Parameter Control in Evolutionary Algorithms

Agoston E. Eiben Robert Hinterding and Zbigniew Michalewicz

Abstract— The issue of controlling values of various
parameters of an evolutionary algorithm is one of the
most important and promising areas of research in evo-
lutionary computation: It has a potential of adjusting
the algorithm to the problem while solving the problem.
In this paper we (1) revise the terminology, which is un-
clear and confusing, thereby providing a classification of
such control mechanisms and (2) survey various forms
of control which have been studied by the evolutionary
computation community in recent years. Our classifi-
cation covers the major forms of parameter control in
evolutionary computation and suggests some directions
for further research.

I. INTRODUCTION

The two major steps in applying any heuristic search
algorithm to a particular problem are the specification
of the representation and the evaluation (fitness) func-
tion. These two items form the bridge between the orig-
inal problem context and the problem-solving frame-
work. When defining an evolutionary algorithm (EA)
one needs to choose its components, such as variation
operators (mutation and recombination) that suit the
representation, selection mechanisms for selecting par-
ents and survivors, and an initial population. Each of
these components may have parameters, for instance:
the probability of mutation, the tournament size of se-
lection, or the population size. The values of these pa-
rameters greatly determine whether the algorithm will
find a near-optimum solution, and whether it will find
such a solution efficiently. Choosing the right parame-
ter values, however, is a time-consuming task and con-
siderable effort has gone into developing good heuristics
for it.

Globally, we distinguish two major forms of setting
parameter values: parameter tuning and parameter
control. By parameter tuning we mean the commonly
practised approach that amounts to finding good values
for the parameters before the run of the algorithm and
then running the algorithm using these values, which
remain fixed during the run. In Section II we give ar-
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guments that any static set of parameters, having the
values fixed during an EA run, seems to be inappro-
priate. Parameter control forms an alternative, as it
amounts to starting a run with initial parameter val-
ues which are changed during the run.

This paper has a two-fold objective. First, we pro-
vide a comprehensive discussion of parameter control
and categorize different ways of performing it. The
proposed classification is based on two aspects: how
the mechanism of change works, and what component
of the EA is effected by the mechanism. Such a classi-
fication can be useful to the evolutionary computation
community, since many researchers interpret terms like
“adaptation” or “self-adaptation” differently, which
can be confusing. The framework we propose here
is intended to eliminate ambiguities in the terminol-
ogy. Second, we provide a survey of control techniques
which can be found in the literature. This is intended
as a guide to locate relevant work in the area, and as a
collection of options one can use when applying an EA
with changing parameters.

We are aware of other classification schemes, e.g.,
[2], [65], [119], that use other division criteria, result-
ing in different classification schemes. The classifica-
tion of Angeline [2] is based on levels of adaptation
and type of update rules. In particular, three lev-
els of adaptation: population-level, individual-level,
and component-level' are considered, together with
two types of update mechanisms: absolute and empir-
ical rules. Absolute rules are predetermined and spec-
ify how modifications should be made. On the other
hand, empirical update rules modify parameter values
by competition among them (self-adaptation). Ange-
line’s framework considers an EA as a whole, without
dividing attention to its different components (e.g., mu-
tation, recombination, selection, etc). The classifica-
tion proposed by Hinterding, Michalewicz, and Eiben
[65] extends that of [2] by considering an additional
level of adaptation (environment-level), and makes a
more detailed division of types of update mechanisms,
dividing them into deterministic, adaptive, and self-
adaptive categories. Here again, no attention is payed
to what parts of an EA are adapted. The classifica-
tion of Smith and Fogarty [119], [116] is probably the

INotice, that we use the term ‘component’ differently from [2]
where Angeline denotes subindividual structures with it, while
we refer to parts of an EA, such as operators (mutation, recom-
bination), selection, fitness function, etc.



most comprehensive. It is based on three division cri-
teria: what is being adapted, the scope of the adap-
tation, and the basis for change. The last criterion
is further divided into two categories: the evidence
the change is based upon and the rule/algorithm that
executes the change. Moreover, there are two types
of rule/algorithm: uncoupled/absolute and tightly-
coupled /empirical, the latter one coinciding with self-
adaptation.

The classification scheme proposed in this paper is
based on the type of update mechanisms and the EA
component that is adapted, as basic division criteria.
This classification addresses the key issues of parameter
control without getting lost in details (this aspect is
discussed in more detail in section IV).

The paper is organized as follows. The next sec-
tion discusses parameter tuning and parameter control.
Section IIT presents an example which provides some
basic intuitions on parameter control. Section IV devel-
ops a classification of control techniques in evolutionary
algorithms, whereas Section V surveys the techniques
proposed so far. Section VI discusses some combina-
tions of various techniques and Section VII concludes
the paper.

II. PARAMETER TUNING VS. PARAMETER CONTROL

During the 1980s, a standard genetic algorithm (GA)
based on bit-representation, one-point crossover, bit-
flip mutation and roulette wheel selection (with or
without elitism) was widely applied. Algorithm de-
sign was thus limited to choosing the so-called con-
trol parameters, or strategy parameters?, such as mu-
tation rate, crossover rate, and population size. Many
researchers based their choices on tuning the control
parameters “by hand”, that is experimenting with dif-
ferent values and selecting the ones that gave the best
results. Later, they reported their results of applying
a particular EA to a particular problem, paraphrasing
here:

..for these experiments, we have used the following
parameters: population size of 100, probability of
crossover equal to 0.85, etc.

without much justification of the choice made.

Two main approaches were tried to improve GA de-
sign in the past. First, De Jong [29] put a consider-
able effort into finding parameter values (for a tradi-
tional GA), which were good for a number of numeric
test problems. He determined (experimentally) rec-
ommended values for the probabilities of single-point
crossover and bit mutation. His conclusions were that
the following parameters give reasonable performance

2By ‘control parameters’ or ‘strategy parameters’ we mean the
parameters of the EA, not those of the problem.

for his test functions (for new problems these values
may not be very good):

population size of 50

probability of crossover equal to 0.6

probability of mutation equal to 0.001

generation gap of 100%

scaling window: n = oo

selection strategy: elitist.

Grefenstette [58], on the other hand, used a GA as a
meta-algorithm to optimize values for the same param-
eters for both on-line and off-line performance® of the
algorithm. The best set of parameters to optimize the
on-line (off-line) performance of the GA were (the val-
ues to optimize the off-line performance are given in
parenthesis):

population size of 30 (80)

probability of crossover equal to 0.95 (0.45)
probability of mutation equal to 0.01 (0.01)
generation gap of 100% (90%)

scaling window: n =1 (n =1)

selection strategy: elitist (non-elitist).

Note that in both of these approaches, an attempt
was made to find the optimal and general set of param-
eters; in this context, the word ‘general’ means that the
recommended values can be applied to a wide range of
optimization problems. Formerly, genetic algorithms
were seen as robust problem solvers that exhibit ap-
proximately the same performance over a wide range of
problems [50], pp. 6. The contemporary view on EAs,
however, acknowledges that specific problems (problem
types) require specific EA setups for satisfactory per-
formance [13]. Thus, the scope of ‘optimal’ parameter
settings is necessarily narrow. Any quest for generally
(near-)optimal parameter settings is lost a priori [140].
This stresses the need for efficient techniques that help
finding good parameter settings for a given problem,
in other words, the need for good parameter tuning
methods.

As an alternative to tuning parameters before run-
ning the algorithm, controlling them during a run was
realised quite early (e.g., mutation step sizes in the evo-
lution strategy (ES) community). Analysis of the sim-
ple corridor and sphere problems in large dimensions
led to Rechenberg’s 1/5 success rule (see section III-
A), where feedback was used to control the mutation
step size [100]. Later, self-adaptation of mutation was
used, where the mutation step size and the preferred di-
rection of mutation were controlled without any direct
feedback. For certain types of problems, self-adaptive

3These measures were defined originally by De Jong [29]; the
intuition is that on-line performance is based on monitoring the
best solution in each generation, while off-line performance takes
all solutions in the population into account.



mutation was very successful and its use spread to other
branches of evolutionary computation (EC).

As mentioned earlier, parameter tuning by hand is a
common practice in evolutionary computation. Typi-
cally one parameter is tuned at a time, which may cause
some sub-optimal choices, since parameters often in-
teract in a complex way. Simultaneous tuning of more
parameters, however, leads to an enormous amount of
experiments. The technical drawbacks to parameter
tuning based on experimentation can be summarized
as follows:

o Parameters are not independent, but trying all differ-
ent combinations systematically is practically impossi-
ble.

e The process of parameter tuning is time consuming,
even if parameters are optimized one by one, regardless
to their interactions.

o For a given problem the selected parameter values
are not necessarily optimal, even if the effort made for
setting them was significant.

