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Impacts of coefficients on movement patterns
in the particle swarm optimization algorithm

Mohammad Reza Bonyadi and Zbigniew Michalewicz

Abstract—In this paper we investigate movement patterns
of a particle in the particle swarm optimization (PSO)
algorithm. We characterize movement patterns of the particle
by two factors: the correlation between it’s consecutive
positions and it’s range of movement. We introduce the base
frequency of movement as a measure for the correlation
between positions and the variance of movement as a
measure for the range of movement. We determine the base
frequency and the variance of movement theoretically and
we show how they change with the values of coefficients.
We extract a system of equations that enables practitioners
to find coefficients’ values to guarantee achieving a given
base frequency and variance of movement, i.e., control the
movement pattern of particles. We also show that if the
base frequency of movement for a particle is small, mid
range, or large then the particle’s position at each iteration
is positively correlated (smooth movement), uncorrelated
(chaotic movement), or negatively correlated (jumping at
each iteration) with its previous positions, respectively. We
test the effects of the base frequency and variance of
movement on the search ability of particles and we show
that small base frequencies (i.e., smooth movement) are more
effective when the maximum number of function evaluations
is large. We found that the most frequently-used coefficient
values in PSO literature impose mid-range base frequencies
that correspond with a chaotic movement. We also provide
new sets of coefficients that outperform existing ones on a
set of benchmark functions.

Index Terms—Particle swarm optimization; base frequency;
correlation

I. INTRODUCTION

PARTICLE swarm optimization (PSO) is a stochastic
population-based optimization algorithm developed

by Kennedy and Eberhart [1]. PSO has been applied
to many optimization problems such as artificial neural
network training, pattern classification, and function
optimization [2], [3], to name a few. Since 1995, differ-
ent aspects of the original version of PSO have been
investigated and many variants of the algorithm have
been proposed (see [4] for a comprehensive review on
PSO). Although there have been many studies related to
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local convergence, invariance, and stability of particles,
there are not many articles on the movement patterns of
particles before convergence to their equilibrium [4].

The aim of this paper is to study two factors, i.e., the
frequency and the variance of movement, to characterize
movement patterns of particles. We investigate the fre-
quency and variance for a formulation that represents a
wide range of PSO position update rules and we show
how these factors affect the patterns of movement when
that formulation is used. We also formulate these two
factors in terms of coefficients of particles for a specific
type of PSO so that a given frequency and variance are
achieved during the run. This formulation can be used
to change the movement patterns of particles during
the run so that an adequate pattern can be selected
according to the current state of the search (e.g., search
space characteristics, iteration number). We experiment
with different frequencies and variances to understand
which values for each of these factors are more effective
for optimizing a benchmark of optimization problems.

Without loss of generality, this paper only considers
minimization problems defined as follows:

find ~x ∈ S ⊆ Rd such that ∀~y ∈ S, f(~x) ≤ f(~y) (1)

where S is the search space defined by {~x|li ≤ xi ≤
ui for all i}, li and ui are lower bound and upper bound
of the values of the ith dimension of S, d is the number
of dimensions, and f : Rd → R is the objective function.
The set of points that are generated by f(~x) for all ~x ∈ S
is called the landscape.

The rest of this paper is organized as follows. In sec-
tion II, we overview the formulation of the original PSO
and we give some background on calculation of variance
and movement patterns. In section III we present our
proposed approach that includes calculation of the base
frequency of oscillation, the variance of movement, and
coefficients to achieve a given base frequency and vari-
ance. In section IV we test our theoretical findings and
compare our coefficient settings with various settings
proposed in other articles. Section V concludes the paper
and provides a discussion on some directions for further
research.

II. BACKGROUND

In this section we provide some background on the
early variants of PSO, existing studies on the variance
of movement, and different patterns of movement.
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A. Particle swarm optimization
Each particle in the Original PSO (OPSO) [5], [1]

consists of three vectors:
• Position (~x i

t ) — is the position of the ith particle in
the tth iteration. This is used to evaluate the particle
quality;

• Velocity (~v i
t ) — is the direction and length of move-

ment of the ith particle in the tth iteration; and
• Personal best (~p i

t ) — is the best position (in terms of
objective value) that the particle i has visited until
iteration t. The role of this vector is to store the
knowledge of best found solutions [5].

In OPSO, the velocity of each particle is updated for
the next iteration (t+ 1) by

~v i
t+1 = ~v i

t + c1R1t

(
~p i
t − ~x i

t

)
+ c2R2t

(
~gt − ~x i

t

)
(2)

where c1 and c2 are two real numbers known as acceler-
ation coefficients, ~p i

t is the personal best of the particle i
at iteration t. We define:

τt = argmini{f(~p i
t )}

as the the global best particle and ~gt = ~p τt
t as the global

best vector. The vector ~p i
t for each particle i is updated

by Eq. 3.

~p i
t+1 =

{
~x i
t+1 f

(
~x i
t+1

)
< f

(
~p i
t

)
− ε0 and ~x i

t+1 ∈ S
~p i
t otherwise

(3)

where ε0 > 0 is an arbitrarily small real value that repre-
sents the precision of the calculations. This constant can
be set to the smallest possible value in the simulations.

Particles are attracted by ~p i
t − ~x i

t (personal influence)
and ~gt − ~x i

t (social influence) to move toward known
quality solutions found until iteration t, i.e., ~p i

t and
~gt. Further, R1t and R2t are two randomly (a uniform
distribution in the interval [0, 1]) generated d×d diagonal
matrices [6], [7]. These two matrices are generated for
each particle i at every iteration t separately. The position
of a particle i is updated by

~x i
t+1 = ~x i

t + ~v i
t+1 (4)

OPSO was studied by many researchers since 1995 and
many new variants were proposed. For example, it was
proposed [8] to multiply the previous velocity (~v i

t ) by
an inertia weight (ω) to control the impact of ~v i

t on the
movement of particles (we refer to this PSO variant as
the Inertia PSO, IPSO, in this paper). The velocity update
rule for IPSO was written as

~v i
t+1 = ω~v i

t + c1R1t

(
~p i
t − ~x i

t

)
+ c2R2t

(
~gt − ~x i

t

)
(5)

where ω is inertia weight.

B. Variance of movement
Most articles investigated the variance of movement

of an arbitrary particle in OPSO or IPSO in the one-
dimensional case [4]. The reason is that the position
and velocity update for these methods is conducted at

each dimension separately, hence, analyses in a one-
dimensional space is generalizable to multidimensional
space. Thus, we drop the vector notation in equations
when we present ideas that are based on such update
rules.

Perhaps the first study that investigated the variance
of particle positions for IPSO was [9] that was extended
further in [10]. These studies proved that if the variance
of the sequence of positions generated by an arbitrary
particle (denoted by x as it is in a one dimensional space)
converges to a fixed point then c < 12(ω2−1)

5ω−7 where c =
c1 = c2. Also, the fixed point for the variance of these
positions (shown by Vx) was calculated as

Vx =
c(ω + 1)

4(c(5ω − 7)− 12ω2 + 12)
(g − p)2 (6)

The assumption in these studies was that p and g
are not updated during the run (so called the stagnation
assumption). The convergence of variance of the global
best particle in IPSO under a more general assumption
was investigated in [11] and it was proven that the
convergence boundaries found by [9] as well as [10] are
valid under a weak stagnation assumption.

