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Abstract

The paper presents several evolutionary computation techniques and discusses
their applicability to nonlinear programming problems. On the basis of this presen-
tation we discuss also a construction of a new hybrid optimization system, Genocop
II, and present its experimental results on a few test cases (nonlinear programming
problems).
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INTRODUCTION

The general nonlinear programming problem NP is to �nd X so as to

optimize f(X), X = (x1; : : : ; xq) 2 Rq,

subject to p � 0 equations:

ci(X) = 0, i = 0; : : : ; p,

and m� p � 0 inequalities:

ci(X) � 0, i = p + 1; : : : ;m.
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There is no known method of determining the global maximum (or minimum) to
the general nonlinear programming problem. Only if the objective function f and the
constraints ci satisfy certain properties, the global optimum can sometimes be found.
Several algorithms were developed for unconstrained problems (e.g., direct search method,
gradient method) and constrained problems (these algorithms usually are classi�ed as
indirect and direct methods. An indirect method attacts the problem by extracting one
or more linear problems from the original one, whereas a direct method tries to determine
successive search points. This is usually done by converting the original problem into
unconstrained one for which gradient methods are applied with some modi�cations; Taha,
1987). Despite the active research and progress in global optimization in recent years
(Floudas, & Pardalos, 1992), it is probably fair to say that no e�cient solution procedure
is in sight for the general nonlinear problems NP.

There are many other problems connected with traditional optimization techniques.
For example, most proposed methods are local in scope, they depend on the existence
of derivatives, and they are insu�ciently robust in discontinuous, vast multimodal, or
noisy search spaces (Goldberg, 1989). It is important then to investigate other (heuristic)
methods, which, for many real world problems, may prove very useful.

In this paper we survey several evolutionary computation techniques and present one
particular method which approaches nonlinear optimization problems. The concept of the
presented system (Genocop II) is based on the ideas taken from the recent developments in
area of optimization combined together with components of genetic algorithms, simulated
annealing, evolution strategies, and scatter search. The prototype of the new system was
run on several test-cases; the results of experiments are presented and compared with
known optimas.

The paper is organized as follows. The next section provides a brief discussion on
genetic algorithms, scatter search, simulated annealing, and evolution strategies. This is
followed by a description of the system (Genocop) capable of optimizing a function (which
need not be continuous) with linear constraints. The discussion is supported by a few ex-
perimental results; in one test case the system found the point better than the best known
optimum. Then we discuss briey one particular (gradient-based) traditional method to
solve nonlinear programming problems and indicate, how the idea of the method can be
combined with existing Genocop system to yield Genocop II: a general nonlinear pro-
gramming tool. Again, the discussion is illustrated by a few experimental results of the
system on nonlinear test cases. The last section contains conclusions and some directions
for future work.

EVOLUTIONARY COMPUTATION TECHNIQUES

In this section we provide a brief discussion on genetic algorithms, scatter search,
simulated annealing, and evolutionary strategies, and indicate the way they approach the
problems in the class NP.
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Genetic Algorithms

Genetic Algorithms (GAs) (Holland, 1975) are stochastic algorithms whose search meth-
ods model a natural phenomena: genetic inheritance and Darwinian strife for survival.
As stated in (Davis, 1987):

\... the metaphor underlying genetic algorithms is that of natural evolution.
In evolution, the problem each species faces is one of searching for bene�cial
adaptations to a complicated and changing environment. The `knowledge'
that each species has gained is embodied in the makeup of the chromosomes
of its members."

Genetic algorithms (GA) start with a population of randomly generated candidates and
`evolve' towards better solutions by applying genetic operators, modeled on the genetic
processes occurring in nature. This population undergoes evolution in a form of natural
selection. In each generation, relatively `good' solutions reproduce to give o�spring that
replace the relatively `bad' solutions which die. An evaluation or objective function plays
the role of the environment to distinguish between good and bad solutions. The structure
of a simple genetic algorithm is shown in Figure 1.

procedure genetic algorithm
begin

t = 0
initialize P (t)
evaluate P (t)
while (not termination-condition) do
begin

t = t+ 1
select P (t) from P (t� 1)
recombine P (t)
evaluate P (t)

end
end

Figure 1: Genetic algorithm

During iteration t each solution, X i, from the population (the population size pop size
remains �xed through the evolution process) is evaluated by computing f(X i), a measure
of its �tness. A new population, P (t+1), is then formed: we select solutions to reproduce
on the basis of their relative �tness, and the selected solutions are recombined using
genetic operators to form the new population.

The mutation operator arbitrarily alters one or more components of a selected struc-
ture so as to increase the structural variability of the population. Each position of each
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solution vector in the population undergoes a random change with a probability de�ned
by the mutation rate.

The crossover operator combines the features of two parent structures to form two
similar o�spring. It operates by swapping corresponding segments of a string representing
the parent solutions.

For problems in the class NP, genetic algorithms usually use penalty function ap-
proach to handle constraints. The original problem NP is transformed into:

optimize f(x1; x2; : : : ; xq) + � � �Pm
i=1Wi,

where m is the number of all constraints (p and m� p are, respectively, the numbers of
equations and inequalities), � is a penalty coe�cient, � is �1 for maximalization and +1
minimalization problems, and Wi is a penalty related to the i-th constraint (i = 1; : : : ;m).
It is also possible to reject nonfeasible o�spring, however, equality constraints make this
approach useless (the probability of generating a feasible o�spring in the presence of
equations is less then slim).