Other options for designing a good set of static pa-
rameters for an evolutionary method to solve a partic-
ular problem include “parameter setting by analogy”
and the use of theoretical analysis. Parameter setting
by analogy amounts to the use of parameter settings
that have been proved successful for “similar” prob-
lems. However, it is not clear whether similarity be-
tween problems as perceived by the user implies that
the optimal set of EA parameters is also similar. As
for the theoretical approach, the complexities of evo-
lutionary processes and characteristics of interesting
problems allow theoretical analysis only after signifi-
cant simplifications in either the algorithm or the prob-
lem model. Therefore, the practical value of the current
theoretical results on parameter settings is unclear.*
There are some theoretical investigations on the op-
timal population size [50], [132], [60], [52] or optimal
operator probabilities [54], [131], [10], [108], however,
these results were based on simple function optimiza-
tion problems and their applicability for other types of
problems is limited.

A general drawback of the parameter tuning ap-
proach, regardless of how the parameters are tuned,
is based on the observation that a run of an EA is
an intrinsically dynamic, adaptive process. The use of
rigid parameters that do not change their values is thus
in contrast to this spirit. Additionally, it is intuitively
obvious that different values of parameters might be

4During the Workshop on Evolutionary Algorithms, organized
by Institute for Mathematics and Its Applications, University
of Minnesota, Minneapolis, Minnesota, October 21-25, 1996, L.
Davis made a claim that the best thing a practitioner of EAs can
do is to stay away from theoretical results. Although this might
be too strong of a claim, it is noteworthy that the current EA
theory is not seen as a useful basis for practitioners.

optimal at different stages of the evolutionary process
[27], [127], [8], [9], [10], [62], [122]. For instance, large
mutation steps can be good in the early generations
helping the exploration of the search space and small
mutation steps might be needed in the late generations
to help fine tuning the sub-optimal chromosomes. This
implies that the use of static parameters itself can lead
to inferior algorithm performance. The straightforward
way to treat this problem is by using parameters that
may change over time, that is, by replacing a parameter
p by a function p(t), where ¢ is the generation counter.
However, as indicated earlier, the problem of finding
optimal static parameters for a particular problem can
be quite difficult, and the optimal values may depend
on many other factors (like the applied recombination
operator, the selection mechanism, etc). Hence design-
ing an optimal function p(t) may be even more difficult.
Another possible drawback to this approach is that the
parameter value p(¢) changes are caused by a deter-
ministic rule triggered by the progress of time ¢, with-
out taking any notion of the actual progress in solving
the problem, i.e., without taking into account the cur-
rent state of the search. Yet researchers (see Section
V) have improved their evolutionary algorithms, i.e.,
they improved the quality of results returned by their
algorithms while working on particular problems, by
using such simple deterministic rules. This can be ex-
plained simply by superiority of changing parameter
values: suboptimal choice of p(t) often leads to better
results than a suboptimal choice of p.

To this end, recall that finding good parameter val-
ues for an evolutionary algorithm is a poorly struc-
tured, ill-defined, complex problem. But on this kind
of problem, EAs are often considered to perform better
than other methods! It is thus seemingly natural to use
an evolutionary algorithm not only for finding solutions
to a problem, but also for tuning the (same) algorithm
to the particular problem. Technically speaking, this
amounts to modifying the values of parameters during
the run of the algorithm by taking the actual search
process into account. Basically, there are two ways to
do this. Either one can use some heuristic rule which
takes feedback from the current state of the search and
modifies the parameter values accordingly, or incorpo-
rate parameters into the chromosomes, thereby mak-
ing them subject to evolution. The first option, us-
ing a heuristic feedback mechanism, allows one to base
changes on triggers different from elapsing time, such as
population diversity measures, relative improvements,
absolute solution quality, etc. The second option, in-
corporating parameters into the chromosomes, leaves
changes entirely based on the evolution mechanism. In
particular, natural selection acting on solutions (chro-
mosomes) will drive changes in parameter values asso-



ciated with these solutions. In the following we discuss
these options illustrated by an example.

III. AN EXAMPLE

Let us assume we deal with a numerical optimization
problem:
optimize f(Z) = f(z1,...,Tn),
subject to some inequality and equality constraints:
gi(&) <0G =1,...,9) and h;(¥) =0 (j = ¢+
1,...,m),
and bounds I; < z; < u; for 1 < i < n, defining the
domain of each variable.

For such a numerical optimization problem we may
consider an evolutionary algorithm based on a floating-
point representation, where each individual # in the
population is represented as a vector of floating-point
numbers
Z={(x1,...,Tn).

A. Changing the mutation step size

Let us assume that we use Gaussian mutation to-
gether with arithmetical crossover to produce offspring
for the next generation. A Gaussian mutation operator
requires two parameters: the mean, which is often set
to zero, and the standard deviation o, which can be
interpreted as the mutation step size. Mutations then
are realized by replacing components of the vector & by
x =z; + N(0,0),
where N(0, ¢) is arandom Gaussian number with mean
zero and standard deviation o. The simplest method
to specify the mutation mechanism is to use the same
o for all vectors in the population, for all variables of
each vector, and for the whole evolutionary process, for
instance, z} = z; + N(0,1). As indicated in Section II,
it might be beneficial to vary the mutation step size.?
We shall discuss several possibilities in turn.

First, we can replace the static parameter ¢ by a
dynamic parameter, i.e., a function o(¢). This function
can be defined by some heuristic rule assigning different
values depending on the number of generations. For
example, the mutation step size may be defined as:
o(t)=1-09- £,
where ¢ is the current generation number varying from 0
to T', which is the maximum generation number. Here,
the mutation step size o(t) (used for all for vectors in
the population and for all variables of each vector) will
decrease slowly from 1 at the beginning of the run (¢ =
0) to 0.1 as the number of generations ¢ approaches T'.
Such decreases may assist the fine-tuning capabilities of
the algorithm. In this approach, the value of the given
parameter changes according to a fully deterministic

5There are even formal arguments supporting this view in spe-
cific cases, e.g., [8], [9], [10], [62].

scheme. The user thus has full control of the parameter
and its value at a given time ¢ is completely determined
and predictable.

Second, it is possible to incorporate feedback from
the search process, still using the same ¢ for all for
vectors in the population and for all variables of each
vector. A well-known example of this type of parameter
adaptation is Rechenberg’s ‘1/5 success rule’ in (1+1)-
evolution strategies [100]. This rule states that the
ratio of successful mutations® to all mutations should
be 1/5, hence if the ratio is greater than 1/5 then the
step size should be increased, and if the ratio is less
than 1/5, the step size should be decreased:

if (t mod n = 0) then

o(t —n)/c, if p, >1/5
o(t): =4 o(t—n)-c if p; <1/5
o(t —n), ifp; =1/5
else
o(t) :=o(t—1);
fi

where ps is the relative frequency of successful muta-
tions, measured over some number of generations and
0.817 < ¢ < 1, [11]. Using this mechanism, changes in
the parameter values are now based on feedback from
the search, and o-adaptation happens every n gener-
ations. The influence of the user on the parameter
values is much less direct here than in the determin-
istic scheme above. Of course, the mechanism that
embodies the link between the search process and pa-
rameter values is still a heuristic rule indicating how
the changes should be made, but the values of o(t) are
not deterministic.

Third, it is possible to assign an ‘individual’ muta-
tion step size to each solution: extend the representa-
tion to individuals of length n + 1 as
(1., Tn,0),
and apply some variation operators (e.g., Gaussian mu-
tation and arithmetical crossover) to x;’s as well as to
the o value of an individual. In this way, not only
the solution vector values (z;’s), but also the muta-
tion step size of an individual undergoes evolution. A
typical variation would be:

o' =0 -eNOm) and

x =z, + N(0,0"),

where 7y is a parameter of the method. This mech-
anism is commonly called self-adapting the mutation
step sizes. Observe that within the self-adaptive
scheme the heuristic character of the mechanism re-
setting the parameter values is eliminated.”

6 A mutation is considered successful if it produces an offspring
that is better than the parent.

"It can be argued that the heuristic character of the mecha-
nism resetting the parameter values is not eliminated, but rather



Note that in the above scheme the scope of applica-
tion of a certain value of o was restricted to a single
individual. However, it can be applied to all variables
of the individual: it is possible to change the granu-
larity of such applications and use a separate mutation
step size to each x;. If an individual is represented as
<£L’1,...,£L’n,0'1,...,0n>,
then mutations can be realized by replacing the above
vector according to a similar formula as discussed
above:

ol =0;-eN ) and
:L’; =T+ N(O,U;),

where 79 is a parameter of the method. However, as op-
posed to the previous case, each component x; has its
own mutation step size o;, which is being self-adapted.
This mechanism implies a larger degree of freedom for
adapting the search strategy to the topology of the fit-
ness landscape.

