
A Decoder-based Evolutionary Algorithm for

Constrained Parameter Optimization Problems

S lawomir Kozie l1 and Zbigniew Michalewicz2

1Department of Electronics, 2Department of Computer Science,
Telecommunication and Informatics University of North Carolina,

Technical University of Gda�nsk Charlotte, NC 28223, USA
ul. Narutowicza 11/12, 80-952 Gda�nsk, Poland zbyszek@uncc.edu

koziel@ue.eti.pg.gda.pl

Abstract. Several methods have been proposed for handling nonlinear
constraints by evolutionary algorithms for numerical optimization prob-
lems; a survey paper [7] provides an overview of various techniques and
some experimental results, as well as proposes a set of eleven test prob-
lems. Recently a new, decoder-based approach for solving constrained nu-
merical optimization problems was proposed [2, 3]. The proposed method
de�nes a homomorphous mapping between n-dimensional cube and a fea-
sible search space. In [3] we have demonstrated the power of this new
approach on several test cases. However, it is possible to enhance the per-
formance of the system even further by introducing additional concepts
of (1) nonlinear mappings with an adaptive parameter, and (2) adaptive
location of the reference point of the mapping.

1 Introduction

The nonlinear parameter optimization problem is de�ned as

Find x 2 S � Rn such that

�
f(x) = minff(y); y 2 Sg; (1)
gj(x) � 0; for j = 1; : : : ; q; (2)

where f and gi are real-valued functions on S; S is a search space de�ned as a
Cartesian product of domains of variables xi's (1 � i � n). The set of feasible
points (i.e., points satisfying the constraints (2)) is denoted F .1

Several methods have been proposed for handling nonlinear constraints by
evolutionary algorithms for numerical optimization problems. The recent survey
paper [7] classi�es them into four categories (preservation of feasibility, penalty
functions, searching for feasibility, and other hybrids). However, there is one cen-
tral issue that all these methods have to address, which is, whether to allow pro-
cessing of infeasible solutions? This is the most important issue to resolve. Many
constraint-handling methods process infeasible solutions (e.g., various penalty-
based methods), on the other hand, many other techniques process only feasible
solutions (e.g., methods based on feasibility-preserving operators).

1 Note, that we do not consider equality constraints; if necessary, an equality h(x) = 0
can be replaced by a pair of inequalities �� � h(x) � � for some small � > 0.

In general, restricting the search to the feasible region seems a very elegant
way to treat constrained problems. For example, in [5], the algorithm maintains
feasibility of linear constraints using a set of closed operators which convert a
feasible solution into another feasible solution. Similar approach for the nonlinear
transportation problem is described in [4], where specialized operators transform
a feasible solution matrix (or matrices) into another feasible solution. This is also
the case for many evolutionary systems developed for the traveling salesman
problem [4], where specialized operators maintain feasibility of permutations, as
well as for many other combinatorial optimization problems.

However, for numerical optimization problems only special cases allowed the
use of either specialized operators which preserve feasibility of solutions or re-
pair algorithms, which attempt to convert an infeasible solution into feasible
one. For example, a possible use of a repair algorithm was described in [6], but
in that approach it was necessary to maintain two separate populations with
feasible and infeasible solutions: a set of reference feasible points was used to
repair infeasible points. Consequently, most evolutionary techniques for numer-
ical optimization problems with constraints are based on penalties. However,
highly nonlinear constraints still present di�culties for evolutionary algorithms,
as penalty parameters or strategies are then di�cult to adjust.

In this paper we investigate some properties of a recently proposed approach
[3] for solving constrained numerical optimization problems which is based on
a homomorphous mapping between n-dimensional cube [�1; 1]n and a feasible
search space. This approach constitutes an example of decoder-based approach2

where the mapping allows to process feasible solutions only. The �rst results
[3] indicated a huge potential of this approach; the proposed method does not
require any additional parameters, does not require evaluation of infeasible so-
lutions, does not require any specialized operators to maintain feasibility|or to
search the boundary of the feasible region [9], [8]. Moreover, any standard evo-
lutionary algorithm (e.g., binary-coded genetic algorithm or evolution strategy)
can be used in connection with the mapping. On the top of that, the method
guarantees a feasible solution, which is not always the case for other methods.