The analysis of variance in [9], [10], and [11] was re-
stricted to a uniform distribution for the acceleration co-
efficients and constant values for the inertia weight. This
restriction was eliminated in [12] where it was assumed
that the inertia weight is a random variable with the
expected value µω and the variance σ2

ω and acceleration
coefficients are random variables with expected values
µφ1

and µφ2
and variances σ2

φ1
and σ2

φ2
. Also, it was

assumed that both p and g are random variables (with
some mean and variance) that are updated during the
run (see Eq. 7), that weakens the stagnation assumption.
The position update rule for a particle in PSO was then
written as:

xt+1 = (1 + ω − φ1 − φ2)xt − ωxt−1 + φ1p+ φ2g (7)

where φ1, φ2, p, g, and ω are random variables with
given expected values (µ) and standard deviations (σ).
Note that this formulation represents a wide range of
PSO variants including IPSO and OPSO. It was proven
[12] that the convergence of the variance of positions
generated by this formulation is not dependent on the
mean and variance of the random variables p and g.
Convergence boundaries for this formulation were de-
rived and it was proven that, even if p and g move
during the run, those boundaries include all coefficients
combinations that guarantee convergence of variance
of positions (necessary condition). Experiments in [12]
showed that there is no coefficients combination inside
those boundaries that causes divergence of the variance
of positions, i.e., those boundaries are necessary (proven)
and sufficient (experimentally showed) for the conver-
gence of the variance of positions. The fixed point of
variance for Eq. 7 was calculated as:

Vx = −k3 + k4

k1k2
(8)
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Fig. 1. Different coefficients result in different fluctuations, IPSO with
ω = 0.99 and c1 = c2 = 0.1 fluctuates smoothly while a particle with
ω = 0.13 and c1 = c2 = 1.8 oscillates more chaotically

where
• k1 = (µφ1

+ µφ2
)2

• k2 = k1(1−µω) + 2(µφ1
+µφ2

)(µ2
ω +σ2

ω − 1) + (σ2
φ1

+
σ2
φ2

)(µω + 1),
• k3 = k1(µω + 1)(µ2

φ1
σ2
p + µ2

φ2
σ2
g + σ2

φ1
σ2
p + σ2

φ2
σ2
g),

• k4 = (µ2
φ1
σ2
φ2

+ µ2
φ2
σ2
φ1

)(µω + 1)(µg − µp)2.
If we consider that p, g, and ω are constants and φ1 and

φ2 follow uniform distributions with µφ1 = c1
2 , µφ2

=
c2
2 , µω = ω, σφ1

= c1√
12

, σφ2
= c2√

12
, σω = 0 (i.e., IPSO

settings), then, after simplifications, Eq. 8 will be exactly
the same as what was found in [10] (Eq. 6) for IPSO.

See also [4] for a comprehensive review on theoretical
investigations of PSO.

C. Patterns of movement
The trajectory of xt (Eq. 7) exhibits different patterns

that are controlled by the values of coefficients [13], [14].
For example, a particle in IPSO with ω = 0.99 and
c1 = c2 = 0.1 oscillates smoothly while a particle with
ω = 0.13 and c1 = c2 = 1.8 oscillates more chaotically
(see Fig. 1). These patterns play an important role in
the performance of the algorithm. As an example, a
particle that moves smoothly in the search space can
be potentially more effective at the latter stages of the
search process than a particle that jumps all over the
search space [14]. Hence, investigation of these patterns
and calculation of their corresponding coefficients can
lead us to further improvement of the method.

Despite the importance of these patterns, there have
not been many articles to study them in detail [4].
The trajectory of xt in OPSO was investigated in [15]
where c1R1,t and c2R2,t were replaced by constants.
Both the movement pattern and the magnitude of xt
were investigated theoretically for that simplified system
and the effects of changing coefficients were visually
illustrated.
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Fig. 2. Categorization of different patterns of oscillation by [13].
The gray levels indicate corresponding coefficients boundaries to non-
oscillatory, harmonic, harmonic-zigzagging, and zigzagging movement
patterns.

The movement patterns of the expectation of xt in
IPSO was categorized into 4 groups [13]: non-oscillatory
(particle position does not oscillate during the run),
harmonic (particle position oscillates smoothly similar
to a wave), zigzagging (particle position oscillate sig-
nificantly at each iteration), and harmonic-zigzagging
(combination of significant oscillation and wave-like os-
cillation). It was found [13] that different patterns are
observed by changing the values of coefficients. Fig. 2
illustrates the relationship between coefficients values
and movement patterns of particles positions expecta-
tions found in [13].

These categories were also investigated in [14] through
some experiments. It was found that the so-called base
frequency of particle positions (the frequency of the
largest amplitude among the Fourier series coefficients
of the particle positions) has a direct relationship with
the patterns of oscillation. This observation was used to
estimate (based on some experiments) the boundaries
corresponding to different oscillation patterns of IPSO
and another PSO variant.

III. PATTERNS OF MOVEMENT: FREQUENCY AND
VARIANCE

The pattern of movement for a particle refers to the way
the position of that particle (xt) changes during the run
that is a function of the coefficients values of that particle
(see Fig. 1). We study two factors related to the patterns
of movement for a particle: range of movement and base
frequency. The range of movement for a particle is the size
of the area that bounds positions the particle experiences
in its lifetime. The base frequency for a particle is the
frequency of the largest amplitude among the Fourier
series coefficients of the particle positions.

In this section we investigate the relationship between
the factors related to movement patterns (i.e., range of
movement and the base frequency) and the particle’s
coefficients in PSO. We propose a system of equations
(section III-C) for which the solutions are coefficient
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Fig. 3. The particle positions in Fig. 1 in the frequency domain.

values that guarantee to achieve a given base frequency
and variance. We investigate this system of equations in
more detail for a specific type of PSO, IPSO (see defini-
tion 1). We also investigate the relationship between the
base frequency and the correlation between consecutive
positions (section III-D) and the variance and the range
of movement (section III-E) in detail.

Definition 1. IPSO is defined by Eq. 7 where both φ1 and
φ2 follow uniform distribution with µφ1

= c1/2, µφ2
= c2/2

(c1 and c2 are constants), σφ1
=

2µφ1√
12

, and σφ2
=

2µφ2√
12

, and
ω is a constant (σω = 0, µω = ω).

Note that Definition 1 is equivalent to the definition
of IPSO presented in section II-A.

A. Base frequency of movement (F )

In PSO variants, the base frequency of positions (see
section II), denoted by F throughout the paper, is di-
rectly related to the oscillation pattern of movement
[14]. Fig. 3 indicates that the base frequency is small
(0.05 Hz) for a particle with a smooth movement (see
Fig. 1) while it is large (almost 0.45 Hz) for a parti-
cle with a more chaotic movement. In this subsection,
we calculate the base frequency of the expectation of
movement through theoretical analysis of Eq. 7. One
should note that F ∈ [0, 0.5] because of the discrete
time in simulation, represented by the iteration number.
The base frequency equal to 0 indicates that the position
of the particle does not oscillate at all while the base
frequency 0.5 means that the position of the particle
oscillates at every iteration.

The expected position of a particle can be calculated
by applying the expectation operator to Eq. 7:

E(xt+1) = lE(xt)− µωE(xt−1) + µφ1
µp + µφ2

µg (9)

where E(xt+1) (Et+1 for short) is the expectation of xt+1,
µω , µφ1 , µφ2 , µp, and µg , are the expected values of ω,
φ1, φ2, p, and g, respectively, and l = 1 +µω −µφ1

−µφ2
.

