
A Hierarchy of Evolution Programs:

An Experimental Study

Zbigniew Michalewicz

Department of Computer Science

University of North Carolina

Charlotte, NC 28223, USA

zbyszek@mosaic.uncc.edu

Abstract

In this paper we present the concept of evolution programs and discuss a hier-
archy of such programs for a particular problem. We argue that (for a particular
problem) stronger evolution programs (in terms of the problem-speci�c knowledge
incorporated in the system) should perform better than weaker ones. This hypothe-
sis is based on a number of experiments and a simple intuition that problem-speci�c
knowledge enhances an algorithm in terms of its performance; at the same time it
narrows the applicability of an algorithm. Trade-o�s between the e�ort of �nding
an e�ective representation for general-purpose evolution programs and the e�ort of
developing more specialized systems are also discussed.

1 Introduction

In general, AI problem solving strategies are categorized into strong and weak methods.
A weak method makes few assumptions about the problem domain; hence it usually
enjoys wide applicability. On the other hand, it can su�er from combinatorially explosive
solution costs when scaling up to larger problems (De Jong, & Spears, 1989). This can
be avoided by making strong assumptions about the problem domain, and consequently
exploiting these assumptions in the problem solving method. But a disadvantage of such
strong methods is their limited applicability: very often they require signi�cant redesign
when applied even to related problems.

At early stages of AI, the general problem solvers (GPSs) were designed as generic
tools for approaching complex problems. However, as it turned out, it was necessary to in-
corporate problem-speci�c knowledge due to unmanageable complexity of these systems.
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A similar phenomenon occurred with respect to genetic algorithms (GAs): until recently
they were perceived as generic tools useful for optimization of many hard problems. How-
ever, it seems that pure GAs (as GPSs) are too domain independent to be useful in many
applications.

Recently we proposed (Michalewicz, 1992) a notion of so-called evolution programs
(EPs). Roughly speaking, an evolution program is a genetic algorithm enhanced by prob-
lem speci�c knowledge; this knowledge is incorporated in appropriate data structures and
problem speci�c operators. Clearly, many evolution programs can be formulated for a
given problem. Such programs may di�er in many ways; they can use di�erent data
structures for implementing a single individual, \genetic" operators for transforming in-
dividuals, methods for creating an initial population, methods for handling constraints
of the problem, and parameters (population size, probabilities of applying di�erent op-
erators, etc.). However, they share a common principle: a population of individuals
undergoes some transformations, and during this evolution process the individuals strive
for survival.

The idea of incorporating a problem speci�c knowledge in genetic algorithms is not new
and has been recognized for some time. Several papers (Antonisse, & Keller, 1987; For-
rest, 1985; Fox, & McMahon, 1990; Grefenstette, 1987; Starkweather, McDaniel, Mathias,
Whitley, & Whitley, 1991) have discussed initialization techniques, di�erent representa-
tions, decoding techniques (mapping from genetic representations to `phenotypic' repre-
sentations), and the use of heuristics for genetic operators. In (Davis, 1989) Davis wrote:

\It has seemed true to me for some time that we cannot handle most real-
world problems with binary representations and an operator set consisting
only of binary crossover and binary mutation. One reason for this is that
nearly every real-world domain has associated domain knowledge that is of
use when one is considering a transformation of a solution in the domain [...]
I believe that genetic algorithms are the appropriate algorithms to use in a
great many real-world applications. I also believe that one should incorporate
real-world knowledge in one's algorithm by adding it to one's decoder or by
expanding one's operator set."

However, the evolution programs have an additional 
avor: they approach constrained
optimization problems in a systematic way. Evolution programs are not tailored to a
particular problem (as it is often the case with the GA-based systems mentioned above),
but their domains are much wider; they are applicable to many di�erent problems with
similar classes of constraints (we will see it clearly later in sections 4 and 5).

In this paper we introduce the concept of hierarchy of evolution programs for a par-
ticular problem. We argue that if an evolution program EPq is a stronger method than
an evolution program EPp (for a particular problem), then EPq should perform better
than a weaker system, EPp. We do not have any proof of this hypothesis, of course,
since it is based solely on a number of experiments and a simple intuition that problem-
speci�c knowledge enhances an algorithm in terms of its performance; at the same time
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it narrows the applicability of an algorithm. However, it is important to emphasize, that
developing a stronger, high-performance system, may take much longer time if it involves
extensive problem analysis to design specialized representation, operators, and perfor-
mance enhancements. This is one of the main observations made in the paper; a single
(constrained) problem was selected to serve as a vehicle for examining a tradeo� between
e�orts of (1) �nding an e�ective binary representation and (2) developing code for several,
more specialized systems. We shall return to this topic in the last section of the paper.

The paper is organized as follows. We begin by explaining what evolution programs
are and how they di�er from genetic algorithms. Section 3 introduces the concept of a
hierarchy of evolution programs, whereas section 4 provides an example of such hierar-
chy for a nonlinear transportation problem. Five evolution programs are discussed and
computational results are presented. The last section contains some concluding remarks.

2 Evolution Programs

The evolution program (see Figure 1) is a probabilistic algorithm which maintains a pop-
ulation of individuals, P (t) = fxt1; : : : ; xtng for iteration t. Each individual represents
a potential solution to the problem at hand, and, in any evolution program, is imple-
mented as some (possibly complex) data structure S. Each solution xti is evaluated to
give some measure of its \�tness". Then, a new population (iteration t+ 1) is formed by
selecting the more �t individuals (select step). Some members of the new population un-
dergo transformations (alter step) by means of \genetic" operators to form new solutions.
There are unary transformations mi (mutation type), which create new individuals by a
small change in a single individual (mi : S ! S), and higher order transformations cj
(crossover type), which create new individuals by combining parts from several (two or
more) individuals (cj : S � : : :� S ! S). After some number of generations the pro-
gram converges | the best individual hopefully represents a near-optimum (reasonable)
solution.

It should be clear that the concept of evolution programs is based entirely on the idea
of classical genetic algorithms (Holland, 1975); the di�erence is that we consider a richer
set of data structures together with an expanded set of genetic operators. In other words,
the structure of a genetic algorithm is the same as the structure of an evolution program
(Figure 1) and the di�erences are hidden on the lower level. In EPs chromosomes need
not be represented by linear strings and the alternation process includes other \genetic"
operators appropriate for the given structure and the given problem.

The binary alphabet o�ers the maximum number of schemata per bit of information
(Goldberg, 1989) and consequently the bit string representation of solutions has domi-
nated genetic algorithm research. The binary coding also facilitates theoretical analysis
and allows elegant genetic operators: the strongest theoretical results for GAs have as-
sumed binary alphabet for mathematical simplicity. However, it should be emphasized
that Holland's work (Holland, 1975) describes genetic algorithms using �nite alphabets,
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procedure evolution program

begin

t 0
initialize P (t)
evaluate P (t)
while (not termination-condition) do
begin

t t+ 1
select P (t) from P (t� 1)
alter P (t)
evaluate P (t)

end

end

Figure 1: The structure of an evolution program

and that the `implicit parallelism' result does not depend on using bit strings (Antonisse,
& Keller, 1989).