The paper is organized as follows. The following section presents the new
method, whereas section 3 discusses the research issues of this paper. Section 4
presents some experimental results and section 5 concludes the paper.

2 The homomorphous mapping

The idea behind this technique is to develop a homomorphous mapping ', which
transforms the n-dimensional cube [�1; 1]n into the feasible region F of the
problem [3]. Note, that F need not be convex; it might be concave or even can
consist of disjoint (non-convex) regions.

The search space S is de�ned as a Cartesian product of domains of variables
of the problem, l(i) � xi � u(i), for 1 � i � n, whereas a feasible part F of

2 Actually, this is the �rst approach of this type; until recently, mappings (or decoders)
were applied only to discrete optimization problems.

the search space is de�ned by problem speci�c constraints: inequalities (2) from
the previous section. Assume, a solution r0 is feasible (i.e., r0 2 F). Then any
boundary point s of the search space S de�nes a line segment L between r0 and
s (�gure 1 illustrates the case). Note that such a line segment may intersect a
boundary of the feasible search space F in more than just one point.

0
.

s

F

r

L

S

Fig. 1. A line segment in a non-convex space F (two-dimensional case)

Let us de�ne an additional one-to-one mapping g between the cube [�1; 1]n

and the search space S. Then the mapping g : [�1; 1]n ! S can be de�ned as

g(y) = x, where xi = yi
u(i)�l(i)

2 + u(i)+l(i)
2 , for i = 1; : : : ; n.

Indeed, for yi = �1 the corresponding xi = l(i), and for yi = 1, xi = u(i).
A line segment L between any reference point r0 2 F and a point s at the

boundary of the search space S, is de�ned as

L(r0; s) = r0 + t � (s� r0), for 0 � t � 1.

Clearly, if the feasible search space F is convex,3 then the above line segment
intersects the boundary of F in precisely one point, for some t0 2 [0; 1]. Conse-
quently, for convex feasible search spaces F , it is possible to establish a one-to-one
mapping ' : [�1; 1]n ! F as follows:

'(y) =

�
r0 + ymax � t0 � (g(y=ymax)� r0) if y 6= 0

r0 if y = 0

where r0 2 F is a reference point, and ymax = maxni=1 jyij. Figure 2 illustrates
the transformation '.

On the other hand, if the feasible search space F is not convex, then the
line segment L may intersect the boundary of F in many points (see �gure 1).

3 Note, that the convexity of the feasible search space F is not necessary; it is suf-
�cient if we assume the existence of the reference point r0, such that every line
segment originating in r0 intersects the boundary of F in precisely one point. This
requirement is satis�ed, of course, for any convex set F .

0
0

F

.
y

y/ymax
.

y

y2

1
−1 1

−1

1

S

.
.ϕ(y)

ϕ

s= g(y/ymax)

x

x

2

1

.s−r0

r

. ymax t0 (s−r0)
..

Fig. 2. A mapping ' from the cube [�1; 1]n into the space F (two-dimensional case),
with particular steps of the transformation

Let us consider an arbitrary point y 2 [�1; 1]n and a reference point r0 2 F . A
line segment L between the reference point r0 and the point s = g(y=ymax) at
the boundary of the search space S, is de�ned as before, however, instead of a
single interval of feasibility [0; t0] for convex search spaces, we may have several
intervals of feasibility: [t1; t2]; : : : ; [t2k�1; t2k]. Assume there are altogether k sub-
intervals of feasibility for a such line segment and ti's mark their limits. Clearly,
t1 = 0, ti < ti+1 for i = 1; : : : ; 2k � 1, and t2k � 1. Thus, it is necessary to
introduce an additional mapping
, which transforms interval [0; 1] into sum of
intervals [t2i�1; t2i]. However, we de�ne such a mapping
 between (0; 1] and the
sum of intervals (t2i�1; t2i]:

 : (0; 1] !
Sk

i=1(t2i�1; t2i].

