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Abstract| During the last years, several methods have
been proposed for handling constraints by evolutionary al-
gorithms for parameter optimisation problems. These meth-
ods include those based on penalty functions, preservation
of feasibility, decoders, repair algorithms, as well as some
hybrid techniques.

Most of these techniques have serious drawbacks (some
of them may return infeasible solution, others require many
additional parameters, etc). Moreover, none of these tech-
niques has utilized knowledge on which constraints are sat-
is�ed, and which are not. In this paper we introduce a new
element to evolutionary algorithms for constrained parame-
ter optimization problems: the parentmatching mechanism.
The preliminary results show that the proposed technique
works very well on selected test cases.

I. Introduction

The general nonlinear programming (NLP) problem is
to �nd ~x so as to

optimize f(~x), ~x = (x1; : : : ; xn) 2 IRn,
where ~x 2 F . F is the set of feasible solutions and is
de�ned by a set of m constraints (m � 0):

gj(~x) � 0, for j = 1; : : : ; q, and hj(~x) = 0, for
j = q + 1; : : : ;m.

The NLP problem, in general, is intractable: it is impossi-
ble to develop a deterministic method for the NLP in the
global optimization category, which would be better than
the exhaustive search. This makes a room for evolution-
ary algorithms, which aim at complex objective functions
(e.g., non-di�erentiable or discontinuous). Consequently,
during the last few years, evolutionary techniques were ex-
tended by some constraint-handling methods. In a recent
survey paper [14] various methods incorporated by these
algorithms were grouped into four categories: (1) meth-
ods based on preserving feasibility of solutions, (2) meth-
ods based on penalty functions, (3) methods which make a
clear distinction between feasible and infeasible solutions,
and (4) other hybrid methods.
The �rst category requires the design of specialized op-

erators (e.g., arithmetical crossover, non-uniform mutation
[10], [11], geometrical crossover [13], sphere crossover [22],
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etc). Clearly, to maintain feasibility of an individual, a spe-
cialized operator (which incorporates the knowledge about
problem-speci�c constraints) should be used [21]. The
methods based on penalty functions require many addi-
tional parameters, the major ones being the penalty coe�-
cients themselves. Apart from static penalties [3], there
were some experiments reported on the use of dynamic
penalties [4], [9] and adaptive penalties [1], [24], where
the search length and the feedback about constraint vi-
olation, respectively, was incorporated. The third cate-
gory of methods emphasizes the distinction between fea-
sible and infeasible solutions. For example, one particular
method [23] (called a \behavioral memory" approach) con-
siders the problem constraints in a sequence; a switch from
one constraint to another is made upon arrival of a su�-
cient number of feasible individuals in the population. The
�nal category includes methods which combine evolution-
ary computation techniques with deterministic procedures
for numerical optimization problems [26], [15]. In partic-
ular, the method by Myung et al. [15] divides the whole
optimization process into two separate phases. During the
�rst phase, evolutionary algorithm optimizes a modi�ed
objective function, whereas during the second phase the
optimization algorithm of Maa and Shanblatt [6] is applied
to the best solution found during the �rst phase.
In this paper we report on an evolutionary algorithm

with additional features, which are very appropriate for
constrained parameter optimization problems. Some of
these features are similar to those proposed in the past, but
some other features are new. It seems that combination of
all these features is responsible for very good performance
of the new algorithm.
The paper is organized as follows. The next section

presents the general ideas which were incorporated in the
construction of the new system. Section III discusses the
features of this system, and section IV reports experimental
results. Section V concludes the paper.