Why do we depart from binary-coded genetic algorithms towards more 
exible evo-
lution programs? Even though nicely theorized, binary-coded GAs failed to provide for
successful applications in many areas. It seems that the major factor behind this failure is
the same one responsible for their success: domain independence. It is clear that binary
representations are not always appropriate for highly constrained problems and other
representations are often more natural. The central question is how to take advantage of
such representations in evolution programs.

During the last ten years, various application{speci�c variations on the genetic al-
gorithm were reported (Davis, 1987; Grefenstette, 1985; Grefenstette, 1987a; Groves,
Michalewicz, Elia, & Janikow, 1990; Michalewicz, Vignaux, Hobbs, 1991; Smith, 1980;
Smith, 1983; Vignaux, & Michalewicz, 1991). These variations include variable length
strings (including strings whose elements were if{then{else rules (Smith, 1980), richer
structures than binary strings (for example, matrices in Vignaux, & Michalewicz, 1991),
and experiments with modi�ed genetic operators to meet the needs of particular applica-
tions (Michalewicz, & Janikow, 1991). In Montana, & Davis (1989) there is a description
of a genetic algorithm which uses backpropagation (a neural network training technique)
as an operator, together with mutation and crossover that were tailored to the neu-
ral network domain. Davis and Coombs (Coombs, & Davis, 1987; Davis, & Coombs,
1987) described a genetic algorithm that carried out one stage in the process of designing
packet-switching communication network; the representation used was not binary and �ve
\genetic" operators (knowledge based, statistical, numerical) were used. These operators
were quite di�erent to binary mutation and crossover. Clearly, most researches \modi-
�ed" their implementations of genetic algorithms either by using non-string chromosome
representation or by designing problem speci�c genetic operators to accommodate the
problem to be solved, thus building successful evolution programs.
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It seems that a \natural" representation of a potential solution for a given problem plus
a family of applicable \genetic" operators might be quite useful in the approximation of
solutions of many problems, and this nature-modeled approach (evolution programming)
is a promising direction for problem solving in general.

The basic conceptual di�erence between genetic algorithms and evolution programs
is presented in Figures 2 and 3. Classical genetic algorithms, which operate on binary
strings, require a modi�cation of an original problem into appropriate (suitable for GA)
form; this would include mapping between potential solutions and binary representation,
taking care of decoders or repair algorithms, etc. This is not usually an easy task.

Algorithm
Genetic

Algorithm
Genetic

ProblemProblem

ProblemProblem
Modified

Figure 2: Genetic algorithm approach

On the other hand, evolution programs would leave the problem unchanged, modifying
a chromosome representation of a potential solution (using \natural" data structures), and
applying appropriate \genetic" operators.

In other words, to solve a nontrivial problem using an evolution program, we can either
transform the problem into a form appropriate for the genetic algorithm (Figure 2), or
we can transform the genetic algorithm to suit the problem (Figure 3). Clearly, classical
GAs take the former approach, and EPs the latter.

It is quite hard to draw a line between genetic algorithms and evolution programs.
Obviously, any genetic algorithm constitutes an example of an evolution program. How-
ever, not every evolution program is a genetic algorithm. For example, it is not clear
whether we can use the term \genetic algorithm" for a system with matrix representation
and arithmetical crossover (Michalewicz, Vignaux, & Hobbs, 1991)? Note that such a
system does not have a support of any schema theorem nor of building-block hypothesis.
Additionally, the system performs very well with a mutation as a single operator, i.e.,
where there is no `recombination' operator at all!

However, we will not analyse this partition any further; instead we present some
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Algorithm
Genetic
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Evolution

Figure 3: Evolution program approach

interesting observations on applying evolution programming techniques to one particular
problem (nonlinear transportation problem).

3 A Hierarchy of Evolution Programs

Evolution programs �t somewhere between weak and strong methods. Some evolution
programs (as genetic algorithms) are quite weak without making any assumption of a
problem domain. Some other programs are more problem speci�c with a varying degree
of problem dependence. For a particular problem P , in general, it is possible to construct
a family of evolution programs EPi, each of which would `solve' the problem (Figure 4).
The term `solve' means `provide a reasonable solution', i.e., a solution which need not, of
course, be optimal, but is feasible (it satis�es problem constraints).

The evolution program EP5 (Figure 4) is the strongest (i.e., the most problem speci�c)
and it addresses the problem P only. The system EP5 will not work well for any modi�ed
version of the problem (e.g., after adding a new constraint or after changing the size of the
problem). The next evolution program, EP4, can be applied to some (relatively small)
class of problems, which includes the problem P ; other evolution programs EP3 and EP2

work on larger domains, whereas EP1 is the weakest method (i.e., domain independent)
and can be applied to any optimization problem.

Let us denote by dom(EPi) a set of all problems to which the evolution program EPi

can by applied, i.e., the program returns a feasible solution. Clearly,

dom(EP5) � dom(EP4) � dom(EP3) � dom(EP2) � dom(EP1).
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Figure 4: A hierarchy of evolution programs

Obviously, the above example is by no means complete: it is possible to create other
evolution programs which would �t between EPi and EPi+1 for some 1 � i � 4. Of
course, there might be also other evolution programs which overlap with others in the
above hierarchy. In other words, the set of evolution programs is partially ordered; we
denote the ordering relation by � with the following meaning: if EPp � EPq then the
evolution program EPp is a weaker method than EPq, i.e., dom(EPq) � dom(EPp).
Referring to Figure 4, which displays a hierarchy of evolution programs EPi, we can write

EP1 � EP2 � EP3 � EP4 � EP5.

The hypothesis is that if EPp � EPq, then the stronger method, EPq, should in
general perform better than a weaker system, EPp. As stated in the Introduction, we
do not have any proof of this hypothesis, however, some other researchers expressed the
same idea (Davis, 1989):

\It is a truism in the expert system �eld that domain knowledge leads to
increased performance in optimization, and this truism has certainly been
borne out of my experience applying genetic algorithms to industrial problems.
Binary crossover and binary mutation are knowledge-blind operators. Hence,
if we resist adding knowledge to our genetic algorithms, they are likely to
underperform nearly any reasonable optimization algorithm that does take
into account of such domain knowledge."
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Goldberg (Goldberg, 1989; Goldberg, 1989a), provides an additional perspective. Let us
quote from (Goldberg, 1989a):

\Certainly humans have developed very e�cient search procedures for narrow
classes of problems | genetic algorithms are unlikely to beat conjugate direc-
tion or gradient methods on continuous, quadratic optimization problems |
but this misses the point. [...] The breadth combined with relative | if not
peak | e�ciency de�nes the primary theme of genetic search: robustness."

We visualized this observation on Figure 5, where a (classical) method, Q, works well for
a problem, P , and nowhere else, whereas GAs perform reasonably across the spectrum.
(The Figure 5 is a simpli�cation of similar �gures given in (Goldberg, 1989, and Goldberg,
1989a).

Efficiency

Problems P

Q

GA

Figure 5: E�ciency/problem spectrum and GAs

However, in the presence of nontrivial constraints, the performance of GAs deteriorates
quite often. On the other hand, evolution programs, by incorporating some problem-
speci�c knowledge, may outperform even classical methods (Figure 6).