The characteristic equation for the recursion in Eq. 9 is
written as:

γ2 − lγ + µω = 0 (10)

The roots of this equation (γ1 and γ2) are given by:

γ1 =
l

2
+

√
∆

2
, γ2 =

l

2
−
√

∆

2

where ∆ = l2 − 4µω .
The expectation of position is convergent [12] if and

only if the absolute value of both roots of the characteris-
tic equation are smaller than 1 (i.e., the spectrum radius
is smaller than 1). This entails:

−1 < µω < 1 and 0 < µφ < 2(µω + 1) (11)

Let us assume that the expected value of the position
of particles is convergent and it converges to a value Ex.
Thus, Ex = lEx + µωEx + µφ1

µp + µφ2
µg , that results in:

Ex =
µφ1µp + µφ2µg
µφ1

+ µφ2

(12)

There are three cases for the solution to the recursion
in Eq. 9:

1) Et = rt(a × cos(θt) + b × sin(θt)) + K if the char-
acteristic equation has two distinct complex roots
(γ1 = r∠θ and γ2 = r∠− θ),

2) Et = aγt1 + bγt2 +K if the characteristic equation has
two distinct real roots,

3) Et = aγt1 + btγt2 + K if characteristic equation has
one repeated real root,

The values of a, b, and K are constants that are
calculated according to the initial conditions1. Clearly,
if the sequence is convergent (i.e., Eq. 11 holds) then
K = Ex.

Lemma 1. If the roots of the characteristic equation of the
recursion in Eq. 9 (formulated in Eq. 10) are complex then

F =
tan−1( im(

√
∆)

l )

2π
(13)

where F is the base frequency of the expectation of positions
generated by Eq. 7.

Proof. If the roots of the characteristic equation are com-
plex then im(γ1) = im(

√
∆
2 ) (where im(β) is the imagi-

nary component of β), im(γ2) = −im(γ1), and re(γ1) =
re(γ2) = l

2 (where re(β) is the real component of β).
Hence, r =

√
im(γ1)2 + re(γ1)2 =

√
im(γ2)2 + re(γ2)2

and θ = tan−1(im(γ1)/re(γ1)) = −tan−1(im(γ2)/re(γ2)).
Because the solution of the characteristic equation is
written as a summation of sin and cos functions, the

1As the values of x0 and v0 are known (initialized), the value of
E(x0) and E(x1) are also known (E(x0) = x0 and E(x1) = E(x0) +
E(v0)). Also, γ1 and γ2 can be found by solving Eq. 10. Hence, one
can form a system of equations that involves E(x0) and E(x1) to find
the values of a and b. Also, note that K = Et as we assumed that Eq.
11 holds.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

sequence Et is periodic and oscillatory. The base fre-
quency of oscillation is related to the value of θ and it is
calculated by:

F =
θ

2π
=
tan−1( im(

√
∆)

l )

2π
(14)

Eq. 13 determines the oscillation frequency of the
expectation of the particle movement when the roots are
complex.

Let us investigate the cases where the roots are real.

Lemma 2. Assume that the roots of the characteristic equa-
tion (Eq. 10) are real. We define λ as:

λ =


γ1 if |γ1| > |γ2|
γ2 if |γ1| < |γ2|
min(γ1, γ2) if |γ1| = |γ2|

(15)

where γ1 and γ2 are the roots of the characteristic equation
(Eq. 10).
• if λ < 0 then F = 0.5
• if λ ≥ 0 then F = 0

Proof. There are two possibilities when the roots are real:
there is one repeated roots or they are distinct.

If the roots are repeated (λ = γ1 = γ2) then Et =
aγt+btγt+K. If λ < 0 then the sign of aλt+btλt changes
at every iteration that corresponds to a zigzag pattern
(F = 0.5). If λ ≥ 0 then the sign of aλt + btλt does
not change that corresponds to a no-oscillation pattern
(F = 0).

Now we assume that the roots are distinct (γ1 6= γ2).
There are two cases: |γ1| 6= |γ2| and |γ1| = |γ2|.

Let |γ1| 6= |γ2|. Without loss of generality, we can
assume that λ = γ1, i.e., |γ1| > |γ2|. In this case,
for any a and b, there exists an iteration t0 that, for
any t > t0 we have |aγt1| > |bγt2|, i.e., aγt1 dominates
bγt2 from the iteration t0. If γ1 < 0 then, because aγt1
dominates bγt2 from the iteration t0, the sign of aγt1 + bγt2
changes at every iteration after t0. Therefore, if Et < K
then Et+1 > K and if Et > K then Et+1 < K at
every iteration. This means that Et will follow a zigzag
pattern after iteration t0, thus, F = 0.5. If γ1 ≥ 0 then
aγt1 + bγt2 ≥ 0 for all t > t0. Hence, the value of Et
becomes closer to K from one side that refers to a non-
oscillatory pattern, F = 0.

If |γ1| = |γ2| then (recall that γ1 6= γ2) aγt1 and bγt2 will
have opposite signs at every second iteration (depending
on the sign of a and b, it can be every odd or even
iteration) and the same sign at the rest of iterations.
Hence, as K is constant, the pattern of movement is
zigzag for which F = 0.5.

One should note that the case |γ1| = |γ2| (while
γ1 6= γ2) corresponds with γ1 = −γ2 that means the
characteristic equation is in the form of γ2−γ2

1 = 0. This
means that µω = −γ2

1 and l = 0.

Lemma 3. If both roots of the characteristic equation (Eq. 10)
are real then:

• l ≤ 0 implies F = 0.5
• l > 0 implies F = 0

Proof. If l < 0 then γ2 < 0. Also, as l < 0 and
√

∆ ≥
0, clearly |l −

√
∆| ≥ |l +

√
∆| that means |γ2| ≥ |γ1|.

Therefore, according to Lemma 2, F = 0.5 that completes
the proof for this case.

If l > 0 then γ1 > 0. Also, as l > 0 and
√

∆ ≥ 0, hence
|l −
√

∆| ≤ |l +
√

∆| that means |γ1| ≥ |γ2|. Therefore,
according to Lemma 2, F = 0 that completes the proof
for this case.

If l = 0 then |γ1| = |γ2| that, according to the proof of
Lemma 2, it imposes F = 0.5.

Lemma 4. The frequency F for the recursion in Eq. 9 can be
calculated by

F =

{
0.5 if 1 + µω = µφ1

+ µφ2
, µω ≤ 0

tan−1(
im(
√

∆)
l )

2π otherwise
(16)

regardless of the type (real or complex) of the roots for its
characteristic equation (Eq. 10).

Proof. The roots of the characteristic equation are either
complex or real. Let us assume that the roots are com-
plex. In this case Eq. 13 (that is equal to the second part
of the Eq. 16) gives the base frequency of Et as discussed
in Lemma 1, that completes the proof for this case.

If the roots are not complex (im(
√

∆) = 0, hence, ∆ ≥
0), from Lemma 3, F = 0.5 if l < 0, F = 0 if l > 0, and
F = 0.5 if l = 0. It is clear that Eq. 13 returns F = 0
if l > 0 and F = 0.5 if l < 0 as well, hence, Eq. 13 can
calculate the value of F correctly when l > 0 or l < 0
and ∆ ≥ 0 (two real roots). If ∆ ≥ 0 (two real roots) and
l = 0 (that corresponds to 1+µω = µφ1

+µφ2
and ∆ ≥ 0),

F = 0.5 according to Lemma 3 while Eq. 13 is undefined
with this setting. Hence, Eq. 16 returns correct value in
this case.