B. Changing the penalty coefficients

In the previous subsection we described different
ways to modify a parameter controlling mutation. Sev-
eral other components of an EA have natural param-
eters, and these parameters are traditionally tuned in
one or another way. Here we show that other com-
ponents, such as the evaluation function (and conse-
quently the fitness function) can also be parameter-
ized and thus tuned. While this is a less common op-
tion than tuning mutation (although it is practicized
in the evolution of variable-length stuctures for parsi-
mony pressure [144]), it may provide a useful mecha-
nism for increasing the performance of an evolutionary
algorithm.

When dealing with constrained optimization prob-
lems, penalty functions are often used. A common
technique is the method of static penalties [92], which
requires fixed user-supplied penalty parameters. The
main reason for its wide spread use is that it is the
simplest technique to implement: It requires only the
straightforward modification of the evaluation function
eval as follows:
eval (%) = f(Z) + W - penalty(Z),
where f is the objective function, and penalty(Z) is
zero if no violation occurs, and is positive,® otherwise.
Usually, the penalty function is based on the distance
of a solution from the feasible region, or on the effort
to “repair” the solution, i.e., to force it into the feasible
region. In many methods a set of functions f; (1 <j <
m) is used to construct the penalty, where the function

replaced by a metaheuristic of evolution itself. However, the
method is very robust w.r.t. the setting of 79 and a good rule is
T0 = l/ﬁ

8For minimization problems.

f; measures the violation of the j-th constraint in the
following way:

L f max{0,g;(®), if1<i<q
”@°‘{VM@L ifq+l<j<m

W is a user-defined weight, prescribing how severely
constraint violations are weighted.” In the most tradi-
tional penalty approach the weight W does not change
during the evolution process. We sketch three possible
methods of changing the value of W.

First, we can replace the static parameter W by a
dynamic parameter, e.g., a function W (t). Just as for
the mutation parameter o, we can develop a heuristic
which modifies the weight W over time. For example,
in the method proposed by Joines and Houck [76], the
individuals are evaluated (at the iteration t) by a for-
mula, where
eval(Z) = f(Z) + (C - ) - penalty(Z),
where C' and « are constants. Clearly,
W) = (C - )7,
the penalty pressure grows with the evolution time.

Second, let us consider another option, which uti-
lizes feedback from the search process. One example
of such an approach was developed by Bean and Hadj-
Alouane [19], where each individual is evaluated by the
same formula as before, but W (¢) is updated in every
generation ¢ in the following way:

(1/B1) - W(t), ifb € F
forallt—k+1<i<t

W(t+1) =< By - W(t), ifoieS—F
forallt —k+1<i<t
W (t), otherwise.

In this formula, S is the set of all search points (solu-
tions), F C S is a set of all feasible solutions, b denotes
the best individual in terms of the function eval in gen-
eration ¢, 81,82 > 1 and 31 # B2 (to avoid cycling). In
other words, the method decreases the penalty compo-
nent W (t+1) for the generation t+1 if all best individ-
uals in the last k generations were feasible (i.e., in F),
and increases penalties if all best individuals in the last
k generations were infeasible. If there are some feasible
and infeasible individuals as best individuals in the last
k generations, W (¢ + 1) remains without change.

Third, we could allow self-adaptation of the weight
parameter, similarly to the mutation step sizes in the
previous section. For example, it is possible to extend
the representation of individuals into

90f course, instead of W it is possible to consider a vector of
weights @ = (w1, ..., wm) which are applied directly to violation

functions f;(&). In such a case penalty(Z) = 27:1 wj [ (&).
The discussion in the remaining part of this section can be easily
extended to this case.
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where W is the weight. The weight component W un-
dergoes the same changes as any other variable z; (e.g.,
Gaussian mutation, arithmetical crossover). However,
it is unclear, how the evaluation function can benefit
from such self-adaptation. Clearly, the smaller weight
W, the better an (infeasible) individual is, so it is un-
fair to apply different weights to different individuals
within the same generation. It might be that a new
weight can be defined (e.g., arithmetical average of all
weights present in the population) and used for evalu-
ation purpose; however, to our best knowledge, no one
has experimented with such self-adaptive weights.

To this end, it is important to note the crucial dif-
ference between self-adapting mutation step sizes and
constraint weights. Even if the mutation step sizes are
encoded in the chromosomes, the evaluation of a chro-
mosome is independent from the actual value of o’s.
That is,

eval((Z,5)) = f(Z)
for any chromosome (Z,&). In contrast, if constraint
weights are encoded in the chromosomes, then we have

eval ((Z,W)) = fw(Z)

for any chromosome (#, W). This enables the evolu-
tion to ‘cheat’ in the sense of making improvements by
modifying the value of W instead of optimizing f and
satisfying the constraints.

C. Summary

In the previous subsections we illustrated how the
mutation operator and the evaluation function can be
controlled (adapted) during the evolutionary process.
The latter case demonstrates that not only the tra-
ditionally adjusted components, such as mutation, re-
combination, selection, etc., can be controlled by pa-
rameters, but so can other components of an evolution-
ary algorithm. Obviously, there are many components
and parameters that can be changed and tuned for op-
timal algorithm performance. In general, the three op-
tions we sketched for the mutation operator and the
evaluation function are valid for any parameter of an
evolutionary algorithm, whether it is population size,
mutation step, the penalty coefficient, selection pres-
sure, and so forth.

The mutation example of Section ITI-A also illus-
trates the phenomenon of the scope of a parameter.
Namely, the mutation step size parameter can have dif-
ferent domains of influence, which we call scope. Using
the (z1,...,%n,01,...,0,) model, a particular muta-
tion step size applies only to one variable of a single
individual. Thus, the parameter o; acts on a subindi-
vidual level. In the {xi,...,x,,0) representation the

scope of o is one individual, whereas the dynamic pa-
rameter o(t) was defined to affect all individuals and
thus has the whole population as its scope.

These remarks conclude the introductory examples
of this section; we are now ready to attempt a classifi-
cation of parameter control techniques for parameters
of an evolutionary algorithm.

IV. CLASSIFICATION OF CONTROL TECHNIQUES

In classifying parameter control techniques of an evo-
lutionary algorithm, many aspects can be taken into
account. For example:

1. What is changed? (e.g., representation, evaluation
function, operators, selection process, mutation rate,
etc.).

2. How the change is made? (i.e., deterministic heuris-
tic, feedback-based heuristic, or self-adaptive).

3. The scope/level of change (e.g., population-level,
individual-level, etc.).

4. The evidence upon which the change is carried out
(e.g., monitoring performance of operators, diversity of
the population, etc.).

In the following we discuss these items in more detail.

To classify parameter control techniques from the
perspective of what is changed, it is necessary to agree
on a list of all major components of an evolutionary
algorithm (which is a difficult task in itself). For that
purpose, assume the following components of an EA:
o Representation of individuals.

o Evaluation function.

« Variation operators and their probabilities.

o Selection operator (parent selection or mating selec-
tion).

» Replacement operator (survival selection or environ-
mental selection).

« Population (size, topology, etc.).

Note that each component can be parameterized, and
the number of parameters is not clearly defined. For
example, an offspring produced by an arithmetical
crossover of k parents ¥y, ..., % can be defined by the
following formula

¥ =a1%; +...+ak:i“'k,

where a1, ...,ax, and k can be considered as parame-
ters of this crossover. Parameters for a population can
include the number and sizes of subpopulations, migra-
tion rates, etc. (this is for a general case, when more
then one population is involved). Despite the some-
what arbitrary character of this list of components and
of the list of parameters of each component, we will
maintain the “what-aspect” as one of the main clas-
sification features. The reason for this is that it al-
lows us to locate where a specific mechanism has its
effect. Also, this is way we would expect people to



search through a survey, e.g., “I want to apply chang-
ing mutation rates, let me see how others did it”.

As discussed and illustrated in Section III, methods
for changing the value of a parameter (i.e., the “how-
aspect”) can be classified into one of three categories:
o Deterministic parameter control.

This takes place when the value of a strategy parameter
is altered by some deterministic rule. This rule modifies
the strategy parameter deterministically without using
any feedback from the search. Usually, a time-varying
schedule is used, i.e., the rule will be used when a set
number of generations have elapsed since the last time
the rule was activated.

o Adaptive parameter control.

This takes place when there is some form of feedback
from the search that is used to determine the direction
and/or magnitude of the change to the strategy param-
eter. The assignment of the value of the strategy pa-
rameter may involve credit assignment, and the action
of the EA may determine whether or not the new value
persists or propagates throughout the population.

o Self-adaptive parameter control.