In the next section we illustrate the above ideas on one particular problem P (nonlinear
transportation problem) and �ve evolution programs EPi (i = 1; : : : ; 5). Also, we present
the results of applying a classical method Q (a commercial system) to the problem P .

4 The Problem and Five Evolution Programs

In general, constraints are an integral part of the formulation of any problem. In Dhar,
& Ranganathan, (1990) the authors wrote:
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Q
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5

Figure 6: E�ciency/problem spectrum and EPs

\Virtually all decision making situations involve constraints. What distinguish
various types of problems is the form of these constraints. Depending on how
the problem is visualized, they can arise as rules, data dependencies, algebraic
expressions, or other forms."

In evolution programming, the problem of constraint satisfaction has a special 
avor.
It is not the issue of selecting an evaluation function with some penalties (as it is the
case of binary-coded GAs), but rather selecting \the best" chromosomal representation of
solutions together with meaningful genetic operators to `handle' all constraints imposed
by the problem.

We have selected a nonlinear transportation problem as a vehicle to illustrate the ideas
from the previous section. This is probably one of the simplest optimization problems
that involves constraints in other than a trivial way. The transportation problem, as
most highly constrained optimization problems, seems to be a good example of a class of
problems for which it is di�cult to �nd an e�ective �xed-length binary representation,
and therefore is more likely to require problem-speci�c adaptations. Thus we shall use it
as an example to investigate the relationship between di�erent evolution programs which
can be applied to solve it.

4.1 The Problem P

The transportation problem (Taha, 1987) is one of the simplest constrained optimiza-
tion problems that have been studied. It seeks the determination of a minimum cost
transportation plan for a single commodity from a number of sources to a number of
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destinations. A destination can receive its demand from one or more sources. The objec-
tive of the problem is to determine the amount to be shipped from each source to each
destination such that the total transportation cost is minimized.

If the transportation cost on a given route is directly proportional to the number
of units transported, we have a linear transportation problem. Otherwise, we have a
nonlinear transportation problem.

Assume there are n sources and k destinations. The amount of supply at source i
is source(i) and the demand at destination j is dest(j). The cost of transporting 
ow
xij from source i to destination j is given as a function fij . Thus the total cost is a
separable function of the individual 
ows rather than interactions between them. The
transportation problem is given as:

minimize total =
Pn

i=1

Pk
j=1 fij(xij)

subject to

Pk
j=1 xij � source(i), for i = 1; 2; : : : ; n,Pn
i=1 xij � dest(j), for j = 1; 2; : : : ; k,

xij � 0, for i = 1; 2; : : : ; n and j = 1; 2; : : : ; k.

The �rst set of constraints stipulates that the sum of the shipments from a source cannot
exceed its supply; the second set requires that the sum of the shipments to a destination
must satisfy its demand.

The above problem implies that the total supply
Pk

i=1 source(i) must at least equal
total demand

Pn
j=1 dest(j). When total supply equals total demand (total 
ow), the

resulting formulation is called a balanced transportation problem. It di�ers from the
above only in that all constraints are equations; that is,

Pk
j=1 xij = source(i), for i = 1; 2; : : : ; n,Pn
i=1 xij = dest(j), for j = 1; 2; : : : ; k.

Let us de�ne a particular nonlinear balanced transportation problem P . Assume 3
sources and 4 destinations. The supply is:

source(1) = 10, source(2) = 15, and source(3) = 20.

The demand is:

dest(1) = 3, dest(2) = 20, dest(3) = 5, and dest(4) = 17.

The total 
ow in the problem P is 45. The optimum solution for the nonlinear trans-
portation problem may contain neither zeros nor integer values (as it is the case in the
linear transportation problem). For example, for some transportation cost functions fij
the following solution might be optimal:
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Amount transported
3.0 20.0 5.0 17.0

10.0 1.34 1.52 0.01 7.13
15.0 1.15 10.39 0.39 3.07
20.0 0.51 8.09 4.60 6.80

For our test problem P we have used the same function f for each 
ow fij; a cost-
matrix was used to provide variation between 
ows. The matrix provides the cij's which
act to scale the basic function shape.

We adopted the following function f of the 
ows xij:

f(xij) =

(
0 if xij = 0;
d + cij � pxij otherwise;

for i = 1; 2; 3, j = 1; 2; 3; 4, where d = 5:0, and

c11 = 0:0 c12 = 21:0 c13 = 50:0 c14 = 62:0
c21 = 21:0 c22 = 0:0 c23 = 17:0 c24 = 54:0
c31 = 50:0 c32 = 17:0 c33 = 0:0 c34 = 60:0.

So the problem P is to minimize

P3
i=1

P4
j=1 f(xij),

subject to the following constraints:

x11 + x12 + x13 + x14 = 10
x21 + x22 + x23 + x24 = 15
x31 + x32 + x33 + x34 = 20
x11 + x21 + x31 = 3
x12 + x22 + x32 = 20
x13 + x23 + x33 = 5
x14 + x24 + x34 = 17.

We solved the above problem P using GAMS (General Algebraic Modeling System), a
package for the construction and solution of mathematical programming models (Brooke,
Kendrick, & Meeraus, 1988), with MINOS optimizer. The GAMS' best solution was:

P3
i=1

P4
j=1 f(xij) = 430:64,

which was achieved for

x11 = 3:0 x12 = 0:0 x13 = 0:0 x14 = 7:0
x21 = 0:0 x22 = 5:0 x23 = 0:0 x24 = 10:0
x31 = 0:0 x32 = 15:0 x33 = 5:0 x34 = 0:0.
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This result would serve us as a convenient reference point in evaluation of evolution
programs presented in the paper. We refer to GAMS as a classical (gradient{based)
method Q for a problem P (see Figure 6).

For a fair comparison of the evolution programs EPi (i = 1; : : : ; 5) presented in this
paper, we set population size to 70 and the number of generations to 5,000 for all our
experiments. Each experiment was repeated 20 times; all averages for a particular ex-
periment reported in the following subsections refer to averages obtained from these 20
runs. It is also important to point out that the presented evolution programs use di�erent
initialization techniques, however, we discuss them later in section 4.7.

4.2 Evolution Program EP1

The weakest evolution program EP1 used in the experiments was the GENESIS 1.2ucsd
system1 developed by Nicol Schraudolph at the University of California, San Diego (the
system is based on GENESIS 4.5, a genetic algorithm package written by John Grefen-
stette). In principle, one can use such generic tool to optimize a variety of problems and
the dom(EP1) is virtually unlimited.

Let us exercise the usefulness of this evolution program on our test case, problem P .
It is clear that the system will not provide any useful solutions if constraints are not
incorporated by means of penalty functions. For example, we performed several runs of
EP1, de�ning only a domain for each of the twelve variables. Here we did not have much
choice|the domain for each variable was selected as a range from zero to the smaller
marginal sum for a given row and column:

0:0 � x11 � 3:0 0:0 � x12 � 10:0 0:0 � x13 � 5:0 0:0 � x14 � 10:0
0:0 � x21 � 3:0 0:0 � x22 � 15:0 0:0 � x23 � 5:0 0:0 � x24 � 15:0
0:0 � x31 � 3:0 0:0 � x32 � 20:0 0:0 � x33 � 5:0 0:0 � x34 � 17:0.