Therefore, Eq. 16 describes the base frequency of the
expectation of positions in PSO (Et) defined by Eq. 7,
no matter what the roots of the characteristic equation
are.

This lemma indicates that the value of F can be
calculated via Eq. 13 if there is a guarantee that the
statement “1 + µω = µφ1

+ µφ2
and µω ≤ 0” is false.

In fact, the points on the line segment 1+µω = µφ1
+µφ2

when µω ≤ 0 cause the nominator of Eq. 13 to become
0
0 which is undefined.

We use Eq. 16 to calculate frequencies for the coef-
ficients sets in Fig. 1. We found that F = 0.051 when
ω = 0.99, µφ1 = µφ2 = 0.1 and F = 0.44 when ω = 0.13,
µφ1 = µφ2 = 1.8 which matches almost perfectly with
the simulation results. Fig. 4 shows the value of F for
different values of µφ1

= µφ2
= µφ and µω . Clearly, this

figure generalizes the findings of [13] about oscillation
patterns presented in Fig. 2.

Theorem 1. For a given F and µω > 0, µφ1
+ µφ2

can be
calculated as:
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• If F = 0 then µφ1
+ µφ2

≤ 1 + µω − 2cos(2πF )
√
µω

• If F = 0.5 then µφ1
+ µφ2

≥ 1 + µω − 2cos(2πF )
√
µω

• If F ∈ (0, 0.5) then µφ1 +µφ2 = 1+µω−2cos(2πF )
√
µω

Proof. According to Lemma 4, Eq. 13 can be used to find
F if µω > 0.

There are three cases if µω > 0:

1) If F = 0 then, according to Eq. 13, im(
√

∆) = 0 (i.e.,
∆ ≥ 0) and l > 0. This means l2 ≥ 4µω , and, as l > 0,
hence 1+µω−2

√
µω ≥ µφ1

+µφ2
. It is then trivial to

write this as: 1 + µω − 2cos(2πF )
√
µω ≥ µφ1

+ µφ2
,

2) If F = 0.5 then, according to Eq. 13, im(
√

∆) = 0
(i.e., ∆ ≥ 0) and l < 0. This means l2 ≥ 4µω , and, as
l < 0, we have 1 +µω + 2

√
µω ≤ µφ1

+µφ2
. It is then

trivial to write this as: 1 + µω − 2cos(2πF )
√
µω ≤

µφ1
+ µφ2

,
3) If F ∈ (0, 0.5) then im(

√
∆) 6= 0 that means ∆ < 0

and, therefore l2 < 4µω (both roots are complex). As
∆ < 0, the value of im(

√
∆) is given by

√
−∆. From

Eq. 13:

tan(2πF ) =

√
4µω − (1 + µω − µφ1

− µφ2
)2

1 + µω − µφ1
− µφ2

(17)

Obviously, the value of tan(2πF ) is positive for F ∈
[0, 0.25] and negative for F ∈ [0.25, 0.5]. Given that the
nominator is always positive, thus 1+µω−(µφ1 +µφ2) < 0
if F ∈ [0, 0.25] and 1 + µω − (µφ1

+ µφ2
) > 0 if F ∈

[0.25, 0.5]. We solve Eq. 17 for µφ:

µφ1 + µφ2 = 1 + µω ± 2cos(2πF )
√
µω

In the case of F ∈ [0, 0.25], the value of cos(2πF )
is positive. As in this case 1 + µω − (µφ1

+ µφ2
) < 0

must be satisfied, the sign for cos(2πF )
√
µω should be

negative. Therefore, in this case: µφ1
+ µφ2

= 1 + µω −
2cos(2πF )

√
µω . In the case of F ∈ [0.25, 0.5], the value

of cos(2πF ) is negative. As in this case 1 + µω − (µφ1 +
µφ2) > 0 must be satisfied, the sign for 2cos(2πF )

√
µω

is positive. Therefore, in this case: µφ1
+ µφ2

= 1 + µω −

2cos(2πF )
√
µω as well. Hence, if both roots are complex

then, for a given F and µω :

µφ1 + µφ2 = 1 + µω − 2cos(2πF )
√
µω (18)

that completes the proof.

One should note that Eq. 18 is sufficient to find appro-
priate µφ1

+ µφ2
for any F ∈ [0, 0.5] when µω > 0, even

on the boundary points (F = 0 and F = 0.5). According
to this theorem, the value of c = c1 = c2 in IPSO can be
calculated for a given F and ω > 0 as:

c = 1 + ω − 2cos(2πF )
√
ω (19)

We will use this equation later in section III-C to
control the movement patterns of particles during the
run.

B. Variance of movements (Vc)
The fixed point of the variance of positions for a

particle with position update rule in Eq. 7 is calculated
by Eq. 8. Hence, for IPSO (see section II-B for IPSO
setting) and c1 = c2 = c, Vx is written as:

Vx =
c(ω + 1)[8(σ2

p + σ2
g) + (µg − µp)2]

4(c(5ω − 7)− 12ω2 + 12)
(20)

Note that c = c1 = c2 imposes c1 >= 0 and c2 >= 0 as
c1 + c2 ≥ 0 is necessary for convergence of expectation
(see Eq. 11). Equation 20 can be written as Vx = Vc[8(σ2

p+
σ2
g) + (µg − µp)2], where

Vc =
c(ω + 1)

4(c(5ω − 7)− 12ω2 + 12)
(21)

Vc is called the variance coefficient. The main difference
between Vx and Vc is that Vc is independent of the
changes in p and g. Hence, one can set the range of the
search through changing the value of Vc during the run.
Of course the reflection of this in Vx also depends on
8(σ2

p + σ2
g) + (µg − µp)2.

If µg = µp and σp = σg = 0 then Vx becomes zero
which means that the particle stops moving, no matter
what the value for Vc is. However, as long as µg 6= µp or
σp+σg 6= 0, the variance of positions can be controlled by
Vc. Fig. 5 shows the value of ln(Vc) (natural logarithm)
for different values of c and ω. Clearly, for a fixed ω, Vc is
a monotonic function of c. However, this is not true for
a fixed c, i.e., if c is constant then Vc is not a monotonic
function of ω.

To achieve a desired Vc, one can solve Eq. 21 for c as
follows:

c =
−48Vcω

2 + 48Vc
28Vc + ω − 20Vcω + 1

(22)

For a given Vc and ω, one can find c using this
equation. We will use this equation later in section III-C
to control the movement patterns of particles.

For parameter setting purposes, one should note that
the changes of ω and c may have a large influence on
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Fig. 5. The value of ln(Vc) (natural logarithm). The darker the color
is, the smaller the value of Vc is. The dotted line represents the
convergence boundary.

the value of Vc, especially when these values are closer
to the ”edges” of the convergence boundary (Fig. 5). For
example, for ω = 0.4, the value of Vc is almost 0.77,
0.81, 3, and 23 when c is 0.043, 0.047, 1.97, and 2.01,
respectively. This indicates that 2% changes in c imposes
almost 90% changes on Vc when c is large, while 9%
changes in c imposes almost 5% changes in Vc when c is
small. This emphasizes the importance of the precision
that need to be considered for parameter setting of PSO
methods.