II. General ideas

In evolutionary computation the main link between the
algorithm and the problem is the evaluation function. This



2

function inuences the rating of individuals in the popula-
tion: better individuals have better chances to survive and
reproduce. However, in NLP the ranking of individuals is
not straightforward: apart from optimizing the objective
function f , the solution should satisfy a set of constraints.
The main issue is: how should we compare two (infeasible)
individuals, ~x1 and ~x2, if f( ~x1) < f( ~x2),1 and ~x1 satis�es
two (out of m = 4) constraints, whereas ~x2 satis�es three
constraints? Which of these two is better? Should we also
take into account the amount of constraint violation?
In most methods, which have been proposed and experi-

mented with during the last few years, the evaluation func-
tion returns just a single numeric value which is used to
compare individuals. The most popular approach is based
on the concept of penalty functions, which penalize infea-
sible solutions, i.e., try to solve an unconstrained problem
using the modi�ed �tness function:

eval(~x) =

�
f(~x); if ~x 2 F
f(~x) + penalty(~x); otherwise;

where penalty(~x) is zero, if no violation occurs, and is pos-
itive, otherwise. Usually, the penalty function is based on
the distance of a solution from the feasible region F ; in
many methods a set of functions fj (1 � j � m) is used to
construct the penalty, where the function fj measures the
violation of the j-th constraint in the following way:

fj(~x) =

�
maxf0; gj(~x)g; if 1 � j � q
jhj(~x)j; if q + 1 � j � m:

There are many possible ways of constructing penalty
functions. One particular approach was developed by Pow-
ell and Skolnick [17]: the method distinguishes between
feasible and infeasible individuals by adopting an addi-
tional heuristic rule (suggested earlier by Richardson et
al. [18]): any feasible solution is better than any infeasible
one. Thus, infeasible individuals have increased penalties:
their values cannot be better than the value of the worst
feasible individual.
Of course, we are not limited to a singleton numerical

value. For example, some methods use of the values of
objective function f and penalties fj (j = 1; : : : ;m) as el-
ements of an evaluation vector and apply multi-objective
techniques to minimise all components of the vector. For
example, Scha�er's [20] Vector Evaluated Genetic Algo-
rithm (VEGA) selects 1=(m + 1) of the population based
on each of the objectives. Such an approach was incor-
porated by Parmee and Purchase [16] in the development
of techniques for constrained design spaces. On the other
hand, in the approach by Surry et al. [25], all members of
the population are ranked on the basis of constraint viola-
tion. Such rank r, together with the value of the objective
function f , leads to the two-objective optimization prob-
lem. Chu and Beasley [2] also considered two-objective
optimization problem; a vector of two values consisted of
the value of the objective function and a measure of the
\un�tness" of an individual.

1Let us assume here a minimisation problem.

The proposed approach used is based on following obser-
vations:

� As in the behavioural memory approach, the search
should run in two phases: (1) the phase of searching
for feasible solutions and (2) the optimization phase.
In this respect, the approach is similar to that of [15],
however, our phases have somewhat fuzzy boundaries.
During the �rst phase of the search the values of objec-
tive function are ignored due to the fact that all indi-
viduals are infeasible (assuming, of course, that this is
the case). Gradually, with larger and larger numbers
of feasible individuals in the population, the value of
the objective function is of growing importance, and
the second (optimization) phase of the search plays the
major role (i.e., �ne-local tuning of the best individu-
als).

� The evaluation function should assist us in comparing
two individuals. If both individuals are feasible, the
value of the objective function, of course, should be
taken into account. If both individuals are infeasible,
the value of the objective function is meaningless (con-
trary to all approaches based on penalty functions). In
such cases, information on constraint violation should
be considered. Additionally, it seems reasonable to as-
sume that feasible individuals are always better than
infeasible ones (as in [17]).

� The evaluation function can also assist us in other
ways. In particular, it might be useful in selecting
a second parent for a given one (for the crossover op-
erator). For example, if the evaluation function keeps
a record of which constraints are satis�ed, then the
second parent can be selected to maximize the num-
ber of constraints which are satis�ed by both parents
(in this way the second parent complements the �rst
parent and the generated o�spring hopefully satis�es
a larger number of constraints).

The idea of matching parents is not new to EAs, the
idea is discussed by Ronald [19], but for the applications
he presented, the selection of the second parent did not
depend on the �rst parent at all. Hence, the function to
select the second parent, seduction(), acted as a secondary
�tness function using a di�erent global criterion from the
main �tness function.