Obviously, none of the solutions found by the program satis�ed constraints of the problem;
a typical output is given below:

x11 = 2:05 x12 = 0:00 x13 = 0:00 x14 = 0:00
x21 = 0:00 x22 = 10:65 x23 = 0:00 x24 = 0:00
x31 = 0:00 x32 = 0:00 x33 = 0:00 x34 = 0:00.

As expected, the above nonfeasible solution is without any value for the user. It can be
\improved" even further: a solution xij = 0:0 for all 1 � i � 3, 1 � j � 4 yields the
optimum transportation cost (zero)!

Clearly, it is necessary to incorporate some penalties on constraints. Since the evolu-
tion program EP1 should not depend on the problem to be solved, we experimented only

1The system was run with the dynamic parameter encoding option (Schraudolph, & Belew, 1992);
however, this option did not improve the performance of the system because the precision was not the
issue here. The same comment applies to the evolution program EP5 discussed later in the paper.
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with some standard penalty functions. We have considered two sets of such penalty func-
tions. The �rst one (pi's, moderate penalties) measures each penalty as a linear function
of the violation of the constraint, the other set (qi's, high penalties) squares the violation
of the constraint. For our problem P with seven linear equalities, these functions are
given below:

p1 = c � jx11 + x12 + x13 + x14 � 10j,
p2 = c � jx21 + x22 + x23 + x24 � 15j,
p3 = c � jx31 + x32 + x33 + x34 � 20j,
p4 = c � jx11 + x21 + x31 � 3j,
p5 = c � jx12 + x22 + x32 � 20j,
p6 = c � jx13 + x23 + x33 � 5j,
p7 = c � jx14 + x24 + x34 � 17j,

and qi = p2i =c (i = 1; : : : ; 7). In all experiments we used c = 10:0; for this number the
penalties constitute a signi�cant percentage of the total cost (which, as indicated by the
results of the GAMS system, is around 400). The results of the experiments were quite
interesting.

The following point represents a typical output for experiments with penalties pi:

x11 = 3:00 x12 = 3:77 x13 = 0:00 x14 = 0:00
x21 = 0:00 x22 = 1:23 x23 = 0:00 x24 = 13:77
x31 = 0:00 x32 = 15:00 x33 = 5:00 x34 = 0:00.

The above solution is just `typical': we are unable to provide the best output due to the
fact that it is relatively hard to evaluate the goodness of nonfeasible solutions. To get a
feasible solution from a nonfeasible one, we have to make a few adjustments and the �nal
transportation cost depends on these. For example, the above solution may be corrected
into the following feasible solution:

x11 = 3:00 x12 = 3:77 x13 = 0:00 x14 = 3:23
x21 = 0:00 x22 = 1:23 x23 = 0:00 x24 = 13:77
x31 = 0:00 x32 = 15:00 x33 = 5:00 x34 = 0:00,

which yields the total transportation cost of 453.43. Of course, some other corrections
yield better or worse transportations costs. (The above correction was done manually. It
was based on a simple observation that the totals of the �rst row and the fourth column
are smaller than the corresponding marginal sums by 3.23; hence we added 3.23 to x14).

In the above example, a manual correction of the nonfeasible solution resulted in a
respectable value 453:43. However, it is important to stress that it was possible only
because of low dimensions of the problem. The process of �nding a `good' correction of a
nonfeasible solution for a 20 � 20 transportation problem might be as di�cult as solving
the original problem. It seems that stronger penalties should be used to force the solution
into a feasible region.
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Indeed, the approach of stronger penalties provided solutions which were \almost"
feasible. The following point represents the best output for experiments with penalties qi:

x11 = 3:00 x12 = 6:98 x13 = 0:00 x14 = 0:00
x21 = 0:00 x22 = 0:00 x23 = 3:06 x24 = 11:93
x31 = 0:00 x32 = 13:02 x33 = 1:93 x34 = 5:03.

The above solution can be transformed easily (manual rounding) into a feasible solution:

x11 = 3:00 x12 = 7:00 x13 = 0:00 x14 = 0:00
x21 = 0:00 x22 = 0:00 x23 = 3:00 x24 = 12:00
x31 = 0:00 x32 = 13:00 x33 = 2:00 x34 = 5:00,

which yields 502.53 as the total transportation cost. This cost is worse than the cost of
453.43 we obtained from the moderate penalties approach, however, it should be stressed
again that the process of �nding a `good' correction in the moderate penalties approach
can be quite complex for high dimensional problems. We can think about this step as
a process of solving a new transportation problem with modi�ed marginal sums (which
represent di�erences between actual and required totals), where variables, say, �ij, repre-
sent respective corrections to original variables xij. Thus, in general, stronger penalties
provide better results. At the same time these results are still worse than the results
obtained from the commercial software GAMS (system Q in Figure 6). Also, it should be
pointed out that `very strong' penalties do not improve the performance of the program.
In extreme, if we assign zero �tness to individuals which violate a constraint, very often
the system would settle for the �rst feasible solution found.

The �nal (and predictable) conclusion from experiments with EP1 is that the use of
penalty functions do not guarantee feasible solutions and that a `good' repair may be
expensive.

4.3 Evolution Program EP2

Evolution strategies (ESs) are evolution programs applicable to parameter optimization
problems (B�ack, Ho�meister, & Schwefel, 1991; Schwefel, 1981). Early evolution strategies
used a 
oating point number representation, with mutation being the only alternation
operator. Mutations were realized by replacing ~x by

~xt+1 = ~xt +N(0; ~�),

where N(0; ~�) is a vector of independent random Gaussian numbers with a mean of zero
and standard deviations ~�. They have been applied to various optimization problems
with continuously changeable parameters.

The multimembered evolution strategies evolved further (Schwefel, 1981) to mature
as

14



(�+ �){ESs and (�; �){ESs;

the main idea behind these strategies was to allow control parameters (like mutation
variance) to self-adapt rather than changing their values by some deterministic algorithm.

In the (�+�){ES, � individuals produce � o�spring. The new (temporary) population
of (�+�) individuals is reduced by a selection process again to � individuals. On the other
hand, in the (�; �){ES, the � individuals produce � o�spring (� > �) and the selection
process selects a new population of � individuals from the set of � o�spring only. By doing
this, the life of each individual is limited to one generation. This allows the (�; �){ES to
perform better on problems with an optimum moving over time, or on problems where
the objective function is noisy.

The operators used in the (�+ �){ESs and (�; �){ESs incorporate two-level learning:
their control parameter ~� is no longer constant, nor is it changed by some deterministic
algorithm, but it is incorporated in the structure of the individuals and undergoes the
evolution process. To produce an o�spring, the system acts in two stages:

� select two individuals,

(~x1; ~�1) = ((x11; : : : ; x
1
n); (�

1
1; : : : ; �

1
n)) and

(~x2; ~�2) = ((x21; : : : ; x
2
n); (�

2
1; : : : ; �

2
n)),

and apply a recombination (crossover) operator. There are two types of crossovers:

{ discrete, where the new o�spring is

(~x; ~�) = ((xq11 ; : : : ; x
qn
n ); (�q11 ; : : : ; �

qn
n )),

where qi = 1 or qi = 2 (so each component comes from the �rst or second
preselected parent),

{ intermediate, where the new o�spring is

(~x; ~�) = (((x11+x21)=2; : : : ; (x
1
n+x2n)=2); ((�

1
1+�21)=2; : : : ; (�

1
n+�2n)=2)).