Note, that due to this change, one boundary point (from each interval 1 � i � k)
is lost. However, this is not a serious problem, since we can approach the lost
points with arbitrary precision. On the other hand, the bene�ts are clear: it is
possible to \glue together" intervals which are open at one end and closed at
another; additionally, such a mapping is one-to-one. There are many possibilities
for de�ning such a mapping; we have used the following. First, let us de�ne a
reverse mapping �:

� :
Sk

i=1(t2i�1; t2i] ! (0; 1] as follows: �(t) = (t � t2i�1 +
Pi�1

j=1 dj)=d,

where dj = t2j � t2j�1, d =
Pk

j=1 dj, and t2i�1 < t � t2i. Clearly, the mapping

 is reverse of �:

(a) = t2j�1 + dj
a��(t2j�1)

�(t2j)��(t2j�1)
,

where j is the smallest index such that a � �(t2j).
Now we are ready to de�ne the mapping', which is the essence of the method

of transformation of constrained optimization problem to the unconstrained one
for every feasible set F . The mapping ' is given by the following formula:

'(y) =

�
r0 + t0 � (g(y=ymax)� r0) if y 6= 0;
r0 if y = 0;

where r0 2 F is a reference point, ymax = maxni=1 jyij, and t0 =
(jymax j).
Finally, it is necessary to consider a method of �nding points of intersections

ti. Let us consider any boundary point s of S and the line segment L determined
by this point and a reference point r0 2 F . There are m constraints gi(x) � 0
and each of them can be represented as a function �i of one independent variable
t (for �xed reference point r0 2 F and the boundary point s of S):

�i(t) = gi(L(r0; s)) = gi(r0+t �(s�r0)), for 0 � t � 1 and i = 1; : : : ;m.

As stated earlier, the feasible region need not be convex, so it may have
more than one point of intersection of the segment L and the boundary of the
set F . Therefore, let us partition the interval [0; 1] into v subintervals [vj�1; vj],
where vj � vj�1 = 1=v (1 � j � v), so that equations �i(t) = 0 have at most
one solution in every subinterval.4 In that case the points of intersection can be
determined by a binary search.

Once the intersection points between a line segment L and all constraints
gi(x) � 0 are known, it is quite easy to determine intersection points between
this line segment L and the boundary of the feasible set F .

3 Adaptation issues

In [3] we reported on experimental results of the system based on the mapping
described in the previous section. The system was based on Gray coding with
25 bits per variable, and incorporated proportional selection (no elitism), func-
tion scaling, and standard operators (
ip mutation and 1-point crossover). All
parameters were �xed: pop size = 70, generation gap = 100%, and pc = 0:9.
The only non-standard feature incorporated into the system (to increase �ne
tuning capabilities of the system [1]) was a variable probability of mutation.5 In
all experiments, pm(0) = 0:005, r = 4, and pm(T) = 0:00005.

The system provided very good results [3], which were better than for any
other constraint handling method reported in literature. Yet there were some
additional possibilities for a further improvement and unresolved issues which
we address in this paper.

First of all, it is important to investigate the role of the reference point r0.
Note that instead of keeping this point static during the evolutionary process,

4 Density of the partition is determined by parameter v, which is adjusted experimen-
tally (in all experiments reported in section 4, v = 20).

5 pm(t) = pm(0)�(pm(0)�pm(T))�(t=T)r , where t and T are the current and maximal
generation numbers, respectively.

it can change its location. In particular, it can \follow" the best solution found
so far. In that way, the reference point can \adapt" itself to the current state
of the search. One of the aims of this paper is to compare the proposed method
with static versus dynamic reference point. In the latter case, the quotient of the
total number of generations and the number of changes of the reference point
during the run, gives the number of generations between each change; the new
reference point is the best individual of the current generation.

