the behavior of the
original system. However, it should be noted that, in these analyses, the behavior of
particles is investigated while they are searching for a new personal best. Considering
the one-dimensional space for analysis of SPSO is reasonable because all calculations
(including generation of the random values on the diagonal of R} ) are done in each
dimension independently; hence, all analyses in the one-dimensional case are also
generalizable to multidimensional cases as well (Poli, 2009). In addition, validity of
the convergence boundaries found when global and personal bests are steady and the
topology is ignored were studied by Cleghorn and Engelbrecht (2014b, 2014c, 2015) and
Bonyadi and Michalewicz (2016) experimentally. It was found that, although these con-
ditions simplify the update rules, the calculated convergence boundaries under these
conditions are in agreement with those found under general conditions determined
through experiments. In addition, a recent theoretical study by Liu (2014) showed that
the convergence boundaries for the global best particle found under this simplification
do not change if p} is allowed to be updated (under some conditions) during the run
(this paper is reviewed in more detail later in this survey).

Three different types of stability analysis can be found in literature: determin-
istic model stability analysis, first-order stability analysis, and second-order stability
analysis. Deterministic model stability analysis excludes the stochastic component in
particles and assumes that the particles are moved through a deterministic formulation
(see Clerc, 1999 and Clerc and Kennedy, 2002 for examples). First-order stability analysis
studies the expectation of the position of particles (see Trelea, 2003, Van den Bergh and
Engelbrecht, 2006, and Cleghorn and Engelbrecht, 2014a for examples) to ensure that
this expectation converges. The second-order stability analysis studies the variance of
the position of particles (see Jiang et al., 2007b, Poli, 2009, and Liu, 2014 for examples) to
ensure this variance converges to zero (the convergence of the variance of the particle
position is a necessary condition for second-order stability).

Perhaps the first study that considered theoretical analysis of the trajectory of
particles in PSO was conducted by Ozcan and Mohan (1999). Based on a deterministic
model for particles (the stochastic components were ignored), the trajectory and step size
of movement for particles were analyzed. It was found that, for OPSO, the trajectory of a
particle is of the form of a random sinus wave when ¢ + ¢; < 4. Although no parameter
analysis or convergence boundaries were introduced in that paper, the findings in that
paper formed a basis for further analysis.

One of the earliest attempts to analyze the convergence behavior of SPSO to find
convergence boundaries!” was done by Clerc and Kennedy (2002). In that paper, in
order to simplify the formulation of update rules, stochastic components (r, and r},)'8

the search space is bounded). Hence, searching for a combination of coefficients that results in a good
performance of the algorithm is focused on a smaller boundary.

7Van den Bergh (2002) also analyzed the convergence behavior of SPSO in his thesis; however, the
related paper to that thesis was published in 2006, which is reviewed later in this survey.

8We use the notation  for random scalars as each dimension is updated independently.

10 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

w
< >
-1 1

Figure 3: According to Trelea (2003), expectation of particle positions converge to its
equilibrium if and only if the value of the parameters are set in such a way that they lie
inside the gray triangle (convergence boundaries).

were omitted from the system (deterministic model analysis). It was proven that, by
using this simplified model, particle positions converge to a stable point if

2k
X = )
|2 — ¢ —+/c? —4c|
where x (a coefficient known as constriction factor) is equal to w (inertia weight),
ci+co=c>4,¢c= ‘f(—1, ) = %, and k is a value in the interval (0, 1] (usually set to 1
(Clerc and Kennedy, 2002)). With these settings the value of x is in the interval (0, 1].
The value of k controls the speed of convergence to a fixed point, that is, the larger the

value of k is, the slower the convergence to the fixed point will be. According to these
coefficients, the velocity update rule is written as

1= x(V/ + aRu(p; — X)) + 2R (8 — X)), ©)
where x is setby Eq. 8, ¢c1 + ¢2 > 4, and usually ¢; = ¢; = 2.05 that results in x = 0.7298
(Clerc and Kennedy, 2002). By using these settings the value of each dimension of
the velocity vector converges to zero and, consequently, velocity does not grow to
infinity. The PSO variant that uses velocity update rule in Eq. (9) is called “Constriction
Coefficient Particle Swarm Optimization,” CCPSO. The stable point where each particle
i converges to is a point between p and g (namely 2£12),

The stability of particles in SPSO was also analyzed by Trelea (2003). In that study,
the random components were replaced by their expected values (ri, = rj, = 0.5), which
enabled first-order stability analysis. The parameters of the velocity update rule were
analyzed to find out how they should be set to guarantee particles settle to their equi-
librium. Obviously, V/ =0 and ¥ = p! = g, at the equilibrium point. It was proven
that the expected value of the position of each particle settles to its equilibrium (that is
%) ifandonlyifw < 1,¢ > 0, and 20 — ¢ + 2 > 0 where ¢ = 2322 Figure 3 shows
this relationship between w and ¢. The parameter setting procedure by Trelea (2003)
showed that w = 0.6 and ¢; = ¢, = 1.7 results in a good performance of the algorithm.

Results reported by Trelea (2003), including convergence boundaries and conver-
gence to a point between p and g, were also confirmed by Van den Bergh and Engelbrecht
(2006) (another first-order stability analysis). However, in the latter paper, the speed of

®)

Evolutionary Computation ~ Volume xx, Number xx 11



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolo.giil .
M. R. Bonyadi and Z. Michalewicz

convergence was investigated in more depth (see Section 3.1.2 for more detail). Subse-
quently, another first-order stability analysis was conducted by Campana et al. (2010)
where the findings in Trelea (2003) were also confirmed.

The analysis of convergence to a fixed point was conducted, from a different point
of view, in Jiang et al. (2007b). It was proven that the expectation of the position of each
particle converges to a point (first-order stability analysis) between the personal and
global best vector (%) ifandonlyif0 < w < 1and 0 < ¢ < 4(1 4+ w) where ¢ = ¢ +
¢2. However, it was pointed out that the first-order stability is not enough to guarantee
convergence of particles and second-order stability should also be guaranteed. In fact,
to guarantee stability, not only the expected position of particles should converge to
a fixed value but also the variance of the position should converge to 0 (see also Poli,
Brattonx, 2007, Poli, 2009, and Bonyadi and Michalewicz, in press). It was proven

. . . . . —a/ —
by Jiang et al. (2007b) that, setting the coefficients to satisfy SNBSS _ ) o

24
5¢-+/25¢2—336¢+576 .
L2 ¢ P72 where ¢ = @1 = ¢, guarantees the convergence of the variance of the

position of particles to a fixed value (a necessary condition for variance of position

.. . . . 12(?—1 . .
to converge). Note that this inequality can be simplified to ¢ < 5(3_7 ). This analysis

was slightly modified due to a small error and the corrected version was presented
in Jiang et al. (2007a). This study also recommended w = 0.715 and ¢; = ¢, = 1.7 for
experimental purposes. The authors argued that these coefficient values result in a
higher variance during the run that improves the exploration ability of particles.

The expected value and the standard deviation of the sequence of generated posi-
tions by SPSO were also analyzed in Poli (2009) and Poli, Brattonx et al. (2007) and the
results found by Jiang et al. (2007a) were confirmed. It was proven that convergence

of variance to a fixed point (a necessary condition for second-order stability) requires

Q< 12;32__71) where ¢ = @1 = ¢, thatis, the same as what was found by Jiang et al. (2007a).

Also, Poli (2009) proved that the variance of positions converges to i(¢1, ¢2, w)|g — pl
where h(., ., .) is a function of inertia weight and acceleration coefficients (see Poli, 2009
for details of this function). Hence, if (g1, ¢2, w) # 0is guaranteed then particles do not
stop moving (non-zero variance) until p = g. Therefore, the algorithm is second-order
stable only if p = g.

The first and second-order stability were investigated by Garcia-Gonzalo and
Fernandez-Martinez (2014) for SPSO when a generic distribution for the inertia weight
and acceleration coefficients was considered, that is, it was assumed that the inertia
weight is a random variable from an arbitrary probability distribution with the ex-
pected value u,, and the variance o2 and ¢ and ¢, (¢1 replaces ¢; Ri., and ¢, replaces
@2 R} , in Eq. 6) are also random variables from an arbitrary probability distribution with

the expected values j4, and j14, and the variances o} and (rqu. It was proven that SPSO is
first-order stable if and only if —1 < ., < 1and 0 < py < 2(ue + 1) where ¢ = ¢1 + ¢y.
Also, a necessary condition for the second-order stability is that —a < u, < a and

0 < uy < bwherea = \/ciﬁ’b = 13;;:2;0_)’;)%
that the regions found to guarantee second-order stability are embedded within the
regions that guarantee first-order stability; that is, if a SPSO is second-order stable then
it is also first-order stable.

Recently, some studies have considered more general assumptions to find the con-
vergence boundaries under more realistic conditions. For example, Cleghorn and En-
gelbrecht (2014a) assumed that the personal best of particles and the global best of
the swarm are allowed to move and can occupy an arbitrarily large finite number of

,C =04/ le, and d = 04/ 11y It was shown

12 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

unique positions. The main finding of that study was that SPSO is first-order stable if
and only if -1 <w <1 and 0 < ¢ < 4(1 + w) where ¢ = ¢; + ¢, < 4 under this more
general assumption. This is indeed the same as what was found by Trelea (2003) and
other previous studies through first-order stability analysis. Cleghorn and Engelbrecht
(2014a) also showed that the topology does not affect the convergence boundaries, but
it might affect the speed of convergence/divergence.

The second-order stability of SPSO was also investigated by Liu (2014). It was
assumed that the personal best needs to remain unchanged at least for a limited number
of iterations (3 in that study) that is a weaker assumption comparing to what was
assumed by previous studies (i.e., the personal best need to always remain constant).
The theoretical analysis in that paper proved that the convergence boundaries found
by Jiang et al. (2007b) and Poli (2009) are valid under this assumption for the global
best particle. Also, Liu (2014) proved that the found regions serve as a necessary and
sufficient condition for second-order stability of the global best particle. This study
recommended o = 0.42 and ¢; = ¢, = 1.55 based on experiments on an extensive set
of benchmark functions.

Analysis of stability was also done for a variant of PSO called “Standard PSO 2011,”
SPS02011," by Bonyadi and Michalewicz (2014d, 2016). The velocity update rule for
SPSO2011 is written as:

=0V +Hi(G,, |G, — X]) — X, (10)
where H;(G!, |G — %!) is a hyperspherical distribution with the center G’ and radius
|E}j' — X!| given that é; = w, f’[ =X +¢1(p; — X}), and Zj' =X+ <P2(7," —Xx1) (7;' is
the best personal best among the particles in 7,') (Clerc, 2011). The analyses of conver-
gence conducted for previous PSO variants are not applicable to SPSO2011. The reason
is that updating velocities and positions in all previous PSO variants were done dimen-
sion by dimension which enabled researchers to study particles in a one-dimensional
space. However, the calculation of \7/' in SPSO2011 involves generating random points
using a hyperspherical distribution with a variance that is dependent on the distance
between é; and X!. In order to repeat the dimension-wise analysis (similar to that of
done for SPSO) in SPSO2011, one needs to decompose the random-point generation
procedure done by the hyperspherical distribution into dimension-wise calculations
which might need further effort. Hence, the stability analysis for SPSO2011 was done
experimentally in Bonyadi and Michalewicz (2014d, 2016) where it was shown that
convergence boundaries for particles in SPSO2011 are dependent on the number of
dimensions and these boundaries are different from that of other PSO variants (e.g.,
SPSO). Thus, good choices for coefficient values in previous PSO variants do not neces-
sarily lead to a good performance of SPSO2011.2° Bonyadi and Michalewicz (2016) also
experimentally showed that the convergence boundaries that guarantee second-order
stability are not affected even if the global best and personal bests are updated (through
a uniform random distribution) during the runs for both SPSO and SPSO2011.

Stability of a stochastic recurrence relation that formulates the position update
rule of particles in a wide range of PSO variants (including SPSO) was studied by
Bonyadi and Michalewicz (in press). In order to weaken the stagnation assumption, it
was assumed that the global and personal bests in that relation are updated through

9This variant also follows the general form in Eq. (2) for velocity updating.

2The shape of the convergence boundaries for this variant is very sensitive to the procedure to
generate the hyperspherical distribution. See Bonyadi and Michalewicz (2016) for further details.

Evolutionary Computation ~ Volume xx, Number xx 13



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolqg% .
M. R. Bonyadi and Z. Michalewicz

an arbitrary random distribution. It was proven that the necessary and sufficient con-
ditions to guarantee convergence of expectation and variance of generated positions by
that relation are independent of the mean and variance of the random distribution by
which the global and personal bests are updated. Hence, convergence boundaries for
parameters that guarantee the convergence of expectation and variance of the positions
trajectory are not affected by the mean and variance of that distribution.

Summary: Experiments showed that the velocity vector grows to infinity for all
particles in the swarm for some values of acceleration coefficients and inertia weight
(known as swarm explosion). Some studies investigated this issue from the theoretical
point of view to find the reasons behind this divergence. Three approaches were con-
sidered: analysis of deterministic models, for example, Clerc and Kennedy (2002), first-
order stability of particles (Trelea, 2003; Van den Bergh and Engelbrecht, 2006; Cleghorn
and Engelbrecht, 2014a), and second-order stability (Jiang et al., 2007a; Poli, 2009; Liu,
2014; Garcifa-Gonzalo and Fernandez-Martinez, 2014). Although some of these analyses
were conducted under simplified conditions (e.g., personal best and global best are
not updated), further studies (Cleghorn and Engelbrecht, 2014b, 2014c; Bonyadi and
Michalewicz, 2016) experimentally showed that the convergence boundaries found un-
der these simplified conditions are in agreement with the cases with no simplification,
especially for the studies which considered second-order stability. Articles that studied
the first-order stability of particles found that the point each particle converges to is a
point on the line segment that connects its personal best and the global best vectors
(Trelea, 2003; Van den Bergh and Engelbrecht, 2006). Similar analyses for the first-order
stability were also conducted under more general conditions by Cleghorn and Engel-
brecht (2014a) where it was assumed that the personal best and global best vectors can
occupy an arbitrarily large finite number of unique locations in the search space. In ad-
dition to first-order stability, analyses conducted by Jiang et al. (2007b) and Poli (2009)
showed that particles do not stop moving (convergence of the variance of the particles’
positions, i.e., second-order stability) on this line segment until their personal bests co-
incide with the global best of the swarm. In addition, second-order stability was studied
later by Liu (2014) under more general conditions for the global best particle. It was con-
cluded that the convergence boundaries found under simplified assumption (personal
best and global best are not updated) considered in earlier studies (for example in Jiang
et al., 2007b and Poli, 2009) through second-order stability analysis is also valid under
this more general assumption for the global best particle. In addition, it was proven that
these convergence boundaries are both necessary and sufficient for second-order stabil-
ity. As reported by Liu (2014), the combination (w = 0.45, ¢ = 1.55) works better than
other previously used coefficient values on a large benchmark of test functions. Further,
as previous studies considered only a uniform distribution for random components,
Garcia-Gonzalo and Ferndndez-Martinez (2014) studied the convergence boundaries
for both first- and second-order stability for an arbitrary distribution assuming that the
personal best and global best are constant.

Clearly, investigation of the convergence of variance and second-order stability un-
der generic assumptions (the personal best and global best vectors are updated during
the run) is of great value. This analysis for different topologies can be another area for
further research. Although there have been many studies that have analyzed the stabil-
ity of particles, these analyses have been limited to SPSO and have been only recently
done for SPSO2011. There are many other PSO variants that are substantially different
from SPSO and their convergence behavior is unknown (such as the PSO variants de-
scribed in Bonyadi, Michalewicz, and Li (2014) and Wilke et al., 2007). Thus, it would be

14 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

important to conduct convergence analysis for these variants as well. Another potential
direction for further studies is to investigate the differences/similarities between PSO
variants and Evolutionary Strategy (ES) from theoretical point of view, for example,
how are the dynamics of the two methods different and how do these differences,
if any, impact the search ability of these methods? Angeline (1998) conducted such a
comparison from philosophical and experimental points of view; however, there have
been many theoretical investigations on both algorithms (ES and PSO) since then that
enable researchers to conduct more in-depth theoretical comparisons between these
two algorithms.

3.1.2 Patterns of Movement

If the coefficients of SPSO are selected in a way that they are inside the convergence
boundaries, then the sequence of the positions of particles is not divergent. During
the run, however, particles oscillate with different patterns around their equilibrium
point until they converge (Trelea, 2003; Bonyadi and Michalewicz, 2016). The difference
between these patterns is a consequence of picking different values for coefficients that
play an important role on the performance of the algorithm. For example, a particle that
moves smoothly in the search space can potentially be more effective in the exploitation
phase than a particle that jumps all over the search space. Hence, investigation of these
patterns and calculation of corresponding coefficients which exhibit different patterns
can be helpful for practitioners. In addition, the speed of convergence, that is, how
fast the particles positions approach the equilibrium point, can be of importance to
determine appropriate coefficient values.

Trelea (2003) investigated the roots of the characteristic equation of the expected
position of particles (Eq. 11) for each dimension to categorize different oscillations
particles’ positions might exhibit:

E(xiy1) + (9 —o - DEX) + wE(x1) = ¢P, (11)

. . +
where E(.) is the expectation operator, ¢ = #5#,and P = {01(1/72 P+ (pl‘fwz g. The pattern

of generated points by this equation (i.e., expectation of positions) are:

e harmonic if the imaginary component of both roots of the characteristic equa-
tion is non-zero and the real component of the roots is positive,

e zigzagging if the imaginary component of both roots of the characteristic
equation is zero and the real component of at least one of the roots is negative,

e harmonic-zigzagging if the imaginary component of both roots of the charac-
teristic equation is non-zero and the real component of both roots is negative,

e non-oscillatory if the imaginary component of both roots of the characteristic
equation is zero and the real component of both roots is positive,

Also, experiments showed that convergence is faster if the values of w and ¢ are
closer to the “center” (close to the point (0, 1)) of the triangle in Figure 3. Thus, particles
spend more iterations for exploitation with this setting. Similar analysis for the behavior
of particles before convergence was conducted by Campana et al. (2010) where the same
oscillation patterns were observed.