III. The CONGA system

The evolutionary algorithm developed, CONGA (COn-
straint based Numeric Genetic Algorithm) is a genetic al-
gorithm for �nding optimal or near optimal solutions for
numeric problems with constraints. The �tness function
eval (as described in the previous section) returns infor-
mation on which constraints are not satis�ed and the ex-
tent of the violations as well as the value of the objective
function:2

eval(~x) = hf(~x); v; s;~ci,

2The aim here was to mimic more closely parent selection practices
in nature: a number of characteristics of prospective mates are con-
sidered, and the characteristics which are considered to be desirable
in a mate inuence its selection.
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where

� f(~x) | is the value of the objective function;
� v | is the number of violated constraints (0 � v � m);
clearly, v = 0 implies that the solution ~x is feasible.
This value can be used in comparison between two
individuals (smaller v, the better);

� s =
Pm

j=1 f
2

j (~x); this sum of squares of the measures
of constraint violations provides with information on
unfeasibility of each individual. This value can be used
to break some comparison ties (e.g., when two individ-
uals satisfy the same number of constraints);

� ~c = hc1; : : : ; cni | is the constraints satis�ed mask.
This is a binary vector of length m; bit i is set i�
the ith constraint is satis�ed. This vector can be used
to select individuals for crossover (individuals would
complement each other in terms of constraints satis-
�ed).

New individuals are generated by either crossover or mu-
tation, but not both. Hence we can have two selection
functions, \SelectFirst" which selects an individual for mu-
tation or the �rst parent for crossover, and \SelectFor"
which, given a selected parent, �nds it a mate for crossover.
For both functions the information used in selecting an in-
dividual depends on the characteristics of the individuals
involved. CONGA uses tournament selection with a tour-
nament size of 2 and the rules for winning the tournament
in \SelectFirst" are given below:

� if both individuals are feasible, select individual with
the better value of the objective function;

� if only one individual is feasible, select it;
� if both individuals are infeasible, select individual with
{ smaller number of violated constraints v. If equal,

select individual with
{ smaller constraint violation measure s if they satisfy

the same constraints ~c, else use random choice.

In \SelectFor" procedure, which chooses a mate for a par-
ent, we can be more creative. To choose between two po-
tential mates which are both infeasible and satisfy an equal
number of constraints, we choose the individual which has
the least number of satis�ed constraints in common with
the already chosen parent. Here we select the potential
mate that best \complements" the already selected parent
by satisfying the constraints that the �rst parent does not
satisfy, in a hope that crossover will create a new individ-
ual that satis�es more of the constraints than either parent
does.
In CONGA the function variables (genes) are repre-

sented as �xed point reals using a 20 bit binary representa-
tion with Gray encoding. The range of values represented
is the smallest range common to all the domain constraints.
The percentage of the population to be replaced is set by a
parameter; the worst of the current generation is replaced
by the new generation. Any duplicate individuals gener-
ated are discarded. Six point binary crossover and Cauchy
mutation were used. Cauchy rather than Gaussian muta-
tion was used as the longer tails with the Cauchy distribu-
tion was thought to be bene�cial [5]. Mutation is imple-
mented by �rst decoding the gene an an unsigned integer

and adding a Cauchy distributed random number of mean
zero and spread t which is scaled by multiplying it by half
the maximum possible value of the unsigned integer. This
new value is then encoded into the gene.
Self-adaptation for the mutation strength was imple-

mented by adding an extra gene to the chromosome which
encoded the \spread parameter" for the Cauchy distribu-
tion. This was initialised to a small range of values, and
self-adaptation is enabled when this gene was allowed to
participate in mutation. This gene is only allowed to mu-
tate in feasible individuals. The reason is that the search
for feasible individuals was considered to be an exploratory
phase and it was not considered appropriate to tune the
mutation strength during this phase. The number of genes
to be mutated in a chromosome is controlled by �, the mean
for a Poisson distributed random number. Hence if we have
n genes in a chromosomes, each with a 1=n probability of
mutation, we would use � = 1.
We compare the results with those of Genocop [8], [12]

and show it produces comparable or better results. For
these experiments a population size of 100 was used, 50% of
the new individuals were produced by crossover and 50% by
mutation. It should be noted that most of the parameters
of the EA were set to values which were thought to be
\reasonable", no proper testing has been done to determine
if these values are the most appropriate ones to use. All
the results reported in the next section were produced from
batches of 20 runs.