Note that a change of the reference point r0 changes the phenotypes of the
genotypes in the population. Thus it might be worthwhile to consider an ad-
ditional option: after each change of the reference point, all genotypes in the
population are modi�ed accordingly to yield the same phenotype as before the
change. For example, if a genotype (0101101:::0111) corresponded to the pheno-
type (�2:46610039; 1:09535518) just before the change of the reference point r0,
then, after the change, the genotype is changed in such a way, that its phenotype
is still (�2:46610039; 1:09535518) for a new reference point.

Also, in the proposed method it is important to investigate a non-uniform
distribution of values of vectors y 2 [�1; 1]n; this can be achieved, for example,
by introducing an additional mapping ! : [�1; 1]n ! [�1; 1]n:

!(y) = y
0, where y0i = a � yi,

where a is a parameter of the mapping, and 0 < a � 1=ymax. Such exploration
of non-uniform distribution of y provides additional possibilities for tuning the
search:

{ an increase in value of parameter a would result in selecting new vectors
y
0 closer to a boundary of the feasible part of the search space. Thus, it is

possible to use this approach to search the boundary of the feasible search
space (e.g., instead of using specialized boundary operators [9]).6

{ a decrease in value of parameter a would result in selecting new vectors
y
0 closer to zero (i.e., the corresponding new search point would be closer

to the reference point). This may work very well with the mechanism of
adaptive change of the reference point: the system explores points closer to
the reference point which, in turn, \follows" the best solution found so far.

Of course, there are many mappings which introduce a non-uniform distribution
of values of vectors y; in this paper we experimented with the following mapping:

!(y) = y
0, where y0i = yi � y

k�1
max,

where k > 1 is a parameter. Clearly, larger k would move new search points closer
to the reference point (this corresponds to a decrease in value of parameter a, of
course). However, such a mapping concentrates the search around the reference
point, hence is not helpful in cases where the optimum solution is located on
the boundary of the feasible part of the search space. Thus an additional option

6 Note, however, that in general (e.g., non-convex feasible search spaces) only a part
of the boundary will be explored.

(direction of change) was considered: if a vector c represents the normalized
direction vector of the last change of the reference point, then the constant
parameter k is replaced by a variable k0 calculated (for every vector y) as follows:

k0 =

�
1 + (k � 1) � (1 � cos2(c;y)) if cos(c;y) > 0
k if cos(c;y) � 0;

Note that if the angle between c and y is close to zero, then cos(c;y) is close to
one, and, consequently, the value of parameter k is close to one.

4 Experimental results

Ten versions of an evolutionary system were considered (see Table 1).

Version Number of Change of Value Option:
number changes of r0 genotype of k direction

during run of change
1 0 N/A 1.0 N/A
2 3 N 1.0 N
3 3 N 3.0 N
4 3 N 3.0 Y
5 20 N 1.0 N
6 20 N 3.0 N
7 20 N 3.0 Y
8 3 Y 1.0 N
9 20 Y 3.0 N
10 20 Y 3.0 Y

Table 1. Ten versions of the evolutionary system. For each version we report the
number of changes of the reference point during the run (0 corresponds to the case
where is no change, thus some other options are not applicable N/A), whether an
option of re-coding the genotype was used (Yes or No), the value of scaling parameter
k, and whether the option (direction of change) was used (Y) or not (N).

The experiments were made for four functions: G6, G7, G9, and G10 from
[7].7 All results are given in Tables 2{3. For each function 10 runs were performed;
the tables report the best solution found in all runs, the average value, and the
worst one. For G6, all runs had 500 generations, whereas all runs for remaining
functions had 5,000 generations.

It was interesting to see that:

7 These functions have 2, 10, 7, and 8 variables, respectively, which a number (be-
tween 2 and 8) of (mainly) nonlinear constraints. Most constraints are active at the
optimum.