The idea of the evolution of evolution can be used to
implement the self-adaptation of parameters. Here the
parameters to be adapted are encoded into the chromo-
somes and undergo mutation and recombination. The
better values of these encoded parameters lead to bet-
ter individuals, which in turn are more likely to survive
and produce offspring and hence propagate these better
parameter values.

This terminology leads to the taxonomy illustrated in
Figure 1.

Parameter setting

before the ru during the run

Parameter control

T

Deterministic Adaptive Self-adaptive

Parameter tuning

Fig. 1. Gobal taxonomy of paremeter setting in EAs

Some authors have introduced a different termi-
nology. Angeline [2] distinguished absolute and em-
pirical rules corresponding to uncoupled and tightly-
coupled mechanisms of Spears [124]. Let us note
that the uncoupled/absolute category encompasses
deterministic and adaptive control, whereas the
tightly-coupled/empirical category corresponds to self-
adaptation. We feel that the distinction between deter-
ministic and adaptive parameter control is essential, as

the first one does not use any feedback from the search
process. However, we acknowledge that the terminol-
ogy proposed here is not perfect either. The term “de-
terministic” control might not be the most appropriate,
as it is not determinism that matters, but the fact that
the parameter-altering transformations take no input
variables related to the progress of the search process.
For example, one might randomly change the muta-
tion probability after every 100 generations, which is
not a deterministic process. The name “fixed” param-
eter control might form an alternative that also covers
this latter example. Also, the terms “adaptive” and
“self-adaptive” could be replaced by the equally mean-
ingful “explicitly adaptive” and “implicitly adaptive”
controls, respectively. We have chosen to use “adap-
tive” and “self-adaptive” for the widely accepted usage
of the latter term.

As discussed earlier, any change within any compo-
nent of an EA may affect a gene (parameter), whole
chromosomes (individuals), the entire population, an-
other component (e.g., selection), or even the evalua-
tion function. This is the aspect of the scope or level
of adaptation [2], [65], [119], [116]. Note, however, that
the scope/level usually depends on the component of
the EA where the change takes place. For example,
a change of the mutation step size may affect a gene,
a chromosome, or the entire population, depending on
the particular implementation (i.e., scheme used), but
a change in the penalty coefficients always affects the
whole population. So, the scope/level feature is a sec-
ondary one, usually depending on the given component
and its actual implementation.

The issue of the scope of the parameter might be
more complicated than indicated in Section III-C, how-
ever. First of all, the scope depends on the interpreta-
tion mechanism of the given parameters. For example,
an individual might be represented as

(T1,e e Ty Oy Oy Qe Qi (n—1)/2)
where the vector @ denotes the covariances between
the variables o1,...,0,. In this case the scope of the
strategy parameters in & is the whole individual, al-
though the notation might suggest that they are act
on a subindividual level.

The next example illustrates that the same param-
eter (encoded in the chromosomes) can be interpreted
in different ways, leading to different algorithm vari-
ants with different scopes of this parameter. Spears
[124], following [46], experimented with individuals
containing an extra bit to determine whether one-
point crossover or uniform crossover is to be used (bit
1/0 standing for one-point/uniform crossover, respec-
tively). Two interpretations were considered. The first



interpretation was based on a pairwise operator choice:
If both parental bits are the same, the corresponding
operator is used, otherwise, a random choice is made.
Thus, this parameter in this interpretation acts at an
individual level. The second interpretation was based
on the bit-distribution over the whole population: If,
for example 73% of the population had bit 1, then the
probability of one-point crossover was 0.73. Thus this
parameter under this interpretation acts on the popula-
tion level. Note, that these two interpretations can be
easily combined. For instance, similar to the first inter-
pretation, if both parental bits are the same, the corre-
sponding operator is used. However, if they differ, the
operator is selected according to the bit-distribution,
just as in the second interpretation. The scope/level
of this parameter in this interpretation is neither indi-
vidual, nor population, but rather both. This example
shows that the notion of scope can be ill-defined and
very complex. These examples, and the arguments that
the scope/level entity is primarily a feature of the given
parameter and only secondarily a feature of adaptation
itself, motivate our decision to exclude it as a major
classification criterion.

Another possible criterion for classification is the ev-
idence used for determining the change of parameter
value [119], [116]. Most commonly, the progress of the
search is monitored, e.g., the performance of operators.
It is also possible to look at other measures, like the di-
versity of the population. The information gathered by
such a monitoring process is used as feedback for ad-
justing the parameters. Although this is a meaningful
distinction, it appears only in adaptive parameter con-
trol. A similar distinction could be made in determin-
istic control, which might be based on any counter not
related to search progress. One option is the number
of fitness evaluations (as the description of determinis-
tic control above indicates). There are, however, other
possibilities, for instance, changing the probability of
mutation on the basis of the number of executed mu-
tations. We feel, however, that these distinctions are
of a more specific level than other criteria and for that
reason we have not included it as a major classification
criterion.

So the main criteria for classifying methods that
change the values of the strategy parameters of an al-
gorithm during its execution are:

1. What is changed?

2. How is the change made?

Our classification is thus two-dimensional: the type of
control and the component of the evolutionary algo-
rithm which incorporates the parameter. The type and
component entries are orthogonal and encompass typi-
cal forms of parameter control within EAs. The type of
parameters’ change consists of three categories: deter-

ministic, adaptive, and self-adaptive mechanisms. The
component of parameters’ change consists of six cat-
egories: representation, evaluation function, variation
operators (mutation and recombination), selection, re-
placement, and population.

V. SURVEY OF RELATED WORK

To discuss and survey the experimental efforts of
many researchers to control the parameters of their evo-
lutionary algorithms, we selected an ordering principle
to group existing work based on what is being adapted.
Consequently, the following subsections correspond to
the earlier list of six components of an EA with one ex-
ception, and we just briefly indicate what the scope of
the change is. Purely by the amount of work concerning
the control of mutation and recombination (variation
operators), we decided to treat them in two separate
subsections.

A. Representation

Representation forms an important distinguishing
feature between different streams of evolutionary com-
puting. GAs were traditionally associated with bi-
nary or some finite alphabet encoded in linear chro-
mosomes. Classical ES is based on real valued vectors,
just as modern evolutionary programming (EP) [11],
[45]. Tradtional EP was based on finite state machines
as chromosomes and in genetic programming (GP) in-
dividuals are trees or graphs [18], [79].

It is interesting to note that for the latter two
branches of evolutionary algorithms it is an inherent
feature that the shape and size of individuals is chang-
ing during the evolutionary search process. It could
be argued that this implies an intrinsically adaptive
representation in tradtional EP and GP. On the other
hand, the main structure of the finite state machines
is not changing during the search in tradtional EP, nor
do the function and terminal sets in GP (without au-
tomatically defined functions, ADFs). If one identifies
“representation” with the basic syntax (plus the encod-
ing mechanism), then the differently sized and shaped
finite state machines, respectively trees or graphs are
only different expressions in this unchanging syntax.
This view implies that the representations in tradtional
EP and GP are not intrinsically adaptive.

Most on the work into adaptation of representation
has been done by researchers from the genetic algo-
rithms area. This is probably due to premature conver-
gence and “Hamming cliff” problems which occurred
when GAs were first applied to numeric optimization.
The most comprehensive was the adaptive representa-
tion used by Shaefer [114] in his ARGOT strategy. Sim-
pler schemes where later used by Mathias and Whitley
[139] (delta coding), and by Schraudolph and Belew



[111] (Dynamic Parameter Encoding). All the tech-
niques described in this section use adaptive parameter
control.

The ARGOT strategy used a flexible mapping of the
function variables to the genes (one gene per function
variable), which allows not only the number of bits
used to represent the gene (resolution) to be adapted,
but also adapts both the range (contraction/expansion)
and center point of the range (shift left/right) of the
values the genes are mapped into. Adaptation of the
representation and mapping is based on the degree of
convergence of the genes, the variance of the gene val-
ues, and how closely the gene values approach the cur-
rent range boundaries.

Delta coding also modifies the representation of the
function parameters, but in a different way. It uses
a GA with multiple restarts, the first run is used to
find an interim solution, subsequent runs decode the
genes as distances (delta values) from the last interim
solution. This way each restart forms a new hypercube
with the interim solution at its origin, the resolution of
the delta values can also be altered at the restarts to
expand or contract the search space. The restarts are
triggered when the Hamming distance between the best
and worst strings of the continuing population are not
greater than one. This technique was further refined in
[87] to cope with deceptive problems.

The dynamic parameter encoding technique is not
based on modifying the actual number of bits used to
represent a function parameter, but rather, it alters the
mapping of the gene to its phenotypic value. After each
generation, population counts of the gene values for
three overlapping target intervals for the current search
interval for that gene are taken. If the largest count is
greater than a given trigger threshold, the search inter-
val is halved, and all values for that gene in the pop-
ulation are adjusted. Note that in this technique the
resolutions of genes can be increased but not decreased.

