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Abstract. The major component of any evolutionary algorithm is its
evaluation function, which serves as a major link between the algorithm
and the problem being solved. The evaluation function is used to distin-
guish between better and worse individuals in the population, hence it
provides an important feedback for the search process. In this paper we
survey a few typical methods for constructing an evaluation function for
constrained optimization problems.
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1 Introduction

It is generally accepted that any evolutionary algorithm to solve a problem must
have �ve basic components (Davis, 1987):

{ a genetic representation of solutions to the problem,
{ a way to create an initial population of solutions,
{ an evaluation function (i.e., the environment), rating solutions in terms of
their `�tness',

{ `genetic' operators that alter the genetic composition of children during re-
production, and

{ values for the parameters (population size, probabilities of applying genetic
operators, etc.)

Most successful implementations of an evolutionary technique for a particular
real-world problem require some additional heuristics (problem-speci�c knowl-
edge) which are incorporated into the basic components listed above. These
heuristics apply to genetic representation of solutions, to `genetic' operators
that alter their composition, to values of various parameters, and to methods
for creating an initial population. The evaluation function (as the only item out
of the above list of �ve basic components of evolutionary algorithm) usually is
taken \for granted"; most researchers did not consider any modi�cations of eval-
uation function, since it is often implicitly de�ned by the problem. However, for



most real-world problems (e.g., constrained problems), the process of selection
of an evaluation function might be quite complex by itself, especially when we
deal with feasible and infeasible solutions to the problem; several heuristics usu-
ally are incorporated in this process. In this paper we examine some of these
heuristics and discuss their merits and drawbacks.

The paper is organized as follows. Section 2 states the problem by de�ning
feasible and infeasible individuals and Section 3 provides a discussion on evalu-
ation methods for evolutionary techniques. Section 4 concludes the paper.

2 Feasible and infeasible solutions

The evaluation function serves as the major link between the problem and the
evolutionary algorithm. The evaluation function rates individuals in the popula-
tion: better individuals have better chances for survival and reproduction. Hence
it is essential to de�ne an evaluation function which characterizes the problem
in a \perfect way". For constrained optimization problems, the issue of handling
feasible and infeasible individuals should be addressed very carefully: very often
a population contains infeasible individuals but a feasible optimal is required.
Finding proper evaluation measures for feasible and infeasible individuals is of
great importance; it directly in
uences the outcome (success or failure) of the
algorithm.

The issue of processing infeasible individuals is very important for solving
constrained optimization problems using evolutionary techniques. For example,
in continuous domains, the general nonlinear programming problem1 is to �nd
X so as to

optimize f(X ), X = (x1; : : : ; xn) 2 Rn,

where X 2 F � S. The set S � Rn de�nes the search space and the set F � S
de�nes a feasible search space. Usually, the search space S is de�ned as a n-
dimensional rectangle in Rn (domains of variables de�ned by their lower and
upper bounds):

l(i) � xi � u(i); 1 � i � n,

whereas the feasible set F is de�ned by an intersection of S and a set of additional
m � 0 constraints:

gj(X) � 0, for j = 1; : : : ; q, and hj(X) = 0, for j = q + 1; : : : ;m.

Most research on applications of evolutionary computation techniques to non-
linear programming problems was concerned with complex objective functions
with F = S. Several test functions used by various researchers during the last
20 years consider only domains of n variables; this was the case with �ve test
functions F1{F5 proposed by De Jong (1975), as well as with many other test
cases proposed since then.

1 We consider here only continuous variables.



In discrete domains the problem of constraints was acknowledged much ear-
lier. The knapsack problem, the set covering problem, and all types of scheduling
and timetabling problems are constrained. Several heuristic methods emerged to
handle constraints; however, these methods have not been studied in a system-
atic way.
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Fig. 1. A search space and its feasible part

In general, a search space S consists of two disjoint subsets of feasible and
infeasible subspaces, F and U , respectively (see Figure 1). We do not make any
assumptions about these subspaces; in particular, they need not be convex and
they need not be connected (e.g., as is the case in the example in Figure 1 where
the feasible part F of the search space consists of three disjoined subsets). The
fundamental question (which must be addressed by any practitioner) is

Should we consider infeasible individuals harmful and eliminate them
from the population?

The answer `yes' implies a \death penalty" heuristic, which is a popular option in
many evolutionary techniques. Note that rejection of infeasible individuals o�ers
a signi�cant simpli�cation of the algorithm: there is no further need to consider
infeasible individuals! There is no need to evaluate them, penalize them, repair
them; there is no need to compare them with feasible ones.