C. Calculation of coefficients for given Vc and F

For given F and Vc, one is able to calculate the values
for c and ω > 0 for IPSO by solving a system of equations
that involves Eq. 18 and Eq. 22 (see Eq. 23).{

c = 1 + ω − 2cos(2πF )
√
ω

c = −48Vcω
2+48Vc

28Vc+ω−20Vcω+1

(23)

The value of ω can be calculated by solving the
following equation:

hF,Vc(ω) =
−48Vcω

2 + 48Vc
28Vc + ω − 20Vcω + 1

− 1− ω + (24)

2cos(2πF )
√
ω = 0

The value for c can be then calculated by substituting
ω in one of the equations in Eq. 23.

In order to prove the existence of at least one solution
(let us call it (ω0, c0)) for the system of equations in Eq.
23, we prove that ω0 exists (the function hF,Vc(ω) has
at least one real root in [0, 1] within its domain). The
value of ω0 is then substituted in one of the equations
in Eq. 23 to calculate c0. We first prove that hF,Vc(ω) is
continuous (Lemma 5) within the given domain (ω ∈
[0, 1] for any Vc ≥ 0 and any F ∈ [0, 0.5]) and then

we use the intermediate value theorem2 to prove that
this function has at least one root for any Vc ≥ 0.05
and any F ∈ [0, 0.5] (Theorem 2). We explain later why
Vc ∈ [0, 0.05) might result in no feasible combination of
coefficients to achieve a given Vc and F .

Lemma 5. For any Vc ≥ 0, F ∈ [0, 0.5], and ω ∈ [0, 1],
hF,Vc(ω) is continuous.

Proof. We write hF,Vc(ω) = h1
F,Vc

(ω) + h2
F,Vc

(ω) where
h1
F,Vc

(ω) = −48Vcω
2+48Vc

28Vc+ω−20Vcω+1 and h2
F,Vc

(ω) = −1 − ω +

2cos(2πF )
√
ω. We prove that both h1

F,Vc
(ω) and h2

F,Vc
(ω)

are continuous in the given domain and, because adding
two continuous functions results in a continuous func-
tion, it completes the proof for continuity of hF,Vc(ω).

It is clear that h2
F,Vc

(ω) is continuous if ω ∈ [0, 1], hence,
we focus on h1

F,Vc
(ω). h1

F,Vc
(ω) is continuous everywhere

except when its denominator is zero (28Vc+ω−20Vcω+
1 = 0). This denominator is zero if and only if Vc =
ω+1

20ω−28 . The derivative of this formulation is −48
(20ω−28)2

that is always negative, meaning that it is monotonically
decreasing in this domain. Thus, the maximum value
of Vc for ω ∈ [0, 1] is found at ω = 0 that results in
Vc = −1/28 that is smaller than 0. Hence, there is no
value of ω in [0, 1] that causes 28Vc + ω − 20Vcω + 1 = 0
for any Vc ≥ 0, that means h1

F,Vc
(ω) is continuous in

this domain. Therefore, both h1
F,Vc

(ω) and h2
F,Vc

(ω) are
continuous for any Vc ≥ 0, F ∈ R, and ω ∈ [0, 1], that
means hF,Vc(ω) is continuous in this domain.

We use this lemma to prove the existence of at least
one real solution for the systems of equations in Eq. 23.

Theorem 2. For any Vc ≥ 0.05 and F ∈ [0, 0.5], there exists
at least one solution (ω0, c0) for the system of equations in
Eq. 23 where ω0 ∈ [0, 1] and the pair (ω0, c0) guarantees
convergence of variance.

Proof. We prove that hF,Vc(ω) = 0 has at least one real
solution ω0 ∈ [0, 1]. According to Lemma 5, hF,Vc(ω) is
continuous in the domain ω ∈ [0, 1] for any Vc ≥ 0.05 and
any F . For any Vc and ω = 1, It is clear that hF,Vc(1) =
2cos(2πF ) − 2 which guarantees hF,Vc(1) ≤ 0. Also, we
calculate hF,Vc(0) as follows

hF,Vc(0) =
48Vc

28Vc + 1
− 1 (25)

It is clear that hF,Vc(0) ≥ 0 for any F and any Vc ≥
0.05. This means that, for any F and Vc ≥ 0.05, there
is at least one ω ∈ [0, 1] that causes hF,Vc(ω) to change
its sign from negative to positive, hence, based on the
intermediate value theorem, hF,Vc(ω) has at least one real
root in that domain for any F and Vc ≥ 0.05.

As hF,Vc(ω) = 0 has at least one real root in [0, 1], this
solution can be used to calculate c in Eq. 23, hence, the

2If f is continuous on a closed interval [a, b] and c ∈ [f(a), f(b)]
then there exists x ∈ [a, b] such that f(x) = c. In a special case, if we
assume that f(a)f(b) < 0 then there exists an x in the interval [a, b]
that f(x) = c, i.e., f has a root in the interval [a, b]. This special case
is known as the Bolzano theorem[16].



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

c=c
1
=c

2

ω

 

 
 ← (0.36256, 0.88299)

 ← (0.24473, 0.97758)

 ← (1.4064, 0.045645)
 ← (1.8357, 0.1355)

F = 0.1

V
c
 = 0.1

F = 0.08

V
c
 = 8

F = 0.41

V
c
 = 0.15

F = 0.45

V
c
 = 3

Fig. 6. The values of (c, ω) when (F, Vc) ∈
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found value for ω and c will guarantee convergence of
variance, that completes the proof.

The reason why we only considered the cases where
Vc ≥ 0.05 is that hF,Vc(0) (Eq. 25) is negative for 0 ≤
Vc < 0.05, hence, with this setting, the intermediate value
theorem does not provide any information about the
existence of real roots for hF,Vc(ω) (Eq. 24). Intuitively,
small values for Vc are achievable only if c is small (see
Fig. 5). However, if c is small then some large values of F
are not achievable for any ω (see Fig. 4). This means that
choosing small values for Vc might result in no solution
for Eq. 24.

One can simplify Eq. 24 as:

ĥF,Vc(ω) = −(28Vc + 1)b4 + 2(1− 20F ′Vc)b
3 (26)

−2(4Vc + 1)b2 + 2F ′(28Vc + 1)b+ 20Vc − 1 = 0

where ω = b2 and F ′ = cos(2πF ). This equation is poly-
nomial and can be solved by many different methods
(we use the method proposed in [17] to solve this equa-
tion and find (ω0, c0) in this paper). Note that, according
to Theorem 2, hF,Vc(ω) and, consequently, ĥF,Vc(ω), have
at least one real root in [0, 1] when Vc ≥ 0.05 and
F ∈ [0, 0.5].

Fig. 6 shows the value of ω and c for four dif-
ferent pairs of frequencies and variance coefficients,
(F, Vc) ∈ {(0.1, 0.1), (0.08, 8.0), (0.41, 0.15), (0.45, 3.0)}.
For each case, the curves corresponding to F and Vc
have been shown (in c vs ω space). The crossing points
of these curves are solutions for the system of equations
given by Eq. 23.