The speed of convergence of the expectation of positions was investigated by Van
den Bergh and Engelbrecht (2006) who proved that the speed of convergence is

Evolutionary Computation ~ Volume xx, Number xx 15



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolo.giil .
M. R. Bonyadi and Z. Michalewicz

IHo—p1—¢ta Ho—p1—¢p—«a
2

directly related to ¢ = max{||y1ll, |[y2|} where y; = , V2 = ——5—+= and

o= \/ 14+w—¢1 — <,02)2 — 4w; that is, the larger the value of ¢, the faster the expectation
of the position of the particle converges to its equilibrium. It was also proven that the
expected value of the particle’s positions converge to a fixed point (namely %) if
and only if ¢ < 1.

Bonyadi and Michalewicz (2016) investigated the behavior of particles before con-
vergence through an experimental approach. They considered the generated sequence
of particle positions as a time series and they used frequency domain analysis to under-
stand how particles oscillate during the run. They categorized the oscillation patterns
into four groups based on the maximum frequency of oscillation (low, low-mid, mid-
high, and high frequencies), corresponding to the patterns introduced by Trelea (2003).
They showed that the results found by their experimental approach is very similar
to what Trelea (2003) has found. Hence, they used the same approach to analyze the
oscillation of particles in SPSO2011. They found that the boundaries of coefficients cor-
responding to different patterns of oscillation for SPSO2011 are different from those
of SPSO. Their experiments also showed that these boundaries are not sensitive to the
number of dimensions.

Summary: The particle position oscillates during the run until it converges to a
point. This oscillation, however, might show different patterns; for example, the position
might jump from one place to another, it might be smooth through the search space.
The pattern of oscillations as well as the rates of oscillations are affected by changing
the values for coefficients. Hence, some researchers studied these patterns and rates to
find which coefficients values correspond to different behaviors (Trelea, 2003; Van den
Bergh and Engelbrecht, 2006; Campana et al., 2010; Bonyadi and Michalewicz, 2016). For
example, Trelea (2003) found that four groups of oscillation patterns can be observed
in particles” expectation of positions that are zigzagging, harmonic, a combination of
the two, and non-oscillatory. Trelea (2003) found the coefficients’ values corresponding
to each of these patterns. These findings were also confirmed by Campana et al. (2010)
and experimentally tested by Bonyadi and Michalewicz (2016) through analysis of
frequency. The speed of convergence of expectation was also investigated by Van den
Bergh and Engelbrecht (2006) and conditions for coefficients corresponding to the rate
of convergence of expectation were introduced.

As a potential future direction, it would be valuable to study benefits of different
convergence behaviors, for example, zigzagging and harmonic (see Trelea, 2003), on
different types of landscapes (neutral, rugged, etc.). Such study can potentially lead to
an adaptive approach that alters the movement patterns of the particles according to
the type of landscape encountered during the run (see also Bonyadi and Michalewicz,
2016 for a discussion on this topic). Note that these patterns are closely related to the ex-
plorative/exploitative ability of the algorithm. More research can also be conducted on
the speed of convergence to enable practitioners to choose between fast and potentially
low-quality solutions (more exploitation and less exploration) and slow but potentially
high-quality solutions (more exploration and less exploitation); see Van den Bergh and
Engelbrecht (2006), for example. In addition, there has not been any theoretical work
on the speed of the convergence of variance. In fact, the value of the variance that the
particles’ positions converge to and the speed of convergence to that value are related to
the explorative and exploitative behavior of particles (particles are more exploitative for
smaller variance of position), so that idea can be considered as another potential future
work. Another potential future research direction is to study the covariance of particles’

16 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

movement to understand how correlated each sample is to the previous ones and how
this correlation is affected by the coefficients’ values. Also, the trajectory of movement
of each particle follows a particular pattern that may result in different total distance
covered. Because this distance is an important factor for physical systems which use
PSO method for search (e.g., seeking the source of a signal using a swarm of robots; Zou
et al., 2015), one can study the expectation of the total distance that would be covered
through different trajectory patterns and then minimize this expectation by choosing
appropriate coefficient values.

3.1.3 Convergence to a Local Optimum

Convergence to a point ensures that a particle settles to its equilibrium and does not
move to infinity. It was proven that all particles converge to X/ = p! =3, and V/ =0
(stagnation) if coefficients (acceleration and inertia) are in the convergence boundaries.
However, for any value of coefficients, there is no guarantee that the point that the
particles converged to is a local optimum. A particle is said to be locally convergent if

Ve > 0, lim P(|p! ~X|<e)=1
—00

where X is a local optimum (Bonyadi and Michalewicz, 2014a). An alternative for this
definition (Van den Bergh and Engelbrecht, 2010) is, a PSO algorithm is said to be locally
convergent if

Ve >0, lim P(1g, — X| < ¢) = 1.
11— 00

Local convergence was first analyzed by Van den Bergh and Engelbrecht (2002) for
SPSO. It was observed that SPSO does not perform well when the swarm size is too
small. This is called the swarm size issue throughout the paper. The explanation given in
Van den Bergh and Engelbrecht (2002) was that particles in a SPSO with smaller swarm
size (e.g., 2) have larger probability to stagnate. A variant of SPSO called “Guaranteed
Convergent Particle Swarm Optimization,” GCPSO (Van den Bergh and Engelbrecht,
2002), was proposed in which the local convergence issue was addressed. In GCPSO, a
new velocity update rule was introduced for the global best particle ,. Eq. (12) shows
the velocity update rule for GCPSO.

o X+ +oVi+p ifi =1,

+1 =

. S L (12)
oV! + ¢1R,(p; — X]) + 2R}, (g — X;) otherwise.

where p/ (the value of the j dimension of p) is a random value determined through an
adaptive approach that applies a perturbation to the velocity vector. At each iteration
of GCPSO, a random location in a hyper-rectangle with the j side length equal to p/
is generated. This random location is moved from g, by the vector wV/ to form the new
position for the particle 7, (global best particle). Figure 4 shows the hyper-rectangle and

the area within which ¥, ; might be located. The velocity update rule for the particle 7,

in GCPSO forces that particle to always move (implying a non-zero value for \7&1 for
any t). It was proven (Van den Bergh and Engelbrecht, 2010) that SPSO is not locally
convergent while GCPSO is locally convergent. Also, GCPSO could provide acceptable
results with small swarm size (in reported experiments, the number of particles was set
to 2). Stagnation and its relation to small swarm size was also investigated in Bonyadi
et al. (2013) and Bonyadi and Michalewicz (2014b), which that are reviewed in Section

5 as these methods were used to deal with COPs.

Evolutionary Computation ~ Volume xx, Number xx 17



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolo.giil .
M. R. Bonyadi and Z. Michalewicz

2

2,
Area where X/,
might be in
1
o,
g
Figure 4: In GCPSO %", is taken randomly from the gray area while all other particles

follow the original position and velocity update rule.

The local convergence issue for SPSO was also discussed in Schmitt and Wanka
(2013), where it was proven that SPSO is locally convergent for one-dimensional prob-
lems; however, it is not locally convergent when the number of dimensions is larger than
one. Their main idea to address the local convergence issue was to detect stagnation and
then to avoid it by introducing a perturbation operator. The value g = || \7} I+ 118 — X
was used to detect the stagnation of particlei. If B/ < § (where § is a small positive value),
then the particle i is expected to stagnate. In such a case the velocity vector of particle
i was regenerated randomly within a hyper-rectangle with the side length §. It was
proven that by using this approach for the velocity vector, the algorithm is locally
convergent.

The issue of local convergence was also investigated by Bonyadi and Michalewicz
(2014a) for SPSO. The formulation for SPSO was revised in that paper as follows:

L =0V 4+ Y et (mi, (pF) — X)), (13)

keT]

where the operator m}, : RY — R applies perturbation on its inputs and r}, € R is a
random scalar (rather than a random diagonal matrix) in the interval [0, 1]. This variant
was called “Locally convergent Rotationally invariant Particle Swarm Optimization,”
LcRiPSO (see Section 3.2 for details about rotation invariance property of the algorithm).
It was proven that, in LcRiPSO, if the operator m is designed in such a way that

Vy € §,3A, C S, suchthatVz € A,,V§ > 0, P(Im(y) — Z| < 8) > 0, (14)

then the algorithm is locally convergent, where P is the probability measure and A is
an open set; that is, for any input vector y in the search space, there exists an open set A
which contains y and m(y) can be located anywhere in A. It was proven that a normal
distribution with the mean equal to y and a non-zero variance is an instance of m. It was
proposed to use a proportion of the last non-zero distance between x; and p; for this
variance. The algorithm was applied to 20 benchmark test functions (CEC05 and CEC08
benchmarks) and its results were compared with other PSO variants. Experiments
(based on the Wilcoxon test) showed that LcRiPSO provides acceptable results with
small swarm sizes. Also, as all particles in this algorithm are locally convergent and the
algorithm performs well with small swarm size, this algorithm can be a good candidate
to locate niches in a search space—see Bonyadi and Michalewicz (2014b) for details.

18 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

Bonyadi and Michalewicz (2016) investigated the local convergence property of
SPSO2011. They introduced a recursive relation that represented a class of PSO meth-
ods (including SPSO and SPSO2011) and studied conditions to guarantee local conver-
gence for that relation. Accordingly, they modified SPSO2011 in a way that the local
convergence was guaranteed for that algorithm.

Summary: Selecting values of coefficients within the convergence boundaries pre-
vents particles from moving unboundedly. However, there is no guarantee that the
point a particle converges to is a local optimum. If the personal best of a particle is
guaranteed to converge to a local optimum, then it is said that the particle is locally
convergent. If a PSO method guarantees convergence of g; to a local optimum, then that
PSO method is said to be locally convergent. It has been proven that SPSO is not locally
convergent. Also, convergence to a non-optimal solution takes place more frequently if
the swarm size is small. To overcome the local convergence issue in SPSO, a mutation
operator, for example, replacing global/personal best vectors by a randomly selected
point around the global best vector (Bonyadi and Michalewicz, 2014a; Van den Bergh
and Engelbrecht, 2010) or regeneration of velocity vector (Schmitt and Wanka, 2013)
may be applied to prevent particles from stagnating.

Although a mutation operator addresses the local convergence issue, it might slow
down the search process (see Section 3.1.4). One of the issues with these mutation
operators is that known information from the search space, such as potentially good
directions toward better solutions, is ignored. Instead of considering a uniform distri-
bution in a hyper-rectangle for picking the random point (mutation operator), one can
consider an adaptive normal distribution, potentially stretched toward specific direc-
tions that are known to be good, to speed up convergence to local optima similar to
the approaches for ES (Beyer and Schwefel, 2002; Hansen, 2000, 2006) that introduced
CMA-ES. Note that a simple version of adaptive mutation based on normal distribution
was proposed also in Bonyadi and Michalewicz (2014b)—this paper is discussed later
in Section 5. However, that simple adaptive approach only considered generating the
normal distribution for each dimension separately that ignored the correlation between
different dimensions (i.e., only the diagonal of the covariance matrix).

3.1.4 Expected First Hitting Time (EFHT)

In 2009, the lack of EFHT (runtime) analysis for PSO was pointed out by Witt (2009).
The author argued that most convergence analyses for SPSO (including Clerc and
Kennedy, 2002, Jiang et al., 2007b, and Trelea, 2003) have been limited to the concept
of convergence to an attractor and not to a particular optimum. As GCPSO was the
only PSO variant that was proven to be locally convergent by that time, the EFHT
analysis was conducted for this variant. Analyses showed that the EFHT of GCPSO on
the sphere function is asymptotically the same as a simple (1+1) ES—see Jagerskiipper
(2008) for analysis of the EFHT for randomized direct search methods with an isotropic
sampling, including (1+1) ES. However, GCPSO is not rotation invariant while (14+1) ES
is. The author concluded that, “Still, the aim of PSO is to solve optimisation problems,
and empirically, it fulfils this requirement quite well. In this respect, PSO is a heuristic
which presently eludes a theoretical treatment of its practical success.”

The analysis of EFHT for SPSO was also conducted in Lehre and Witt (2013) where
the algorithm was applied to a sphere function. It was proven that EFHT for SPSO is
potentially infinite even when it is applied to a one dimensional sphere. It was shown
that, in some situations that occur with non-zero probability, the algorithm cannot
locate the optimal solution even for a one dimensional sphere. Note that the setting

Evolutionary Computation ~ Volume xx, Number xx 19



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolo.giil .
M. R. Bonyadi and Z. Michalewicz

of the parameters in that paper was different from that of Schmitt and Wanka (2013),
where it was proven that SPSO is locally convergent for one-dimensional problems. A
variant of PSO, called “Noisy Particle Swarm Optimization,” NPSO, was introduced
(Lehre and Witt, 2013) in which a uniform randomly generated vector in a hyper-
rectangle with the side length § > 0 was added to the velocity vector of each particle.
The authors proved that EFHT for NPSO to optimize a sphere function is finite; that is,
NPSO converges to a local optimum of the sphere function in a finite number of function
evaluations. It was concluded that more efforts are needed to study the EFHT of SPSO
and understand how the algorithm works. A similar analysis was also done by Bonyadi
and Michalewicz (2014d) for SPSO2011, where it was proven that, with specific setting
of parameters, EFHT of the algorithm for any one dimensional optimization function
is infinite; for example, SPSO2011 does not guarantee to converge to a local optimum
under assumptions that take place with non-zero probability.

Summary: Although addressing the local convergence issue (discussed in Section
3.1.3) is of a great significance, it is also important to understand what is the expected
time (average number of function evaluations) to hit a point within a vicinity of the
local optimum (Dorea, 1983). There have not been many attempts to analyze/improve
EFHT for PSO variants. A potential reason behind the lack of EFHT analysis in PSO
variants is that there are not many PSO variants that have been proven to be locally
convergent while local convergence is a prerequisite for EFHT analysis in an algorithm.
It has been shown that the performance of one of the locally convergent PSO variants
is almost the same as that of a simple ES method in terms of EFHT on a simple problem
(i.e., sphere function). Thus, it would be worthwhile to put some effort on analysis of
the EFHT of PSO variants that are locally convergent and to introduce modifications to
improve the EFHT for those variants.

3.2 Limitations Related to Transformation Invariance

Analgorithm Ais invariant under the transformation T, T : RY — RY if the performance
of A on any objective function F(X), F : R — R, is the same as the performance of A
on F(T(x)), given that the initial state is “properly” set in both cases. More formally:

Let 7 C {U : RY — R?} be a set of transformations (as a subset of all possible trans-
formations U), Y is the state space of the search algorithm and Ar:Y — Y is one
iteration of the algorithm under the objective function F. The algorithm A is invariant
under 7 if for all T € 7 there exists a bijection Jr : Y — Y such that forall F : RY — R
andyeY

JroAror(y) = Ar o Jr(y).

For stochastic algorithms, this equality needs to hold almost surely or in distribution
(see Hansen et al., 2011 for complete discussion). Intuitively, this definition means that
the performance of the algorithm is independent of how the coordinate axes, that is, the
frame, are placed on the search space.

In addition to invariance, it is also expected that the optimization algorithm is
as independent as possible from the initial state (so-called adaptivity). Therefore, in
order to study the transformation invariance property of optimization algorithms, some
researchers took the adaptivity for granted and assumed that the initial state is also
transformed using the same transformation that the search space is transformed with
(i.e., T); see Hansen et al. (2011) for a complete discussion.

Transformation invariance is an important characteristic of an optimization algo-
rithm. If an algorithm is invariant of a transformation T then, by definition, the per-
formance of the algorithm on a problem P can be generalized to the set of problems

20 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

C (P € C) that are defined by (P; T). This enables researchers to make stronger state-
ments (statements that are applicable to a larger class of problems), favorable or unfa-
vorable, about the performance of an algorithm. Scaling, rotation, and translation are
well-known transformations that are frequently used in different areas. Hence, it is valu-
able to understand if an algorithm is invariant under these transformations (see Wilke
et al., 2007, Hansen et al., 2011, and Bonyadi and Michalewicz, 2014a, 2016). One can
define the transformation 7'(xX) by T'(X) = s OxX + b to formulate these transformations
(scaling, rotation, and translation) where s € R is a scale factor and s # 0, Q € R x R¢
is a rotation matrix, and b € R is a translation vector.

Transformation invariance has been investigated for many optimization algorithms
(Hansen, 2000; Salomon, 1995). Among the transformation of rotation, scale, and trans-
lation, rotation has received most attention by researchers in the field of PSO. Probably
the main reason for this special attention is that the rotation of the search space po-
tentially makes an objective function non-separable (Hansen et al., 2011). Moreover,
dealing with non-separable optimization functions is of more interest as there are many
optimization problems with this characteristic. Translation invariance is probably the
most basic characteristic among these transformations that an optimization algorithm
must have. The reason is that, if an algorithm is sensitive to translation, the algorithm
in fact is “making an assumption” about the location of the optimal solution of the
problem at hand. Hence, if the optimal solution is shifted, that assumption is not valid
anymore and this, in turn, causes a change to the performance of the algorithm.