G6 G7
Version Minimum Average Maximum Minimum Average Maximum
number value value value value value value

1 �6961.806423 �6403.744816 �5658.854943 26.156504 34.014132 62.015826
2 �6961.813810 �6949.220321 �6880.366641 24.823462 29.702066 37.593063
3 �6961.813769 �6961.616254 �6959.862901 25.667881 31.635635 41.275908
4 �6961.811700 �6961.119165 �6955.609490 24.456143 27.501678 34.224130
5 �6961.813810 �6959.199162 �6936.007217 24.923346 29.034924 36.600579
6 �6962.041796 �6954.089593 �6887.142350 24.493854 27.846996 37.850277
7 �6961.813805 �6961.814303 �6961.813735 25.604691 27.765957 33.025607
8 �6961.813754 �6926.097556 �6605.883742 24.449495 27.451748 34.651248
9 �6961.689228 �6960.275484 �6953.448863 24.987889 27.657595 31.823738
10 �6961.813247 �6960.794588 �6958.289256 26.119342 27.744277 29.447646

Table 2. Results for G6 and G7. These are minimization problems and the optimum
values of these functions are �6961.81381 and 24.3062091, respectively.

G9 G10
Version Minimum Average Maximum Minimum Average Maximum
number value value value value value value

1 680.630511 680.660238 680.729387 7160.262971 8592.392352 11511.072437
2 680.630542 680.636662 680.647153 7059.228161 7464.926353 8229.071491
3 680.630181 680.636573 680.664618 7086.430306 7591.768786 9225.975846
4 680.630392 680.637875 680.661187 7197.628211 7819.787329 8827.143414
5 680.631795 680.633758 680.636254 7058.405010 7492.697550 8995.685583
6 680.631554 680.644804 680.703939 7081.945176 7888.418244 9656.438311
7 680.630826 680.634730 680.643466 7078.900133 7607.775554 8695.147494
8 680.631036 680.677782 680.965273 7089.686242 7994.728714 9734.441891
9 680.632734 680.635818 680.639192 7230.799808 7695.850259 8813.595674
10 680.630492 680.638832 680.668193 7063.878216 7597.675949 8637.628629

Table 3. Results for G9 and G10. These are minimization problems and the optimum
values of these functions are 680.6300573 and 7049.330923, respectively.

{ for the test case G6 the best results were obtained for versions 3, 4, 7, 9,
and 10. In all these �ve versions, the value of the parameter k was set to
3.0; it seems that this factor had a major in
uence on the quality of the
results. Note also, that these �ve versions include all three versions where
the option of \changing directions" was used (versions 4, 7, and 10). Also,
the di�erence between versions 6 and 7 was only in the use of the above
option: note the average scores of these two versions. In this case this option
proved its usefulness. Similarly, the only di�erence between versions 3 and
6 was in the number of changes of the reference point made during the run.
For this particular test case, a higher value of this parameter was better in
combination with the option of changing the genotype, and a lower value

was better without this option (see versions 9 and 10 for the former case,
and versions 3 and 4, for the latter).

{ it is di�cult to evaluate the performance of these versions for the test case
G7. Note, that a few versions reported good best results (out of ten runs),
however, the average values were less impressive. It seems that slightly better
results were obtained for versions 4, 6, 8, and 9, but no interesting patterns
emerged. For two of these versions, the number of changes of the reference
point during the run was 3, whereas for the other two, it was 20. Two of
these versions used the option of changing the genotype, and two others did
not. Three versions used a higher value of parameter k = 3 and one version
used k = 1. One version used the \direction of change" option.

{ for the test case G9 all versions gave very good results, so it was possible to
judge the performance of these version only on the basis of precision. The
best versions (i.e., versions whose the best result was smaller than 680.631
and the average result smaller than 680.64) were versions 2, 3, 4, 7, and 10.
This is consistent with our observations made in connection with the test
case G6, where almost the same subset was selected.

{ for the (hardest) test case G10, the best versions were selected on the follow-
ing basis: the best solution was smaller than 7100 and the average solution
was smaller than 7700. Only 5 versions satis�ed these criterion; these were
versions 2, 3, 5, 7, and 10. Again, as for test cases G6 and G9, versions 3, 7,
and 10 are among the best.