D. F and correlation between positions

We experimentally investigate the relationship be-
tween F and the correlation between positions (the
Pearson correlation between xt and xt+1 for any t).
We set Vc ∈ {0.5, 1.5, 2, 2.5, ..., 25} and, for each Vc and
F ∈ {0.01, 0.02, ..., 0.49}, we calculate c and ω by solving
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tio
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Fig. 7. The vertical axis shows the correlation measure and the
horizontal axis shows F . The graph shows the average and standard
deviation of the correlation measure for different values of Vc. The
figure indicates that Vc does not influence the relationship between
F and the correlation measure. The value of p and g were set to 1
and 5 respectively. However, our experiments showed that any other
values for p and g result in the same relationship between F and the
correlation coefficient.

the system of equations in Eq. 23. For each pair (ω, c),
we simulate one particle of IPSO (p and g constants),
50 times, for 1,000 iterations and calculate the Pearson
correlation coefficient between positions in these runs
(i.e., the correlation matrix Corr that is 1000 × 1000
where Corri,j shows the correlation between positions
at iteration i and iteration j estimated through 50 runs).
We calculate the correlation measure as the average of
the correlation coefficient between each position and
its previous one in those runs (i.e., correlation measure

=

1000∑
i=2

Corri,i−1

1000 ). If the positions are independent from
one another (see Fig. 7) then the correlation measure is
close to zero.

Fig. 7 indicates that the correlation measure is equal to
zero (positions are mostly independent) when F = 0.25.
However, the positions are positively correlated when
F < 0.25 and negatively correlated when F > 0.25.
Hence, for smaller F (positive correlation), the particle
moves smoothly and for larger F (negative correlation)
particle jumps from one place to another. Also, the most
random-like movement takes place at F = 0.25, i.e.,
particle position at each iteration is independent of the
position at the previous iteration. All these conclusions
are in fact independent of the value of Vc, as Fig. 7
indicates (Vc applies small variance to the correlation
measure indicating that the relationship between F and
the correlation measure is independent of Vc).

E. Vc and the range of search

The variance of movement is closely related to the
range that a particle covers during the search, i.e., for
a fixed distribution, a larger range is covered when the
variance is larger. Hence, one can use the variance as a
measure for the range of the search by a particle.
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In the case of IPSO with c1 = c2, because the expec-
tation of xt is between p and g (recall that c1 ≥ 0 and
c2 ≥ 0), the particle’s position (xt) oscillates between p
and g with the variance Vc(g − p)2. If Vc is too small
then, depending on the distribution of the positions3,
xt, the particle may not sample any point outside the
boundaries of [min(p, g),max(p, g)]. However, from the
search perspective, there is no reason to expect any high
quality solution between p and g. Hence, a small Vc may
result in an inefficient search. It is therefore desirable to
guarantee that the positions of particle have a chance
to go beyond the interval [Ex − P1, Ex + P2], where
P1 = min{p, g} and P2 = max{p, g}.

Theorem 3. For any distribution of xt generated by the
recursion in Eq. 7, given that g 6= p, if

Vc >

(
max(µφ1

, µφ2
)

µφ1
+ µφ2

)2

(27)

then the number of points generated by xt outside the interval
(Ex − P1, Ex + P2) is non-zero where P1 = min{p, g} and
P2 = max{p, g}.

Proof. It is trivial to show that, for any distribution with
the expectation µ and the standard deviation σ, the num-
ber of points randomly generated by that distribution
outside of the interval (µ− σ, µ+ σ) is larger than zero.
Hence, if we guarantee that Ex +

√
Vx > max{p, g} and

Ex −
√
Vx < min{p, g} then there is a guarantee that the

number of points outside (Ex−P1, Ex+P2) is non-zero.
If µφ1

> 0 and µφ2
> 0 then min{p, g} < Ex <

max{p, g}. Let us assume that g > p. In this case, if
Ex +

√
Vx > g then µφ1

p+µφ2
g

µφ1
+µφ2

+
√
Vc(g − p) > g that

leads to
√
Vc >

µφ1

µφ1
+µφ2

. Also, if Ex −
√
Vx < p then

µφ1
p+µφ2

g

µφ1
+µφ2

−
√
Vc(g− p) < p that leads to

√
Vc >

µφ2

µφ1
+µφ2

.
The same analogy can be followed when p > g that
results in the same outcome.

Hence, if
√
Vc >

max(µφ1
,µφ2

)

µφ1
+µφ2

then Ex +
√
Vx >

max{p, g} and Ex −
√
Vx < min{p, g} are guaranteed

that, in fact, guarantees that the number of points gen-
erated by xt outside the interval (Ex − P1, Ex + P2) is
non-zero.

This theorem enables practitioners to prevent situa-
tions where the particles only search a small area be-
tween p and g. The criteria found in Theorem 3 is inde-
pendent of the distribution of xt and other parameters
in Eq. 7. Specific distribution of xt is needed to calcu-
late a more accurate measure of the number of points
generated outside of the interval (Ex − P1, Ex + P2).
Also, for specific distributions for xt (e.g., normal), if
known, there might be better lower bounds to ensure the
percentage of points that are outside (Ex − P1, Ex + P2)

3The exact distribution of xt depends on the distribution of p, g,
c1, c2, and ω and, to the best of our knowledge, it is unknown. There
are experimental evidence, however, that show this distribution is bell-
shaped (claimed to be normal in [18]) for IPSO settings. Although the
experiments show that this distribution is bell-shaped, no proper proof
has been provided to show whether it is normal.

is larger than zero. It is easy to see that if more points
are sampled inside (Ex − P1, Ex + P2) then more points
need to be sampled outside of this interval to ensure that
the variance remains constant. For µφ1

= µφ2
, ensuring

Vc > 0.25 guarantees that the particle positions move
beyond (Ex − P1, Ex + P2), no matter the distribution
of the xt. Hence, for IPSO, Vc > 0.25 guarantees search-
ing outside of (Ex − P1, Ex + P2). We remind that the
necessary condition for this theorem is that p 6= g. To
guarantee that p 6= g one can add some perturbation to
p and g, that in turn may make the algorithm locally
convergent, see [19], [14], [4] for details.

IV. EXPERIMENTS

The aim of this section is to understand which values
for frequency and variance have better performance on
a set of benchmark test functions. We introduce the
benchmark we use for the tests and discuss how we
conduct the comparisons. Then, we apply IPSO with
different coefficients to these benchmarks and investigate
the effects of F and Vc on the performance of the
algorithm.

A. Benchmarks and comparison strategy

We use the CEC2014 benchmark set [20] that contains
30 optimization functions (for all functions, each dimen-
sion is bounded in [−100, 100]) to test the performance
of different methods (the term ”methods” refers to IPSO
algorithms with different coefficient values in this sec-
tion). In analyses we focus on 10 dimensional problems
and we set the swarm size to 20. We use both 10 and
30 dimensional problems for comparison between our
proposed coefficients combinations and existing ones.
Also, we run each method 96 times in experiments.

We use the Wilcoxon test to find if the performance
difference between two method on a particular function
k is significant (the confidence bound p ≤ 0.05). We
define si,j,k by

si,j,k =


1 if Ri,k < Rj,k and p ≤ 0.05

0 p > 0.05

−1 if Rj,k < Ri,k and p ≤ 0.05

where p is the confidence bound of the Wilcoxon test
that compares methods i and j, and Ri,k is the median
of the results of the method i when it is applied to the
function k. We assign a ”point” Mi to each method i as
follows:

Mi =

m∑
j=1

zi,j (28)

where zi,j is defined by

zi,j =


a1 if

∑n
k=1 si,j,k > b

a2 if |
∑n
k=1 si,j,k| ≤ b

0 if
∑n
k=1 si,j,k < −b
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Fig. 8. The darker the square is, the better the performance of that
combination of (Vc, F ) (a) short run, (b) long run, (c) very long run.

In this paper, we set a1 = 3, a2 = 1, and b = 0,
unless stated. Note that

∑n
k=1 si,j,k > b indicates that

the number of functions for which method i performs
significantly better, according to the Wilcoxon test, than
method j is larger than the number of test functions
for which method j performs significantly better than
method i by at least b+ 1.