Messy GAs (mGAs) [53] use a very different ap-
proach. This technique is targeted to fixed-length bi-
nary representations but allows the representation to
be under or over specified. Each gene in the chromo-
some contains its value (a bit) and its position. The
chromosomes are of variable length and may contain
too few or too many bits for the representation. If
more than one gene specifies a bit position the first one
encountered is used, if bit positions are not specified by
the chromosome, they are filled in from so-called com-
petitive templates. Messy GAs do not use mutation
and use cut and splice operators in place of crossover.
A run of an mGA is in two phases: (1) a primordial
phase which enriches the proportion of good building
blocks and reduces the population size using only se-
lection, and (2) a juxtapositional phase which uses all

the reproduction operators. This technique is targeted
to deceptive binary bit string problems. The algorithm
adapts its representation to a particular instance of the
problem being solved.

The earliest use of self-adaptive control is for the
dominance mechanism of diploid chromosomes. Here
there are two copies of each chromosome. The ex-
tra chromosomes encode alternate solutions and domi-
nance decides which of the solutions will be expressed.
Bagley [17] added an evolvable dominance value to
each gene, and the gene with the highest dominance
value was dominant, while Rosenberg [102] used a
biologically-oriented model and the dominance effect
was due to particular enzymes being expressed. Other
early work (on stationary optimization problems and
mixed results) was by Hollstein [67] and Brindle [23].
Goldberg and Smith [55] used diploid representation
with Hollsteins triallelic dominance map for a nonsta-
tionary problem, and showed that it was better than
using a haploid representation. Greene [56], [57] used
a different approach that evaluates both the chromo-
somes and uses the chromosome with the highest fitness
as the dominant one. In each of the cases above, the
method of dominance control is self-adaptive as there
is no explicit feedback to control dominance, and dom-
inance is only altered by the normal reproduction op-
erators.

Additional issue connected with adaptive representa-
tions concerns noncoding segments of a genotype. Wu
and Lindsay [141] experimented with a method which
explicitly define introns in the genotypes.

B. FEvaluation function

In [76] and [90] mechanisms for varying penalties ac-
cording to a predefined deterministic schedule are re-
ported. In Section ITI-B we discussed briefly the mech-
anism presented in [76]. The mechanism of [90] was
based on the following idea. The evaluation function
eval has an additional parameter 7:
eval (,7) = f(2) + £ 3, £2(@),
which is decreased every time the evolutionary algo-
rithm converges (usually, 7 := 7/10). Copies of the
best solution found are taken as the initial population
of the next iteration with the new (decreased) value of
7. Thus there are several “cycles” within a single run
of the system: For each particular cycle the evaluation
function is fixed (J C {1,...,m} is a set of active con-
straints at the end of a cycle) and the penalty pressure
increases (changing the evaluation function) only when
we switch from one cycle to another.

The method of Eiben and Ruttkay [36] falls some-
where between tuning and adaptive control of the fit-
ness function. They apply a method for solving con-
straint satisfaction problems that changes the evalua-



tion function based on the performance of an EA run:
the penalties (weights) of those constraints which are
violated by the best individual after termination are
raised, and the new weights are used in the next run.

A technical report [19] from 1992 forms an early ex-
ample on adaptive fitness functions for constraint satis-
faction, where penalties of constraints in a constrained
optimization problem are adapted during a run (see
Section III-B). Adaptive penalties were further inves-
tigated by Smith and Tate [115], where the penalty
measure depends on the number of violated constraints,
the best feasible objective function found, and the best
objective function value found. The breakout mecha-
nism of [93] is applied in [31], [32], by re-evaluating the
weights of constraints when the algorithm gets stuck in
a local optimum. This amounts to adaptively chang-
ing the penalties during the evolution. Eiben and van
der Hauw [39], [38] introduced the so-called SAW-ing
(stepwise adaptation of weights) mechanism for solv-
ing constraint satisfaction problems with EAs. SAW-
ing changes the evaluation function adaptively in an
EA by periodically checking the best individual in the
population and raising the penalties (weights) of those
constraints this individual violates. Then the run con-
tinues with the new evaluation function. This mecha-
nism has been applied in EAs with very good results
for graph coloring, satisfiability, and random CSPs [40],
[16], [41].

A recent paper [82] describes a decoder-based ap-
proach for solving constrained numerical optimization
problems (the method defines a homomorphous map-
ping between n-dimensional cube and a feasible search
space). It was possible to enhance the performance of
the system by introducing additional concepts, one of
them being adaptive location of the reference point of
the mapping [81], where the best individual in the cur-
rent population serves as the next reference point. A
change in a reference point results in changes in evalu-
ation function for all individuals.

It is interesting to note that an analogy can be drawn
between EAs applied to constrained problems and EAs
operating on variable-length representation in light of
parsimony, for instance in GP. In both cases the def-
inition of the evaluation function contains a penalty
term. For constrained problems this term is to sup-
press constraint violations [91], [89], [92], in case of
GP it represents a bias against growing tree size and
depth [101], [122], [123], [144]. Obviously, the amount
of penalty can be different for different individuals, but
if the penalty term itself is not varied along the evo-
lution then we do not see these cases as examples of
controlling the evaluation function. Nevertheless, the
mechanisms for controlling the evaluation function for
constrained problems could be imported into GP. So

far, we are only aware of only one paper in this direc-
tion [33]. One real case of controlling the evaluation
function in GP is the so-called rational allocation of
trials (RAT) mechanism, where the number of fitness
cases that determine the quality of an individual is de-
termined adaptively [130].

Also, co-evolution can be seen as adapting the evalu-
ation function [97], [98], [99], [96]. The adaptive mech-
anism here lies in the interaction of the two subpopu-
lations, each subpopulation mutually influences the fit-
ness of the members of the other subpopulation. This
technique has been applied to constraint satisfaction,
data mining, and many other tasks.

C. Mutation operators and their probabilities

There has been quite significant effort in finding opti-
mal values for mutation rates. Because of that, we dis-
cuss also their tuned ‘optimal’ rates before discussing
attempts for control them.

There have been several efforts to tune the probabil-
ity of mutation in GAs. Unfortunately, the results (and
hence the recommended values) vary, leaving practi-
tioners in dark. De Jong recommended p,, = 0.001
[29], the meta-level GA used by Grefenstette [58] in-
dicated p,, = 0.01, while Schaffer et al. came up
with p,, € [0.005,0.01] [106]. Following earlier work
of Bremermann [22], Miihlenbein derived a formula for
Pm which depends on the length of the bitstring (L),
namely p,,, = 1/L should be a generally ‘optimal’ static
value for p,, [94]. This rate was compared with sev-
eral fixed rates by Smith and Fogarty who found that
pm = 1/L outperformed other values for p,, in their
comparison [117]. Béck also found 1/L to be a good
value for p,, together with Gray coding [11], p.229.

Fogarty [44] used deterministic control schemes de-
creasing p,, over time and over the loci. Although the
exact formulas cannot be retrieved from the paper, they
can be found in [12]. The observed improvement with
this scheme makes it an important contribution, as it
was first time (to our best knowledge) where the muta-
tion rate was changed during the run of a GA (however,
the improvement was achieved for an initial population
of all zero bits). Hesser and Ménner [62] derived theo-
retically optimal schedules for deterministically chang-
ing p,, for the counting-ones function. They suggest:
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where «, 3,y are constants, A is the population size and
t is the time (generation counter).

Biéck [8] also presents an optimal mutation rate de-
crease schedule as a function of the distance to the



optimum (as opposed to a function of time), being

. 1

The function to control the decrease of p,, by Back
and Schiitz [14] constrains p,,(t) so that p,,(0) = 0.5
and pn,(T) = 7 if a maximum of T evaluations are
used:

—1
Pm(t) = <2+¥-t> ifo<t<T.

Janikow and Michalewicz [74] experimented with a
nonuniform mutation, where

if a random
binary digit is 0

zt + A(t,r(k) — xp)

L=
k zt — A(t,z, — (k)  if a random
binary digit is 1
fork =1,...,n. The function A(¢,y) returns a value in

the range [0, y] such that the probability of A(t,y) be-
ing close to 0 increases as ¢ increases (¢ is the generation
number). This property causes this operator to search
the space uniformly initially (when ¢ is small), and very
locally at later stages. In experiments reported in [74],
the following function was used:

Altyy)=y-r(1- 1),
where r is a random number from [0..1], T" is the max-
imal generation number, and b is a system parameter
determining the degree of non—uniformity.