The method of eliminating infeasible solutions from a population may work
reasonably well when the feasible search space is convex and it constitutes a
reasonable part of the whole search space (e.g., evolution strategies do not allow
equality constraints since with such constraints the ratio between the sizes of fea-
sible and infeasible search spaces is zero). Otherwise such an approach has serious
limitations. For example, for many search problems where the initial population
consists of infeasible individuals only, it might be essential to improve them (as
opposed to rejecting them). Moreover, quite often the system can reach the op-
timum solution easier if it is possible to \cross" an infeasible region (especially



in non-convex feasible search spaces). On the top of that, for many constrained
problems, the optimum solution lies on the boundary of feasible and infeasible
parts of the search space (i.e., the boundary between F and U); because of that
infeasible individuals allow the system to approach the optimum from various
directions (as opposed to the case, when a \narrow" feasible corridor leads to
the optimum solution). For all these reasons, in most real-world applications, it
is essential to process infeasible individuals, so the answer for the question posed
in the previous paragraph is simply `no' !

Consequently, during the search process we have to deal with various feasible
and infeasible individuals. The presence of feasible and infeasible individuals in
the population in
uences other parts of the evolutionary algorithm; for example,
should the elitist selection method consider a possibility of preserving the best
feasible individual, or just the best individual overall? Further, some operators
might be applicable to feasible individuals only. However, the major aspect of
such a scenario is the need for evaluation of feasible and infeasible individuals.
The problem of how to evaluate individuals in the population is far from trivial.
In general, we have to design two evaluation functions, evalf and evali, for
feasible and infeasible domains, respectively.

Several trends for handling infeasible solutions have emerged in the area
of evolutionary computation. We discuss them in the following section using
examples from discrete and continuous domains.

3 Heuristics for evaluating individuals

In this section we discuss several methods for handling feasible and infeasible
solutions in a population; most of these methods emerged quite recently. Only a
few years ago Richardson et al. (1989) claimed: \Attempts to apply GA's with
constrained optimization problems follow two di�erent paradigms (1) modi�ca-
tion of the genetic operators; and (2) penalizing strings which fail to satisfy all
the constraints." This is no longer the case as a variety of heuristics have been
proposed. Even the category of penalty functions consists of several methods
which di�er in many important details on how the penalty function is designed
and applied to infeasible solutions. Other methods maintain the feasibility of
the individuals in the population by means of specialized operators or decoders,
impose a restriction that any feasible solution is `better' than any infeasible so-
lution, consider constraints one at the time in a particular linear order, repair
infeasible solutions, use multiobjective optimization techniques, are based on
cultural algorithms, or rate solutions using a particular co-evolutionary model.

Before we discuss several constraint-handling techniques, it is worthwhile to
point out that (for some problems) even the construction of the evaluation func-
tion evalf for feasible solutions might be far from trivial. For example, for many
design problems there are no clear formulae for comparing two feasible designs.
Moreover, some problems require optimization of several (possibly con
icting)
goals (multi-objective optimization cases), and often problem-dependent heuris-
tics are necessary in such cases to provide with a numerical measure evalf (x) of



a feasible individual x.
One example to illustrate the problem of evaluating feasible individuals is

the satis�ability (SAT) problem. For a given conjunctive normal form formula,
say

F (x) = (x1 _ x2 _ x3) ^ (x1 _ x3) ^ (x2 _ x3),

it is hard to compare two feasible individuals p = (0; 0; 0) and q = (1; 0; 0)
(in both cases F (p) = F (q) = 0). De Jong and Spears (1989) examined a few
options. For example, it is possible to de�ne evali to be a ratio of the number
of conjuncts which evaluate to true; in that case

evalf (p) = 0:666 and evalf (q) = 0:333.

It is also possible (Pardalos 1994) to change the Boolean variables xi into 
oating
point numbers yi and to assign, for example,

eval0f (y) = (y1�1)2(y2+1)2(y3�1)2+(y1+1)2(y3+1)2+(y2�1)2(y3�1)2.

In the above case the solution to the SAT problem corresponds to a set of global
minimum points of the objective function: the true value of F (x) is equivalent
to the global minimum value 0 of evali(y).

It may seem, though, that for most optimization problems the evaluation
function evalf for feasible solutions is given. This is the case for numerical op-
timization problems and for most operation research problems (knapsack prob-
lems, traveling salesman problems, set covering problems, etc.) However, it need
not be always the case. For example, Falkenauer (1994) rejected the idea of
constructing a straightforward evalf for the bin packing problem (BBP):

\Let's us de�ne a suitable cost function for the BPP. The objective being
to �nd the minimum number of bins required, the �rst cost function
that comes to mind is simply the number of bins used to `pack' all the
objects. This is correct from a strictly mathematical point of view, but it
is unusable in practice. Indeed, such a cost function leads to an extremely
unfriendly landscape of the search space: a very small number of optimal
points in the space are lost in an exponential number of points where
this purported cost function is just one unit above the optimum.Worse,
those slightly suboptimal points yield the same cost. The trouble is that
such a cost function lacks any capacity of guiding an algorithm in the
search, making the problem a `needle in a haystack'.
We thus settled for the following cost function for the BPP [...]:maximize

fBPP =

PN

i=1(Fi=C)
k

N
;

with N being the number of bins actually used in the solution being
evaluated, Fi the sum of sizes of the objects in (the �ll of) the bin i, C
is the bin capacity, k a constant, k > 1.