Transformation invariance of SPSO was first analyzed in 2007, where it was shown
(Wilke, 2005; Wilke et al., 2007) that SPSO is scale and translation invariant but is
rotation variant. The reason that SPSO is rotation variant is that the effect of random
diagonal matrices on the direction of movement is sensitive to the rotation of the
coordinate system. In contrast, it was proven that LPSO (see Section 2) is rotation,
scale, and translation invariant. However, LPSO suffers from a limitation called line
search. In LPSO, if (p! — x/)||(g; — X!) and V/||(p! — X!), particle i oscillates between its
personal best and the global best (see also Bonyadi et al., 2013) and it is not able to
search in other directions. A new PSO variant was proposed in Wilke et al. (2007) which
was rotation invariant while it did not have the line search limitation. That algorithm
(called “Rotation invariant Particle Swarm Optimization,” RPSO) used random rotation
matrices rather than random diagonal matrices to perturb the direction of movement
in each iteration. A method called exponential map was used to generate the rotation
matrices. The idea of exponential map is that the exponential of any skew-symetric
matrix W6 (i.e, ¢"?), where W is a d x d matrix and @ is a scale factor, is a rotation
matrix with the rotation angle 6 (Moler and Van Loan, 2003). The exponential of a
matrix W6 is defined by:

maxC

M=1+Y" F(We)", (15)
i=1 '

where W is a d x d skew-symetric matrix, [ is the identity matrix, 0 is a scalar, and
maxC — oo. In order to generate a random rotation matrix, one can generate a random
Was W = (A — AT), where A is a d x d matrix with elements generated randomly in
the interval [-0.5, 0.5]. Also, the angle of rotation in degrees is « (a real scalar) where
0 = 1gg- It is clear in Eq. (15) that for a finite value for maxC, the matrix M becomes an
“approximation” of a rotation matrix with the rotation angle o (see Moler and Van Loan,
2003 for details on how the truncation error is calculated). Wilke et al. (2007) set the

value of maxC to 1, limiting the approximation to one term of the summation only,

Evolutionary Computation ~ Volume xx, Number xx 21



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolqg% .
M. R. Bonyadi and Z. Michalewicz

so that the time complexity of generating the rotation is reduced. Also, they claimed
that, as the rotation is considered only for small values of «, this approximation does
not impact the overall results. The time complexity for generating and multiplying the
approximated rotation matrix (with maxC = 1) into a vector is in O(d?), including the
cost of generating the approximated matrix (0(d?)) plus vector-matrix multiplication
(0(d?)). For larger values of maxC, the order of complexity of generating M grows.

The idea of replacing random diagonal matrices by rotation matrices was further
investigated by Bonyadi, Michalewicz, and Li (2014). A method for generating accurate
random rotation matrices was proposed. The method was based on Euclidean rotation
matrices that could be used to rotate vectors in any combination of hyper planes. Two
approaches for rotation of the velocity vector were investigated in that paper: rotation
in all possible planes (complexity in O(d?)) and rotation in one randomly selected plane
(complexity in O(d)). Experiments showed that rotation in one plane is just slightly
worse (in terms of the objective value) than rotation in all planes; however, it is much
faster. The random diagonal matrices were replaced by rotation matrices in all planes
(generated by the proposed method) in several PSO variants proposed in Clerc and
Kennedy (2002), Eberhart and Shi (2001), Nickabadi et al. (2011), PSO (2006), Shi and
Eberhart (1998b), Van den Bergh and Engelbrecht (2010), and Zheng et al. (2003). Results
(based on the Wilcoxon test) showed that PSO variants usually benefit from random
rotation matrices to solve tested benchmark functions (18 test functions that included
separable and non-separable test problems).

Rotating the search space of a problem potentially makes the problem non-separable
(Salomon, 1995). SPSO was applied to several optimization problems when their search
space were rotated (Hansen et al., 2011, 2008) to test if the performance of the algorithm
changed. Results of applying SPSO to these problems were compared with “Covari-
ance Matrix Adaptation ES” (Hansen and Ostermeier, 1996), CMA-ES, and “Differen-
tial Evolution,” DE (Storn and Price, 1997). Experiments showed that, although the
performance of SPSO in separable optimization problems is acceptable, the algorithm
performs poorly when it is applied to non-separable optimization problems. In addi-
tion, the performance of the algorithm changes when the search space of the problem is
rotated which indicates that the algorithm is rotation variant. Hansen et al. (2011) also
studied the performance of these methods in dealing with ill-conditioned?! functions.
It was found that the performance of SPSO is almost independent of the condition
number for ill-conditioned separable optimization functions. Experiments showed that
SPSO outperforms CMA-ES on such functions. However, the performance of SPSO
drops almost linearly with the condition number when it is applied to ill-conditioned
non-separable functions with condition number larger than 100. Experiments showed
that CMA-ES outperforms SPSO in optimizing such functions. A similar comparison
was also conducted in Auger et al. (2009) where the findings presented in Hansen et al.
(2011, 2008) related to the good performance of SPSO for separable optimization prob-
lems and its poor performance in non-separable optimization problems were confirmed.
In addition, the authors argued that the main reason behind this poor performance is

21 An optimization problem is called ill-conditioned if the condition number of its objective function
is significantly large (Trefethen and Bau III, 1997). The condition number of a function F is a measure
to understand how sensitive that function is to the changes of the values of its variables. Condition
number of a function F is defined by the maximum relative condition number of F over all possible
points in its domain. The relative condition number of the function F at a point ¥ is defined by the
maximum ratio of W to % when [|8X|| < € as € goes to zero (see Trefethen and Bau III,
1997).

22 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

that all calculations in SPSO are performed for each dimension separately (Auger et al.,
2009), which makes the algorithm rotationally variant.

It was shown (Spears et al., 2010) that not only is SPSO rotation variant, but also
particles in SPSO are biased toward the lines parallel to the coordinate axes. In fact, by
tracking the positions of particles in the search space during the optimization process, it
was found that particles tend to sample more points along the lines parallel to coordinate
axes than other points in the search space; that is, particles’ positions are “biased” to the
lines parallel to the coordinate axes. The authors used these two issues (rotation variant
and bias) to design test problems that are hard or easy for SPSO to optimize.

The rotation invariance and local convergence in PSO were integrated in Bonyadi
and Michalewicz (2014a)-see Eq. (13) for the variant proposed in that study, called
LcRiPSO. It was proven that LcRiPSO is rotationally invariant and locally convergent if
the operator m is invariant under any rotation and it satisfies the condition formulated in
Eq. (14). It was proven that if the operator m generates a new point following the normal
distribution, then it satisfies conditions for local convergence and rotation invariance
of the algorithm. The time complexity of LcRiPSO using the normal distribution for m
is in O(d), that is faster than the variants proposed by Wilke et al. (2007) and Bonyadi,
Michalewicz, and Li (2014).

Summary: Importance of transformation invariance in iterative optimization al-
gorithms has been emphasized in many articles (Bonyadi and Michalewicz, 2014a;
Hansen et al., 2011, 2008; Wilke, 2005; Wilke et al., 2007). Among all transformations
(shear, stretch, rotation, translation, and scale), rotation has received special attention
in PSO related articles because SPSO is sensitive to the rotation of the search space. It
is believed that the poor performance of SPSO in dealing with non-separable search
spaces stems from being rotation variant (Hansen et al., 2008). One way to address
rotation variance issue in SPSO is to use random rotation matrices rather than random
diagonal matrices in the velocity update rule as was done in Wilke et al. (2007) and
Bonyadi, Michalewicz, and Li (2014). However, the time complexity of the velocity up-
date rule using this idea is in O(d?), which makes this approach inefficient to deal with
large-scale problems. Thus, it would be valuable to investigate other ideas to make the
algorithm rotationally invariant while keeping the time complexity of the algorithm
linear. An example for such idea can be found in Bonyadi, Michalewicz, and Li (2014)
where it was proposed to conduct the rotation in only one plane (selected randomly)
that reduces the time complexity to O(d). Also, Bonyadi, Michalewicz, and Li (2014)
experimentally showed that the use of rotation matrices not only makes the algorithm
rotationally invariant but it improves the performance of different PSO methods when
they are applied to standard benchmarks. Another idea to make the algorithm rota-
tion invariant was proposed in Bonyadi and Michalewicz (2014a) where the random
diagonal matrices were replaced by random scalars and a perturbation was added to
move personal best of particles to avoid stagnation. It was proven that the algorithm is
rotation invariant and the time complexity of the velocity update rule is in O(d).

As a future direction for research, it might be interesting to compare the results of
rotationally invariant PSO variants to other optimization algorithms such as CMA-ES
and DE. Another potential direction would be to analyze the stability of PSO variants
that are rotationally invariant (e.g., SPSO2011, RPSO). Note that this analysis might be
different from that of SPSO because all convergence analyses conducted on SPSO con-
sidered that the velocity for each particle is updated for each dimension independently
(see Section 3.1.1). However, this is not the case when rotation matrices are used because
the procedure of rotation is not performed dimension by dimension (see Bonyadi and

Evolutionary Computation ~ Volume xx, Number xx 23



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolqg% .
M. R. Bonyadi and Z. Michalewicz

Michalewicz, 2014d, 2016 for details). These analyses might lead researchers to identify
the convergence boundaries for the coefficients for these algorithms. Moreover, one can
use the principal components to adjust the search directions to improve the algorithm
in non-separable search spaces (see also Voss, 2005). As the particles move in the search
space, they collect samples that can be used to estimate local gradients and correlations
between dimensions, including multiple correlations or principal components. This in-
formation can be used to verify /modify the particles velocities so that the swarm can
find better solutions. This can be also useful to deal with ill conditioning.

4 Modifications of PSO to Deal with Unconstrained Optimization
Problems (UOP)

Three different categories of approaches were considered for improving PSO: setting
parameters, modifying components of the algorithm, and combining the algorithm
with other algorithms. Setting parameters refers to setting the topology, coefficients (ac-
celeration coefficients or inertia weight), and population size. Modifying components
refers to changes of the velocity or position update rule (including adding new com-
ponents; modifying the way they are calculated). Combining the algorithm with other
algorithms refers to hybridization of PSO with other methods. In the following subsec-
tion we review PSO variants which have improved the performance of SPSO through
specific settings of its parameters (Section 4.1), modification of the velocity/position
update rules (Section 4.2), and hybridization of the algorithm (Section 4.3).

4.1 Parameter Setting

Parameter setting has been a challenge in iterative optimization methods in the past
years (Eiben et al., 1999). Two different approaches for setting parameters of an evo-
lutionary algorithm might be considered: parameter tuning and parameter control.
Parameter tuning refers to setting parameters of an algorithm through experiments to
some constant values. Parameter control, however, refers to design of a strategy which
changes the value of parameters during the run. Parameter control approaches are
categorized further into three groups: deterministic, adaptive, and self-adaptive. In de-
terministic parameter control approaches a rule (called time-varying rule) is designed
to calculate the value of a parameter based on the iteration number. In adaptive pa-
rameter control approaches, a function is designed that maps some feedback from the
search into the value of the parameter. In a self-adaptive parameter control approach,
the parameters are encoded into individuals and are modified during the run by the
optimization algorithm.

In this subsection, articles that have studied different parameters for PSO (topology,
coefficients, and population size) are reviewed.

411 Topology

The concept of topology in PSO was taken from social psychology, the science of how
people behave in a society. In societies, each individual communicates with other in-
dividuals with whom he or she is connected. The network of individuals in a society
suggests the same concept as the topology in PSO variants does. Probably the earliest
attempt to modify the topology (see Section 2 for the definition of topology) in PSO was
conducted in Kennedy (1999).% The idea was that topology should affect the explorative

22Two simple topologies were actually introduced earlier in Eberhart and Kennedy (1995); however,
that study was not focused on the topic of topology.

24 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

and exploitative behavior of the swarm as different topologies impose different speed
of propagation of information among particles. Four different topologies were tested:

1. Circle (local best or ring) topology: T/ = {i, ¥,} where ¥, = argmin {F(p')}.
I={i—1,i,i+1)

2. Wheels topology: T! = {1, 7,} where 1, = argmin {F(p')} and 77 = (1).
I=(1,....n}

3. Star (global best) topology: T, = {i, t,} where 7, = argmin {F(p')}.
1=(1.....n}
4. Random edge topology: T/ = {i, j} where j is randomly selected among other
individuals.

Kennedy (1999) tested all these topologies on a benchmark of four functions. Ex-
periments showed that the global best topology is the fastest communication topology,
while the ring topology is the slowest in the tested benchmark set. This results in the
highest exploitative behavior in the former and the highest explorative behavior in the
latter topology. This finding was also investigated in Kennedy and Mendes (2002) and
later in Mendes et al. (2004). Mendes et al. (2004) proposed a more general formula-
tion for CCPSO, called “Fully Informed Particle Swarm,” FIPS, and different topologies
were tested under that formulation. All these studies, however, suffer from the lack of
proper statistical analysis of the results or an adequate number test cases that affect the
generality of the conclusions drawn.

To address the lack of statistical analysis and the number of test cases to draw
conclusions about the performance of different topologies, an extensive comparison
(60 benchmark test functions) between the global best and local best topologies was
conducted by Engelbrecht (2013). Experiments on 60 test functions showed that these
two topologies perform almost the same on separable, non-separable, unimodal, and
multimodal problems with a slight favor toward the global best topology in terms of
the quality of the final solutions. Also, it was experimentally shown that the diversity
of the swarm is not consistently higher or lower when either of these two topologies is
used. Hence, it appears that the performance of these topologies and the diversity they
impose on the swarm also depends on the structure of the landscape of the problem at
hand.

Apart from well-known topologies such as global best and local best, some other
topologies were also proposed in the PSO literature. For example, based on the assump-
tion that it is usually better to make high-quality particles influence the position update
of other particles, a “Hierarchical Particle Swarm Optimization,” HPSO, was proposed
by Janson and Middendorf (2005). Particles in HPSO were arranged in a tree structure
with a predefined branching factor (a hierarchy). The tree was updated at each iteration
based on the quality of the personal best of particles in a way that better particles were
placed at higher levels. The velocity of each particle was then updated according to its
own personal best, together with the personal best of the particle in its parent node in
the tree. Experiments (6 test functions, all had their optimum solutions at the center
of the coordinate system) showed that larger values for the branching factor are more
appropriate for the beginning of the optimization process, while a smaller branching
factor performs better at the later stage of the optimization process.

Selection of a good topology during the run is a natural extension that can be
considered in SPSO. This idea was proposed in Elsayed et al. (2012) where two PSO
variants with different topologies, the global best topology and a random tournament

Evolutionary Computation ~ Volume xx, Number xx 25



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolqg% .
M. R. Bonyadi and Z. Michalewicz

topology, were used in two independent populations. According to the performance
of these populations, the particles were taken from one population and added to the
other to make more use of the population that shows better performance. Also, a local
search was added to improve the results found by the algorithm. The proposed method
was applied to 13 standard benchmark problems and results were compared with other
methods such as variants of ES and DE using the Wilcoxon test.

As the topology in PSO has its roots in social networks, one might borrow the
structure of such networks and apply the idea to communication between particles in
PSO. For example, it has been shown (Albert and Barabasi, 2002) that in real society
networks there are a few nodes that are connected to a large number of nodes in the
network. Also, most nodes have a small degree, meaning that most nodes are connected
to only a few nodes in the network. When a new node is added to a real network, it
usually prefers to attach to the nodes that have more connections; that is, riches get
richer (a network with these properties is called a scale-free network). These analogies
were adopted and implemented for updating the topology in PSO (Zhang and Yi,
2011). Two types of particles (in SPSO) were defined in a swarm: active and inactive.
The active particles move around the search space and look for optima, while inactive
particles are not updated until they become activated. At each iteration, all inactive
particles are activated by connecting to one of the existing active particles. This method
was called “Scale-Free Fully Informed Particle Swarm Optimization,” SFIPSO. Some
experiments were conducted to compare the diversity of particles when the proposed
topology, ring topology, or global best topology is used. It was found that the proposed
topology offers a better diversity for particles in the search space compared to two other
tested topologies. Comparison results (supported by Wilcoxon test) on 8 benchmark test
functions showed that the proposed dynamic topology can improve the performance
of the algorithm on the tested functions.

Another idea taken from social psychology, “six degrees of separation” (Newman
et al., 2006) (any two arbitrary persons are connected to each other by at most six steps
in the network of their friends) was used to determine connections between particles
in PSO (Gong and Zhang, 2013). Every certain number of generations, k other particles
are selected randomly to contribute into update rules of each dimension j of a particle i
in the swarm. This in fact enables particles to update their different dimensions using
different network of particles, which is a generalization of the concept of topology. The
algorithm was applied to 13 standard test functions and the results were compared
(using mean, standard deviation, and reported box plots) with some other PSO based
methods.

There have been some other good articles related to topology (Bratton and Kennedy,
2007; Mendes, 2004). These articles addressed the analysis of the influence of topology
on the performance of SPSO (Mendes, 2004) (an extensive study related to topology),
setting parameters (including topology) experimentally (Bratton and Kennedy, 2007),
time-varying topologies (Bonyadi, Michalewicz, and Li, 2014; Emara, 2009), and an
adaptive topology PSO (Cooren et al., 2009). However, these studies have been excluded
from this review because of the selection criteria (see Section 1).

Summary: Communication among individuals in a society is of great importance.
This is also true in swarm-based optimization algorithms where topology defines the
communication lines among individuals. It was shown (on a limited number of test
functions) that the topology influences the speed of convergence and diversity of the
swarm (Kennedy, 1999; Kennedy and Mendes, 2002) in SPSO. For example, global
best topology favors exploitative (over explorative) behavior of the swarm and fast

26 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

convergence to the global best vector while the ring topology favors explorative (over
exploitative) behavior and slow convergence to the global best vector (Kennedy and
Mendes, 2002). Although these claims appeared intuitive, the lack of adequate experi-
ments made these observations difficult to confirm. To address this, Engelbrecht (2013)
provided an extensive experiment to test these claims and, interestingly, they were dis-
proved through these extensive experiments. Experiments showed that the diversity of
particles and the performance of the algorithm do not only depend on topology, but
also depend on the problem at hand and thus such general claims about topologies are
not correct. Hence, one can expect adaptive topologies to improve the search ability
of the algorithm. An example of adaptive topologies is to change the topology so that
high-quality particles contribute more in updating the position of other particles; see
Janson and Middendorf (2005) and Zhang and Yi (2011) for examples. These studies
experimentally showed (though on a small set of test functions) that such ideas can
improve the performance of the algorithm. Another topology adaptation approach was
proposed in Elsayed et al. (2012) where two PSO variants, one with the global best
topology and the other with a random tournament topology, cooperated during the
run. While this idea looks interesting, the algorithm proposed in Elsayed et al. (2012)
contained other components (e.g., a local search) and, because of the limited compar-
isons in that article, it is not possible to conclude that the proposed adaptive topology
was responsible for the good performance observed in the algorithm.