IV. Experiments and results

The test functions G1 { G5 are taken from [7] and
cover a range of constraint based problems with both lin-
ear and non-linear constraints. These test functions are
summarised in Table I; for each test function (TF) we list
the number n of variables, type of function, the number
of constraints of category (linear inequalities LI, nonlinear
equations NE and inequalities NI), the number a of ac-
tive constraints at the optimum, together with the value
\Opt." of the objective function at the optimum.

TABLE I

Summary of test functions

TF n Type of f LI NE NI a Opt.
G1 13 quadratic 9 0 0 6 �15:00
G2 8 linear 3 0 3 6 7;049:33
G3 7 polynomial 0 0 4 2 680:63
G4 5 nonlinear 0 3 0 3 0:054
G5 10 quadratic 3 0 5 6 24:31

For test function G4, the problem was reduced by hand
to one of two variables by using the three nonlinear equa-
tions. There are other methods to deal with the equality
constraints but they have not yet been tested. An equality
constraint F (x) = 0 could be replaced by two constraints
F (x) � � and F (x) � �� for some suitably small �.
It was experimentally determined that a replacement

rate of 97% gave best results for function G2, and this
setting was used for all the test cases. Figure 1 shows plots
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of the average best function value versus number of evalua-
tions for a number of replacement rates for the test function
G2. The other feature to notice in this graph is that the
function value tends to rise �rst as feasible solutions are
sought, and then decreases as the optimum feasible solu-
tion is sought. What we see here is that as the population
is driven towards the feasible region, and more of the con-
straints are satis�ed the function value of the best individ-
uals increases3, and hence demonstrates that the function
value can be misleading while the individuals are infeasible.
Figure 2 shows the plots of a number of other statistics

gathered on the function G2. \Feas" gives the ratio (0�1)
of the population that is feasible, \Crx" gives the ratio of
individuals produced by crossover that are equal or better
than both the parents, \Mut" gives the ratio of new in-
dividuals produced by mutation that are equal or better
than its parent, and \mut str * 10" gives the average self-
adaptive mutation strength multiplied by 10. The graph
shows the increase in the number of feasible individuals up
to 20,000 evaluations when feasible individuals have been
found in all 20 runs, and that an average of about 20%
feasible individuals is maintained for the rest of the runs.
The graph also shows that the e�ectiveness of mutation is
maintained by self-adapting the mutation strength. That
is, the e�ectiveness of mutation remains roughly constant
during the runs, rather than decreasing when self-adaption
is not used.
Figures 3 & 4 shows what happens in more detail during

the �rst phase of the runs on function G2 when feasible
individuals are sought. Figure 3 plots the sum of constraint
violations (Violations) of the best individual, and the ratio
of feasible individuals in the population (note: the Y axis is
log scale), while �gure 4 plots the objective function value
(Fn. value) of the best individuals. Feasible individuals
�rst occur at about 6,000 evaluations, and all runs have
found feasible individuals by 16,000 evaluations (Violations
drops to 0). Also, the sum of violations decreases as the EA
progresses, and the function value �rst increases and then
starts to decrease again as feasible individuals are found.
A series of runs was performed on all the test functions

using a value of � (the average number of function vari-
ables mutated in a chromosome) set to the square root of
the number of test function variables. These results are in
Table II, and are given where the mutation strength was
held �xed, and where it was allowed to self-adapt. Each
run used 140,000 evaluations so the results could be com-
pared to those of GENOCOP. In this and for Table III, the
value of �, the maximum number of evaluations to �nd a
feasible solution in all the 20 runs (feas.), and the mean4

and standard deviation (�) of the average best values found
is given.
For Table III, the best setting for � for each of the func-

tions was determined experimentally, and the runs were
done for 140,000 evaluations. The percentage of the popu-
lation that is feasible at the end of the run (feas %) is also

3Remember these are minimisation problems
4Note the value followed by # is the maximum no. of evals to �nd

the optimum in all 20 runs.
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given, and this varies considerably.