The constant k expresses our concentration on the `extremist' bins in
comparison to the less �lled ones. The larger k is, the more we prefer well-
�lled `elite' groups as opposed to a collection of about equally �lled bins.
In fact, the value of k gives us the possibility to vary the `ruggedness' of
the function to optimize, from the `needle in a haystack' (k = 1, fBPP =
1=N ) up to the `best-�lled bin' (k !1, fBPP ! maxi[(Fi=C)

k])."

Clearly, the problem of selecting a \perfect" evalf is far from trivial.

The main three approaches for constructing evaluation function evali for
infeasible individuals are based on

{ penalty functions,
{ repair algorithms, and
{ special data structures and operators.

We discuss these in turn in the following subsections.

3.1 Penalty functions

It is possible to extend the domain of function evalf to handle infeasible indi-
viduals in the following way:

evali(x) = evalf (x)� Q(x),

where Q(x) represents a penalty for infeasible individual x. The major question
is, how should such a penalty function Q(x) be designed? The intuition is simple:
the penalty should be kept as low as possible, just above the limit below which
infeasible solutions are optimal (the so-called minimal penalty rule, see Le Riche
et al. 1995). However, it is di�cult to implement this rule e�ectively.

The relationship between infeasible individual `x' and the feasible part F
of the search space S plays a signi�cant role in penalizing such individuals: an
individual might be penalized just for being infeasible, the `amount' of its infea-
sibility is measured to determine the penalty value, or the e�ort of `repairing' the
individual might be taken into account. However, in such cases a penalty function
should consider the \easiness of repairing" an individual as well as the quality
of its repaired version; designing such penalty functions is problem-dependent
and, in general, quite hard.

Several researchers studied heuristics on design of penalty functions. Some
hypotheses were formulated (Richardson et al. 1989):

{ \penalties which are functions of the distance from feasibility are better
performers than those which are merely functions of the number of violated
constraints,

{ for a problem having few constraints, and few full solutions, penalties which
are solely functions of the number of violated constraints are not likely to
�nd solutions,



{ good penalty functions can be constructed from two quantities, themaximum
completion cost and the expected completion cost,

{ penalties should be close to the expected completion cost, but should not
frequently fall below it. The more accurate the penalty, the better will be
the solutions found. When penalty often underestimates the completion cost,
then the search may not �nd a solution."

and (Siedlecki and Sklanski 1989):

{ \the genetic algorithm with a variable penalty coe�cient outperforms the
�xed penalty factor algorithm,"

where a variability of penalty coe�cient was determined by a heuristic rule.
This last observation was further investigated by Smith and Tate (1993). In

their work they experimented with dynamic penalties, where the penalty mea-
sure depends on the number of violated constraints, the best feasible objective
function found, and the best objective function value found.

For numerical optimization problems penalties usually incorporate degrees of
constraint violations. Most of these methods use constraint violation measures
fj (for the j-th constraint) for the construction of the evali; these functions are
de�ned as

fj(X) =

�
maxf0; gj(X)g; if 1 � j � q

jhj(X)j; if q + 1 � j � m

For example, Homaifar et al. (1994) assume that for every constraint we
establish a family of intervals that determines appropriate penalty values. The
method works as follows:

{ for each constraint, create several (`) levels of violation,
{ for each level of violation and for each constraint, create a penalty coe�cient
Rij (i = 1; 2; : : : ; `, j = 1; 2; : : : ;m); higher levels of violation require larger
values of this coe�cient.

{ start with a random population of individuals (i.e., these individuals are
feasible or infeasible),

{ evaluate individuals using the following formula

eval(X ) = f(X ) +
Pm

j=1Rijf
2

j (X),

where Rij is a penalty coe�cient for the i-th level of violation and the j-th
constraint.

Note that the function eval is de�ned on S, i.e., it serves both feasible and
infeasible solutions.