In terms of future work, it seems that topology affects the performance and diversity
of the algorithm. However, both of these measures (performance and diversity) are also
affected by the characteristics of the landscape. Hence, it would be valuable if all these
topologies (ring, global best, hierarchical, etc.) are implemented and classified based on
their performances or diversities they impose to the swarm according to the problem
characteristics (using a decision tree for example). This direction can lead to designing
an adaptive topology according to the landscape characteristics detected during the
run. In addition, there are not many articles on the theoretical aspects of topologies and
how they influence the search process—such studies can be considered a promising
future research direction. In fact, this was one of the challenges in PSO introduced in
2007 (Poli, Kennedy; et al., 2007): “How do the details of the equations of motion or the
communications topology affect the dynamics of the PSO?,” which has not yet been
addressed properly!

4.1.2 Coefficients

The performance of SPSO is affected by changing the values of its coefficients, that is,
acceleration coefficients and inertia weight (see Section 3.1.1). Thus, several attempts
were made (Clerc, 1999; Shi and Eberhart, 1998a; Eberhart and Shi, 2000; Carlisle and
Dozier, 2001) to tune the values of these coefficients for a set of benchmark functions.
These studies found that the best values for the inertia weight falls in [0.4, 1.1] while the
best values for acceleration coefficients falls in [1.5, 3] on most experiments. Also, these
studies experimentally (on a set of fewer than 6 selected test functions) showed that the
coefficients affect the exploration and exploitation ability of the algorithm. In particular,
it was shown that, for constant acceleration coefficients, larger values for the inertia
weight result in a better exploration and smaller values for the inertia weight result
in a better exploitation. Thus, a linear decreasing inertia weight (o decreased linearly
from 0.9 to 0.4 during the run) was tested by Shi and Eberhart (1998b) on one test
problem—this variant was called “Decreasing Inertia Particle Swarm Optimization,”
DIPSO. Later, Zheng et al. (2003) tested an opposite approach, increasing the inertia

Evolutionary Computation ~ Volume xx, Number xx 27



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolqg% .
M. R. Bonyadi and Z. Michalewicz

weight during the run from 0.4 to 0.9, and they found that this idea actually works
better (based on the average of the objective value) than decreasing inertia weight on
some test cases.

The idea of decreasing inertia weight was extended by Chatterjee and Siarry (2006)
in a way that a non-linear function was used to decrease the value of the inertia weight:
w; = (mr;’:;’ ) (wy — w,) + w,, where w, and w, were starting and final inertia weights, and
maxi was the maximum allowed iterations. With n = 1, this formulation is exactly the
same as that in DIPSO. After experimenting with the sphere function, the parameters
of this variant were set to: w, = 0.2, w, = —0.3, n = 1.2, and maxi = 2,000. This method
with these settings was compared (based on the average of the quality of found solu-
tions) with other optimization methods such as a genetic algorithm and a differential
evolution on 17 benchmark problems.

Although inertia weight influences exploration and exploitation behavior of the
algorithm, acceleration coefficients also play an important role in this regard. A time-
varying approach was proposed (Ratnaweera et al., 2004) where the acceleration coeffi-
cients were changed during the run (the method was called “Time Varying Acceleration
Coefficient Particle Swarm Optimization,” PSO-TVAC). In that method, the value of ¢;
(cognitive weight) decreased while the value of ¢, (social weight) increased during
the run of the algorithm. Thus, particles tend to conduct exploration at the beginning
and exploitation at the latter stages of the optimization process. The authors further
modified PSO-TVAC by considering an adaptation rule to reinitialize the velocity of
particles and another variant (Ratnaweera et al., 2004) called “self-organizing Hierar-
chical Particle Swarm Optimization,” HPSO-TVAC, emerged. It was also proposed to
reinitialize the velocity of particles when its value becomes zero (with some precision).
The authors concluded that, based on the results, HPSO-TVAC is the best choice among
tested methods. This conclusion was supported by only 5 test functions and results
were analyzed with regard to the mean and standard deviation values. One should
note that, the idea of reinitializing each dimension of velocity when it converges to zero
is very similar to the idea proposed in Schmitt and Wanka (2013) (see Section 3.1.3)
where velocity is reinitialized whenever a particle was stagnating. Hence, although a
proper proof might be needed for the local convergence of an algorithm, we conjecture
that HPSO-TVAC is locally convergent as it overcomes the stagnation.

As experiments confirmed potential benefits of time-varying approaches on some
test functions, an adaptive approach for setting the value of coefficients during the
run can be also beneficial as it adjusts the coefficients values according to the current
situation. An example of such idea was proposed by Arumugam et al. (2008) where the
values of inertia weight and acceleration coefficients were related to the objective value
of the personal best and global best vectors, that is, smaller acceleration coefficients and
larger inertia weight if the personal best of a particle is not as high-quality as the global
best vector. Also, the authors experimented with mutation and crossover operators to
understand if these operators can improve SPSO. The experiments were conducted
on 13 standard test functions and mean, variance, median, minimum, and maximum
of found solutions were compared with that of other methods. It was concluded that
the tested PSO variants most likely benefit from crossover and mutation operators
according to the experiments. Also, the proposed adaptation showed a good potential
to enhance the algorithm to find better solutions in the tested problems.

Another adaptive approach, called “Adaptive Particle Swarm Optimization,”
APSO, was proposed by Zhan et al. (2009) in which three modifications took place:
adaptive changes of the inertia weight according to the distribution of particles,

28 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

adaptive changes of the acceleration coefficients according to the evolution state, and
new update rules in specific evolution states. Evolution state was defined as one of the
states that a particle might be in, including exploration, exploitation, convergence, and
jumping out. The distance of the position of particles from the global best vector was
used as a measure to identify the evolution state of particles. In addition to changing the
values of acceleration coefficients, a perturbation procedure was applied to the global
best particle when all particles are close to each other. The concept of “closeness” was
defined by a fuzzy membership function. APSO was compared with some other PSO
variants when they were applied to 12 test functions. Results showed that APSO is
significantly (based on a t-test®) better than other tested PSO variants in most cases.
The optimal solution of most selected functions in that study was in the center of the
coordinate system. One should note that, although local convergence of an algorithm
entails proper theoretical analyses, the perturbation strategy used in APSO is very likely
to help the algorithm to converge to prevent stagnation and lead the particles to a local
optimum.

In order to balance the exploration and exploitation behavior of the particles, an-
other adaptive approach, called “Adaptive Inertia Weight Particle Swarm Optimiza-
tion,” AIWPSO, was proposed (Nickabadi et al., 2011). In AIWPSO, the value of the
inertia weight was adaptively changed during the search process. The authors proposed
a linear relation between the inertia weight in the current iteration and the number of
particles improved in the previous iteration. The idea behind this approach was that if
success rate is high, then the current direction is promising and, hence, it is better to
have a higher value for the inertia weight so that particles are encouraged to move with
larger steps in the current direction. However, when the success rate is low, the current
direction is not promising and hence the inertia weight is decreased. Although the idea
is simple, experimental results on 15 benchmark test functions showed a considerable
improvement (in terms of mean and standard deviation) in solution qualities in com-
parison to many other adaptive/time-varying strategies for controlling the value of the
inertia weight.

Recently, another adaptive approach was proposed in which both inertia weight
and acceleration coefficients were modified during the search (Leu and Yeh, 2012). The
method used a similarity measure called the gray relation (Deng, 1989) (the PSO variant
was thus called “Gray Particle Swarm Optimization,” GrPSO). The idea was based on
the following observation: If a particle is less similar to the global best vector (relative
to the other particles), then it is in the exploration phase. Thus, larger values for inertia
and cognitive weights for that particle are preferred. Also, as the value of social and
cognitive weight were related to each other by ¢; + ¢, = 4.0 (Clerc and Kennedy, 2002),
changing the value of cognitive weight enforces changes the social weight as well.
Experiments were done for 12 standard test functions and results were compared with
other PSO variants, such as HPSO-TVAC and APSO, based on the mean values of the
found solutions.

There have been some other high-quality studies that have proposed different ap-
proaches in setting the coefficients of SPSO such as Bratton and Kennedy (2007), Ghosh

BThe t-test is not necessarily the best choice to be used, unless the data are approximately normal
or the effective sample size of the experiment is large enough. While in practice this test is robust to
moderate deviations of normality, it is particularly sensitive to heavily skewed distributions, which are
relatively common in algorithmic results. A less sensitive test for this data is the Wilcoxon test, which
does not assume normality (even though it has its own—often ignored—assumptions; see Sheskin,
2003). See Derrac et al. (2011) for details on statistical tests for comparing stochastic methods.

Evolutionary Computation ~ Volume xx, Number xx 29



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolqg% .
M. R. Bonyadi and Z. Michalewicz

et al. (2010), and Shi and Eberhart (2001). For example, in Bratton and Kennedy (2007),
a set of parameters for SPSO were suggested which resulted in a good performance
of the algorithm on some benchmark problems. Also, two inertia adaptive PSOs were
proposed in Ghosh et al. (2010) and Shi and Eberhart (2001). However, all these articles
have been excluded from this review because of the selection criteria (see Section 1).
Summary: There have been many studies to set the inertia weight (w) and accel-
eration coefficients (¢; and ¢,) of SPSO. Some studies tried to tune these coefficients
(Carlisle and Dozier, 2001; Liu, 2014) through experiments. However, as tuning is done
on a limited number of test functions and the results are not generalizable, a parameter
control approach is usually preferable. For instance, several time-varying approaches
were introduced to change the values of coefficients of SPSO during the run. The
main idea for time-varying approaches was based on an observation in most itera-
tive optimization algorithms: Usually encouraging exploration at the beginning and
exploitation at the latter stages of the optimization process is beneficial. In the context
of PSO, under the condition that the coefficients values are inside the convergence
boundaries (see Section 3.1.1); Ratnaweera et al. (2004) and Shi and Eberhart (1998b)
experimentally showed that large values of inertia and cognitive weights (¢; ) relative to
the social weight usually encourage exploration, and a large value for social weight (¢»)
relative to the inertia and cognitive weights usually encourages exploitation around
the best ever-found solutions. For example, Shi and Eberhart (1998b) experimented
with reducing the values of inertia weight and Ratnaweera et al. (2004) experimented
with changing the acceleration coefficients. Although most of these hypotheses were
intuitively sound, the lack of accurate experimental analyses can be clearly observed
in many of these articles (i.e., in Clerc, 1999, Shi and Eberhart, 1998a, Eberhart and
Shi, 2000, Carlisle and Dozier, 2001, Ratnaweera et al., 2004, and Chatterjee and Siarry,
2006). There were no proper statistical analyses reported in these articles and the num-
ber of test cases was very limited which makes the drawn conclusions specific to a
small number of cases. The reason behind such shortcomings could be the lack of ap-
propriate benchmark functions or the hardware/software limitations at that time. The
consequence of such limited experiments became more apparent when it was shown
(Zheng et al., 2003) that increasing the value of w from 0.4 to 0.9 actually works better
than decreasing it on some test cases. One challenge in time-adaptive approaches is that
itis not easy to determine how fast the coefficient values should be changing during the
run. Indeed, the speed of these changes depends on the characteristics of the landscape
(e.g., if the landscape is very smooth, then radical changes of the coefficients might
not be desirable). An adaptive approach to control these variables can deal with this
issue as it makes no assumptions about the landscape of the problem (see Arumugam
etal., 2008, Leu and Yeh, 2012, Nickabadi et al., 2011, and Zhan et al., 2009). In spite of
the presence of some shortcomings in the experimental comparisons in these articles
(e.g., selection of biased test cases in Zhan et al., 2009 and lack of statistical tests in
Leu and Yeh, 2012), most results confirmed that adaptive approaches can improve the
performance of the algorithm. The main challenge in adaptive approaches is, however,
to recognize which behavior (explorative or exploitative) is preferable at the current
stage of the search (the so called evolution state in Zhan et al., 2009). For example, the
distance between particles can be used as a measure to determine the evolution state
(used in Zhan et al., 2009); however, this calculation increases the time complexity of the
algorithm. Similarity measure (Leu and Yeh, 2012) and success rate (Nickabadi et al.,
2011) are two other candidate measures to determine the state of the search; however,
there is no concrete evidence (apart from experiments) to show that these strategies are

30 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

effective in all situations. Note that changes of the coefficients’ values does not affect the
transformation and convergence properties (e.g., local convergence) of the algorithm.

In summary, there have been many advances on the parameter setting of SPSO
and different approaches have been introduced including time varying, adaptive, and
tuning. One potential future direction related to the time-varying approaches would be
to study the effects of parameters on a large benchmark of test functions (e.g., CEC or
BBOB benchmark sets) using proper statistical tests (such comprehensive study for pa-
rameter tuning has been already done by Liu, 2014 for SPSO). Another interesting topic
related to the parameter tuning would be to study the performance of the algorithm
according to the landscape characterization and then classify the results (see Caamao
et al., 2010, for example) based on the achieved performances. Also, comparison (philo-
sophical discussion, theoretical, or experimental) of different adaptive approaches and
measures to determine the evolution stage can be very beneficial for further enhance-
ments of the algorithm. Another possibility would be to use analysis presented in Trelea
(2003) (Section 3.1.2) to set the behavior of the particles (oscillating, zigzagging, and
convergence) adaptively according to the current state of the particle (see also Bonyadi
and Michalewicz, 2016 for a discussion on this topic).

4.1.3 Population Size

Generally, most iterative search methods encourage exploration during the early stages
of the iterative process while they encourage exploitation in the latter stages. It is also
well known that concentrating individuals only on the area of the highest potential
during the exploitation phase is usually beneficial. Thus, as this area is small relative
to the whole search space, a small swarm may perform almost as well as a large
swarm. Hence, it might be better to reduce the population size at the latter stages of the
optimization process to save on the number of function evaluations.

Probably the first attempt to design an adaptive population size in an evolutionary
algorithm was presented in 1994 by Arabas et al. (1994). The idea of adapting population
size was adopted (Chen and Zhao, 2009) for PSO later in 2009 through a method
called “Ladder Particle Swarm Optimization,” LDPSO. In LDPSO, at every predefined
period of time, the diversity of the swarm was evaluated and the swarm size was
adjusted accordingly. The diversity measure was based on the average Manhattan
distance between particles. Comparisons showed that the algorithm outperforms some
other PSO variants in terms of the average solution quality when it was applied to 5
standard benchmark problems.

A population manager, a solution sharing technique, and a search range sharing
strategy were proposed in Hsieh et al. (2009) (this variant was called “Efficient Popu-
lation Utilization Strategy Particle Swarm Optimization,” EPUS-PSO). The population
manager in EPUS-PSO adjusted the population size by:

1. removing a particle from the swarm when the global best vector was improved
at least once in the previous k consecutive iterations,

2. adding a new particle to the swarm if the global best vector did not change in
the previous k consecutive iterations,

3. replacing an existing one when adding is not permitted (the upper bound of the
number of particles in the swarm has been reached).

EPUS-PSO also used the global best vector in the velocity update rule of each
particle with the probability P and used the personal best of another particle (selected

Evolutionary Computation ~ Volume xx, Number xx 31



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolqg% .
M. R. Bonyadi and Z. Michalewicz

by a tournament selection approach) with probability 1 — P (this approach was called
solution sharing strategy). The aim of the solution sharing strategy was to give a chance
to particles to learn from other particles rather than always using the global best vector
in the velocity update rule. In addition, a solution range-sharing strategy was presented
to prevent the particles from premature convergence. The algorithm was applied to 15
benchmark test functions, together with their rotated versions in 10 and 30 dimensions.
Results (based on the average and standard deviation) showed that the algorithm is
comparable with other PSO variants.

A strategy called “Incremental Social Learning,” ISL (Montes de Oca and Stiitzle,
2008), was used to set the population size of SPSO during the run (Montes de Oca
et al., 2011). ISL suggests an increasing population-size approach that in some cases
facilitates the scalability of systems composed of multiple learning agents. Two variants
of PSO were proposed based on the ISL idea. In the first variant, called IPSO, whenever
the algorithm could not find a satisfactory solution, a new particle was added to the
population. In the second variant (called IPSOLS, IPSO with a local search), a local
search approach was run to gather local information around the current position. If the
local search procedure was not successful (no better solution was found around the
current position), then it was concluded that the particle is already in a local optimum.
In this situation, a new particle was added to the swarm that was placed in the search
space through a simple social learning approach, that is, the personal best location of one
of the existing particles (called “model” particle) was considered for the location of the
new particle. The algorithm was applied to 12 standard optimization test functions and
the mean and median of the results were compared with those of other PSO methods.
Results showed that the proposed method is capable of finding high-quality solutions
and it is comparable with other methods on the tested problems.