Each of these operators can be applied also in a global mode, where the new pair
of parents is selected for each component of the o�spring vector.

� apply mutation to the o�spring (~x; ~�) obtained; the resulting new o�spring is (~x0; ~�0),
where

~�0 = ~� � eN(0;�~�) and
~x0 = ~x+N(0; ~�0),

where �~� is a parameter of the method.

Evolution strategies assume a set of q � 0 inequalities,

g1(~x) � 0; : : : ; gq(~x) � 0,
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as part of the optimization problem. If during some iteration an o�spring does not satisfy
all of these constraints, then the o�spring is disquali�ed, i.e., it is not placed in a new
population. If the rate of occurrence of such illegal o�spring is high, the ESs adjust their
control parameters, e.g., by decreasing the components of the vector ~�.

We have used KORR 2.1, Hans-Paul Schwefel and Frank Ho�meister implementation
of a (� + �){ES and (�; �){ES, as our next evolution program, EP2. Clearly, evolu-
tion strategies are applicable to parameter optimization problems, hence dom(EP2) �
dom(EP1) and consequently, EP1 � EP2.

As stated earlier, EP2 handles only inequality constraints. Because of that the problem
P was rewritten to eliminate the equalities. As a result the objective function has only
six variables: y1, y2, y3, y4, y5, and y6, and the transportation problem P is given as:

minf(y1) + f(y2) + f(y3) + f(10:0 � y1 � y2 � y3) + f(y4) + f(y5) + f(y6)+
f(15:0 � y4 � y5 � y6) + f(3:0� y1 � y4) + f(20:0 � y2 � y5)+
f(5:0 � y3 � y6) + f(y1 + y2 + y3 + y4 + y5 + y6 � 8:0),

where

y1 = x11, y2 = x12, y3 = x13, y4 = x21, y5 = x22, y6 = x23,

and the following eighteen constraints hold:

g1 : y1 � 0 (i.e., x11 � 0),
g2 : y2 � 0 (i.e., x12 � 0),
g3 : y3 � 0 (i.e., x13 � 0),
g4 : y4 � 0 (i.e., x21 � 0),
g5 : y5 � 0 (i.e., x22 � 0),
g6 : y6 � 0 (i.e., x23 � 0),
g7 : 10:0 � y1 � y2 � y3 � 0 (i.e., x14 � 0),
g8 : 15:0 � y4 � y5 � y6 � 0 (i.e., x24 � 0),
g9 : 3:0� y1 � y4 � 0 (i.e., x31 � 0),
g10 : 20:0� y2 � y5 � 0 (i.e., x32 � 0),
g11 : 5:0� y3 � y6 � 0 (i.e., x33 � 0),
g12 : y1 + y2 + y3 + y4 + y5 + y6 � 8:0 � 0 (i.e., x34 � 0),
g13 : 3:0� y1 � 0 (i.e., x11 � 3),
g14 : 10:0� y2 � 0 (i.e., x12 � 10),
g15 : 5:0� y3 � 0 (i.e., x13 � 5),
g16 : 3:0� y4 � 0 (i.e., x21 � 3),
g17 : 15:0� y5 � 0 (i.e., x22 � 15),
g18 : 5:0� y6 � 0 (i.e., x23 � 5).

The average value of the best transportation cost found (out of 20 independent runs)
by EP2 was 460.75, whereas the best solution found (which yields the total value of
420.74) was
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x11 = 3:00 x12 = 2:00 x13 = 5:00 x14 = 0:00
x21 = 0:00 x22 = 0:00 x23 = 0:00 x24 = 15:00
x31 = 0:00 x32 = 18:00 x33 = 0:00 x34 = 2:00.

As expected, the results of EP2 are better than results from the previous evolution pro-
gram EP1. Additional point for EP2 is that there is no need for correcting the results to
move them into the feasible region. On the other hand it seems that the performance of
EP2 depends on a starting point in the search space (which is given by the user). For
that reason, it is quite hard to provide a complete analysis of the system.

4.4 Evolution Program EP3

The third evolution program EP3 described here is Genocop (for a full reference, see
chapter 7 of Michalewicz (1992); see also Michalewicz, & Janikow, (1991a)). The system
was built to optimize a function with any set of linear constraints (equations and/or
inequalities).

The chromosomal representation used in Genocop is as follows: for a problem with m
variables, a chromosome in a population, representing a permissible solution, is coded as
a vector of m 
oating point numbers s = hv1; : : : ; vmi.

In Genocop the equalities are eliminated at the start, together with an equal number
of problem variables; this action removes also part of the space to be searched. The
remaining constraints, in the form of linear inequalities, form a convex set which must be
searched for a solution. Its convexity ensures that linear combinations of solutions yield
solutions without needing to check the constraints | a property used throughout this
approach (the connection between convex domains and the special crossover used in the
system is discussed fully in Michalewicz (1992). The inequalities can be used to generate
bounds for any given variable: such bounds are dynamic as they depend on the values of
the other variables and can be e�ciently computed.

There are several operators in the Genocop system which proved to be useful on many
test problems. These are:

� uniform mutation: for this mutation we select a random gene k (from the set
of genes of the given chromosome s. If stv = hv1; : : : ; vmi is a chromosome and the
k-th component is the selected gene, the result is a vector st+1v = hv1; : : : ; v0k; : : : ; vmi,
where v0k is a random value (uniform probability distribution) from the range [left(k),
right(k)]. The values left(k) and right(k) are easily calculated from the set of con-
straints (inequalities); they depend on the remaining values of the chromosome:
v1,: : :,vk�1,vk+1,: : :,vm.

� boundary mutation: is a variation of the uniform mutation with v0k being either
left(k) or right(k), each with equal probability.
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� non-uniform mutation: is one of the operators responsible for the �ne tuning
capabilities of the system. It is de�ned as follows: if s = hv1; : : : ; vmi is a chro-
mosome and the element vk was selected for this mutation, the result is a vector
s0 = hv1; : : : ; v0k; : : : ; vmi, where

v0k =

(
vk +4(t; right(k)� vk) if a random digit is 0
vk �4(t; vk � left(k)) if a random digit is 1

The function 4(t; y) returns a value in the range [0; y] such that the probability of
4(t; y) being close to 0 increases as t increases. This property causes this operator
to search the space uniformly initially (when t is small), and very locally at later
stages. We have used the following function:

4(t; y) = y �
�
1� r(1�

t

T
)b
�
;

where r is a random number from [0::1], T is the maximal generation number, and
b is a system parameter determining the degree of non{uniformity.

� simple crossover: is de�ned as follows: if s1 = hv1; : : : ; vmi and s2 = hw1; : : : ; wmi
are crossed after the k-th position, the resulting o�spring are:
s01 = hv1; : : : ; vk; wk+1; : : : ; wmi and s02 = hw1; : : : ; wk; vk+1; : : : ; vmi. Note that the
only permissible split points are between individual 
oating points (using 
oat rep-
resentation it is impossible to split anywhere else).