As we discussed in Section III-A, the 1/5 rule of
Rechenberg constitutes a classical example adaptive
method for setting the mutation step size in ES [100].
The standard deviation o is increased, decreased, or left
without change and the decision is made on the basis of
the current (i.e., most recent) frequency of successful
mutations. Julstrom’s adaptive mechanism regulates
the ratio between crossovers and mutations based on
their performance [77]. Both operators are used sep-
arately to create an offspring, the algorithm keeps a
tree of their recent contributions to new offspring and
rewards them accordingly. Lis [83] adapts mutation
rates in a parallel GA with a farming model, while Lis
and Lis [84] adapt pm, p. and the population size in
an algorithm of a parallel farming model. They use
parallel populations and each of them has one value,
out of a possible three different values, for p,,, p. and
the population size. After a certain period of time the
populations are compared. Then the values for p,,, p.
and the population size are shifted one level towards
the values of the most successful population.

Self-adaptive control of mutation step sizes is tra-
ditional in ES [11], [112]. Mutating a floating-point
object variable x; happens by

CUZ'I :$i+0i'N(0,1)
and the mean step sizes are modified lognormally:
o;' =0;-exp(t' - N(0,1) + 7 - N;(0, 1)),

where 7 and 7' are the so-called learning rates. In con-
temporary EP floating point representation is used too,
and the so-called meta-EP scheme works by modifying
o’s normally:

o' =0;+(-0;-N(0,1)

where ( is a scaling constant, [45]. There seems to be
empirical evidence [104], [105] that lognormal perturba-
tions of mutation rates is preferable to Gaussian pertur-
bations on fixed-length real-valued representations. In
the meanwhile, [5] suggest a slight advantage of Gaus-
sian perturbations over lognormal updates when self-
adaptively evolving finite state machines.

Hinterding et al. [63] apply self-adaptation of the
mutation step size for optimizing numeric functions in
areal valued GA. Srinivas and Patnaik [125] replace an
individual by its child. Each chromosome has its own
probabilities, p,, and p., added to their bitstring. Both
are adapted in proportion to the population maximum
and mean fitness. Bick [9], [8] self-adapts the muta-
tion rate of a GA by adding a rate for the p,,, coded in
bits, to every individual. This value is the rate, which
is used to mutate the p,, itself. Then this new p,, is
used to mutate the individuals’ object variables. The
idea is that better p,, rates will produce better off-
spring and then hitchhike on their improved children
to new generations, while bad rates will die out. Fog-
arty and Smith [117] used Béck’s idea, implemented it
on a steady-state GA, and added an implementation of
the 1/5 success rule for mutation.

Self-adaptation of mutation has also been used for
non-numeric problems. Fogel et al. [47] used self-
adaptation to control the relative probabilities of the
five mutation operators for the components of a fi-
nite state machine. Hinterding [64] used a multi-
chromosome GA to implement the self-adaptation in
the cutting stock problem with contiguity. One chro-
mosome is used to represent the problem solution using
a grouping representation, while the other represents
the adaptive parameters using fixed point real nrepre-
sentation. Here self-adaptation is used to adapt the
probability of using one of the two available mutation
operators, and the strength of the group mutation op-
erator.



In [128] an new adaptive operator (so-called inver-
over) was proposed for permutation problems. The op-
erator applies a variable number of inversions to a sin-
gle individual. Moreover, the segment to be inverted is
determined by another (randomly selected) individual.

D. Crossover operators and their probabilities

Similarly to the previous subsection, we discuss
tuned ‘optimal’ rates for recombination operators be-
fore discussing attempts for controlling them.

As opposed to the mutation rate p,, that is inter-
preted per bit, the crossover rate p. acts on a pair of
chromosomes, giving the probability that the selected
pair undergoes crossover. Some common settings for p,
obtained by tuning traditional GAs are p. = 0.6 [29],
pe = 0.95 [58] and p. € [0.75,0.95] [106] [11], p.114.
Currently, it is commonly accepted that the crossover
rate should not be too low and values below 0.6 are
rarely used.

In the following we will separately treat mechanisms
regarding the control of crossover probabilities and
mechanisms for controlling the crossover mechanism it-
self. Let us start with an overview of controlling the
probability of crossover.

Davis’s ‘adaptive operator fitness’ adapts the rate
of operators by rewarding those that are successful in
creating better offspring. This reward is diminishingly
propagated back to operators of a few generations back,
who helped setting it all up; the reward is a shift up
in probability at the cost of other operators [28]. This,
actually, is very close in spirit to the credit assignement
principle used in classifier systems [50]. Julstrom’s
adaptive mechanism [77] regulates the ratio between
crossovers and mutations based on their performance,
as already mentioned in Section V-C. An extensive
study of cost based operator rate adaptation (COBRA)
on adaptive crossover rates is done by Tuson and Ross
[133]. Lis and Lis [84] adapt pm,, p. and the popula-
tion size in an algorithm of a parallel farming model.
They use parallel populations and each of them has one
value, out of a possible three different values, for p,,,
p. and the population size. After a certain period of
time the populations are compared. Then the values
for p,,, p. and the population size are shifted one level
towards the values of the most successful population.

Adapting probabilities for allele exchange of uni-
form crossover was investigated by White and Op-
pacher in [138]. In particular, they assigned a discrete
pe € [0,%, % ..., 1] to each bit in each chromosome
and exchange bits by crossover at position 4 if
\/p(parentl)cl - p(parentsy)." > rnd(0,1). Besides, the

offspring inherits bit z; and p.’ from its parents. The
finite state automata they used amounts to updating

these probabilities p.! in the offspring as follows:

if f(child) > f(parent) then raise p.’ in child for i’s
from parent

if f(child) < f(parent) then lower p.’ in child for i’s
from parent

else modify randomly

where parent € {parenty,parents}.

The mechanism of Spears [124] self-adapts the choice
between two different crossovers, 2-point crossover and
uniform crossover, by adding one extra bit to each in-
dividual (see Section IV). This extra bit decides which
type of crossover is used for that individual. Offspring
will inherit the choice for its type of crossover from its
parents. Srinivas and Patnaik [125] replace an indi-
vidual by its offspring. Each chromosome has its own
probabilities, p,, and p., added to their bitstring. Both
are adapted in proportion to the population maximum
and mean fitness. In Schaffer and Morishima [108]
the number and locations of crossover points was self-
adapted. This was done by introducing special marks
into string representation; these marks keep track of
the sites in the string where crossover occurred. Ex-
periments indicated [108] that adaptive crossover per-
formed as well or better than a classical GA for a set
of test problems.

When using multi-parent operators [34] a new pa-
rameter is introduced: the number of parents applied
in recombination. In [37] an adaptive mechanism to ad-
just the arity of recombination is used, based on com-
peting subpopulations [110]. In particular, the popu-
lation is divided into disjoint subpopulations, each us-
ing a different crossover (arity). Subpopulations de-
velop independently for a certain period of time and
exchange information by allowing migration after each
period. Quite naturally, migration is arranged in such
a way that populations showing greater progress in
the given period grow in size, while populations with
small progress become smaller. Additionally, there is a
mechanism keeping subpopulations (and thus crossover
operators) from complete extinction. This method
yielded a GA showing comparable performance with
the traditional (one population, one crossover) version
using a high quality six-parent crossover variant. In the
meanwhile, the mechanism failed to clearly identify the
better operators by making the corresponding subpop-
ulations larger. This is, in fact, in accordance with the
findings of Spears [124] in a self-adaptive framework.

In GP a few methods were proposed which allow
adaptation of crossover operators by adapting the prob-
ability that a particular position is chosen as a crossing
point [3], [68], [69]. Note also, that in GP there is also
implicit adaptation of all variation operators because of
variation of the genotype: e.g., introns, which appear
in genotypes during the evolutionary process, change



the probability that a variation operator is applied to
particular regions.

A meta-evolution approach in the context of genetic
programming is considered in [78]. The proposed sys-
tem consists of several levels; each level consists of a
population of graph programs. Programs on the first
level (so-called base level) solve the desired problem,
whereas programs on higher levels are considered as
recombination operators.

E. Parent selection

The family of the so-called Boltzmann selection
mechanisms embodies a method that varies the selec-
tion pressure along the course of the evolution accord-
ing to a pre-defined ‘cooling schedule’ [85]. The name
originates from the Boltzmann trial from condensed
matter physics, where a minimal energy level is sought
by state transitions. Being in a state ¢ the chance of
accepting state j is

E;, — E;
Placcept j] = exp (ﬁ) ,
-

where E;, E; are the energy levels, K is a parameter
called the Boltzmann constant, and T is the temper-
ature. This acceptance rule is called the Metropolis
criterion. The mechanism proposed by de la Maza and
Tidor [30] applies the Metropolis criterion for defining
the evaluation of a chromosome. The grand deluge EA
of Rudolph and Sprave [103] changes the selection pres-
sure by changing the acceptation threshold over time
in a multi-population GA framework.