Summary: The majority of particles are very close to each other at the exploitation
phase to improve the best ever found solution. In contrast, during the exploration
phase, particles are far from each other to explore the search space to locate as many
basins of attractions as possible. Thus, a large population size during the exploration
phase and small population size during the exploitation phase seem to constitute a
reasonable choice (Chen and Zhao, 2009) for effective optimization. Chen and Zhao
(2009) used the diversity of the swarm as an indicator for the exploration/exploitation
tendency and increased/reduced the size of the swarm accordingly. The experiments
in that article were, however, not supported by sufficient number of test cases. Also,
the calculation of the swarm diversity increases the time complexity of the algorithm
which might be an issue in dealing with large-scale problems. A measure based on the
improvement rate of the global best particle was used by Hsieh et al. (2009) and Montes
de Oca et al. (2011) to determine exploration/exploitation tendency of the swarm.
Experiments in those articles showed that the methods can improve the performance of
the algorithm; however, both articles included several different components (e.g., a local
search, solution sharing strategies) to their proposed methods that makes it impossible
to understand which component plays the most important role in this improvement.

It is not a trivial task to determine which behavior (exploration/exploitation) is
preferred in each iteration to set the population size accordingly. As a direction for
future study, it would be valuable to explore different options to determine the explo-
ration/exploitation tendency of the swarm to adjust the population size during the run.
This needs to be evaluated very carefully through appropriate selection of benchmarks
and statistical tests. It is also important to not overwhelm the algorithm so that only the
population sizing strategy is tested. Another interesting research topic is to investigate

32 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

what is the best strategy to add/remove a particle to/from the swarm. For example,
one needs to determine the position, velocity, and personal best of the particle that is
going to be added to make sure the new particle can improve the search ability of the
swarm. Finally, theoretical studies related to the population size are missing in the lit-
erature related to PSO. One can study the effect of population size on the search ability
or EFHT of the algorithm. Further, diversity of the swarm is another related topic that
can be investigated under different test functions or theoretically. For example, one can
imagine that the diversity of the swarm is higher when the coefficients are set so that
particles’ oscillation is zigzagging (see Section 3.1.2). This, however, is an intuition that
can be tested and, further, adopted for a more effective search.

4.2 Modification of the Velocity/Position Update Rules

The introduction of the inertia weight in OPSO was probably the first modification of
the velocity in the original algorithm (Shi and Eberhart, 1998a). (This algorithm, called
SPSO, was reviewed in Section 2.) Since then, many attempts were made to improve
the velocity and position update rule of SPSO further.

An issue called “two steps forward one step back” was identified (Van den Bergh
and Engelbrecht, 2004) in SPSO: As all dimensions of the position of particles are up-
dated at every iteration, there is a chance that some components in this vector move
closer to a better solution, while others actually move away from that good solution. As
long as the objective value of the new position vector is better than the objective value
of the previous position, SPSO assumes that the solution has been improved, regardless
whether some dimension values have moved away from the good solution. To address
this issue, it was proposed to divide the search space to d subproblems (each variable be-
comes a subproblem) and different variables are updated by different sub-swarm—this
is called “Cooperative Particle Swarm Optimization,” CPSO (Van den Bergh and En-
gelbrecht, 2004). Although CPSO performed better than many other variants of PSO, it
had two potential issues (Van den Bergh and Engelbrecht, 2004) as follows:

e It might converge to pseudominima, that is, minima that were generated be-
cause of the partitioning of the search space, and

e Its performance depends on the correlation of the subproblems.

As SPSO does not suffer from these issues, a hybrid method was also proposed
(Van den Bergh and Engelbrecht, 2004) that combined SPSO with CPSO. Experimental
results for 5 test functions were analyzed in that paper based on the average and
standard deviation of the quality of final solutions and number of function evaluations.

The global best vector in SPSO is considered as an indicator of a potentially high-
quality area in the search space. Thus, it would be worthwhile to use this location
together with the current location of a particle to generate a new location. This idea
was used in a PSO variant called “extrapolation Particle Swarm Optimization,” ePSO
(Arumugam et al., 2009), in which the position update rule was revised as follows:

;Cri-y-l =g +oag +yE — ;Czl)» (16)
where a = kir!, y = k1ek*P, k) = ky = ¢ T e o Herations , r is a random value between 0
and1,and 8 = % (there is no velocity vector in this variant). The term g, + k17! g;
generates a random point around the global best vector. Note that, as k; becomes smaller

over time (iterations), the generated points by g; + k17! g; become closer to g, that results

Evolutionary Computation ~ Volume xx, Number xx 33



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolo.giil .
M. R. Bonyadi and Z. Michalewicz

-1

? OO ,p, 0
L) OO Qe
P p
Q : pt. ----- OO A
0 Q00 @4

t
Q o e o

- e,

v, P
7
xt

Figure 5: There are 5 particles in the swarm. The personal best of each particle is shown
by a black circle. The gray circles are potential locations for P in CLPSO. The position
of particle 1 is depicted at the origin of the coordinates (white circle).

in better exploitation around the global best vector at the later stages of the run. The
last term k;e2f (g, — X) determines the step size that the current position (/) takes to
go toward the global best vector. This step size is controlled by the objective value of
the current location and the objective value of the global best vector. Experiments on
13 standard optimization functions showed that ePSO performs better than SPSO on
almost all of the tested functions, supported by the Wilcoxon test.?*

According to the velocity update rule of SPSO, attraction toward the personal
or global best vectors does not depend only on the acceleration coefficients, but also
depends on the average values of pi — X! and g, — x/. It was observed that in SPSO
the value of p! — X is usually smaller than g, — x! for any particle i and any iteration ¢
that results in larger attraction towards g, than p!. Hence, particles tend to concentrate
around g,, which reduces the diversity of the swarm (Liang et al., 2006). To overcome this
issue, a variant of PSO called “Comprehensive Learning Particle Swarm Optimization,”
CLPSO, was proposed (Liang et al., 2006). In this variant, the velocity update rule was
modified to the following form:

Via = oVl +oRI(F — %), (17)
where the value of the j dimension of P! (P}/) is calculated by P}/ = piD4 where
1;(j) € {1,2,...,n} (index of a particle). In fact, each dimension of i’f is potentially taken
from the personal best of different particles. Figure 5 shows potential locations where
P! might be selected from for a particle i in a swarm of size 5 as an example. The

2The position update rule of ePSO is sensitive to translation of the search space. The reason is that,
in this algorithm, the point that is generated by g + «g is sensitive to the position of g relative to the
center of the coordinate system. In fact, the area where the point g + «g is sampled from changes if
the coordinate system is shifted. This means that the algorithm is sensitive to the translation of the
coordinate system. If «g was replaced by a(g — x{) then this algorithm becomes translation invariant
because the subtraction operator is independent of translation of the coordinate system.

34 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology.
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

value of /;(j) was set to i with the probability Pr while it was set through a tournament
selection to select the value of /;(j) with probability 1 — Pr. Results on 16 benchmark
test functions showed that the algorithm outperforms several other PSO variants on
multimodal functions, while it performs almost the same as the others on unimodal
functions. The discussion over the results was supported by the mean and variance of
the found solutions.

The good performance of CLPSO on multimodal optimization problems stems from
its effectiveness in exploration. Also, as mentioned, CLPSO does not perform as well
on unimodal optimization problems, which reflects the weak exploitation ability of
the algorithm. To improve the ability of the algorithm for exploitation, CLPSO was
revised by Huang et al. (2010) in a way that it emphasized learning from elite particles
(the particles with the best personal best vectors in the swarm). The new variant was
called “Example-based Learning Particle Swarm Optimizer,” ELPSO where Eq. (17)
was revised as follows:

Vig = oV + @R (B = X)) + 2R, (G, — X)), (18)
where f’i is defined similarly to the one in CLPSO (except the strategy of setting
L)) whlch was selected randomly by a uniform distribution over all particles) and

each dimension j of G, (shown by Gl) is randomly taken from a set of prev1ously
sampled positions by g,. It was shown that the searching interval of each dimension®
by each particle is larger than what it was in CCPSO and CLPSO, which indicates a
better diversification in the swarm. Experiments were conducted on 16 benchmark test
functions and the f-test was used to compare the results. These experiments showed
that ELPSO is more effective than CLPSO in multimodal and unimodal optimization
problems. A very similar approach to ELPSO was also proposed in Nasir et al. (2012).

To prevent SPSO from premature convergence,? the velocity update rule of SPSO
was revised (Xinchao, 2010) and a method called “perturbed Particle Swarm Algo-
rithm,” pPSA, was proposed. In pPSA, the vector g; in the velocity update rule of the
standard PSO was substituted for N(g,, 02I), where N is the normal distribution and o
is the standard deviation. The value of o was set through a very simple time-varying
strategy. The results of applying the algorithm to some standard unimodal/multimodal
benchmarks showed that the algorithm performs better than SPSO in terms of the qual-
ity of solutions and robustness. In comparison to GCPSO, results showed that both
methods perform almost the same on multimodal functions while GCPSO performs
better than pPSA in unimodal functions. Results were compared based on mean, me-
dian, and standard deviation, which appears sufficient to show the advantages. No
theoretical analyses were included in that article; however, it seems the algorithm
can escape stagnation and guarantees local convergence as it uses a mutated global
best vector with non-zero variance. In addition, the algorithm is the same as SPSO in
terms of transformation invariance, that is, rotation variance with scale and translation
invariance—see Bonyadi and Michalewicz (2014a) for the proof.

BThe term “searching interval of a dimension” refers to the average of size of the interval that is
sampled by the optimization algorithm in a dimension. The larger the value of searching interval, the
more diverse the individuals have been.

26The term “premature convergence” is usually misused in literature and different researchers define
it differently. It sometimes refers to converging to a local optimum and addressing stagnation, while
sometimes it refers to escaping from a local optimum and finding better solutions that might not
necessarily be a local optimum, but better than what was found previously. In this context, it refers to
escaping stagnation and converging to a local optimum.

Evolutionary Computation ~ Volume xx, Number xx 35



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolqg% .
M. R. Bonyadi and Z. Michalewicz

Diversity of particles is related to the explorative and exploitative behavior of the
particles. An algorithm called “Diversity enhanced with Neighborhood Search Particle
Swarm Optimization,” DNSPSO, was proposed (Wang et al., 2013) in which the explo-
rative behavior was controlled by enhancing the diversity of the particles in the swarm.
At each iteration, the position and velocity of each particle is updated by the rules in
SPSO. The new position . ; is then combined with X; to generate a trial particle. This is
done by taking either the value of x;/ or x;”/, foreach j € {1, ..., d} with probability Pr.
The personal best of the particle i is updated according to the trial particle. Also, two
local searches were used to search the neighborhood of the personal best and global best
vectors, which actually improved the exploitation ability of the algorithm. The usage
of these neighborhood search strategies was shown to be beneficial for accelerating the
convergence rate (experimentally tested). The algorithm was applied to 30 benchmark
functions, 10 of them with up to 50 dimensions and 20 of them with 1,000 dimensions,
and the results were compared with other methods such as CLPSO, APSO, and CPSO
using Friedman test. Comparisons showed that the algorithm is comparable with others
for both groups of test functions.

There have been some other modifications proposed for update rules of SPSO
(Krink et al., 2002; Chang-Huang and Jia-Shing, 2009; Kaucic, 2013). In Krink et al.
(2002) a strategy was proposed to maintain the level of diversity of the particles; in
Chang-Huang and Jia-Shing (2009) SPSO without CI component was compared with
SPSO without an SI component; and Kaucic (2013) experimented with a multi-start
method. However, these studies have been excluded from this review because of the
selection criteria defined in Section 1.

Summary: Many approaches have been proposed to improve the velocity update
rule. For example, Van den Bergh and Engelbrecht (2004) proposed a cooperative co-
evolution approach (CPSO) in which the problem was divided into several subproblems
and each subproblem was solved by a separate SPSO. Although the idea is somewhat
interesting, experimental results in that study were very limited which makes the reader
wonder if the method can perform well on other optimization problems. In addition,
from a theoretical perspective, the proposed method is not guaranteed to converge
to a local optimum as it is constructed from SPSO that is not locally convergent by
itself (a stagnation scenario was also presented in that paper that is another support
to show that the algorithm is not locally convergent). Further, as the sub-swarms are
instances of SPSO, the algorithm is sensitive to rotation. This can be also concluded from
the presented results where the performance of method was tested when the search
space was rotated. Recently, comprehensive learning approaches in PSO (CLPSO) have
attracted a lot of interest (Liang et al., 2006; Huang et al., 2010; Tang et al., 2011; Changhe
etal., 2012). The reason is that these approaches have shown a better exploration ability
(Liang et al., 2006) compared to SPSO in experiments. From a theoretical perspective, it
is apparent that the algorithm (and its derivative, ELPSO) can be stagnated and, hence,
itisnot locally convergent (if all particles are at the same point in the search space). Also,
the algorithm is not rotationally invariant as it uses the random diagonal matrices the
way it was used in SPSO. This can be also observed by comparing the results reported
in that paper for rotated and original test functions. Some approaches have tried to
make more use of the location of the global best vector with the hope of finding better
solutions in fewer iterations. For example, Arumugam et al. (2009) proposed a method
(ePSO) in which the position of the global best vector was “extrapolated” (in relation to
the current position of the particle) to find new solutions. This method, however, was
sensitive to the shift of the coordinate axes that makes it in appropriate for optimization

36 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

in general. Another idea was to mutate the global best vector (Xinchao, 2010) during the
run to avoid premature convergence. This method can address the local convergence
issue while still being sensitive to the rotation of the search space.

There are two main challenges in cooperative co-evolution: how to divide the prob-
lem (search space) into subproblems (decomposition) and which type of PSO should
be applied to which subproblem. For example, Van den Bergh and Engelbrecht (2004)
divided the problem into d subproblems (each dimension was considered as one sub-
problem) and SPSO was used to deal with each subproblem. However, this choice
causes the algorithm to have the local convergence and transformation variance issues.
To address the decomposition issue in cooperative co-evolution approaches one can
consider the approach by Omidvar et al. (2014) to decompose the space so that the
emergence of pseudominima is prevented. In addition, the cooperative co-evolution
approaches can benefit from a locally convergent and transformation invariant algo-
rithms (e.g., LcRiPSO in Bonyadi and Michalewicz, 2014b) to deal with subproblems.
It is also worthwhile to investigate comprehensive learning approaches from a theo-
retical perspective to understand why they can offer a better exploration compared to
SPSO and how their exploitation behavior can be enhanced. Also, these methods can be
studied from a convergence and invariance point of view to design a PSO variant with
enhanced and scalable performance. Another potential direction for further study is to
investigate differences between PSO, DE, and ES methods. Once these differences are
identified, it would be possible to borrow ideas from ES and DE methods to improve the
velocity/position update rules in PSO. In addition, because both update rules in PSO
contain vector calculations, it would be interesting to run these calculations in hyper-
spherical coordinates rather than Cartesian coordinates. One benefit of hyper-spherical
coordinates might be that calculations of vector rotations are easier, which potentially
enables the algorithm to deal with non-separable problems more efficiently.

4.3 Hybridization

Optimization methods have their merits and drawbacks in dealing with different op-
timization problems. For example, the Newton’s method is locally convergent (under
some assumptions; see Kelley, 1999) and usually is able to find a local optimum fast (i.e.,
effective exploitation). Also, stochastic search methods are usually effective in locating
many basins of attraction (effective exploration). The aim of a hybrid method is to com-
bine different optimization methods to take advantage of the merits of each of them.
In this subsection, articles that have combined PSO with other methods are reviewed.
Many combinations are possible, for instance using one method to adjust parameters
of the other (see Parsopoulos and Vrahatis, 2002b and Alatas et al., 2009 where DE and
a chaotic map were used to set the coefficients of SPSO during the run, respectively), or
running different methods iteratively to improve the outcome of one another—see Kao
and Zahara (2008), a study in which a GA was combined with SPSO.

Zhan et al. (2011)¥ investigated two issues, namely “oscillation” of particles (as
each particle is attracted by two vectors, i.e., personal best and global best vectors, it
might keep oscillating between the two) (Parsopoulos and Vrahatis, 2004) and “two
steps forward, one step back”(see Section 4.2 for details on this issue). To address these
two issues, it was proposed to combine global and personal best and use the combined
vector in the velocity update rule instead. In order to combine these two vectors, the

ZNote that these two issues were not considered in Section 3 as they have not been properly
supported from a theoretical point of view in the related articles.

Evolutionary Computation ~ Volume xx, Number xx 37



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolqg% .
M. R. Bonyadi and Z. Michalewicz

“Orthogonal Experimental Design,” OED, approach was applied (Montgomery, 1984)
(the new PSO variant was called “Orthogonal Learning Particle Swarm Optimization,”
OLPSO). The combined position was then used in the velocity update rule exactly as in
CLPSO (see Eq. 17) where 131.’ was replaced by the vector generated by OED approach.
This strategy was tested on SPSO and LPSO where results on 16 test cases showed
significant improvement (based on the t-test) on the performance of these algorithms
when OED is used. The optimal solution of most of the tested functions (11 out of all
16) was at the center of the coordinate system.

Different strategies (related to PSO) have been proposed to improve different com-
ponents of the algorithm (e.g., abetter topology and adaptive coefficients). Thus, it might
be beneficial if best strategies for updating each component are taken from previous
studies and combined to generate a new PSO variant. This was done in Montes de Oca
et al. (2009) and the method was called “Frankenstein’s Particle Swarm Optimization,”
FPSO. The main purpose of the method was to combine different PSO variants together
and create a new method that enables them to overcome each other’s deficiencies. FPSO
components were the following: the inertia weight setting was taken from DIPSO, the
velocity was updated by FIPS formulation, acceleration coefficients and setting of V.
were set by the method used in HPSO-TVAC, and the topology was set by the method
proposed in Janson and Middendorf (2005). Experimental results showed that FPSO is
effective and outperforms the methods it has been composed of. Also, the same idea
was tested in Tang et al. (2011) and a variant called “Feedback Learning Particle Swarm
Optimization,” FLSPO, was proposed. FLPSO used DIPSO for the inertia weight, an
adaptive approach for ¢; and ¢, (similar to HPSO-TVAC with some modification), an
adaptive strategy to use personal best or global best vector in the velocity update rule,
and a mutation operator applied to a randomly selected dimension of the global best
vector. As such a mutation operator prevents stagnation, it is very likely that FLPSO is
locally convergent.