However, such operator may produce nonfeasible o�spring. To avoid this problem,
we use the property of the convex spaces saying, that there exist a 2 [0; 1] such that

s01 = hv1; : : : ; vk; wk+1 � a+ vk+1 � (1 � a); : : : ; wm � a+ vm � (1� a)i
and

s02 = hw1; : : : ; wk; vk+1 � a+ wk+1 � (1� a); : : : ; vm � a+ wm � (1 � a)i
are feasible. This is a straightforward observation: for a = 0 both o�spring are just
copies of the parents (hence both are feasible). On the other hand, for a = 1 the
operator works just as the classical crossover swapping parts of the vectors and the
o�spring need not be feasible. The only question to be answered yet is how to �nd
the largest a (0 � a � 1) to obtain the greatest possible `information exchange'.
In Genocop we implemented a simple iteration where a is initialized to 1, and, if
at least one o�spring does not satisfy constraints, then a := a � � (� is a �xed
parameter; in all experiments � = 0:1). Then, a takes the largest appropriate value
found, or 0 if no value satis�ed the constraints. The necessity for such actions is
small in general and decreases rapidly over the life of the population.

� arithmetical crossover: is de�ned as a linear combination of two vectors: if s1
and s2 are to be crossed, the resulting o�spring are s01 = a � s1 + (1 � a) � s2 and
s02 = a � s2 + (1� a) � s1. This operator uses a static system parameter a 2 [0::1], as
it always guarantees closedness (it will preserve all inequality constraints).
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Since the Genocop (as our evolution program EP3) can handle only linear constraints,
it is clear that dom(EP3) � dom(EP2) and consequently, EP2 � EP3.

The transportation problem P is a problem with m = 12 variables; each chromosome
is coded as a vector of twelve 
oating point numbers hy1; : : : ; y12i. Then, the problem P
is

min
P12

i=1 f(yi),

where

y1 = x11, y2 = x12, y3 = x13, y4 = x14,
y5 = x21, y6 = x22, y7 = x23, y8 = x24,
y9 = x31, y10 = x32, y11 = x33, y12 = x34,

with six independent linear constraints:

y1 + y2 + y3 + y4 = 10
y5 + y6 + y7 + y8 = 15
y9 + y10 + y11 + y12 = 20
y1 + y5 + y9 = 3
y2 + y6 + y10 = 20
y3 + y7 + y11 = 5

(the seventh equation, y4 + y8 + y12 = 10, is unnecessary, as is linearly dependent on the
given six equations); additional linear inequalities are

yi � 0, for i = 1; : : : ; 12.

We performed 20 runs of Genocop. The values of the total transportation cost varied
from 420.74 (the worst case) for the following solution (rounded to the second digit after
the decimal point):

x11 = 3:00 x12 = 4:38 x13 = 2:62 x14 = 0:00
x21 = 0:00 x22 = 15:00 x23 = 0:00 x24 = 0:00
x31 = 0:00 x32 = 0:62 x33 = 2:38 x34 = 17:00,

to the value of 356.98 (the best case) for a solution:

x11 = 3:00 x12 = 7:00 x13 = 0:00 x14 = 0:00
x21 = 0:00 x22 = 13:00 x23 = 2:00 x24 = 0:00
x31 = 0:00 x32 = 0:00 x33 = 3:00 x34 = 17:00.

The average (out of 20 runs) transportation cost returned by the Genocop system was
405.45. Of course, all obtained solutions were feasible. Clearly, Genocop as a more
problem-speci�c system performed much better than evolution strategies EP2.
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4.5 Evolution Program EP4

The next evolution program EP4 described here is Genetic-2n2 (Michalewicz, Vignaux, &
Hobbs, 1991). The system was built to optimize any nonlinear transportation problem,
so clearly dom(EP4) � dom(EP3) and consequently, EP3 � EP4. In Genetic-2n a matrix
represents a potential solution; appropriate operators were de�ned for this representation.

The matrix representation was selected as the most natural one | after all, this is how
it is presented and solved by hand. Evolution program EP4 processes a population where
each individual is a matrix. The system initializes the population using the following
procedure:

input: arrays dest(k), source(n);
output: an array (xij) such that xij � 0 for all i and j,

Pk
j=1 xij = source(i)] for

i = 1; 2; : : : ; n, and
Pn

i=1 xij = dest(j) for j = 1; 2 : : : ; k, i.e., all constraints are satis�ed.

procedure initialization;

begin

set all numbers from 1 to k � n as unvisited
repeat

select an unvisited random number q from 1 to k � n and set it as visited
set (row) i = b(q � 1)=k + 1c
set (column) j = (q � 1) mod k + 1
set val = min(source(i); dest(j))
set xij = val
set source(i) = source(i)� val
set dest(j) = dest(j)� val

until all numbers are visited.
end

Procedure initialization creates a matrix of at most k + n� 1 non-zero elements such
that all constraints are satis�ed. Although other initialization procedures are feasible,
this method will generate a solution that is at a vertex of the simplex which describes the
convex boundary of the constrained solution space.

There is a large group of possible \genetic" operators we can apply to matrices;
Genetic-2n uses the following:

� mutation-1: this operator would select part of a matrix and re-initialized it: i.e.,
the operator �nds marginal sums, erases all entries in the selected part, and place
some integers for all entries such that the new numbers satisfy constraints for
marginal sums. As a consequence, this operator attempts to introduce as many
zero entires into the matrix as possible (an example follows).

2There are also systems Genetic-1 and Genetic-2 for the linear transportation problem based on vector
and matrix representations, respectively; for details, see Michalewicz (1992).

20



� mutation-2: this operator is identical to the previous one except it avoids choosing
zero entries by selecting values from a range. The following line of the code for
mutation-1:

set val = min(source(i); dest(j))

is replaced by:

set val1 = min(source(i); dest(j)
if (i is the last available row) or

(j is the last available column)
then val = val1
else set val = random (real) number from h0; val1i

Some additional modi�cations are necessary as well; for details the reader is referred
to Michalewicz, Vignaux, & Hobbs, (1991) or Michalewicz (1992).

� arithmetical crossover: for two matrices V1 and V2 this operator would produce
two o�spring, W1 and W2, such that W1 = q1 �V1+ q2 �V2, and W2 = q2 �V1+ q1 �V2,
where q1 and q2 are any positive reals such that q1 + q2 = 1.

Note that all operators would preserve the constraints (sums for rows and columns). For
a detailed description of these operators the reader is referred to Michalewicz, Vignaux,
& Hobbs, (1991) (it is interesting to note that the mutation-1 and mutation-2 operators
correspond to a boundary and uniform mutations of the Genocop system).