There is a large empirical evidence of the usefulness of GAs for a variety of uncon-
strained problems optimization (Grefenstette, 1985; Grefenstette, 1987; Scha�er, 1989;
Belew, & Booker, 1991). However, the proposed penalty approach did not work well for
heavily constrained problems (Michalewicz, & Janikow, 1992).

Scatter Search

Similarly to genetic algorithms, the scatter search (SS) techniques (Glover, 1977) maintain
a population of potential solutions (vectors X i are called reference points). This strategy
unites preferred subsets of reference points to generate trial points (o�spring) by weighted
linear combinations, and selects the best members to become the source of new reference
points (new population). A new twist here is the use of multicrossover (called weighted
combination), where several (more than two) parents contribute in producing an o�spring.
In (Glover, 1989; Glover, 1990) the idea of the scatter search was extended by combining it
with a tabu search|a technique which restricts the selection of new o�spring (it requires
memory where a historical set of individuals is kept). The structure of a scatter/tabu
search algorithm is shown in Figure 2.

After initialization and evaluation, scatter/tabu search algorithm classi�es (classify
P (t) step) population of solutions X1; : : : ;Xpop size into several sets. These include (1)
a set of elite historical generators V consisting of some (�xed) number of best solutions
through the whole process, (2) a set of tabu generators T � V consisting of solutions
currently excluded from considerations, (3) a set of selected historical generators V � con-
sisting of the best elements of V � T , and (4) a set of selected current generators S�

consisting of the best elements of S. The classi�cation step (classify P (t)) is repeated
later in the iteration phase of the algorithm.
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procedure scatter/tabu search
begin

t = 0
initialize P (t)
evaluate P (t)
classify P (t)
while (not termination-condition) do
begin

t = t+ 1
create R(t)
evaluate R(t)
select P (t) from P (t� 1) and R(t)
classify P (t)

end
end

Figure 2: Scatter/tabu search

During each iteration a setR(t) of trial points is created. The trial points correspond to
o�spring of the population P (t); they are evaluated and (some of them) are incorporated
into the new population (select P (t) from P (t� 1) and R(t)).

For problems in the classNP, scatter/tabu search technique takes a di�erent approach
than genetic algorithms. Instead of using penalty functions, these methods start with a
feasible population of potential solutions. The set of trial points, generated during each
iteration, is also feasible: a nonfeasible point is rejected at once and is not considered any
further.

Simulated Annealing

The simulated annealing (SA) technique (Kirkpatrick et al., 1983) was derived from sta-
tistical mechanics for �nding near globally-minimum-cost solutions to large optimization
problems. It generalizes the hillclimbing methods and eliminates their main disadvantage:
dependence of the solution on the starting point, and statistically promises to deliver an
optimal solution. This is achieved by introducing a probability � of acceptance (i.e., re-
placement of the current point by a new point): � = 1, if the new point provides a better
value of the objective function; however, � > 0, otherwise. In the latter case, the proba-
bility of acceptance � is a function of the values of objective function for the current point
and the new point, and an additional control parameter, \temperature", T . In general,
the lower temperature T is, the smaller the chances for the acceptance of a new point are.
During execution of the algorithm, the temperature of the system, T , is lowered in steps.
The algorithm terminates for some small value of T , for which virtually no changes are
accepted anymore. The structure of the simulated annealing procedure is given in Figure
3.
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procedure simulated annealing
begin

t 0
initialize temperature T
select a current string Xc at random
evaluate X c

repeat
repeat

select a new string Xn

in the neighborhood of X c

by ipping a single bit of X c

if f(X c) < f(Xn)
then X c  Xn

else if random[0; 1) < expf(f(Xn)� f(X c))=Tg
then Xc  Xn

until (termination-condition)
T  g(T; t)
t t+ 1

until (stop-criterion)
end

Figure 3: Simulated annealing

The function random[0; 1) returns a random number from the range [0; 1). The
(termination-condition) checks whether `thermal equilibrium' is reached, i.e., whether
the probability distribution of the selected new strings approaches the Boltzmann distri-
bution (Aarts, & Korst, 1989). However, in some implementations (Ackley, 1987), this
repeat loop is executed just k times (k is an additional parameter of the method).

The temperature T is lowered in steps (g(T; t) < T for all t). The algorithm terminates
for some small value of T : the (stop-criterion) checks whether the system is `frozen', i.e.,
virtually no changes are accepted anymore.

Simulated annealing technique can incorporate penalties for violated constraints or
reject nonfeasible string Xn. For example, the code for VFSR (very fast simulated rean-
nealing, Ingber, 1989) rejects nonfeasible points. Also quite often the simulated annealing
procedure is modi�ed to permit adaptive changes in the ranges of the parameters to take
into account new information that might make it more e�cient to cut down the size of
the search space.

Evolutionary Strategies

Evolution strategies (ES) are techniques developed for parameter optimization problems
(B�ack et al., 1991; Schwefel, 1981). Early evolution strategies used a oating point number
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representation, with mutation being the only recombination operator. They have been
applied to various optimization problems with continuously changeable parameters.