It is interesting to note that the parent selection com-
ponent of an EA has not been commonly used in an
adaptive manner. However, there are selection meth-
ods whose parameters can be easily adapted. For ex-
ample, linear ranking, which assigns a selection prob-
ability to each individual that is proportional to the
individual’s rank :'°

p(i) = 2—b+2i(b—1)/(pop-size — 1)

pop_size
where the parameter b represents the expected number
of offspring to be allocated to the best individual. By
changing this parameter within the range of [1..2] we
can vary the selective pressure of the algorithm. Similar
possibilities exist for other ranking and scaling methods
and tournament selection.

Y

F. Replacement operator: survivor selection

Simulated annealing (SA) is a generate-and-test
search technique based on a physical, rather than a bi-
ological analogy [1]. Formally, SA can be envisioned as

10Rank of the worst individual is zero, whereas the rank of the
best individual is pop_size — 1.

an evolutionary process with population size of 1, un-
defined (problem dependent) representation and muta-
tion mechanism, and a specific survivor selection mech-
anism. The selective pressure increases during the
course of the algorithm in the Boltzmann-style. The
main cycle in SA is as follows.

begin
generate(j € S;);
if f(j) < f(i) then i := j;

else
if exp (W) > random|0,1)
then ¢ := j;

end

In this mechanism the parameter ci, the tempera-
ture, is decreasing, making the probability of accepting
inferior solutions smaller and smaller (for minimiza-
tion problems, i.e., the evaluation function f is being
minimized). From an evolutionary point of view, we
have here a (1+1) EA with increasing selection pres-
sure. Similarly to parent selection mechanisms, sur-
vivor selection is not commonly used in an adaptive
fashion.

G. Population

Several researchers have investigated population size
for genetic algorithms from different perspectives. A
few researchers provided a theoretical analysis of the
optimal population size [51], [52], [121]. However, as
usual, a large effort was made to find ‘the optimal’
population size empirically. As mentioned in the Intro-
duction, De Jong [29] experimented with population
sizes from 50 to 100, whereas Grefenstette [58] applied
a meta-GA to control parameters of another GA (in-
cluding populations size); the population size range was
[30..80]. Additional empirical effort was made by Schaf-
fer et al. [106]; the recommended range for population
size was [20..30].

Additional experiments with population size were re-
ported in [75] and [24]. Recently Smith [120] proposed
an algorithm which adjusts the population size with
respect to the probability of selection error. In [66]
the authors experimented with an adaptive GAs which
consisted of three subpopulations, and at regular inter-
vals the sizes of these populations were adjusted on the
basis of the current state of the search; see Section VI
for a further discussion of this method.

Schlierkamp-Voosen and Miihlenbein [109] use a
competition scheme that changes the sizes of subpop-
ulations, while keeping the total number of individuals
fixed — an idea which was also applied in [37]. In a



follow-up to [109] a competition scheme is used on sub-
populations that also changes the total population size
[110].

The genetic algorithm with varying population size
(GAVaPS) [7] does not use any variation of selection
mechanism considered earlier but rather introduces the
concept of the “age” of a chromosome, which is equiva-
lent to the number of generations the chromosome stays
“alive”. Thus the age of the chromosome replaces the
concept of selection and, since it depends on the fitness
of the individual, influences the size of the population
at every stage of the process.

VI. COMBINING FORMS OF CONTROL

As we explained in the introduction, ‘control of pa-
rameters in EAs’ includes any change of any of the pa-
rameters that influence the action of the EA, whether it
is done by a deterministic rule, feedback-based rule, or
a self-adaptive mechanism.'! Also, as has been shown
in the previous sections of this paper, it is possible to
control the various parameters of an evolutionary al-
gorithm during its run. However, most studies consid-
ered control of one parameter only (or a few parame-
ters which relate to a single component of EA). This
is probably because (1) the exploration of capabilities
of adaptation was done experimentally, and (2) it is
easier to report positive results in such simpler cases.
Combining forms of control is much more difficult as
the interactions of even static parameter settings for
different components of EA’s are not well understood,
as they often depend on the objective function [61]
and representation used [129]. Several empirical stud-
ies have been performed to investigate the interactions
between various parameters of an EA [43], [106], [142].
Some stochastic models based on Markov chains were
developed and analysed to understand these interac-
tions [25], [95], [126], [137].

In combining forms of control, the most common
method is related to mutation. With Gaussian mu-
tation we can have a number of parameters that con-
trol its operation. We can distinguish the setting of
the standard deviation of the mutations (mutation step
size) at a global level, for each individual, or for genes
(parameters) within an individual. We can also control
the preferred direction of mutation.

In evolution strategies [112], the self-adaptation of
the combination of the mutation step-size with the di-
rection of mutation is quite common. Also the adapta-
tion of the mutation step-size occurs at both the indi-
vidual and the gene level. This combination has been
used in EP as well [104]. Other examples of combin-

1INote that in many papers, the term ‘control’ is referred to
as ‘adaptation’.

ing the adaptation of the different mutation parame-
ters are given in Yao et al. [143] and Ghozeil and Fogel
[49]. Yao et al. combine the adaptation of the step
size with the mixing of Cauchy and Gaussian mutation
in EP. Here the mutation step size is self-adapted, and
the step size is used to generate two new individuals
from one parent: one using Cauchy mutation and the
other using Gaussian mutation; the “worse” individual
in terms of fitness is discarded. The results indicate
that the method is generally better or equal to using
either just Gaussian or Cauchy mutations even though
the population size was halved to compensate for gen-
erating two individuals from each parent. Ghozeil and
Fogel compare the use of polar coordinates for the mu-
tation step size and direction over the generally used
cartesian representation. While their results are pre-
liminary, they indicate that superior results can be ob-
tained when a lognormal distribution is used to mutate
the self-adaptive polar parameters on some problems.

Combining forms of control where the adapted pa-
rameters are taken from different components of the EA
are much rarer. Hinterding et al. [66] combined self-
adaptation of the mutation step size with the feedback-
based adaptation of the population size. Here feedback
from a cluster of three EAs with different population
sizes was used to adjust the population size of one or
more of the EAs at 1,000 evaluation epochs, and self-
adaptive Gaussian mutation was used in each of the
EAs. The EA adapted different strategies for differ-
ent type of test functions: for unimodal functions it
adapted to small population sizes for all the EAs; while
for multimodal functions, it adapted one of the EAs to
a large but oscillating population size to help it escape
from local optima. Smith and Fogarty [118] self-adapt
both the mutation step size and preferred crossover
points in a EA. Each gene in the chromosome includes:
the problem encoding component; a mutation rate for
the gene; and two linkage flags, one at each end of the
gene which are used to link genes into larger blocks
when two adjacent genes have their adjacent linkage
flags set. Crossover is a multiparent crossover and oc-
curs at block boundaries, whereas the mutation can
affect all the components of a block and the rate is
the average of the mutation rates in a block. Their
method was tested against a similar EA on a variety of
NK problems and produced better results on the more
complex problems.

The most comprehensive combination of forms of
control is by Lis and Lis [84], as they combine the
adaptation of mutation probability, crossover rate and
population size, using adaptive control. A parallel GA
was used, over a number of epochs; in each epoch the
parameter settings for the individual GAs was deter-
mined by using the Latin Squares experiment design.



This was done so that the best combination of three
values for each of the three parameters could be deter-
mined using the fewest number of experiments. At the
end of each epoch, the middle level parameters for the
next epoch were set to be the best best values from the
last epoch.

It is interesting to note that all but one of the
EAs which combine various forms of control use self-
adaptation. In Hinterding et al. [66] the reason that
feedback-based rather than self-adaptation was used to
control the population size, was to minimize the num-
ber of separate populations. This leads us to believe
that while the interactions of static parameters set-
ting for the various components of an EA are com-
plex, the interactions of the dynamics of adapting pa-
rameters using either deterministic or feedback-based
adaptation will be even more complex and hence much
more difficult to work out. Hence it is likely that using
self-adaptation is the most promising way of combin-
ing forms of control, as we leave it to evolution itself
to determine the beneficial interactions among various
components (while finding a near-optimal solution to
the problem).

However, it should be pointed out that any combina-
tion of various forms of control may trigger additional
problems related to “transitory” behavior of EAs. As-
sume, for eaxmple, that a population is arranged in a
number of disjoint subpopulations, each using a differ-
ent crossover (e.g., as described in Section V-D). If
the current size of subpopulation depends on the merit
of its crossover, the operator which performs poorly
(at some stage of the process) would have difficulties
“to recover” as the size of its subpopulation shrinked
in the meantime (and smaller populations usually per-
form worse than larger ones). This would reduce the
chances for utilizing “good” operators at later stages of
the process.