It seems that the three versions which gave the best performance overall are
versions 3, 7, and 10. Judging from the characteristics of these versions, we may
conclude that generally:

� the higher value of parapeter k (k = 3) gives better results,
� small number of changes of the reference point does not require changes

of genotypes nor the \direction of change" option,
� if the number of changes of the reference point is larger, it is not important

whether genotypes in the population are adjusted (for each change) or not.
However, it is important to keep \direction of change" option.

5 Conclusions

The results of these preliminary experiments are not, of course, conclusive. It is
necessary to conduct a larger number of runs for a larger set of test cases (e.g.,
G1{G11, see [7]) to understand better the interactions among various options
available. It is also necessary to extend this preliminary study for a larger set of
parameters values (di�erent values of k, di�erent values of a number of changes of
the reference point, etc). Further, a connection between the type of the problem
(size of the feasible search space, number of active constraints at the optimum,
modality of the objective function) and the characteristics of various versions
discussed earlier, must be studied carefully.

Results of some further experiments performed for problems G2 and G3 sug-
gest that the change of the reference point is not always bene�cial. For these

functions, version #1 (no change of reference point) gave the best results among
all versions. It seems that a change of the reference point is bene�cial only for
some types of functions: thus such a change should be controlled by a feedback
from the search process. A preliminary version of a new system with adap-
tive change of the reference point gave the best performance on all mentioned
problems (from G2 to G10), making appropriate number of changes (e.g., zero
changes for G2 and G3) for di�erent problems. A connection between number
of changes and the characteristic of the problem will be studied and reported in
the next (full) version of the paper.

Also, currently a new version of the system based on
oating point represen-
tation is being developed. Note that for such a system there would be no need for
adjusting genotypes in the population, as the algorithm operates on phenotypes.
A comparison between these systems (i.e., based on binary and
oating point
representations) should provide additional clues.

Acknowledgments:

This material is based upon work supported by the the grant 8 T11B 049 10
from the Polish State Committee for Scienti�c Research (KBN) and the grant
IRI-9725424 from the National Science Foundation.

References

1. Kozie l, S. (1996). Non-uniform and non-stationary mutation in numerical opti-
mization using genetic algorithms. Electronics and Telecomm. Quarterly, 42 (3),
pp. 273{285.

2. Kozie l, S. (1997). Evolutionary algorithms in constrained numerical optimization
problems on convex spaces. Electronics and Telecomm. Quarterly, 43 (1), pp. 5{18.

3. Kozie l, S. and Michalewicz, Z. (1997). Evolutionary algorithms, homomorphous
mappings, and constrained parameter optimization. To appear in Evolutionary
Computation, 1998.

4. Michalewicz, Z. (1996). Genetic Algorithms+Data Structures=Evolution Programs.
New-York: Springer Verlag. 3rd edition.

5. Michalewicz, Z. and C. Z. Janikow (1991). Handling constraints in genetic algo-
rithms. In R. K. Belew and L. B. Booker (Eds.), Proceedings of the 4th International
Conference on Genetic Algorithms, pp. 151{157. Morgan Kaufmann.

6. Michalewicz, Z. and G. Nazhiyath (1995). Genocop III: A co-evolutionary algo-
rithm for numerical optimization problems with nonlinear constraints. In D. B.
Fogel (Ed.), Proceedings of the Second IEEE International Conference on Evolu-

tionary Computation, pp. 647{651. IEEE Press.
7. Michalewicz, Z. and Schoenauer, M. (1996). Evolutionary computation for con-

strained parameter optimization problems. Evolutionary Computation, Vol.4,
No.1, pp.1{32.

8. Schoenauer, M. and Z. Michalewicz (1996). Evolutionary computation at the edge
of feasibility. W. Ebeling, and H.-M. Voigt (Eds.), Proceedings of the 4th Conference

on Parallel Problems Solving from Nature, pp.245{254, Springer Verlag.
9. Schoenauer, M. and Z. Michalewicz (1997). Boundary Operators for Constrained

Parameter Optimization Problems. Proceedings of the 7th International Confer-
ence on Genetic Algorithms, pp.320{329, July 1997.