The multimembered evolution strategies evolved further (Schwefel, 1981) to mature
as

(�+ �){ESs and (�; �){ESs;

the main idea behind these strategies was to allow control parameters (like mutation
variance) to self-adapt rather than changing their values by some deterministic algorithm.
The structure of an evolutionary strategy algorithm is given in Figure 4.

procedure evolutionary strategy
begin

t = 0
initialize P (t)
evaluate P (t)
while (not termination-condition) do
begin

t = t+ 1
select P (t) from P (t� 1)
recombine P (t)
evaluate P (t)

end
end

Figure 4: Evolutionary strategy

Note that this structure is the same as the one for a genetic algorithm (Figure 1)
except that the order of steps

select P (t) from P (t� 1)
recombine P (t)

is reversed. The algorithm �rst enters the reproduction phase and later selects a new pop-
ulation. Of course, there are other di�erences hidden on the lower levels of the structure.

In the (�+�){ES, � individuals produce � o�spring. The new (temporary) population
of (�+�) individuals is reduced by a selection process again to � individuals. On the other
hand, in the (�; �){ES, the � individuals produce � o�spring (� > �) and the selection
process selects a new population of � individuals from the set of � o�spring only. By doing
this, the life of each individual is limited to one generation. This allows the (�; �){ES to
perform better on problems with an optimum moving over time, or on problems where
the objective function is noisy.

The operators used in the (�+ �){ESs and (�; �){ESs incorporate two-level learning:
their control parameter � is no longer constant, nor it is changed by some deterministic
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algorithm, but it is incorporated in the structure of the individuals and undergoes the
evolution process. To produce an o�spring, the system acts in two stages:

� select two individuals,

(X
1
; �1) = ((x11; : : : ; x

1
n); (�

1
1; : : : ; �

1
n)) and

(X
2
; �2) = ((x21; : : : ; x

2
n); (�

2
1; : : : ; �

2
n)),

and apply a recombination (crossover) operator. There are two types of crossovers:

{ discrete, where the new o�spring is

(X;�) = ((xq11 ; : : : ; x
qn
n ); (�q1

1 ; : : : ; �
qn
n )),

where qi = 1 or qi = 2 (so each component comes from the �rst or second
preselected parent),

{ intermediate, where the new o�spring is

(X;�) = (((x11+x
2
1)=2; : : : ; (x

1
n+x

2
n)=2); ((�

1
1+�

2
1)=2; : : : ; (�

1
n+�

2
n)=2)).

Each of these operators can be applied also in a global mode, where the new pair
of parents is selected for each component of the o�spring vector.

� apply mutation to the o�spring (X;�) obtained; the resulting new o�spring is
(X

0
; �0), where

�0 = � � eN(0;��) and
X

0
= X +N(0; �0),

where �� is a parameter of the method.

Evolution strategies deal with constraints in a direct way. They assume a set of m � 0
inequalities,

h1(X) � 0; : : : ; hm(X) � 0,

as part of the optimization problem. If, during some iteration, an o�spring does not
satisfy all of these constraints, then the o�spring is disquali�ed, i.e., it is not placed in a
new population. If the rate of occurrence of such illegal o�spring is high, the ESs adjust
their control parameters, e.g., by decreasing the components of the vector �. Note that
all equalities ci = 0 must be replaced by a pair of inequalities ci � 0 and ci � 0 which may
lead for some ine�ciencies. One such particular case is fully discussed in Michalewicz,
(1993), where we compare several systems on single test problem (balanced nonlinear
transportation problem, i.e., problem with equality constraints).
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GENOCOP

Genocop borrows di�erent ideas from several randomized methods. The structure of
the Genocop is based on genetic algorithm. However, the system uses oating point
representation for chromosomes (as evolutionary strategies do). One of the operators
(arithmetical crossover) has its origin in scatter search, whereas the ideas of simulated
annealing (smaller changes with lower temperature) were incorporated in other operator:
non-uniform mutation.

As indicated earlier, Genocop is capable of optimizing a function with linear con-
straints (equations and inequalities) only. The reason is that in the area of constrained
optimization, the geometric shape of the set of solutions in Rq is perhaps the most cru-
cial characteristic of the problem, with respect to the degree of di�culty we are likely to
encounter in attempting to solve the problem (Cooper, 1970). There is only one special
type of set|a convex set|for which a signi�cant amount of theory has been developed.
For this reason, we considered �rst a subclass of NP of nonlinear programming problems,
where all constraints ci are linear (equations and inequalities).

In some optimization techniques, such as linear programming, equality constraints are
welcome since it is known that the optimum, if it exists, is situated at the surface of the
convex set. Inequalities are converted to equalities by the addition of slack variables, and
the solution method proceeds by moving from vertex to vertex, around the surface.

In contrast, for a method that generates solutions randomly, such equality constraints
are a nuisance. In Genocop they are eliminated at the start, together with an equal
number of problem variables; this action removes also part of the space to be searched.
The remaining constraints, in the form of linear inequalities, form a convex set which
must be searched for a solution. The convexity of the search space ensures that linear
combinations of solutions yield solutions without needing to check the constraints|a
property used throughout this approach. The inequalities can be used to generate bounds
for any given variable: such bounds are dynamic as they depend on the values of the
other variables and can be e�ciently computed. So the main idea behind this approach
lies in (1) an elimination of the equalities present in the set of constraints, and (2) careful
design of special \genetic" operators, which guarantee to keep all chromosomes within
the constrained solution space. The full description of the Genocop system is given in
(Michalewicz, 1992); here we discuss briey these two aspects of the algorithm in turn.

Let us assume we wish to optimize a function of six variables:

f(x1; x2; x3; x4; x5; x6),

subject to the following constraints:

2x1 + x2 + x3 = 6,
x3 + x5 � 3x6 = 10,
x1 + 4x4 = 3,
x2 + x5 � 120,
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�40 � x1 � 20, 50 � x2 � 75,
0 � x3 � 10, 5 � x4 � 15,
0 � x5 � 20, �5 � x6 � 5.