As there are many different position/velocity update rules and each of them contain
their pros and cons in different situations, it would be beneficial to investigate which
update rule is most beneficial at the current situation (iteration) and use that strategy for
further iterations. For example, a self-adaptive method was proposed in which the most
effective PSO variant was selected during the run for the problem at hand (Wang et al.,
2011). This variant was called “Self-Adaptive Learning Particle Swarm Optimization,”
SALPSO, where four velocity update rules (taken from different PSO variants) were
considered and the best update rule was selected to be used in each iteration. As each
velocity update rule had its own capabilities in different situations (e.g., for exploration
or exploitation), it was expected that the overall performance of the algorithm is im-
proved. For each particle and every G iterations (a constant experimentally set to 10), the
probability of using each update rule was updated based on the improvement it offered
during the last G iterations. The velocity update rules were selected for each particle
at each iteration to update the particles according to these probabilities. Experiments
(based on average and standard deviation) showed that SLPSO is effective in dealing
with both unimodal and multimodal problems. A very similar idea was also presented
by Changhe et al. (2012) where the method was called “Self-Learning Particle Swarm
Optimization,” SLPSO. The only difference between SLPSO and SALPSO was in the
implementation details such as how to update probabilities and which velocity update
rules are used.

The ideas used in SALPSO and SLPSO triggered the emergence of another PSO
variant called “Multiple Adaptive Methods for Particle Swarm Optimization,”

38 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

PSO-MAM (Hu et al., 2012). In PSO-MAM, all particles were updated by the update
rules in SPSO except the global best particle. To update the global best particle, two
approaches, a mutation and a gradient descent approach, were designed and one of
them was selected randomly (based on a probability distribution that was updated
according to the current performance) at each iteration. An extensive experiment was
conducted (31 functions and comparison with PSO variants such as CPSO and CLPSO)
that showed PSO-MAM is comparable with other PSO variants. We conjecture that
the algorithm is locally convergent as it uses a mutation operator based on a Cauchy
distribution with the center of the current position and a non-zero scale parameter.

There are some other high-quality articles related to the hybridization of PSO such as
Muller et al. (2009), where SPSO was combined with CMA-ES; however, these articles
have been excluded from this review according to the selection criteria defined in
Section 1.

Summary: It can be beneficial to combine different methods in such a way that
they overcome each other’s shortcomings. For example, Hu et al. (2012) combined
PSO with gradient descent and a mutation operator that were applied randomly to
the global best particle. Of course the local convergence and rotation invariance of
such methods is dependent on the components they are composed of. For example,
in Hu et al. (2012), we conjecture that the algorithm is locally convergent as it uses
a mutation operator based on a Cauchy distribution with the center of the current
position and a non-zero scale parameter. Zhan et al. (2011) experimented with an idea
based on replacing personal best and global best vectors with a combination of the
both to improve the performance of the algorithm. That study used a method called
OED for this combination and experimentally showed it can improve the performance
of the LPSO and SPSO algorithms. Experiments in that study were, however, biased
toward test functions where their optimum solution is at the center of the coordinate
systems. It seems that the method is sensitive to the rotation of the search space as can
be observed in the reported results in the paper. Another approach for hybridization is
to design one method while taking its different components (e.g., topology adaptation
and coefficients adaptation) from different PSO variants (e.g., Montes de Oca et al., 2009
and Tang et al., 2011). These strategies were shown experimentally to be effective on the
benchmark functions. The local convergence and rotation variance of these methods
are, again, dependent on the components they use for the update rules. For example, as
a gradient based approach is used in Tang et al. (2011), it is likely that the algorithm is
locally convergent. Another hybridization approach found in PSO literature is related
to implementing several algorithms and selecting the best algorithm during the run
(using some adaptive selection probability). Wang et al. (2011) and later Changhe et al.
(2012) used this idea and selected different update rules randomly during the run while
the probability of selection was updated.

One potential direction related to hybridization in PSO is to investigate other ap-
proaches for combining personal best and global best vectors (e.g., by a crossover
operator) and determine which combination approaches can be beneficial for different
landscapes. Also, investigation of the selection method to select appropriate variants
during the run can be worthwhile for improvement of the algorithm performance. For
example, a method can be used to recognize the landscape characteristics (e.g., rugged,
smooth, etc.—see Malan and Engelbrecht, 2009, for example) and select the most appro-
priate update rule accordingly. One should note that some methods might impose extra
time overhead to the algorithm that makes the time complexity analysis an essential
part of such articles.

Evolutionary Computation ~ Volume xx, Number xx 39



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolqg% .
M. R. Bonyadi and Z. Michalewicz

5 Modification of PSO to Deal with Constrained Optimization
Problems (COP)

A single objective COP is defined by
find X € F € § € R? such that Vy € F, f(X) < f(3), (19)

where F = {y:g;(y) <0and h(y) =0forall j € {1,..., pland k € {1, ..., q}}, g; are
inequality constraints and h; are equality constraints, both of them are R — R for all j
and k, and S is defined the same as the one for UOPs (see Eq. 1).

Although comparing two solutions a and b in a UOP is usually easy, this compar-
ison is not straightforward in COPs. For example, comparing two infeasible solutions
or a feasible and an infeasible solution may depend on many parameters such as the
shape of the objective function and constraints. Some methods involve modification of
the solutions so that they become comparable. For example, in “repair” (a constraint
handling method; see Michalewicz and Schoenauer, 1996), solutions are first modified
according to a predefined procedure to make them feasible and then the feasible solu-
tions are compared based on their objective values. Bonyadi and Michalewicz (2014b)
provided further discussion on the complexity of comparisons in COPs.

There have been a few attempts to extend PSO to deal with COPs. One of the
first studies in this area was conducted in Parsopoulos and Vrahatis (2002a) where a
penalty function was incorporated into SPSO to deal with constraints. The method was
applied to several benchmark functions of COP and its results were compared with a
variant of ES introduced in Yang et al. (1997). Results showed that SPSO outperforms
ES on many benchmark COPs. This result encouraged researchers to test other PSO
variants with different constraint handling methods, for example, preserving feasibility
of solutions (Hu and Eberhart, 2002), closeness to the feasible region (based on the
constraint violation value) (Pulido and Coello, 2004), and penalty functions (Coath and
Halgamuge, 2003), on more complex COPs.

LPSO was modified (Paquet and Engelbrecht, 2007) and applied to COPs with lin-
ear equality constraints (recall that LPSO was a variant of PSO in which the random
matrices, Ry, and Ry, were replaced by random values, 1, and ry;). Linear equality con-
straints are formulated as AX = b where A isam by d matrix, X is a d dimensional vector,
and b is a m dimensional vector. It was proven that if all personal best and velocities
of particles are initialized such that Ap? = b and Av = 0, then all further generated
solutions by LPSO are feasible. Hence, LPSO is ideal to search through linear equality
constraints. Although results showed that LPSO performs well in dealing with linear
equality constraints, the algorithm suffered from the line search and stagnation issues.
To overcome these issues, the velocity update rule for the global best vector was modi-
fied and another type of LPSO called “Guaranteed Converging Linear Particle Swarm
Optimization,” GCLPSO, was proposed (Paquet and Engelbrecht, 2003, 2007). The idea
was similar to what was discussed for GCPSO with some modifications to guarantee
feasibility after mutation. Experiments with a small number of benchmark functions
showed that GCLPSO on some problems were comparable with that of Genocop II
(Michalewicz and Janikow, 1996) (a GA-based optimization approach for COPs).

In 2007 a “Co-evolutionary Particle Swarm Optimization for Constraint Optimiza-
tion Problems,” CPSO-COP, approach was proposed (He and Wang, 2007). SPSO was
used as an optimizer in CPSO-COP while a new method to handle constraints was
proposed. Two swarms were considered in CPSO-CQOP, one to store penalty coefficients
(swarm S; with the size n1) and the other to store solutions (swarm S5). Each particle in
S1 provided penalty coefficients to evaluate particles in S,. S, contained n; sub-swarms,

40 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology.
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

S1

N
| — G D) s

) — G D s

o | — G D) S
\_/

Figure 6: A; is the i"" particle of the swarm Sy, which provides penalty factors for swarm
S>,;. M1 is the size of the swarm type one (S1) and M2 is the size of each swarm of type
two (each Sy;).

the sub-swarm i was evaluated based on the coefficients provided by the particle i in §;
(see Fig. 6). At each generation of the co-evolutionary process, every S, ; (sub-swarm i of
the S,) was evolved using SPSO for a certain number of generations and it used particle
i from S for evaluation. After the S,; were evolved for one iteration, S; was evolved
using SPSO also for one iteration. This process was re-run until a termination criterion
was met. The authors compared their results with GA-based optimization methods for
solving several engineering COP benchmarks. Experimental results showed that CPSO-
COP converges to better solutions (in terms of the mean, min, max, standard deviation
of the results) in a fewer number of iterations in comparison to the GA (Coello Coello,
2000).

A “Cooperation Comprehensive Learning Particle Swarm Optimization,” Co-
CLPSO, was implemented and applied to COPs (Liang et al., 2010). The comprehensive
learning approach in PSO (e.g., see the CLPSO description in Section 4.2) was used
as an optimization method to solve COPs. Also, to handle the constraints, particles
were adaptively assigned to either satisfy different constraints or optimize the objective
value. A local search based on “Sequential Quadratic Programming,” SQP, was used to
improve the solutions during the run. This approach received the fourth place in the
competition of CEC 2010 in solving COPs (Mallipeddi and Suganthan, 2010).

A PSO variant was proposed by Sun et al. (2011) to deal with COPs. In that method,
it was suggested to update the position of the particles by x/,; = x{ + Mv!_, where M
is a d x d diagonal matrix where each element on the diagonal of M belongs to [0, 1].
If x|, for M = I (I is the identity matrix) is feasible then the new position is accepted;
otherwise, another SPSO instance is run to find a matrix M in such a way that x/,, is a
hlgh-quahty feasible point. This instance of SPSO in fact searches through a hyper-cube
where x] is a vertex and v/_, is its diagonal. The comparison results (based on best,
worst, and average of the found solutions on a standard benchmark of COPs with 13
test cases) showed that this method is comparable with other PSO variants.

A multi-start PSO was proposed (Bonyadi et al., 2013) where a mutation operator
was added to LPSO to address the stagnation, line search, and swarm size issues (this
variant was called “Mutation Linear Particle Swarm Optimization,” MLPSO). MLPSO

Evolutionary Computation ~ Volume xx, Number xx 41



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolo.giil .
M. R. Bonyadi and Z. Michalewicz

was then used as an optimizer to solve COPs while a simple approach was used to com-
pare solutions. It was assumed that any feasible solution is better than any infeasible
solution, feasible solutions are compared based on their objective value, and infeasi-
ble solutions are compared based on their constraint violation value (calculated by

P max{0, g;(x)} + Y7, max{0, h;(x)}). This was indeed a simplified version of “Ep-
silon Level Constraint Handling,” ELCH (Takahama and Sakai, 2005). Also, a method
based on the CMA-ES was proposed that used the same technique to handle con-
straints. Experiments showed that MLPSO has a better performance in finding feasible
solutions while CMA-ES performs better in optimizing the objective function. Thus, a
hybrid method was proposed that ran PSO to find the first feasible solution and then
that solution was improved by CMA-ES. However, to prevent MLPSO from finding fea-
sible solutions in a poor-quality feasible region, a multi-start strategy was incorporated
in the algorithm so that several instances of MLPSO were run one after another to gen-
erate different feasible solutions. This idea potentially leads to locating disjoint feasible
regions that increases the probability of finding the region which includes the optimal
solution. Then the best among those solutions were fed into CMA-ES for further im-
provement. MLPSO was further enhanced in Bonyadi, Li, and Michalewicz (2014) with
a time-adaptive topology rather than a multi-swarm strategy. Also, the idea of locating
disjoint feasible regions in a COP was further discussed in Bonyadi and Michalewicz
(2014b).

A PSO algorithm for solving COPs called “ Automatic Particle Injection PSO,” API-
PSO, was proposed (Elsayed et al., 2013) in which the balance between exploration and
exploitation was controlled during the run by using LPSO or SPSO in each iteration.
The choice between the two methods was made based on a random value, which
favored SPSO at the beginning and LPSO at the end of the run. The idea was to
emphasize exploration in the earlier iterations and exploitation in the later iterations.
Also, a mutation operator and an automatic injection of new particles were added to
prevent the algorithm from getting stuck in a local optimum. Further, the inertia weight
and acceleration coefficients were considered as variables and they were fed into the
position vector of particles (x) so that they could be set during the run by the algorithm
(a self-adaptive approach). In order to handle constraints, API-PSO was extended by
ELCH. Results (based on the average values) showed that the algorithm is comparable
with other methods to deal with COPs.

In many real-world COPs it is highly probable that some constraints are active at
optimum points (Schoenauer and Michalewicz, 1996); that is, some optimum points are
on the boundary of the feasible area of the search space. The reason is that constraints
in real-world problems often represent limitations of resources, such as rate, number of
resources, etc. Thus, it is usually beneficial to make use of some resources as much as
possible, which means that some constraints are active at high quality solutions. Such
resources that limit the optimization algorithm to achieve better solutions (i.e., separate
the feasible and infeasible spaces) are called bottlenecks (Bonyadi, Michalewicz, and
Wagner, 2014). Bottlenecks are usually important to be found in a system because the
best investment from companies should be concentrated on the bottlenecks to maximize
profit (see Bonyadi, Michalewicz, and Wagner, 2014 and Chatterjee and Mukherjee, 2006
for a complete discussion on bottlenecks, investment, and their relations to optimiza-
tion and constraints). The presence of active constraints at the optimum points causes
difficulty for many optimization algorithms in locating optimal solutions (Schoenauer
and Michalewicz, 1997). In order to address this issue, Bonyadi and Michalewicz (2014c)
proposed a function (called “Constraints Boundary Narrower,” CBN) and proved that

42 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

it can transform the feasible region of any COP into the edges of the constraints of
that COP. Hence, if the optimization method is applied to the transformed COP, the
solutions that the method finds are at the edges of feasibility of the original COP. Also,
that article provided a more flexible definition for the edge and boundaries of feasibility
and active constraints. The proposed definitions enabled the study to assign a degree of
activity to constraints rather than categorizing them only as active and inactive. In that
study, SPSO was used as an optimizer and CBN (together with some of its derivatives)
was tested on seven COPs where their optimum solution was on the boundary of the
feasible area. Results (based on the average of the final solutions) showed that this
combination is effective in finding optima when they are close to the edges of feasible
area.

Summary: There have been a few attempts to extend PSO to deal with COPs, such
as the usage of penalty functions (Parsopoulos and Vrahatis, 2002a; Takahama and
Sakai, 2005) or preservation of feasibility (Coath and Halgamuge, 2003). Also, Liang
et al. (2010) used a cooperative approach together with comprehensive learning to deal
with COPs. This approach was further enhanced with a local search to find better
solutions. However, as many different components were introduced in that method,
it is not possible to find which component is really responsible for the final results.
One interesting field of research related to COPs is the idea of searching the edges of
feasible regions proposed by Schoenauer and Michalewicz (1996). This was studied by
Bonyadi and Michalewicz (2014c) for PSO; however, the results reported were not tested
properly through statistical tests. Another interesting area related to COPs is locating
disjoint feasible areas (Bonyadi, Li, and Michalewicz, 2014; Bonyadi and Michalewicz,
2014b; Smith et al., 2013). In fact, the feasible space might be of an irregular shape and
might include many disjoint areas in real-world applications, hence, it is worthwhile to
locate these areas first and then determine which one has a higher potential to include
the optimal solution. This was studied in Bonyadi and Michalewicz (2014b) for PSO on
a limited number of test problems.

There are several potential future directions related to COPs. For example, there
have not been many attempts to extend PSO to search the edge of the feasible region,
which can be considered as a future research direction. Another area that has been
recently investigated is to locate disjoint feasible regions in a COP. In addition to the
edges of feasibility and locating disjoint feasible regions, dealing with dynamic COPs
(Nguyen and Yao, 2012) can be also investigated. As constraints formulate limitations
of resources and these limitations might change in time because of random events
in the real world, dynamic constraints are regularly found in real-world optimization
problems. Another potential area of research is to investigate the performance of PSO
variants to deal with COPs through theoretical analysis, for example, first hitting time,
convergence, and stability. This track of research had been started by Baba (1981), but
to the best of our knowledge, remained untouched for optimization algorithms in the
field of evolutionary computation.

6 Conclusions

New advances in the PSO algorithm related to its convergence properties, transforma-
tion invariance, modification of components, coefficients adaptation, population sizing,
topology, hybridization, and dealing with constraint optimization problems, were re-
viewed in this survey. For each of these topics, several articles were cited and, at the end
of each subsection, a summary of the reviewed articles was given where the potential
challenges and research directions related to that area were discussed.

Evolutionary Computation ~ Volume xx, Number xx 43



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolqg% .
M. R. Bonyadi and Z. Michalewicz

The first part of this article concentrated on limitations of PSO that have been the-
oretically investigated in the past years. These limitations were categorized into two
main groups: convergence and transformation invariance. Regarding the convergence
properties of PSO, it was pointed out that analyzing different behaviors of particles
before convergence and convergence analysis (including convergence to a fixed point,
local convergence, and stagnation) of other PSO variants (e.g., SPSO2011 and RPSO)
constitute potential research directions (Section 3.1). Also, there are not many studies
on the first hitting time analysis of PSO variants, which is another potential research di-
rection (Section 3.1.4). Additional important area of study in PSO is the transformation
invariance property of the algorithm. Indeed, there are not many PSO variants that are
transformation invariant, which makes this topic an open area for new ideas and analy-
ses (Section 3.2). Note that, as has been already mentioned in some articles (Auger et al.,
2009; Hansen et al., 2008), these properties (convergence and transformation invariance)
are important for an algorithm since without these properties it is impossible to scale
its good performance achieved on a test set to a wide variety of problems. Moreover,
many other derivative-free optimization methods (e.g., CMA-ES) have addressed these
issues successfully (Auger et al., 2009).