The following example will illustrate mutation-1 operator. Let us consider our trans-
portation problem P de�ned in the section 4.1. Assume that the following matrix V (an
individual from the population) was selected as a parent for mutation-1:

2.0 7.0 1.0 0.0
1.0 3.0 1.0 10.0
0.0 10.0 3.0 7.0

Suppose that two rows f1; 3g and three columns f1; 3; 4g are selected. Then the
corresponding submatrix W is:

2.0 1.0 0.0
0.0 3.0 7.0

Note, that sourW [1] = 3:0, sourW [2] = 10:0, destW [1] = 2:0, destW [2] = 4:0, destW [3] =
7:0. After the re-initialization of matrix W , it might have the following values:

0.0 0.0 3.0
2.0 4.0 4.0
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So, �nally, the child of matrix V after mutation-1, is:

0.0 7.0 0.0 3.0
1.0 3.0 1.0 10.0
2.0 10.0 4.0 4.0

We performed 20 runs of Genetic-2n. The values of the total transportation cost varied
from 397.02 (the worst case) for a solution (rounded to the second digit after the decimal
point):

x11 = 3:00 x12 = 5:00 x13 = 0:00 x14 = 2:00
x21 = 0:00 x22 = 15:00 x23 = 0:00 x24 = 0:00
x31 = 0:00 x32 = 0:00 x33 = 5:00 x34 = 15:00,

to the value of 356.98 (the best case) for a solution:

x11 = 3:00 x12 = 7:00 x13 = 0:00 x14 = 0:00
x21 = 0:00 x22 = 13:00 x23 = 2:00 x24 = 0:00
x31 = 0:00 x32 = 0:00 x33 = 3:00 x34 = 17:00

(the same solution found by Genocop). However, the average (again, out of 20 runs)
transportation cost returned from the Genetic-2n system was 391.65, much better than
405.45 of Genocop. Again, all solutions were feasible. Clearly, Genetic-2n (EP4) as a
more problem-speci�c system performed better than Genocop (EP3).

4.6 Evolution Program EP5

The �nal evolution program EP5 decribed here is based again on GENESIS 1.2ucsd
system, the very same system we used for experiments described in section 4.2. This
time, however, we tried to \tune up" the set of penalty functions to focus the system
just on problem P . Additionally, we eliminated all equations: the intuition being, that it
should be easier to maintain inequality than equality constraints.

So again, the problem P was rewritten as:

minf(y1) + f(y2) + f(y3) + f(10:0 � y1 � y2 � y3) + f(y4) + f(y5) + f(y6)+
f(15:0 � y4 � y5 � y6) + f(3:0� y1 � y4) + f(20:0 � y2 � y5)+
f(5:0 � y3 � y6) + f(y1 + y2 + y3 + y4 + y5 + y6 � 8:0),

where y1 = x11, y2 = x12, y3 = x13, y4 = x21, y5 = x22, y6 = x23, and

0:0 � y1 � 3:0,
0:0 � y2 � 10:0,
0:0 � y3 � 5:0,
0:0 � y4 � 3:0,
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0:0 � y5 � 15:0,
0:0 � y6 � 5:0.

The six penalty functions we tried to tune were:

p1 =

(
w1 � (c1 + y1 + y2 + y3 � 10:0)2 if 10:0 � y1 � y2 � y3 < 0:0
0:0 otherwise

p2 =

(
w2 � (c2 + y4 + y5 + y6 � 15:0)2 if 15:0 � y4 � y5 � y6 < 0:0
0:0 otherwise

p3 =

(
w3 � (c3 + y1 + y4 � 3:0)2 if 3:0 � y1 � y4 < 0:0
0:0 otherwise

p4 =

(
w4 � (c4 + y2 + y5 � 20:0)2 if 20:0 � y2 � y5 < 0:0
0:0 otherwise

p5 =

(
w5 � (c5 + y3 + y6 � 5:0)2 if 5:0 � y3 � y6 < 0:0
0:0 otherwise

p6 =

8><
>:

w6 � (c6 + 8:0� y1 � y2 � y3 � y4 � y5 � y6)2

if y1 + y2 + y3 + y4 + y5 + y6 � 8:0 < 0:0
0:0 otherwise;

where wi's and ci's are additional weights.

As usual, all penalties are added to the objective function. After many experiments
(during which we increased and decreased the corresponding weights for constraints which
were violated or satis�ed, respectively), we arrived with the following set:

c1 = 2:5; w1 = 2:0;
c2 = 0:3; w2 = 1:3;
c3 = 5:0; w3 = 2:5;
c4 = 5:0; w4 = 2:0;
c5 = 0:2; w5 = 1:3;
c6 = 0:1; w6 = 2:0:

We do not claim, of course, the the above set of weigths represents the optimal con-
�guration: the tuning was done just \by hand"; if some constraint was not satis�ed, we
gradually increased the corresponding weights. However, we can make the following two
observations:

� the system EP5 with the above weights performs quite well on the problem P , and
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� if we change the problem P by adding additional source or destination, or just by
changing the problem speci�c weights cij, the evolution program EP5 would not
produce meaningful results.

It is clear then that dom(EP5) � dom(EP4) and consequently, EP4 � EP5.

One of the runs of the EP5 system gave the following solution:

x11 = 2:93 x12 = 6:91 x13 = 0:16 x14 = 0:00
x21 = 0:07 x22 = 13:09 x23 = 1:84 x24 = 0:00
x31 = 0:00 x32 = 0:00 x33 = 3:00 x34 = 17:00:

Note that all constraints are satis�ed, and the value of the objective function is 391.2.
The above solution can be manually corrected into the best solution found by Genocop
and Genetic-2n:

x11 = 3:00 x12 = 7:00 x13 = 0:00 x14 = 0:00
x21 = 0:00 x22 = 13:00 x23 = 2:00 x24 = 0:00
x31 = 0:00 x32 = 0:00 x33 = 3:00 x34 = 17:00:

However, the system EP5 found also a solution with a better value than 391.2, namely
378.25, for the following transportation plan:

x11 = 2:53 x12 = 7:47 x13 = 0:00 x14 = 0:00
x21 = 0:47 x22 = 12:53 x23 = 2:00 x24 = 0:00
x31 = 0:00 x32 = 0:00 x33 = 3:00 x34 = 17:00;

which is much harder to correct (remember that the optimal solution need not consist of
integers. For example, one of the solutions we obtained from Genetic-2n was

x11 = 3:00 x12 = 7:00 x13 = 0:00 x14 = 0:00
x21 = 0:00 x22 = 12:25 x23 = 2:75 x24 = 0:00
x31 = 0:00 x32 = 0:75 x33 = 2:25 x34 = 17:00;

with the total transportation cost equal to 380.86).

In general, it should be possible to construct a \perfect" evolution program which is
tailored to the problem P . We can add additional knowledge to such system by incorpo-
rating the transportation costs cij , characteristics of six independent constraints, possibly
with some additional heuristic to modify a feasible solutions. Additional constraints can
be added \to guide" the system in desirable direction. However, it should be noted that
the di�culty in constructing such system is growing together with the dimensions of the
problem and its usefulness would be quite limited (to the problem P only).
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4.7 A Comparison

The experimental results presented in the previous sections con�rmed the intuitive hy-
pothesis that the problem speci�c knowledge enhances the performance of the algorithm,
narrowing its applicability.