We can take an advantage from the presence of three independent equations and
express four variables as functions of the remaining three:

x1 = 3� 4x4,
x2 = �10 + 8x4 + x5 � 3x6,
x3 = 10 � x5 + 3x6.

Thus we have reduced the original problem to the optimization problem of a function
of three variables x4, x5, and x6:

g(x4; x5; x6) = f((3� 4x4); (�10+ 8x4 + x5� 3x6); (10� x5+ 3x6); x4; x5; x6),

subject to the following constraints (inequalities only):

�10 + 8x4 + 2x5 � 3x6 � 120, (original x2 + x5 � 120),
50 � 3 � 4x4 � 20, (original 50 � x1 � 20),
�20 � �10 + 8x4 + x5 � 3x6 � 75, (original �20 � x2 � 75),
0 � 10 � x5 + 3x6 � 10, (original 0 � x3 � 10),
5 � x4 � 15,
0 � x5 � 20, and
�5 � x6 � 5.

These can be reduced further; for example the second and �fth inequalities can be replaced
by a single one:

5 � x4 � 10:75.

Such transformation completes the �rst step of our algorithm: elimination of equal-
ities. The resulting search space is, of course, convex. From the convexity of the
search space it follows that for each feasible point (x1; : : : ; xn) there exists a feasible
range hleft(k); right(k)i of a variable xk (1 � k � n), where remaining variables xi
(i = 1; : : : ; k � 1; k + 1; : : : ; n) are �xed. In other words, for a given (x1; : : : ; xk; : : : ; xn):

y 2 hleft(k); right(k)i i� (x1; : : : ; y; : : : ; xn) is feasible,

where all xi's (i = 1; : : : ; k � 1; k + 1; : : : ; n) remain constant. Since all inequalities are
linear, the ranges hleft(k); right(k)i can be e�ciently computed.

For example, for the feasible space de�ned in the previous example and a given feasible
point (x4; x5; x6) = (10; 8; 2):
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left(1) = 7:25, right(1) = 10:375,
left(2) = 6, right(2) = 11,
left(3) = 1, right(3) = 2:666,

(left(1) and right(1) are ranges of the �rst component of the vector (10; 8; 2), i.e., of the
variable x4, etc.). It means that the �rst component of the vector (10; 8; 2) can vary from
7:25 to 10:375 (while x5 = 8 and x6 = 2 remain constant), the second component of this
vector can vary from 6 to 11 (while x4 = 10 and x6 = 2 remain constant), and the third
component of this vector can vary from 1 to 2:666 (while x4 = 10 and x5 = 8 remain
constant).

The Genocop system tries to locate an initial (feasible) solution by sampling the
feasible region. If some prede�ned number of trials is unsuccessful, the system would
prompt the user for a feasible initial point. The initial population consists of identical
copies of such initial point (whether generated or provided by the user).

There are several operators in the Genocop system which proved to be useful on many
test problems. We discuss them in turn.

Uniform mutation

This operator requires a single parent ~x and produces a single o�spring ~x0. The oper-
ator selects a random component k 2 (1; : : : ; n) of the vector ~x = (x1; : : : ; xk; : : : ; xn)
and produces ~x0 = (x1; : : : ; x0k; : : : ; xn), where x

0
k is a random value (uniform probability

distribution) from the range hleft(k); right(k)i.
The operator plays an important role in the early phases of the evolution process as

the solutions are allowed to move freely within the search space. In the later phases of an
evolution process the operator allows possible movement away from a local optimum, in
the search for a more superior optimum.

Boundary mutation

This operator requires also a single parent ~x and produces a single o�spring ~x0. The
operator is a variation of the uniform mutation with x0k being either left(k) or right(k),
each with equal probability.

The operator aims at optimization problems where the optimal solution lies either on
or near the boundary of the feasible search space. Since this operator aims speci�cally at
this condition, it can prove extremely useful in such instances.

Non-uniform mutation

This (unary) operator is de�ned as follows. For a parent ~x, if the element xk was selected
for this mutation, the result is ~x0 = hx1; : : : ; x0k; : : : ; xqi, where

x0k =

(
xk +4(t; right(k)� xk) if a random digit is 0
xk �4(t; xk � left(k)) if a random digit is 1
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The function4(t; y) returns a value in the range [0; y] such that the probability of 4(t; y)
being close to 0 increases as t increases. This property causes this operator to search the
space uniformly initially (when t is small), and very locally at later stages. We have used
the following function:

4(t; y) = y � r � (1 � t

T
)b;

where r is a random number from [0::1], T is the maximal generation number, and b is a
system parameter determining the degree of non{uniformity.

The operator is responsible for the �ne tuning capabilities of the system. The signi�-
cance of this operator is visible in the late stages of the evolution process.

Arithmetical crossover

This binary operator is de�ned as a linear combination of two vectors: if ~x1 and ~x2 are to
be crossed, the resulting o�spring are ~x01 = a �~x1+(1�a) �~x2 and ~x02 = a �~x2+(1�a) �~x1.
This operator uses a random value a 2 [0::1], as it always guarantees closedness (~x01; ~x

0
2 2

D). Such a crossover was called a guaranteed average crossover in Davis (1989) (when
a = 1=2); intermediate crossover in B�ack et al., (1991); linear crossover in Wright (1990);
and arithmetical crossover in Michalewicz, & Janikow (1991) and Michalewicz (1992).