Apart from theoretical studies, many experimental studies related to modifications
of components and parameters of PSO were also reviewed. Topology of the swarm
(Section 4.1.1), setting coefficients (Section 4.1.2), and population size (Section 4.1.3) are
parameters of PSO that were investigated in this review. Also, articles that modified
the velocity update rule of PSO were analyzed in Section 4.2. Some other studies that
hybridized the algorithm with other optimization methods to improve the overall per-
formance of the designed optimizer were discussed in Section 4.3. Finally, applications
of PSO to deal with COPs were investigated (Section 5). Some of the potentially promis-
ing research directions related to experimental studies were discussed. One of these
was the usage of landscape characteristics to determine the current state of the search
and then, based on this information, decide how to update the topology, coefficients, or
velocity itself. Another potential direction was to investigate the theoretical aspects of
the current experimental approaches to see if the good performance reported in those
articles can be supported more formally (see summaries of these sections for additional
possible directions). We also reported the computational complexity of some of the
methods included in the experimental part of this survey. It seems that some modi-
fications of the algorithm, such as hybridization or adaptive parameter control, may
introduce a computational overhead that may significantly increase the computational
complexity of the algorithm. For example, some methods determine the search state
(e.g., exploration vs. exploitation) using the distances among all particles in the swarm
which slows down the algorithm significantly. Similar issues are present when compar-
ing methods to handle constraints, as some of these methods (e.g., repair methods) are
computationally expensive. However, such computational overhead is usually ignored
when comparing algorithms as the number of function evaluations remains the main
criterion.

Despite the fact that the articles reviewed in this survey were selected from high-
ranked conferences and journals, many of them (especially those included in the exper-
imental part of this survey) presented only experimental results and did not provide
adequate discussion (neither from theoretical perspective, nor general discussions) on
the merits of the proposed approach. In fact, most articles aimed only at outperforming
other methods on a set of benchmark functions, missing the point that the main aim
in black-box optimization is to design a method that has a good scalable performance.

44 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technology. =~ | . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

Therefore, there is a need for a discussion in these experimental papers to clarify why
the authors think that the new method is going to work better than previous ones
before they apply it to a set of benchmarks and if there are any particular situations
that the method might have merits/drawbacks and why. The lack of such discussion
becomes more severe when appropriate statistical analyses of the results are not pre-
sented, arbitrary benchmarks are used, or only a small number of test cases are used.
Further, in some cases, the set of test cases were biased (see Sections 4.1.1 and 4.1.2 for
some examples) that prevented readers from drawing generic conclusions. This in fact
invalidates many claims by the authors and may mislead other researchers, although
the ideas themselves may have been original and potentially beneficial. In addition, in
some articles, many ideas have been experimented with and many components have
been added /modified that may confuse the reader, as it is not clear which component
is responsible for a good performance of the algorithm and why (see Sections 4 and
5 for some examples). Such an issue is especially visible in hybrid approaches where
the result method needs to be shown (through proper statistical tests or theoretical
analyses) to outperform each of its constituent methods.

Acknowledgments

The authors would like to extend their appreciation to Professor James Kennedy who provided
detailed comments on earlier versions of this article. We would also like to thank Dr. Bradley
Alexander for his assistance on improving readability of the article. This work was partially
funded by the ARC Discovery Grant DP130104395.

References

Agrafiotis, D. K., and Cedeno, W. (2002). Feature selection for structure-activity correlation using
binary particle swarms. Journal of Medicinal Chemistry, 45(5):1098-1107.

Alatas, B., Akin, E., and Ozer, A. B. (2009). Chaos embedded particle swarm optimization algo-
rithms. Chaos, Solutions and Fractals, 40(4):1715-1734.

Albert, R., and Barabasi, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern
Physics, 74(1):47-97.

Angeline, P. . (1998). Evolutionary optimization versus particle swarm optimization: Philosophy
and performance differences. In Evolutionary Programming VII, pp. 601-610. Berlin: Springer.

Arabas, J., Michalewicz, Z., and Mulawka, J. (1994). GAVaPS-a genetic algorithm with varying
population size. In IEEE World Congress on Computational Intelligence, pp. 73-78.

Arumugam, M. S., Rao, M., and Chandramohan, A. (2008). A new and improved version of
particle swarm optimization algorithm with global-local best parameters. Knowledge and
Information Systems, 16(3):331-357.

Arumugam, M. S.,Rao, M. V. C., and Tan, A. W. C. (2009). A novel and effective particle swarm op-
timization like algorithm with extrapolation technique. Applied Soft Computing, 9(1):308-320.

Auger, A., Hansen, N., Zerpa, J. P, Ros, R., and Schoenauer, M. (2009). Empirical comparisons
of several derivative free optimization algorithms. In J. Vahrenhold (Ed.), 8th International
Symposium on Experimental Algorithms, volume 5526 of LNCS, pp. 3-15. Berlin: Springer.

Baba, N. (1981). Convergence of a random optimization method for constrained optimization
problems. Journal of Optimization Theory and Applications, 33(4):451-461.

Banks, A., Vincent, ., and Anyakoha, C. (2007). A review of particle swarm optimization. Part I:
Background and development. Natural Computing, 6(4):467-484.

Evolutionary Computation ~ Volume xx, Number xx 45



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolo.giil .
M. R. Bonyadi and Z. Michalewicz

Banks, A., Vincent, J., and Anyakoha, C. (2008). A review of particle swarm optimization. Part
II: Hybridisation, combinatorial, multicriteria and constrained optimization, and indicative
applications. Natural Computing, 7(1):109-124.

Beyer, H.-G., and Schwefel, H.-P. (2002). Evolution strategies—A comprehensive introduction.
Natural Computing, 1(1):3-52.

Birbil, S. I, Fang, S.-C., and Sheu, R.-L. (2004). On the convergence of a population-based global
optimization algorithm. Journal of Global Optimization, 30(2-3):301-318.

Blackwell, T. (2012). A study of collapse in bare bones particle swarm optimization. IEEE Trans-
actions on Evolutionary Computation, 16(3):354-372.

Bonyadi, M. R,, Li, X., and Michalewicz, Z. (2013). A hybrid particle swarm with velocity mutation
for constraint optimization problems. In Genetic and Evolutionary Computation Conference
(GECCO), pp. 1-8.

Bonyadi, M. R., Li, X., and Michalewicz, Z. (2014). A hybrid particle swarm with a time-
adaptive topology for constrained optimization. Swarm and Evolutionary Computation, 18:22—

Bonyadi, M. R., and Michalewicz, Z. (2012). A fast particle swarm optimization algorithm for the
multidimensional knapsack problem. In IEEE Congress on Evolutionary Computation, pp. 1-8.

Bonyadi, M. R., and Michalewicz, Z. (2014a). A locally convergent rotationally invariant particle
swarm optimization algorithm. Swarm Intelligence, 8(3):159-198.

Bonyadi, M. R., and Michalewicz, Z. (2014b). Locating potentially disjoint feasible regions of a
search space with a particle swarm optimizer. In K. Deb and R. Datta (Eds.), Evolutionary
constrained optimization, pp. 205-230. Berlin: Springer.

Bonyadi, M. R., and Michalewicz, Z. (2014c). On the edge of feasibility: A case study of the particle
swarm optimizer. In IEEE Congress on Evolutionary Computation, pp. 3059-3066.

Bonyadi, M. R., and Michalewicz, Z. (2014d). SPSO2011—Analysis of stability, local conver-
gence, and rotation sensitivity. In Genetic and Evolutionary Computation Conference (GECCO),
pp- 9-16.

Bonyadi, M. R., Michalewicz, Z., and Li, X. (2014). An analysis of the velocity updating rule of
the particle swarm optimization algorithm. Journal of Heuristics, 20(4):417-452.

Bonyadi, M., and Michalewicz, Z. (2016). Analysis of stability, local convergence, and transfor-
mation sensitivity of a variant of particle swarm optimization algorithm. IEEE Transactions
on Evolutionary Computation, 20(3):370-385.

Bonyadi, M., and Michalewicz, Z. (In Press). Stability analysis of the particle swarm optimization
without stagnation assumption. IEEE Transactions on Evolutionary Computation, In Press.

Bonyadi, M. R., Michalewicz, Z., and Wagner, M. (2014). Beyond the edge of feasibility: Analysis
of bottlenecks. In G. Dick, W. Browne, P. Whigham, M. Zhang, L. Bui, H. Ishibuchi, Y. Jin,
et al. (Eds.), Simulated evolution and learning, pp. 431-442. Berlin: Springer.

Bratton, D., and Kennedy, J. (2007). Defining a standard for particle swarm optimization. In IEEE
Swarm Intelligence Symposium, pp. 120-127.

Caamao, P, Prieto, A., Becerra, J., Bellas, F., and Duro, R. (2010). Real-valued multimodal fitness
landscape characterization for evolution. In K. Wong, B. Mendis, and A. Bouzerdoum (Eds.),
Neural information processing: Theory and algorithms, pp. 567-574. Berlin: Springer.

Campana, E., Fasano, G., and Pinto, A. (2010). Dynamic analysis for the selection of parame-
ters and initial population, in particle swarm optimization. Journal of Global Optimization,
48(3):347-397.

46 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolog}tl‘ L . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

Carlisle, A., and Dozier, G. (2001). An off-the-shelf PSO. In Workshop on Particle Swarm Optimiza-
tion, pp. 1-6. Indianapolis, Indiana: Purdue School of Engineering and Technology.

Chang-Huang, C., and Jia-Shing, S. (2009). Simple particle swarm optimization. In International
Conference on Machine Learning and Cybernetics, pp. 460-466.

Changhe, L., Shengxiang, Y., and Trung Thanh, N. (2012). A self-learning particle swarm optimizer
for global optimization problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 42(3):627-646.

Chatterjee, A., and Mukherjee, S. (2006). Unified concept of bottleneck. Technical Report W.P.
No. 2006-05-01, Indian Institute of Management Ahmedabad, Research and Publication
Department.

Chatterjee, A., and Siarry, P. (2006). Nonlinear inertia weight variation for dynamic adaptation
in particle swarm optimization. Computers and Operations Research, 33(3):859-871.

Chen, W. N,, Zhang, J., Chung, H. S. H., Zhong, W. L., Wu, W. G., and Shi, Y. H. (2010). A novel
set-based particle swarm optimization method for discrete optimization problems. IEEE
Transactions on Evolutionary Computation, 14(2):278-300.

Chen, D. B., and Zhao, C. X. (2009). Particle swarm optimization with adaptive population size
and its application. Applied Soft Computing, 9(1):39-48.

Cleghorn, C. W,, and Engelbrecht, A. P. (2014a). A generalized theoretical deterministic particle
swarm model. Swarm intelligence, 8(1):35-59.

Cleghorn, C. W., and Engelbrecht, A. P. (2014b). Particle swarm convergence: An empirical
investigation. In IEEE Congress on Evolutionary Computation, pp. 2524-2530.

Cleghorn, C. W., and Engelbrecht, A. P. (2014c). Particle swarm convergence: Standardized ana-
lysis and topological influence. In M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M.
Montes de Oca, C. Solnon, and T. Stiitzle (Eds.), Swarm intelligence, pp. 134-145. Berlin:
Springer.

Cleghorn, C. W., and Engelbrecht, A. P. (2015). Particle swarm variants: Standardized convergence
analysis. Swarm Intelligence, 9(2):177-203.

Clerc, M. (1999). The swarm and the queen: Towards a deterministic and adaptive particle swarm
optimization. In IEEE Congress on Evolutionary Computation, pp. 1951-1957.

Clerc, M. (2006). Particle swarm optimization. Newport Beach, CA: Wiley-ISTE.

Clerc, M. (2011). Standard particle swarm optimisation from 2006 to 2011. Technical Report hal-
00764996.

Clerc, M., and Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in
a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1):58—
73.

Coath, G., and Halgamuge, S. K. (2003). A comparison of constraint-handling methods for the
application of particle swarm optimization to constrained nonlinear optimization problems.
In IEEE Congress on Evolutionary Computation, pp. 2419-2425.

Coello Coello, C. (2000). Use of a self-adaptive penalty approach for engineering optimization
problems. Computers in Industry, 41(2):113-127.

Cooren, Y., Clerc, M., and Siarry, P. (2009). Performance evaluation of tribes: An adaptive particle
swarm optimization algorithm. Swarm Intelligence, 3(2):149-178.

Dasgupta, S., Das, S., Biswas, A., and Abraham, A. (2009). On stability and convergence of the
population-dynamics in differential evolution. Al Communications, 22(1):1-20.

Evolutionary Computation ~ Volume xx, Number xx 47



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolo.giil .
M. R. Bonyadi and Z. Michalewicz

Deng, J.-L. (1989). Introduction to grey system theory. The Journal of Grey System, 1(1):1-24.

Derrac, J., Garcia, S., Molina, D., and Herrera, F. (2011). A practical tutorial on the use of nonpara-
metric statistical tests as a methodology for comparing evolutionary and swarm intelligence
algorithms. Swarm and Evolutionary Computation, 1(1):3-18.

Dorea, C. (1983). Expected number of steps of a random optimization method. Journal of Opti-
mization Theory and Applications, 39(2):165-171.

Eberhart, R., and Kennedy, J. (1995). A new optimizer using particle swarm theory. In International
Symposium on Micro Machine and Human Science, pp. 39-43.

Eberhart, R., and Shi, Y. (2001). Tracking and optimizing dynamic systems with particle swarms.
In IEEE Congress on Evolutionary Computation, pp. 94-97.

Eberhart, R. C., and Shi, Y. (2000). Comparing inertia weights and constriction factors in particle
swarm optimization. In IEEE Congress on Evolutionary Computation, pp. 84-88.

Eiben, A. E., Hinterding, R., and Michalewicz, Z. (1999). Parameter control in evolutionary algo-
rithms. IEEE Transactions on Evolutionary Computation, 3(2):124-141.

Eiben, A. E., and Rudolph, G. (1999). Theory of evolutionary algorithms: A bird’s eye view.
Theoretical Computer Science, 229(1):3-9.

Elsayed, S. M., Sarker, R. A., and Essam, D. L. (2012). Memetic multi-topology particle swarm op-
timizer for constrained optimization. In IEEE Congress on Evolutionary Computation, pp. 1-8.

Elsayed, S. M., Sarker, R. A., and Mezura-Montes, E. (2013). Particle swarm optimizer for con-
strained optimization. In IEEE Congress on Evolutionary Computation, pp. 2703-2711.

Emara, H. M. (2009). Adaptive clubs-based particle swarm optimization. In American Control
Conference, pp. 5628-5634.

Engelbrecht, A. (2005). Fundamentals of computational swarm intelligence. Hoboken, NJ: Wiley.

Engelbrecht, A. (2012). Particle swarm optimization: Velocity initialization. In IEEE Congress on
Evolutionary Computation, pp. 1-8.

Engelbrecht, A. (2013). Particle swarm optimization: Global best or local best. In IEEE Congress
on Computational Intelligence, pp. 124-135.

Garcfa-Gonzalo, E., and Fernandez-Martinez, J. L. (2014). Convergence and stochastic stabil-
ity analysis of particle swarm optimization variants with generic parameter distributions.
Applied Mathematics and Computation, 249:286-302.

Ghosh, S., Das, S., Kundu, D., Suresh, K., Panigrahi, B. K., and Cui, Z. (2010). An inertia-adaptive
particle swarm system with particle mobility factor for improved global optimization. Neural
Computing and Applications, 21(2):237-250.

Gong, Y.]., and Zhang, J. (2013). Small-world particle swarm optimization with topology adap-
tation. In Genetic and Evolutionary Computation Conference, pp. 25-32.

Hansen, N. (2000). Invariance, self-adaptation and correlated mutations in evolution strategies.
In Parallel Problem Solving from Nature, pp. 355-364.

Hansen, N. (2006). The CMA evolution strategy: A comparing review. In J. Lozano, P. Larrafiaga,
I. Inza, and E. Bengoetxea (Eds.), Towards a new evolutionary computation, volume 192 of
Studies in Fuzziness and Soft Computing, pp. 75-102.

Hansen, N., and Ostermeier, A. (1996). Adapting arbitrary normal mutation distributions in
evolution strategies: The covariance matrix adaptation. In IEEE Congress on Evolutionary
Computation, pp. 312-317.

48 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolog}tl‘ L . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

Hansen, N., Ros, R., Mauny, N., Schoenauer, M., and Auger, A. (2008). PSO facing non-separable
and ill-conditioned problems. Technical Report 6447, INRIA, France.

Hansen, N., Ros, R., Mauny, N., Schoenauer, M., and Auger, A. (2011). Impacts of invariance in
search: When CMA-ES and PSO face ill-conditioned and non-separable problems. Applied
Soft Computing, 11(8):5755-5769.

He, J., and Yao, X. (2002). From an individual to a population: An analysis of the first hitting time
of population-based evolutionary algorithms. IEEE Transactions on Evolutionary Computation,
6(5):495-511.

He, Q., and Wang, L. (2007). An effective co-evolutionary particle swarm optimization for
constrained engineering design problems. Engineering Applications of Artificial Intelligence,
20(1):89-99.

Helwig, S., Branke, J., and Mostaghim, S. (2013). Experimental analysis of bound handling
techniques in particle swarm optimization. IEEE Transactions on Evolutionary Computation,
17(2):259-271.

Helwig, S., and Wanka, R. (2007). Particle swarm optimization in high-dimensional bounded
search spaces. In Swarm Intelligence Symposium, pp. 198-205.

Helwig, S., and Wanka, R. (2008). Theoretical analysis of initial particle swarm behavior. In Parallel
Problem Solving from Nature, pp. 889-898.