VII. DISCUSSION

The effectiveness of an evolutionary algorithm de-
pends on many of its components, e.g., representation,
operators, etc., and the interactions among them. The
variety of parameters included in these components,
the many possible choices (e.g., to change or not to
change?), and the complexity of the interactions be-
tween various components and parameters make the
selection of a “perfect” evolutionary algorithm for a
given problem very difficult, if not impossible.

So, how can we find the “best” EA for a given prob-
lem? As discussed earlier in the paper, we can per-
form some amount of parameter tuning, trying to find
good values for all parameters before the run of the
algorithm. However, even if we assume for a moment
that there is a perfect configuration, finding it is an

almost hopeless task. Figure 2 illustrates this point:
the search space Sg4 of all possible evolutionary algo-
rithms is huge, much larger than the search space Sp
of the given problem P, so our chances of guessing the
right configuration (if one exists!) for an EA are rather
slim (e.g., much smaller than the chances of guessing
the optimum permutation of cities for a large instance
of the traveling salesman problem). Even if we restrict
our attention to a relatively narrow subclass, say Sga
of classical GAs, the number of possibilities is still pro-
hibitive.!? Note, that within this (relatively small)
class there are many possible algorithms with differ-
ent population sizes, different frequencies of the two
basic operators (whether static or dynamic), etc. Be-
sides, guessing the right values of parameters might be
of limited value anyway: in this paper we have argued
that any set of static parameters seems to be inappro-
priate, as any run of an EA is an intrinsically dynamic,
adaptive process. So the use of rigid parameters that
do not change their values may not be optimal, since
different values of parameters may work better/worse
at different stages of the evolutionary process.

Sca
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Fig. 2. An evolutionary algorithm E A for problem P as a single
point in the search space Sga of all possible evolutionary
algorithms. E A searches (broken line) the solution space Sp
of the problem P. Sga represents a subspace of classical

GAs, whereas Sp,, — a subspace which consists of evolu-
tionary algorithms which are identical except their mutation
rate pm.

On the other hand, adaptation provides the op-
portunity to customize the evolutionary algorithm to
the problem and to modify the configuration and the
strategy parameters used while the problem solution
is sought. This possibility enables us not only to in-
corporate domain information and multiple reproduc-
tion operators into the EA more easily, but, as indi-
cated earlier, allows the algorithm itself to select those
values and operators which provide better results. Of
course, these values can be modified during the run of
the EA to suit the situation during that part of the

12 A subspace of classical genetic algorithms, Sga C Sga, con-
sists of evolutionary algorithms where individuals are represented
by binary coded fixed-length strings, which has two operators: 1-
point crossover and a bit-flip mutation, and it uses a proportional
selection.



run. In other words, if we allow some degree of adap-
tation within an EA, we can talk about two different
searches which take place simultaneously: while the
problem P is being solved (i.e., the search space Sp is
being searched), a part of Sga is searched as well for
the best evolutionary algorithm E A for some stage of
the search of Sp. However, in all experiments reported
by various researchers (see section V) only a tiny part
of the search space Sgy was considered. For example,
by adapting the mutation rate p,, we consider only a
subspace S, (see Figure 2), which consists of all evolu-
tionary algorithms with all parameters fixed except the
mutation rate. Similarly, early experiments of Grefen-
stette [58] were restricted to the subspace Sg4 only.

An important objective of this paper is to draw at-
tention to the potentials of EAs adjusting their own
parameters on-line. Given the present state of the art
in evolutionary computation, what could be said about
the feasibility and the limitations of this approach?

One of the main obstacles of optimizing parameter
settings of EAs is formed by the epistasic interactions
between these parameters. The mutual influence of
different parameters on each other and the combined
influence of parameters together on EA behaviour is
very complex. A pessimistic conclusion would be that
such an approach is not appropriate, since the ability
of EAs to cope with epistasis is limited. On the other
hand, parameter optimization falls in the category of
ill-defined, not well-structured (at least not well under-
stood) problems preventing an analytical approach —
a problem class for which EAs usually provide a reason-
able alternative to other methods. Roughly speaking,
we might not have a better way to do it than letting
the EA figuring it out. To this end, note that the self-
adaptive approach represents the highest level of re-
liance on the EA itself in setting the parameters. With
a high confidence in the capability of EAs to solve the
problem of parameter setting this is the best option. A
more sceptical approach would provide some assistance
in the form of heuristics on how to adjust parameters,
amounting to adaptive parameter control. At this mo-
ment there are not enough experimental or theoretical
results available to make any reasonable conclusions on
the (dis)advantages of different options.

A theoretical boundary on self-adjusting algorithms
in general is formed by the no free lunch theorem [140].
However, while the theorem certainly applies to a self-
adjusting EA, it represents a statement about the per-
formance of the self-adjusting features in optimizing
parameters compared to other algorithms for the same
task. Therefore, the theorem is not relevant in the
practical sense, because these other algorithms hardly
exist in practice. Furthermore, the comparison should
be drawn between the self-adjusting features and the

human “oracles” setting the parameters, this latter be-
ing the common practice.

It could be argued that relying on human intelligence
and expertise is the best way of drawing an EA design,
including the parameter settings. After all, the “intel-
ligence” of an EA would always be limited by the small
fraction of the predefined problem space it encounters
during the search, while human designers (may) have
global insight of the problem to be solved. This, how-
ever, does not imply that the human insight leads to
better paremeter settings (see our discussion of the ap-
proaches called parameter tuning and parameter set-
ting by analogy in Section II). Furthermore, human ex-
peritse is costly and might not be easily available for the
given problem at hand, so relying on computer power
is often the most practicable option. The domain of
applicability of the evolutionary problem solving tech-
nology as a whole could be significantly extended by
EAs that are able to configurate themselves, at least
partially.

At this stage of research it is unclear just “how much
parameter control” might be useful. Is it feasible to
consider the whole search space Sg 4 of evolutionary al-
gorithms and allow the algorithm to select (and change)
the representation of individuals together with opera-
tors? At the same time should the algorithm control
probabilities of the operators used together with pop-
ulation size and selection method? It seems that more
research on the combination of the types and levels of
parameter control needs to be done. Clearly, this could
lead to significant improvements to finding good solu-
tions and to the speed of finding them.

Another aspect of the same issue is “how much pa-
rameter control is worthwhile”? In other words, what
computational costs are acceptable? Some researchers
have offered that adaptive control substantially com-
plicates the task of EA and that the rewards in solu-
tion quality are not significant to justify the cost [20].
Clearly, there is some learning cost involved in adap-
tive and self-adaptive control mechanisms. Either some
statistics are collected during the run, or additional op-
erations are performed on extended individuals. Com-
paring the efficiency of algorithms with and without
(self-)adaptive mechanisms might be misleading, since
it disregards the time needed for the tuning process. A
more fair comparison could be based on a model which
includes the time needed to set up (to tune) and to run
the algorithm. We are not aware of any such compar-
isons at the moment.

On-line parameter control mechanisms may have a
particular significance in nonstationary environments.
In such environments often it is necessary to modify the
current solution due to various changes in the environ-
ment (e.g., machine breakdowns, sickness of employees,



etc). The capabilities of evolutionary algorithm to con-
sider such changes and to track the optimum efficiently
have been studied [4], [15], [134], [135]. A few mech-
anisms were considered, including (self-)adaptation of
various parameters of the algorithm, while other mech-
anisms were based on maintenance of genetic diversity
and on redundancy of genetic material. These mecha-
nisms often involved their own adaptive schemes, e.g.,
adaptive dominance function.

It seems that there are several exciting research is-
sues connected with parameter control of EAs. These
include:

o Developing models for comparison of algorithms with
and without (self-)adaptive mechanisms. These models
should include stationary and dynamic environments.
o Understanding the merit of parameter changes and
interactions between them using simple determinis-
tic controls. For example, one may consider an EA
with a constant population-size versus an EA where
population-size decreases, or increases, at a predefined
rate such that the total number of function evaluations
in both algorithms remain the same (it is relatively easy
to find heuristic justifications for both scenarios).

o Justifying popular heuristics for adaptive control.
For instance, why and how to modify mutation rates
when the allele distribution of the population changes?
o Trying to find the general conditions under which
adaptive control works. For self-adative mutation step
sizes there are some universal guidelines (e.g., surplus
of offspring, extinctive selection), but so far we do not
know of any results regarding adaptation.

o Understanding the interactions among adaptively
controlled parameters. Usually feedback from the
search triggers changes in one of the parameters of the
algorithm. However, the same trigger can be used to
change the values of other parameters. The parameters
can also directly influence each other.

o Investigating the merits and drawbacks of self-
adaptation of several (possibly all) parameters of an
EA.

o Developing a formal mathematical basis for the pro-
posed taxonomy for parameter control in evolutionary
algorithms in terms of functionals which transform the
operators and variables they require.

In the next few years we expect new results in these
areas.
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