The operator explores points in the search space which belong to line connecting its
parents. Like non-uniform mutation, the operator plays a signi�cant role in �ne local
tuning.

Simple crossover

This binary operator is de�ned as follows: if ~x1 = (x1; : : : ; xn) and ~x2 = (y1; : : : ; yn) are
crossed after the k-th position, the resulting o�spring are: ~x01 = (x1; : : : ; xk; yk+1; : : : ; yn)
and ~x02 = (y1; : : : ; yk; xk+1; : : : ; xn).

However, such operator may produce o�spring outside the domain D. To avoid this
problem, we use the property of the convex spaces saying, that there exist a 2 [0; 1] such
that

~x01 = hx1; : : : ; xk; yk+1 � a+ xk+1 � (1� a); : : : ; yn � a+ xn � (1� a)i

and

~x02 = hy1; : : : ; yk; xk+1 � a+ yk+1 � (1� a); : : : ; xn � a+ yn � (1 � a)i

are feasible.

The only question to be answered yet is how to �nd the largest a to obtain the greatest
possible information exchange. The simplest method would start with a = 1 and, if at
least one of the o�spring does not belong to D, decreases a by some constant 1

q
. After q

attempts a = 0 and both o�spring are in D since they are identical to their parents. The
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necessity for such maximal decrement is small in general and decreases rapidly over the
life of the population.

The operator is responsible for sampling the search space; two parents may produce
o�spring in a `new' part of the search space.

Heuristic crossover

This operator was suggested in Wright (1990). This is unique crossover for the following
reasons: (1) it uses values of the objective function in determining the direction of the
search, (2) it produces one o�spring only, and (3) it may produce no o�spring at all.

The operator generates a single o�spring ~x3 from two parents, ~x1 and ~x2 according to
the following rule:

~x3 = r � ( ~x2 � ~x1) + ~x2,

where r is a random number between 0 and 1, and the parent ~x2 is not worse than ~x1, i.e.,
f( ~x2) � f( ~x1) for maximization problems and f( ~x2) � f( ~x1) for minimization problems.

It is possible for this operator to generate an o�spring vector which is not feasible. In
such a case another random value r is generated and another o�spring created. If after
w attempts no new solution meeting the constraints is found, the operator gives up and
produces no o�spring.

The operator explores a point in the search space by moving outward from the better
parent along the line connecting the two parents. Again, the operator gains its importance
at the later stages of the evolution process.

TESTING GENOCOP

In order to evaluate the Genocop method, a set of test problems have been carefully
selected to illustrate the performance of the algorithm and to indicate that it has been
successful in practice. The eight test cases, which include quadratic, nonlinear, and
discontinuous functions with several linear constraints, are fully discussed in Michalewicz,
& Swaminathan (1993). Here we provide only three test cases.

All runs of the systemwere performed on SUN SPARC station 2. We used the following
parameters for all experiments:

pop size = 70, k = 28 (number of parents in each generation; classi�cation
step), and b = 2 (coe�cient for non-uniform mutation).

For each test case we run the Genocop ten times. For all problems, the number of
generations T was 500 or 1000. Three test cases and the results of the Genocop system
are reported in the following subsections.

Test Case #1

The problem (taken from Hock, & Schittkowski, 1981) is
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minimize f(X) =
P10

j=1 xj(cj + ln xj

x1+:::+x10
),

subject to:

x1 + 2x2 + 2x3 + x6 + x10 = 2,
x4 + 2x5 + x6 + x7 = 1,
x3 + x7 + x8 + 2x9 + x10 = 1,
xi � 0:000001, (i = 1; : : : ; 10),

where

c1 = �6:089; c2 = �17:164; c3 = �34:054; c4 = �5:914; c5 = �24:721;
c6 = �14:986; c7 = �24:100; c8 = �10:708; c9 = �26:662; c10 = �22:179;

The best known solution reported in Hock, & Schittkowski (1981) is

(X
�
) = (:01773548; :08200180; :8825646; :0007233256; :4907851;

:0004335469; :01727298; :007765639; :01984929; :05269826),

and f(X
�
) = �47:707579.

The Genocop system (in all ten runs) found points with better value than the one
above:

(X
�
) = (:04034785; :15386976; :77497089; :00167479; :48468539;

:00068965; :02826479; :01849179; :03849563; :10128126),

for which the value of the objective function is equal to �47:760765. A single run of 500
iterations took 11 sec of CPU time.

It is interesting to note that while the best point found improves the best known value
for the objective function by less than 0:06, the point is located in a very di�erent area
of the search space than the best point reported in Hock, & Schittkowski (1981).

Test Case #2

The problem (taken from Floudas, & Pardalos, 1987) is

minimize f(X;Y ) = 5x1 + 5x2 + 5x3 + 5x4 � 5
P4

i=1 x
2
i �

P9
i=1 yi,

subject to:

2x1 + 2x2 + y6 + y7 � 10,
2x1 + 2x3 + y6 + y8 � 10,
2x2 + 2x3 + y7 + y8 � 10,
�8x1 + y6 � 0,
�8x2 + y7 � 0,
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�8x3 + y8 � 0,
�2x4 � y1 + y6 � 0,
�2y2 � y3 + y7 � 0,
�2y4 � y5 + y8 � 0,
0 � xi � 1, i = 1; 2; 3; 4,
0 � yi � 1, i = 1; 2; 3; 4; 5; 9,
0 � yi, i = 6; 7; 8.