Hsieh, S. T., Sun, T. Y., Liu, C. C., and Tsai, S. J. (2009). Efficient population utilization strategy
for particle swarm optimizer. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 39(2):444-456.

Hu, M., Wu, T., and Weir, J. D. (2012). An intelligent augmentation of particle swarm optimization
with multiple adaptive methods. Information Sciences, 213:68-83.

Hu, X., and Eberhart, R. (2002). Solving constrained nonlinear optimization problems with par-
ticle swarm optimization. In World Multiconference on Systemics, Cybernetics and Informatics,
pp- 203-206.

Hu, X, Shi, Y., and Eberhart, R. (2004). Recent advances in particle swarm. In IEEE Congress on
Evolutionary Computation, pp. 90-97.

Huang, H., Qin, H., Hao, Z., and Lim, A. (2010). Example-based learning particle swarm opti-
mization for continuous optimization. Information Sciences, 182(1):125-138.

Jagerskiipper, J. (2008). Lower bounds for randomized direct search with isotropic sampling.
Operations Research Letters, 36(3):327-332.

Janson, S., and Middendorf, M. (2005). A hierarchical particle swarm optimizer and its
adaptive variant. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
35(6):1272-1282.

Jiang, M., Luo, Y., and Yang, S. (2007a). Particle swarm optimization-stochastic trajectory anal-
ysis and parameter selection. In F. Chan and M. KumarTiwari (Eds.), Swarm intelligence,
Focus on ant and particle swarm optimization, pp. 179-198. Wien: I-TECH Education and
Publishing.

Jiang, M., Luo, Y. P, and Yang, S. Y. (2007b). Stochastic convergence analysis and parameter se-
lection of the standard particle swarm optimization algorithm. Information Processing Letters,
102(1):8-16.

Kao, Y.-T., and Zahara, E. (2008). A hybrid genetic algorithm and particle swarm optimization
for multimodal functions. Applied Soft Computing, 8(2):849-857.

Kaucic, M. (2013). A multi-start opposition-based particle swarm optimization algorithm with
adaptive velocity for bound constrained global optimization. Journal of Global Optimization,
55(1):165-188.

Evolutionary Computation ~ Volume xx, Number xx 49



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolo.giil .
M. R. Bonyadi and Z. Michalewicz

Kelley, C. T. (1999). Iterative methods for optimization. Philadelphia: Society for Industrial and
Applied Mathematics.

Kennedy, J. (1999). Small worlds and mega-minds: Effects of neighborhood topology on
particle swarm performance. In IEEE Congress on Evolutionary Computation, pp. 1931-
1938.

Kennedy, J. (2003). Bare bones particle swarms. In Swarm Intelligence Symposium, pp. 80-87.

Kennedy, J., and Eberhart, R. (1995). Particle swarm optimization. In International Conference on
Neural Networks, pp. 1942-1948.

Kennedy, J., and Mendes, R. (2002). Population structure and particle swarm performance. In
IEEE Congress on Evolutionary Computation, pp. 1671-1676.

Krink, T., VesterstrOm, J. S., and Riget, J. (2002). Particle swarm optimisation with spatial particle
extension. In IEEE Congress on Evolutionary Computation, pp. 1474-1479.

Lehre, P. K., and Witt, C. (2013). Finite first hitting time versus stochastic convergence in particle
swarm optimisation. In Advances in Metaheuristics, pp. 1-20.

Leu, M.-S., and Yeh, M.-F. (2012). Grey particle swarm optimization. Applied Soft Computing,
12(9):2985-2996.

Liang, J., Zhigang, S., and Zhihui, L. (2010). Coevolutionary comprehensive learning particle
swarm optimizer. In IEEE Congress on Evolutionary Computation, pp. 1-8.

Liang, J. J., Qin, A. K., Suganthan, P. N., and Baskar, S. (2006). Comprehensive learning particle
swarm optimizer for global optimization of multimodal functions. IEEE Transactions on
Evolutionary Computation, 10(3):281-295.

Liu, Q. (2014). Order-2 stability analysis of particle swarm optimization. Evolutionary Computation,
23(2):187-216.

Mabhor, A., Prasad, V., and Rangnekar, S. (2009). Economic dispatch using particle swarm opti-
mization: A review. Renewable and Sustainable Energy Reviews, 13(8):2134-2141.

Malan, K., and Engelbrecht, A. (2009). Quantifying ruggedness of continuous landscapes using
entropy. In IEEE Congress on Evolutionary Computation, pp. 1440-1447.

Mallipeddi, R., and Suganthan, P. (2010). Problem definitions and evaluation criteria for the CEC
2010 competition on constrained real-parameter optimization. Technical report, Nanyang
Technological University, Singapore.

Matyas, J. (1965). Random optimization. Automation and Remote Control, 26(2):246-253.

Mendes, R. (2004). Population topologies and their influence in particle swarm performance. PhD
thesis, Departmento de Informética, Universidade do Minho.

Mendes, R., Kennedy, J., and Neves, J. (2004). The fully informed particle swarm: Simpler, maybe
better. IEEE Transactions on Evolutionary Computation, 8(3):204-210.

Michalewicz, Z. (1995). A survey of constraint handling techniques in evolutionary computation
methods. In Annual Conference on Evolutionary Programming, pp. 135-155.

Michalewicz, Z., and Janikow, C. (1996). GENOCOP: A genetic algorithm for numerical opti-
mization problems with linear constraints. Communications of the ACM, 39(12):223-240.

Michalewicz, Z., and Schoenauer, M. (1996). Evolutionary algorithms for constrained parameter
optimization problems. Evolutionary Computation, 4(1):1-32.

Moler, C., and Van Loan, C. (2003). Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later. SIAM Review, 45(1):3-49.

50 Evolutionary Computation =~ Volume xx, Number xx



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolog}tl‘ L . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

Montes de Oca, M. A., and Stutzle, T. (2008). Towards incremental social learning in optimiza-
tion and multiagent systems. In Genetic and Evolutionary Computation Conference, pp. 1939—
1944.

Montes de Oca, M. A, Stiitzle, T., Birattari, M., and Dorigo, M. (2009). Frankenstein’s PSO: A com-
posite particle swarm optimization algorithm. IEEE Transactions on Evolutionary Computation,
13(5):1120-1132.

Montes De Oca, M. A,, Stiitzle, T., Van den Enden, K., and Dorigo, M. (2011). Incremental social
learning in particle swarms. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 41(2):368-384.

Montgomery, D. C. (1984). Design and analysis of experiments. New York: Wiley.

Muller, C., Baumgartner, B., and Sbalzarini, I. F. (2009). Particle swarm CMA evolution strategy for
the optimization of multi-funnel landscapes. In IEEE Congress on Evolutionary Computation,
PP 2685-2692.

Nasir, M., Das, S., Maity, D., Sengupta, S., Halder, U., and Suganthan, P. N. (2012). A dynamic
neighborhood learning based particle swarm optimizer for global numerical optimization.
Information Sciences, 209:16-36.

Newman, M., Barabasi, A.-L., and Watts, D. J. (2006). The structure and dynamics of networks.
Princeton: Princeton University Press.

Nguyen, T., and Yao, X. (2012). Continuous dynamic constrained optimisation—The challenges.
IEEE Transactions on Evolutionary Computation, 16(6):769-786.

Nickabadi, A., Ebadzadeh, M. M., and Safabakhsh, R. (2011). A novel particle swarm op-
timization algorithm with adaptive inertia weight. Applied Soft Computing, 11(4):3658-
3670.

Omidvar, M., Li, X., Mei, Y., and Yao, X. (2014). Cooperative co-evolution with differential group-
ing for large scale optimization. IEEE Transactions on Evolutionary Computation, 18(3):378—
393.

Ozcan, E., and Mohan, C. K. (1999). Particle swarm optimization: Surfing the waves. In IEEE
Congress on Evolutionary Computation, pp. 1939-1944.

Paquet, U., and Engelbrecht, A. (2003). A new particle swarm optimiser for linearly constrained
optimisation. In IEEE Congress on Evolutionary Computation, pp. 227-233.

Paquet, U., and Engelbrecht, A. (2007). Particle swarms for linearly constrained optimisation.
Fundamenta Informaticae, 76(1):147-170.

Parsopoulos, K., and Vrahatis, M. (2002a). Particle swarm optimization method for constrained
optimization problems. Intelligent Technologies—Theory and Application: New Trends in Intelli-
gent Technologies, 76:214-220.

Parsopoulos, K., and Vrahatis, M. (2002b). Recent approaches to global optimization problems
through particle swarm optimization. Natural Computing, 1(2):235-306.

Parsopoulos, K. E., and Vrahatis, M. N. (2004). On the computation of all global minimiz-
ers through particle swarm optimization. IEEE Transactions on Evolutionary Computation,
8(3):211-224.

Poli, R. (2008). Analysis of the publications on the applications of particle swarm optimisation.
Journal of Artificial Evolution and Application, 2008(3):1-10.

Poli, R. (2009). Mean and variance of the sampling distribution of particle swarm op-

timizers during stagnation. IEEE Transactions on Evolutionary Computation, 13(4):712—
721.

Evolutionary Computation ~ Volume xx, Number xx 51



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolo.giil .
M. R. Bonyadi and Z. Michalewicz

Poli, R., Brattonx, D., Blackwell, T., and Kennedy, J. (2007). Theoretical derivation, analysis and
empirical evaluation of a simpler particle swarm optimiser. In IEEE Congress on Evolutionary
Computation, pp. 1955-1962.

Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle swarm optimization: An overview. Swarm
Intelligence, 1(1):33-57.

PSO (2006). PSO source code (available online at PSO info). Retrieved from http:/ /particleswarm
.info/standard-PSO-2006.c

Pulido, G. T.,, and Coello, C. A. C. (2004). A constraint-handling mechanism for par-
ticle swarm optimization. In IEEE Congress on Evolutionary Computation, pp. 1396-
1403.

Ratnaweera, A., Halgamuge, S. K., and Watson, H. C. (2004). Self-organizing hierarchical particle
swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolution-
ary Computation, 8(3):240-255.

Rudolph, G. (1997). Local convergence rates of simple evolutionary algorithms with cauchy
mutations. IEEE Transactions on Evolutionary Computation, 1(4):249-258.

Rudolph, G. (1998). Finite Markov chain results in evolutionary computation: A tour d’horizon.
Fundamenta Informaticae, 35(1-4):67-89.

Rudolph, G. (2013). Stochastic convergence. In T. B. Rozenberg and J. Kok (Eds.), Handbook of
natural computing, pp. 847-869. Berlin: Springer.

Salomon, R. (1995). Reevaluating genetic algorithm performance under coordinate rotation of
benchmark functions—A survey of some theoretical and practical aspects of genetic algo-
rithms. BioSystems, 39:263-278.

Schmitt, M., and Wanka, R. (2013). Particle swarm optimization almost surely finds local optima.
In Genetic and Evolutionary Computation Conference, pp. 1629-1636.

Schoenauer, M., and Michalewicz, Z. (1996). Evolutionary computation at the edge of feasibility.
Parallel Problem Solving from Nature, pp. 245-254.

Schoenauer, M., and Michalewicz, Z. (1997). Boundary operators for constrained parameter
optimization problems. In Conference on Genetic Algorithms, pp. 322-329.

Sheskin, D. J. (2003). Handbook of parametric and nonparametric statistical procedures. New York: CRC
Press.

Shi, Y., and Eberhart, R. (1998a). A modified particle swarm optimizer. In IEEE World Congress on
Computational Intelligence, pp. 69-73.

Shi, Y., and Eberhart, R. (1998b). Parameter selection in particle swarm optimization. In V. Porto,
N. Saravanan, D. Waagen, and A. Eiben (Eds.), Evolutionary programming VII, volume 1447
of LNCS, pp. 591-600. Berlin: Springer.

Shi, Y., and Eberhart, R. C. (2001). Fuzzy adaptive particle swarm optimization. In IEEE Congress
on Evolutionary Computation, pp. 101-106.

Smith, L., Chinneck, J., and Aitken, V. (2013). Constraint consensus concentration for identify-
ing disjoint feasible regions in nonlinear programmes. Optimization Methods and Software,
28(2):339-363.

Solis, F. J., and Wets, R. J.-B. (1981). Minimization by random search techniques. Mathematics of
Operations Research, 6(1):19-30.

Song, M.-P,, and Gu, G.-C. (2004). Research on particle swarm optimization: A review. In Interna-
tional Conference on Machine Learning and Cybernetics, pp. 2236-2241.

52 Evolutionary Computation =~ Volume xx, Number xx


http://particleswarm.info/standard-PSO-2006.c
http://particleswarm.info/standard-PSO-2006.c

Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolog}tl‘ L . L . .
Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review

Spears, W., Green, D., and Spears, D. (2010). Biases in particle swarm optimization. International
Journal of Swarm Intelligence Research, 1(2):34-57.

Storn, R., and Price, K. (1997). Differential evolution—A simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization, 11(4):341-359.

Sun, C.-1,, Zeng, J.-c., and Pan, J.-s. (2011). An improved vector particle swarm optimization for
constrained optimization problems. Information Sciences, 181(6):1153-1163.

Takahama, T., and Sakai, S. (2005). Constrained optimization by € constrained particle swarm
optimizer with e-level control. In A. Abraham, Y. Dote, T. Furuhashi, M. Koppen, A. Ohuchi,
and Y. Ohsawa (Eds.), Soft computing as transdisciplinary science and technology, volume 29 of
Advances in soft computing, pp. 1019-1029. Berlin: Springer.

Tang, Y., Wang, Z., and Fang, ] .-a. (2011). Feedback learning particle swarm optimization. Applied
Soft Computing, 11(8):4713-4725.

Trefethen, L. N., and Bau III, D. (1997). Numerical linear algebra. Philadelphia: Society for Industrial
and Applied Mathematics.

Trelea, I. C. (2003). The particle swarm optimization algorithm: Convergence analysis and pa-
rameter selection. Information Processing Letters, 85(6):317-325.

Van den Bergh, F. (2002). An analysis of particle swarm optimizers. PhD thesis, Department of
Computer Science, University of Pretoria.

Van den Bergh, F., and Engelbrecht, A. (2002). A new locally convergent particle swarm optimiser.
In Systems, Man and Cybernetics, pp. 96-101.

Van den Bergh, F.,, and Engelbrecht, A. (2004). A cooperative approach to particle swarm opti-
mization. IEEE Transactions on Evolutionary Computation, 8(3):225-239.

Van den Bergh, F,, and Engelbrecht, A. (2006). A study of particle swarm optimization particle
trajectories. Information Sciences, 176(8):937-971.

Van den Bergh, E, and Engelbrecht, A. (2010). A convergence proof for the particle swarm
optimiser. Fundamenta Informaticae, 105(4):341-374.

Voss, M. S. (2005). Principal component particle swarm optimization: A step towards topological
swarm intelligence. In IEEE Congress on Evolutionary Computation, pp. 298-305.

Vrahatis, M., Androulakis, G., and Manoussakis, G. (1996). A new unconstrained optimization
method for imprecise function and gradient values. Journal of Mathematical Analysis and
Applications, 197(2):586-607.

Wang, H., Sun, H,, Li, C., Rahnamayan, S., and Pan, J.-s. (2013). Diversity enhanced particle
swarm optimization with neighborhood search. Information Sciences, 223:119-135.

Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., and Tian, Q. (2011). Self-adaptive learning based
particle swarm optimization. Information Sciences, 181(20):4515-4538.

Wilke, D. (2005). Analysis of the particle swarm optimization algorithm. Master’s thesis, Depart-
ment of Mechanical and Aeronautical Engineering, University of Pretoria, South Africa.

Wilke, D., Kok, S., and Groenwold, A. (2007). Comparison of linear and classical velocity update
rules in particle swarm optimization: Notes on scale and frame invariance. International
Journal for Numerical Methods in Engineering, 70(8):985-1008.

Witt, C. (2009). Why standard particle swarm optimisers elude a theoretical runtime analysis. In
Foundations of Genetic Algorithms, pp. 13-20.

Xinchao, Z. (2010). A perturbed particle swarm algorithm for numerical optimization. Applied
Soft Computing, 10(1):119-124.

Evolutionary Computation ~ Volume xx, Number xx 53



Evolutionary Computation corrected proof
doi:10.1162/EVCO_a.00180

© by the Massachusetts Institute of Technolo.giil .
M. R. Bonyadi and Z. Michalewicz

Yang, J.-M., Chen, Y.-P, Horng, J.-T., and Kao, C.-Y. (1997). Applying family competition to
evolution strategies for constrained optimization. In P. Angeline, R. Reynolds, ]. McDonnell,
and R. Eberhart (Eds.), Evolutionary programming VI, volume 1213 of LNCS, pp. 201-211.
Berlin: Springer.

Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423-1447.

Zhan, Z., Zhang, J., Li, Y., and Chung, H. (2009). Adaptive particle swarm optimization. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 39(6):1362-1381.

Zhan, Z.-H., Zhang, J., Li, Y., and Shi, Y.-h. (2011). Orthogonal learning particle swarm optimiza-
tion. IEEE Transactions on Evolutionary Computation, 15(6):832-847.

Zhang, C., and Yi, Z. (2011). Scale-free fully informed particle swarm optimization algorithm.
Information Sciences, 181(20):4550-4568.

Zheng, Y., Ma, L., Zhang, L., and Qian, J. (2003). Empirical study of particle swarm optimizer with
an increasing inertia weight. In IEEE Congress on Evolutionary Computation, pp. 221-226.

Zou, R., Kalivarapu, V., Winer, E., Oliver, J., and Bhattacharya, S. (2015). Particle swarm
optimization-based source seeking. IEEE Transactions on Automation Science and Engineer-
ing, 12(3):865-875.

54 Evolutionary Computation =~ Volume xx, Number xx