The best method is determined by sorting the vector
M in descending order. In the case of a tie between two
methods (Mi = Mj), the value of Si =

∑m
j=1

∑n
k=1 si,j,k

is used to determine which method is better. The value
of Si is the total score the method i has received against
all other tested methods.

B. Effects of F and Vc on the search performance

In order to test the effect of Vc and F on the per-
formance of IPSO, we set Vc ∈ {0.1, 0.4, 1.6, 6.4, 25.6}
and F ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45} and
calculate ω and c for each pair of (Vc, F ) by solving Eq.
23. We compare IPSO with these different coefficients
(5 × 9 coefficient pairs) using the comparison strategy
introduced in section IV-A. We conduct three sets of tests,
one with a small number of function evaluations (2500×d
function evaluations, we call it short run), one with a
larger number of function evaluations (25000×d function
evaluations, we call it long run), and another with even
larger number of function evaluations (50000×d function
evaluations, we call it very long run). The value of M
for each combination of (Vc, F ) has been shown in Fig.
8.

In a short run, it is clear that the coefficients corre-
sponding with the medium to large Vc and medium F
have better performances. This indicates that, in a short
run, a chaotic search (medium F ) that covers a large
area (large variance) has a better performance. When the

TABLE I
TOP THREE COEFFICIENTS COMBINATIONS FOR SHORT, LONG, AND

VERY LONG RUNS. RANK SHOWS THE RANKING OF IPSO THAT USES
THOSE COMBINATIONS FOUND BY THE STRATEGGY EXPLAINED IN

SECTION IV-A.

Run Rank ω c Vc F

Short
1 0.711897 1.711897 25.6 0.25
2 0.836416 1.271188 25.6 0.2
3 0.832043 1.268295 6.4 0.2

Long
1 0.836416 1.271188 25.6 0.2
2 0.704772 1.704772 6.4 0.25
3 0.711897 1.711897 25.6 0.25

Very long
1 0.913799 0.790038 6.4 0.15
2 0.96506 0.375544 25.6 0.1
3 0.836416 1.271188 25.6 0.2

number of iterations increases, the performance of the
methods with coefficients corresponding with smaller F
are improved (no significant changes of the best choices
for Vc comparing to the short runs is observed). The rea-
son is that, in a longer run, particles need to conduct an
“accurate” search around existing high quality solutions
at the latter stages of the search. When F is small, xt
is close to xt+1 at each iteration t that results in a more
”accurate” search. Hence, we expect that, if such accurate
search is needed then a coefficient combination that im-
poses small F shows a good performance. Note that, in
all cases (short, long, and very long), the coefficients that
impose small variance have a very poor performance as
they cannot cover sufficiently large areas, specially at the
early stages of the search that such behavior is needed.

Table I shows the top three combination of coefficients
in short, long, and very long runs. The results of IPSO
when it uses these coefficients is compared with the re-
sults of the algorithm when it uses well-known existing
coefficients in the next section.

One should note that in all experiments in this paper
we use the CEC2014 benchmark problems for which
each dimension of the search space is bounded in
[−100, 100]. Therefore, to solve a new problem with
different boundaries, a standardization procedure might
be needed to map the boundaries of that problem to
[−100, 100]. On potential mapping is given by yi =
ui−li
200 (xi + 100) + li where xi is the ith dimension of
~x (the solution candidate in [−100, 100]d), yi is the ith

dimension of the mapped vector, and li and ui are the
search space boundaries of the ith dimension of the
problem.

C. Comparison with well-known coefficients

We compare the results of the top three combinations
of coefficients in short run, long run, and very long run
(see Table I) with those of other coefficients for IPSO in
literature. The value of F and Vc for each combination
(proposed in this paper and taken from earlier research)
have been shown in Table II. The value of F for most
existing coefficients (A1 to A5) sets is around 0.2 and
0.25. This means that, most experimental approaches
have picked coefficients combinations in a way that the
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TABLE II
FREQUENTLY USED COEFFICIENTS FOR IPSO TOGETHER WITH

PROPOSED COEFFICIENTS. FOR EACH COEFFICIENT PAIRS THE VALUES
OF F AND Vc HAVE BEEN ALSO REPORTED.

Proposed
in Set F Vc c ω

[21] A1 0.22803 1.0581 1.494 0.729
[13] A2 0.26028 0.77273 1.7 0.6
[22] A3 0.24859 17.0298 1.7 0.715
[23] A4 0.19968 0.29988 1.193 0.721
[11] A5 0.26599 0.24047 1.55 0.42
This paper A6 0.25 25.6 1.711897 0.711897
This paper A7 0.2 25.6 1.271188 0.836416
This paper A8 0.2 6.4 1.268295 0.832043
This paper A9 0.25 6.4 1.704772 0.704772
This paper A10 0.1 25.6 0.375544 0.965060
This paper A11 0.15 6.4 0.913799 0.790038

positions generated by each particle is almost random.
Also, the value for Vc in these settings is not that large
except for the set A3 that was intentionally set to impose
a large variance. One potential reason behind the lack of
coefficients to impose large Vc is that most coefficients
have been obtained by some experiments in which the
coefficient values are changed by a step size. However,
as Vc is very sensitive to the changes of the values of
coefficients (see section III-B), setting this step sizes to a
relatively large value could skip coefficient sets that im-
pose large variances. In addition, the parameter settings
for IPSO are usually conducted for specific benchmark
functions and, because the variance of movement also
depends on g and p, the picked functions can play a very
important role on the best found combination. As an
example, if the function is smooth then p and g become
very close to each other at the early stages of the search
that leads to vanishing the effect of Vc at the early stages
of the search. Hence, the impact of the coefficients on the
variance of movement is not observed.

We test IPSO with the coefficients in Table II us-
ing the benchmark functions and comparison strategy
introduced in section IV-A. We run the methods for
2500 × d function evaluations (short run), 25000 × d
function evaluations (long run), and , 50000×d function
evaluations (very long run). Table III shows that, for
10 dimensional test cases, the combination A7 has the
best performance for short runs, A8 for long runs, and
A10 for very long runs. Clearly, the performance of
low frequency setting (A10) has become better when
the number of function evaluations increases. Also, the
setting A6 results in the best performance in general
(third place in all tests). The coefficients combination A5

shows very poor results comparing to the others. One
explanation for this poor performance is that the value of
Vc that this combination imposes is small that may result
in inefficient search in the search space (see theorem 3).
See section VI, Appendix, for detailed results related to
these comparisons.

We also test the performance of IPSO with the coef-
ficients in Table II on 30 dimensional problems. Results
indicate almost the same conclusions as what was drawn

TABLE III
EXPERIMENTAL RESULTS FOR 10 DIMENSIONAL PROBLEMS. THE RANK
OF EACH PARAMETER SET FOR DIFFERENT TESTS (SHORT, LONG, AND

VERY LONG RUNS) HAS BEEN INDICATED IN PARENTHESES IN THE
“POINTS” COLUMN. THE ”SCORE” COLUMN INDICATES THE SCORE

VALUE CALCULATED THROUGH THE PROCEDURE DESCRIBED IN
SECTION IV-A.