The global solution is (X
�
; Y

�
) = (1; 1; 1; 1; 1; 1; 1; 1; 1; 3; 3; 3; 1), and f(X

�
; Y

�
) = �15.

The Genocop system found the optimum in all ten runs; a typical optimum point
found was:

(1.000000, 1.000000, 1.000000, 1.000000, 0.999995, 1.000000, 0.999999,
1.000000, 1.000000, 2.999984, 2.999995, 2.999995, 0.999999),

for which the value of the objective function is equal to -14.999965. A single run of 1000
iterations took 24 sec of CPU time.

Test Case #3

The third example demonstrates the power of the Genocop|we consider a test case where
the objective function is discontinuous. The problem was constructed from three separate
problems taken from Hock, & Schittkowski (1981) in the following way:

minimize f(X) =

8><
>:

f1 = x2 + 10�5(x2 � x1)2 � 1:0 if 0 � x1 < 2
f2 =

1
27
p
3
((x1 � 3)2 � 9)x32 if 2 � x1 < 4

f3 =
1
3
(x1 � 2)3 + x2 � 11

3
if 4 � x1 � 6

subject to:

x1=
p
3 � x2 � 0,

�x1 �
p
3x2 + 6 � 0,

0 � x1 � 6, and x2 � 0.

The function f has three global solutions:

X
�
1 = (0; 0), X

�
2 = (3;

p
3), and X

�
3 = (4; 0),

in all cases f(X
�
i ) = �1 (i = 1; 2; 3).

We made three separate experiments. In experiment k (k = 1; 2; 3) all functions fi
except fk were increased by 0:5. As a result, the global solution for the �rst experiment
was X

�
1 = (0; 0), the global solution for the second experiment was X

�
2 = (3;

p
3), and the

global solution for the third experiment was X
�
3 = (4; 0).
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The Genocop found global optimas in all runs in all three cases; a single run of 500
iterations took 9 sec of CPU time.

Summary

As discussed in the previous section, Genocop worked very well for many experimental test
problems with linear constraints; these included discontinuous functions. However, it is
not clear how we can generalize Genocop to handle nonlinear constraints (i.e., problems in
NP class). Some sets of nonlinear constraints can still yield a convex search spaces|the
property important for many operators (all mutations, arithmetical crossover). However,
even in this case the process of �nding the ranges left(k) and right(k) might be hard
computationally. Another possibility would be to cover the search space by (not neces-
sarily disjoint) family of convex subspaces and run Genocop on each of these. Again, the
method would still have many computational problems.

For the above reasons, we looked at traditional optimization methods for further inspi-
ration. One particular method (described in the next section) was selected for `mating'
with the Genocop system. The result was Genocop II, which is discussed later in the
paper; the �rst results of the system are more than encouraging.

A TRADITIONAL CALCULUS BASED METHOD

Calculus based methods assume that the objective function f(X) and all constraints are
twice continuously di�erentiable functions of X. The general approach in most methods
is to transform the nonlinear problem NP into a sequence of solvable subproblems. The
amount of work involved in a subproblem varies considerably among methods. These
methods require explicit (or implicit) second derivative calculations of the objective (or
transformed) function which in some methods can be ill-conditioned and causes the algo-
rithm to fail.

During the last 30 years there has been considerable research directed toward the non-
linear optimization problems and progress has been made in theory and practice (Floudas,
& Pardalos, 1992). Several approaches have been developed in this area, among these are:
the sequential quadratic penalty function (Broyden, & Attia, 1983; Attia, 1985), recur-
sive quadratic programming method (Biggs, 1975), penalty trajectory methods (Murray,
1969), and the SOLVER method (Fletcher, 1981).

In this section, we discuss briey one of these approaches, the sequential quadratic
penalty function method.

The method replaces a problem NP by the problem NP 0:

optimize F (X; r) = f(X) + 1
2r
C

T
C,

where r > 0 and C is a vector of all active constraints c1; : : : ; c`.
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Fiacco and McCormick (1968) have shown that the solutions of NP and NP 0 were
identical in the limit as r �! 0. It was thought that NP 0 could then be solved simply
by minimizing F (X; r) for a sequence of decreasing positive values of r by Newton's
method then being developed. This hope, however, was short-lived, because minimizing
F (X; r) proved to be extremely ine�cient for the smaller values of r; it was shown by
Murray (1969) that this was due to the Hessian matrix of F (X; r) becoming increasingly
ill-conditioned as r �! 0. Since there seemed to be no obvious way of overcoming this
problem, the method gradually fell into disuse. More recently, Broyden and Attia (1988),
Attia (1985) gave a method of overcoming the numerical di�culties associated with the
simple quadratic penalty function. In this method the computation of the search direction
does not require the solution of any system of linear equations, and can thus be expected to
require less work than in some other algorithms. The method also provides an automatic
technique for calculating the initial value for the parameter r and its successive values
(Attia, 1985).

GENOCOP II

The technique discussed in the previous section, together with the existing system Geno-
cop, was used in construction of a new system, Genocop II. The structure of the Genocop
II is given in Figure 5. We discuss the steps of this algorithm in the remaining part of
this section.