As mentioned in section 4.1, for a fair comparison of the evolution programs we set
population size to 70, the number of generations to 5,000 for all our experiments and all
runs were repeated 20 times. However, these evolution programs used di�erent techniques
in their initialization steps. The �rst evolution program EP1 generates its population in
a way that the individuals need not be feasible (since the constraints include equations,
it would be very surprising if even one generated individual was feasible). The second
evolution program EP2 uses a single (feasible) individual as its starting point; twenty
di�erent initial feasible points were generated for these tests. The third program EP3

makes some number (which is a parameter of the system) of attempts to �nd an initial
feasible individual in the search space. If successful, the initial population would consist of
population size identical copies of the found individual. If unsuccessful, the system would
prompt the user for a feasible initial point; the set of initial feasible points for these runs
was the same one as used for EP2. The fourth program EP4 generates and maintains a
population of feasible individuals, whereas EP5 (like EP1) generates initial population of
(possibly) nonfeasible individuals.

In comparing our evolution programs it is important to know about these di�erences
in initialization techniques; however, the results of our experiments indicated that the in-

uence of a particular initialization technique on the system performance was negligible.
This is not surprising: for a highly constrained problem in general (and for the transporta-
tion problem in particular), a `feasible' point in the search space does not mean a `good'
point. A heuristic initialization works only in cases where a user has a good heuristic to
incorporate in the system (and even then it must be done carefully to avoid premature
convergence!). There was no improvement in EP1 or EP5 when they were initialized by
feasible individuals unless one feasible individual was really good. The `clever' initializa-
tion presented in section 4.5 for evolution program EP4 generated a set of feasible points
with average evaluation of 456. This initialization did not enhance the algorithm: it was
simply necessary to start with feasible population, since the operators of EP4 just main-
tain the feasibility. Other programs (EP2 and EP3) used a collection of relatively poor
feasible points with the �tness value from the range h493; 610i (with the average of 562).

We conclude that the initialization process has not in
uenced the presented results.

5 Conclusions

In the previous section we have examined several evolution programs to approach a par-
ticular transportation problem P . It is interesting to note that we have used the same
system (namely GENESIS 1.2ucsd) for a construction of the weakest (EP1) and the
strongest (EP5) method. For the constrained problem P , the system EP1 (equipped with
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a standard set of penalty functions) was not very useful, whereas it was a time consuming
process to construct the problem-speci�c system EP5 with its limited usefulness.

This is an interesting observation: genetic algorithms are perceived as weak methods;
however, in the presence of nontrivial constraints, they must be changed into strong
methods. Whether we consider a penalty function, decoder, or a repair algorithm, these
must be tailored for a speci�c application. On the other hand, other evolution programs
(perceived as much stronger, problem-dependent methods) suddenly seem much weaker.
For example, both Genocop and Genetic-2n work well for large classes of problems. This
demonstrates a huge potential behind the evolution programming approach. Note also,
that stronger evolution programs (EP3, EP4) performed much better than a classical
method, Q (see, again, Figure 6 from the section 3).

Still an interesting question remains open: for a given problem, P , how weak (or
strong) should an evolution program be? In other words, for a given problem, P , should
we construct EP2, or rather EP4? Our hypothesis suggests that incorporation of problem-
speci�c knowledge gives better results in terms of precision. However, as indicated in
the Introduction, the development of a stronger, high-performance system may take a
long time if it involves extensive problem analysis to design specialized representation,
operators, and performance enhancements. On the other hand, we may have already
some standard packages, like Grefenstette's GENESIS, Whitley's GENITOR (Whitley,
1989), Davis's OOGA (Davis, 1991), Schraudolph's GENESIS 1.2ucsd, or one of Schwefel's
evolution strategy systems (B�ack, Ho�meister, & Schwefel, 1991). And if we try to �nd an
e�ective binary representation for a given problem, this may result in little or no software
adaptation!

So, is it worthwhile to build a new system from scratch? What is a message we would
like to send to a GA/EP practitioner? Should (s)he think simple and go for the most
generic approach �rst? If yes, how and when should (s)he decide on the necessity of
investing in more problem-speci�c software development?

It is quite di�cult to provide answers for the above questions in general. If one
is solving a transportation problem with hard constraints (i.e., constraints which must
be satis�ed), there is very little chance that some standard package would produce any
feasible solution, or, if we start with a population of feasible solutions and force the system
to maintain them, we may get no progress whatsoever | in such cases the system does
not perform better than a random search routine. On the other hand, for some other
problems such standard packages may produce quite satisfactory results. It seems that
the responsibility for making such decisions lies with the user; the decision is a function
of many factors, which include the demands of the precision of the required solution, time
complexity of the algorithm, cost of developing a new system, feasibility of the solution
found (i.e., quantity and importance of the problem constraints), frequency of using the
developed system, and others. We illustrate this point by presenting the �nal example.

Assume that for some engineering application we deal frequently with various opti-
mization problems which can be expressed in mathematical form (formulae for the function
and constraints). Assume further, that a typical problem consists of 10{20 variables and
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the number of (linear) constraints (apart from variable bounds) usually stays between 8
and 15. For example, one of the problems requires minimization of the following function3:

f(~x) = 5x1 + 5x2 + 5x3 + 5x4 � 5
P4

i=1 x
2
i �

P13
i=5 xi,

subject to:

2x1 + 2x2 + x10 + x11 � 10,
2x1 + 2x3 + x10 + x12 � 10,
2x2 + 2x3 + x11 + x12 � 10,
�8x1 + x10 � 0,
�8x2 + x11 � 0,
�8x3 + x12 � 0,
�2x4 � x5 + x10 � 0,
�2x6 � x7 + x11 � 0,
�2x8 � x9 + x12 � 0,
0 � xi � 1, i = 1; 2; 3; 4; 5; 6; 7; 8; 9; 13,
0 � xi, i = 10; 11; 12.

It might be a time consuming task to adopt the code of the standard packages to
approach this problem. There are nine nontrivial constraints here: the number of ex-
periments to tune the penalty functions for this particular problem may discourage the
user. Note also that any new problem from the above class of problems would require a
separate set of experiments. Moreover, as discussed in the previous section, the penalty
function approach does not guarantee the feasibility of the solution. So, if all constraints
are important, the solution found may be worthless after all!

On the other hand, the Genocop �nds the optimum easily (within 500 iterations)
for the above problem: the global solution is ~x� = (1; 1; 1; 1; 1; 1; 1; 1; 1; 3; 3; 3; 1), and
f(~x�) = �15. There is no need for any code adaptation; the number of di�erent problems
to solve is not the issue here. Additionally, we need not worry about the feasibility of the
solution found. It seems that in the above circumstances the choice is clear!4

All systems described in this paper are in public domain. For GENESIS 1.2ucsd
contact Nicol Schraudolph (schraudo@cs.ucsd.edu), for KORR 2.1 | Frank Ho�meister
(iwan@gorbi.informatik.uni-dortmund.de), and for Genetic-2n and Genocop | the author
of this article (zbyszek@mosaic.uncc.edu).

3This optimization problem was taken from Floudas, & Pardalos, (1987).
4Similary, if we deal with a class of problems with nonlinear constraints, we may consider Genocop II

| a new system (currently being developed) to handle nonlinear constraints (Michalewicz, 1993).
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