Set Short run Long run Very long run
Points Scores Points Scores Points Scores

A1 10 (8) -22 10 (8) -54 10 (8) -63
A2 7 (9) -47 7 (9) -67 7 (9) -61
A3 29 (2) 96 26 (2) 94 16 (7) 63
A4 4 (10) -168 4 (10) -212 4 (10) -205
A5 1 (11) -263 1 (11) -262 1 (11) -283
A6 25 (3) 91 24 (3) 95 22 (3) 91
A7 29 (1) 101 19 (5) 80 24 (2) 103
A8 20 (4) 83 26 (1) 95 20 (5) 84
A9 20 (5) 76 20 (4) 87 21 (4) 84
A10 13 (7) -12 17 (7) 70 29 (1) 103
A11 16 (6) 65 19 (6) 74 16 (6) 84

TABLE IV
EXPERIMENTAL RESULTS FOR 30 DIMENSIONAL PROBLEMS. SEE TABLE

III FOR EXPLANATION OF “POINTS” AND ”SCORE” COLUMNS.

Set Short run Long run Very long run
Points Scores Points Scores Points Scores

A1 16 (6) 48 13 (7) 29 13 (7) -15
A2 10 (8) -29 7 (9) -95 7 (9) -102
A3 31 (1) 133 26 (3) 136 10 (8) -76
A4 4 (10) -204 4 (10) -216 4 (10) -215
A5 1 (11) -278 1 (11) -288 1 (11) -287
A6 28 (2) 126 29 (1) 140 26 (2) 143
A7 22 (4) 99 22 (4) 119 20 (4) 117
A8 19 (5) 75 19 (5) 98 20 (5) 110
A9 25 (3) 122 27 (2) 140 26 (3) 134
A10 7 (9) -87 10 (8) -86 31 (1) 164
A11 13 (7) -5 16 (6) 23 16 (6) 27

in 10 dimensional experiments.

V. CONCLUSION AND FUTURE WORKS

In this paper we studied two factors to character-
ize movement patterns for a particle in PSO, namely
the range of movement and the correlation between
positions generated by the particle. We focused our
investigations on these two factors to find how they
impact the performance of the method. We then showed
that base frequency, F , can formulate the correlation
between positions generated by particles (F = 0.25
causes zero correlation between positions, F < 0.25
causes positive and F > 0.25 causes negative correlation
between positions) and the variance of movement, Vc,
can formulate the range of movement. We found that
these factors, especially Vc, are very sensitive to the
changes of the coefficients values. We provided formulas
to find appropriate acceleration coefficients to achieve
a given F (Eq. 18) or Vc (Eq. 21) for a given ω. We
also provided a system of equations (Eq. 23) to find
the values of c and ω for a given Vc and F and we
proved that this system of equations has at least one
solution for any Vc ≥ 0.05, F , with ω ∈ [0, 1] that
guarantee convergence of variance. Hence, by setting
the coefficients to guarantee a given Vc and F , one can



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

control the movement pattern of particles during the
run. We experimentally tested the impact of Vc and F
on the search and we found that smaller values for F
are more effective when the number of iterations is large.
These experiments also showed that a large Vc is usually
beneficial for any number of iterations. We compared the
values of Vc and F for several frequently used coefficient
values in a particular type of PSO and we found that all
of these coefficient values encourage chaotic movement
(no correlation between consecutive positions). Also, we
found new sets of coefficients for IPSO that result in
better performance on the CEC2014 benchmark (Table
III) for different number of iterations (short run with
2500 × d function evaluations, long run with 25000 × d
function evaluations, and very long run with 50000 × d
function evaluations). We found that c = 1.271188 and
ω = 0.836416 (F = 0.2 and Vc = 25.6), c = 1.268295 and
ω = 0.832043 (F = 0.2 and Vc = 6.4), and c = 0.375544
and ω = 0.965060 (F = 0.1 and Vc = 25.6), are the best
coefficient sets for a short run, long run, and a very long
run, respectively when d = 10. For d=30, the best found
coefficients were c = 1.7 and ω = 0.715 (F = 0.2486
and Vc = 17.0298), c = 1.711897 and ω = 0.711897
(F = 0.25 and Vc = 25.6), and c = 0.375544 and
ω = 0.965060 (F = 0.1 and Vc = 25.6) for short, long, and
very long runs. Overall, we found that the combination
c = 1.711897 and ω = 0.711897 (F = 0.25 and Vc = 25.6)
performs better than other coefficients in all cases (10
and 30 dimensional for short, long, and very long runs).

Finding the relationship between F and Vc with the
characteristics of the landscape is one potential direction
for further research. In this paper we only focused on
the effects of these factors on the performance of the
method with regards to the length of the run on a
set of functions. However, different values for these
factors may change the performance of the method on
landscapes with different characteristics (see [24] and
[25]). Designing a method to find the best F and Vc at
each iteration and use Eq. 23 to find the coefficient values
and change these coefficients to maximize the search per-
formance of the algorithm can be also another promising
research direction. In addition, this paper investigated
the relationship between frequency of movement and
the correlation between consecutive generated positions.
However, it might be worthwhile to study the correlation
between each generated position and previous j > 1
positions (autocorrelation) to understand whether the
patterns of movement can be characterized by those
information.

VI. APPENDIX

This section reports detailed comparison results be-
tween methods (recall that by methods we ref to dif-
ferent parameter values for IPSO) when they are ap-
plied to 10 dimensional CEC2014 benchmark functions
(30 functions). Three tables are listed in this section,
each table shows the results for experiments that were

TABLE V
THIS TABLE LISTS THE RESULTS FOR THE ”SHORT” RUN.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

A1
l 0 1 12 1 1 15 13 13 11 10 12
w 0 5 1 22 26 1 1 1 1 7 2

A2
l 5 0 17 0 1 17 17 15 15 9 16
w 1 0 1 20 27 1 2 1 1 7 4

A3
l 1 1 0 0 0 0 1 0 0 3 2
w 12 17 0 24 29 1 1 2 2 11 5

A4
l 22 20 24 0 0 23 23 23 22 19 20
w 1 0 0 0 23 0 0 0 0 3 1

A5
l 26 27 29 23 0 28 28 28 28 26 25
w 1 1 0 0 0 0 0 0 0 2 1

A6
l 1 1 1 0 0 0 3 0 0 1 1
w 15 17 0 23 28 0 0 1 1 10 4

A7
l 1 2 1 0 0 0 0 0 2 1 1
w 13 17 1 23 28 3 0 1 5 15 3

A8
l 1 1 2 0 0 1 1 0 2 2 2
w 13 15 0 23 28 0 0 0 2 11 3

A9
l 1 1 2 0 0 1 5 2 0 3 2
w 11 15 0 22 28 0 2 2 0 9 4

A10
l 7 7 11 3 2 10 15 11 9 0 12
w 10 9 3 19 26 1 1 2 3 0 1

A11
l 2 4 5 1 1 4 3 3 4 1 0
w 12 16 2 20 25 1 1 2 2 12 0

different based on the maximum allowed number of
iterations (short run: 2500× d function evaluations, long
run: 25000 × d function evaluations, and very long run:
50000×d function evaluations). For each table, a value x
in the row ”w” for a method Ai in a specific column
indicates that Ai performs significantly (based on the
Wilcoxon test) better than the other method (specified in
the column) in x number of functions (over 30 functions).
A value x′ in the row ”l” for a method Ai in a specific
column indicates that Ai performs significantly worse
than the other method (specified in the column) in x′

number of functions. The total number of functions was
30, hence, the number of functions that the methods were
statistically similar can be calculated by 30−w−l. In fact,
for a method Ai in comparison to another method Aj ,∑30
k=1 si,j,k = wAi,Aj − lAi,Aj .
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