There are several steps of the algorithm in the �rst phase of its execution (before it
enters the while loop). The parameter t (which counts the number of iterations of the
algorithm, i.e., the number of times the algorithm Genocop is applied) is initialized to
zero. The set of all constraints C is divided into three subsets: linear constraints L,
nonlinear equations Ne and nonlinear inequalities Ni. A starting point Xs (which need
not be feasible) for the following optimization process is selected (or a user is prompted
for it). The set of active constraints A consists initially of elements of Ne and set V � Ni

of violated constraints from Ni. A constraint cj 2 Ni is violated at point X i� cj(X) > �
(j = p+1; : : : ;m), where � is a parameter of the method. Finally, the initial temperature
of the system � is set to �0 (a parameter of the method).

In the main loop of the algorithm we apply Genocop to optimize a modi�ed function

F (X; � ) = f(X) + 1
2�
A

T
A

with linear constraints L. Note that the initial population for Genocop consists of pop size

identical copies (of the initial point for the �rst iteration and of the best saved point for
subsequent ones); several mutation operators introduce diversity in the population at
early stages of the process. When Genocop converges, its best individual X

�
is saved and

used later as the starting point Xs for the next iteration. However, the next iteration is
executed with a decreased value of the temperature parameter (�  g(�; t)) and a new
set of active constraints A:
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procedure Genocop II
begin

t � 0
split the set of constraints C into

C = L [Ne [Ni

select a starting point X s

set the set of active constraints, A to
A � Ne [ V

set temperature �  � �0
while (not termination-condition) do
begin

t � t+ 1
execute Genocop for the function

F (X; � ) = f(X) + 1
2�
A

T
A

with linear constraints L
and the starting point X s

save the best individual X
�
:

X s  � X
�

update A:
A A� S [ V ,

decrease temperature � :
�  g(�; t)

end
end

Figure 5: The structure of Genocop II

A A� S [ V ,
where S and V are subsets of Ni satis�ed and violated by X

�
, respectively.

The mechanism of the algorithm is illustrated on the following example. The problem
is to

minimize f(X) = x1 � x22,

subject to one nonlinear constraint:

c1 : 2 � x21 � x22 � 0.

The known global solution is X
�
= (�0:816497;�1:154701), and f(X

�
) = �1:088662.

The starting feasible point is X0 = (�0:99;�0:99).
After the �rst iteration of Genocop II (A is empty) the system converged to X1 =

(�1:5;�1:5), f(X1) = �3:375. The point X1 violates the constraint c1, which becomes
active. The point X1 is used as the starting point for the second iteration.
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The second iteration (� = 10�1, A = fc1g) resulted in X2 = (�0:831595;�1:179690),
f(X2) = �1:122678. The point X2 is used as the starting point for the third iteration.

The third iteration (� = 10�2, A = fc1g) resulted in X3 = (�0:815862;�1:158801),
f(X3) = �1:09985.

The sequence of points X t (where t = 4; 5; : : : is the iteration number of the algorithm)
approaches the optimum.

TEST CASES

In order to evaluate the method of Genocop II, a set of test problems have been carefully
selected to illustrate the performance of the algorithm and to indicate that it has been
successful in practice. The �ve test cases include quadratic, nonlinear, and discontinuous
functions with several nonlinear constraints.

All runs of the systemwere performed on SUN SPARC station 2. We used the following
parameters for Genocop for all experiments:

pop size = 70, k = 28 (number of parents in each generation), b = 2 (co-
e�cient for non-uniform mutation), � = 0:01 (parameter which determines
whether a constraint is active or not). In most cases, the initial temperature
�0 was set at 1 (i.e., g(�; 0) = 1); additionally, g(�; t) = 10�1 � g(�; t� 1).

For each test case we run the Genocop II ten times. For most problems, the number of
generations necessary for Genocop to converge was 1000 (harder problems required larger
number of iterations). We did not report the computational times for these test cases,
since we do not have full implementation of Genocop II yet. The actions of the system
were simulated by executing its the external loop in manual fashion: when Genocop
converges, the best point is incorporated as the starting point for the next iteration, the
constraints are checked for their activity status, and the evaluation function is adjusted
accordingly.

All test cases and the results of the Genocop II system are reported in the following
subsections.

Test Case #1

The problem (taken from Hock, & Schittkowski, 1981) is

minimize f(X) = 100(x2 � x21)
2 + (1� x1)2,

subject to nonlinear constraints:

c1 : x1 + x22 � 0,
c2 : x21 + x2 � 0,
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and bounds:

�0:5 � x1 � 0:5, and x2 � 1:0.

The known global solution is X
�
= (0:5; 0:25), and f(X

�
) = 0:25. The starting feasible

point is X0 = (0; 0).

The Genocop II found the exact optimum in one iteration, since none of the nonlinear
constraints are active at optimum.

Test Case #2

The problem (taken from Floudas, & Pardalos, 1987) is

minimize f(x; y) = �x� y,

subject to nonlinear constraints:

c1 : y � 2x4 � 8x3 + 8x2 + 2,
c2 : y � 4x4 � 32x3 + 88x2 � 96x + 36,

and bounds:

0 � x � 3 and 0 � y � 4.

The known global solution is X
�
= (2:3295; 3:1783), and f(X

�
) = �5:5079. The

starting feasible point is X0 = (0; 0). The feasible region is almost disconnected.

The Genocop II approached the optimum very closely at the 4th iteration. The
progress of the system is reported in the table 1.