In Table IV we give a comparison of the results with
GENOCOP, for GENOCOP the results are from ten runs
on each of the functions. For GENOCOP 2, the median
result and the number of constraint violations for the me-
dian result are given. GENOCOP 3 and CONGA always
give feasible results and for these the best result is given.
Although GENOCOP and CONGA are very di�erent, and
use very di�erent operators and representation, these re-
sults give some indication that comparable or superior re-
sults can be obtained.

V. Conclusions

The approach we used here to deal with constraints in an
EA was to get it to utilise more knowledge about the con-
straints rather than using penalty functions or specialised
operators. The evaluation function, the link between the
problem and the EA, was modi�ed to return information
about which constraints were satis�ed and the extent of the
violations as well as the function objective value. This al-



5

0.001

0.01

0.1

1

10

100

1000

10000

100000

1e+06

1e+07

5000 10000 15000 20000 25000 30000
Evals

Violations
Feas.(0-1)

Fig. 3. Performance on G2: violations & feasibity

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

5000 10000 15000 20000 25000 30000
Evals

Fn. value

Fig. 4. Performance on G2: function value

lowed selection and parent matching to be implemented as
a set of preferences. These preferences cover cases where
the individuals are feasible and infeasible and de�ne the
global behaviour of the EA.
Infeasible individuals are penalised, without using penal-

ties, as they are not preferred as parents, and because
of the same preferences any feasible individual is better
than an infeasible one. Also the EA appears to do a two-
phase search but this is just a result of the mix of feasi-
ble/infeasible individuals in the population. The EA al-
ways trys to optimize feasible individuals and to produce
feasible individuals from infeasible ones, but of course feasi-
ble individuals must �rst be found if none are in the initial
population.
As mentioned earlier, the idea of matching parents is

not new to EAs [19], but the idea of matching an infeasible
parent with one that satis�es the constraints it does not, is
novel for EAs. The utility of this and the other preferences
have not been tested separately.
The results show that for constrained numerical opti-

misation problems tested, comparable results to that of

TABLE II

CONGA results

Self-adaptive Fixed mutation
TF � feas. mean � mean �

G1 3.6 28,230 -14.89 4.5e-1 -14.71 6.8e-1
G2 2.8 28,230 8,475.40 1.3e3 8,673.74 1.5e3
G3 2.7 14,165 680.70 4.8e-2 681.51 6.7e-1
G4 1.4 100 8,248# 0 12,322# 0
G5 3.2 14,165 25.74 1.0e0 27.21 2.3e0

TABLE III

Optimised CONGA results

Self-adaptive mutation
TF � feas. mean � feas %
G1 1 14,165 -15.00 4.3e-4 46%
G2 3.5 42,295 7,804.33 5.7e2 19%
G3 4 14,165 680.72 5.6e-2 63%
G4 1.5 100 12,322# 0 99%
G5 3.5 14,165 25.61 5.7e-1 46%

GENOCOP (the best of the evolutionary algorithms so
far) can be obtained by using more sophisticated selection
techniques rather than using penalty functions and repair
methods.
One of the interesting experimentally determined param-

eter settings for CONGA is the replacement rate of the pop-
ulation. The value of 97% seems quite high from previous
experience with unconstrained optimisation. A possible
reason for this high setting could be that the high setting
allows a greater percentage of infeasible solutions to exist
during the second phase of the search, and hence increase
the probability of infeasible individuals being chosen for
reproduction. It would appear that this is advantageous
as infeasible individuals can carry useful information. An-
other reason could be that such a high setting minimises
the risk of getting stuck at a local optimum, by keeping a
smaller history of the good individuals already found, and
hence encouraging greater exploration.
While the results are preliminary, the EA developed

shows promise and further research is warranted to see
what other improvements can be obtained by re�ning the
preferences and by using more sophisticated reproduction
operators.

TABLE IV

Comparison with GENOCOP

GENOCOP 2 GENOCOP 3 CONGA
TF median viol. best best
G1 -15.00 0 -15.00 -15.00
G2 8,206.15 0 7,286.65 7,083.21
G3 680.72 0 680.64 680.65
G4 0.064 0 | 0.054
G5 24.42 1 25.88 24.44
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