Iteration The best Active
number point constraints

0 (0,0) none
1 (3,4) c2
2 (2.06, 3.98) c1, c2
3 (2.3298, 3.1839) c1, c2
4 (2.3295, 3.1790) c1, c2

Table 1: Progress of Genocop II on test case #2; for iteration 0 the best point is the
starting point

Test Case #3

The problem (taken from Floudas, & Pardalos, 1987) is
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minimize f(X) = (x1 � 10)3 + (x2 � 20)3,

subject to nonlinear constraints:

c1 : (x1 � 5)2 + (x2 � 5)2 � 100 � 0,
c2 : �(x1 � 6)2 � (x2 � 5)2 + 82:81 � 0,

and bounds:

13 � x1 � 100 and 0 � x2 � 100.

The known global solution is X
�
= (14:095; 0:84296), and f(X

�
) = �6961:81381 (see

�gure 6). The starting not feasible point is X0 = (20:1; 5:84).

optimum

(14.095, 0.84296)

feasible space

Figure 6: A feasible space for test case #3.

The Genocop II approached the optimum very closely at the 12th iteration. The
progress of the system is reported in the table 2.

Test Case #4

The problem (taken from Betts, 1977) is

minimize f(x1; x2) = 0:01x21 + x22,

subject to nonlinear constraints:

c1 : x1x2 � 25 � 0,
c2 : x21 + x22 � 25 � 0,
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Iteration The best Active
number point constraints

0 (20.1, 5.84) c1, c2
1 (13.0, 0.0) c1, c2
2 (13.63, 0.0) c1, c2
3 (13.63, 0.0) c1, c2
4 (13.73, 0.16) c1, c2
5 (13.92, 0.50) c1, c2
6 (14.05, 0.75) c1, c2
7 (14.05, 0.76) c1, c2
8 (14.05, 0.76) c1, c2
9 (14.10, 0.87) c1, c2
10 (14.10, 0.86) c1, c2
11 (14.10, 0.85) c1, c2
12 (14.098, 0.849) c1, c2

Table 2: Progress of Genocop II on test case #3; for iteration 0 the best point is the
starting point

and bounds:

2 � x1 � 50 and 0 � x2 � 50.

The global solution is X
�
= (
p
250;
p
2:5) = (15:811388; 1:581139, and f(X

�
) = 5:0.

The starting (not feasible) point is X0 = (2; 2).

It is interesting to note that the standard cooling scheme (i.e., g(�; t) = 10�1 �g(�; t�1))
did not produce good results, however, when the cooling process was slowed down (i.e.,
g(�; 0) = 5 and g(�; t) = 2�1 � g(�; t � 1)), the system approached optimum easily (table
3).

Iteration The best Active
number point constraints

0 (2,2) c1, c2
1 (3.884181, 3.854748) c1
2 (15.805878, 1.581057) c1
3 (15.811537, 1.580996) c1

Table 3: Progress of Genocop II on test case #4; for iteration 0 the best point is the
starting point
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Test Case #5

The �nal test problem (taken from Hock, & Schittkowski, 1981) is

minimize f(X) = (x1 � 2)2 + (x2 � 1)2,

subject to a nonlinear constraint:

c1 : �x21 + x2 � 0,

and a linear constraint:

x1 + x2 � 2.

The global solution is X
�
= (1; 1) and f(X

�
) = 1. The starting (feasible) point is

X0 = (0; 0).

The Genocop II approached the optimum very closely at the 6th iteration. The
progress of the system is reported in the table 4.

Iteration The best Active
number point constraints

0 (0, 0) c1
1 (1.496072, 0.503928) c1
2 (1.020873, 0.979127) c1
3 (1.013524, 0.986476) c1
4 (1.002243, 0.997757) c1
5 (1.000217, 0.999442) c1
6 (1.000029, 0.999971) c1

Table 4: Progress of Genocop II on test case #5; for iteration 0 the best point is the
starting point

CONCLUSIONS

There are several interesting points connected with the method of Genocop II. First of all,
as any other GA-based method, it does not require any implicit (or explicit) calculations
of any gradient or Hessian matrix of the objective function and constraints. Consequently,
the method does not su�er from the ill-conditioned Hessian problem usually associated
with some calculus based methods.
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It should be noted that any genetic algorithm can be used in place of Genocop for the
inner loop for Genocop II. In such a case all constraints (linear and nonlinear) should be
considered for placement in the set of active constraints A (the elements of L should be
distributed between Ne and Ni). However, such method is much slower and less e�ective:
for e�ciency reasons, it is much better to process linear constraints separately (as it is
done in Genocop).

Further research includes several activities. We plan to experiment with Genocop,
which is the key element in success of Genocop II by (1) checking additional operators;
(2) modifying the initialization procedure; (3) introducing integer and Boolean variables;
and (4) introducing adaptive frequencies for operators to enhance the system even further.
It is clear that di�erent operators have di�erent signi�cance at di�erent stages of the
evolution process. Some researchers already looked at this possibility (Scha�er et al.,
1989; Fogarty, 1989; Shaefer, 1987); also, adaptive parameters were incorporated very
early in evolutionary strategies (B�ack et al., 1991).

For Genocop II, we plan to complete its full implementation (the test cases reported
in this paper were run `manually' executing Genocop several times with di�erent temper-
atures, i.e., di�erent pressures on active constraints). Then we plan to experiment further
with problems of high dimensionality, di�erent cooling schemes (g(�; t)), and di�erent
values of a parameter �, which decides whether a constraint is active or not.

The Genocop system is in the public domain and is available through ftp from uncc-
sun.uncc.edu (or ftp 152.15.10.88), anonymous, directory coe/evol, �le genocop.tar.Z.
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