It is also possible (as suggested in Siedlecki and Sklanski 1989) to adjust
penalties in a dynamic way, taking into account the current state of the search or
the generation number. For example, Joines and Houck (1994) assumed dynamic
penalties; individuals are evaluated (at the iteration t) by the following formula:

eval(X ) = f(X) + (C � t)�
Pm

j=1 f
�
j (X),



where C, � and � are constants. As in Homaifar et al. (1994), the function eval
evaluates both feasible and infeasible solutions.

The method is quite similar to Homaifar et al. (1994), but it requires many
fewer parameters (C, � and �), and this is independent of the total number of
constraints. Also, the penalty component is not constant but changes with the
generation number. Instead of de�ning several levels of violation, the pressure
on infeasible solutions is increased due to the (C� t)� component of the penalty
term: towards the end of the process (for high values of t), this component
assumes large values.

Michalewicz and Attia (1994) considered the following method:

{ divide all constraints into four subsets: linear equations, linear inequalities,
nonlinear equations, and nonlinear inequalities,

{ select a random single point as a starting point (the initial population con-
sists of copies of this single individual). This initial point satis�es all linear
constraints,

{ create a set of active constraints A; include there all nonlinear equations and
all violated nonlinear inequalities.

{ set the initial temperature � = �0,
{ evolve the population using the following formula:

eval(X; � ) = f(X ) + 1

2�

P
j2A f

2

j (X),

(only active constraints are considered),
{ if � < �f , stop, otherwise

� decrease temperature � ,
� the best solution serves as a starting point of the next iteration,
� update the set of active constraints A,
� repeat the previous step of the main part.

Note that the algorithmmaintains the feasibility of all linear constraints using a
set of closed operators (see Michalewicz and Janikow (1991)). At every iteration
the algorithm considers active constraints only, and so the pressure on infeasible
solutions is increased due to the decreasing values of temperature � . The method
requires \starting" and \freezing" temperatures, �0 and �f , respectively, and the
cooling scheme to decrease temperature � .

A method of adapting penalties was developed by Bean and Hadj-Alouane
(1992). As in the previous method, it uses a penalty function, however, one
component of the penalty function takes feedback from the search process. Each
individual is evaluated by the formula:

eval(X ) = f(X ) + �(t)
Pm

j=1 f
2

j (X),

where �(t) is updated every generation t in the following way:

�(t+ 1) =

8<
:
(1=�1) � �(t); if B(i) 2 F for all t � k + 1 � i � t

�2 � �(t); if B(i) 2 S � F for all t� k + 1 � i � t
�(t); otherwise;



where B(i) denotes the best individual, in terms of function eval, in generation
i, �1; �2 > 1 and �1 6= �2 (to avoid cycling). In other words, the method (1)
decreases the penalty component �(t + 1) for the generation t + 1, if all best
individuals in the last k generations were feasible, and (2) increases penalties, if
all best individuals in the last k generations were unfeasible. If there are some
feasible and unfeasible individuals as best individuals in the last k generations,
�(t+ 1) remains without change.

Some researchers (Powell and Skolnick 1993, Michalewicz and Xiao 1995)
reported good results of their evolutionary algorithms, which worked under the
assumption that any feasible individual was better than any infeasible one. Pow-
ell and Skolnick (1993) applied this heuristic rule for the numerical optimization
problems: evaluations of feasible solutions were mapped into the interval (�1; 1)
and infeasible solutions|into the interval (1;1) (for minimization problems).
Michalewicz and Xiao (1995) experimented with the path planning problem and
used two separate evaluation functions for feasible and infeasible individuals.
The values of evali were increased (i.e., made less attractive) by adding such a
constant, so that the best infeasible individual was worse that the worst feasible
one. This approach can be viewed as `adaptive' penalty, which is a function of
the values of individuals in the current population.

Yet another approach was proposed recently by Le Riche et al. 1995. The au-
thors designed a (segregated) genetic algorithm which uses two values of penalty
parameters (for each constraint) instead of one; these two values aim at achieving
a balance between heavy and moderate penalties by maintaining two subpopula-
tions of individuals. The population is split into two cooperating groups, where
individuals in each group are evaluated using either one of the two penalty pa-
rameters.

It seems that the appropriate choice of the penalty method may depend on
(1) the ratio between sizes of the feasible and the whole search space, (2) the
topological properties of the feasible search space, (3) the type of the objective
function, (4) the number of variables, (5) number of constraints, (6) types of
constraints, and (7) number of active constraints at the optimum.Thus the use of
penalty functions is not trivial and only some partial analysis of their properties
is available. Also, a promising direction for applying penalty functions is the use
of adaptive penalties: penalty factors can be incorporated in the chromosome
structures in a similar way as some control parameters are represented in the
structures of evolution strategies and evolutionary programming.

3.2 Repair methods

Repair algorithms enjoy a particular popularity in the evolutionary computation
community: for many combinatorial optimization problems (e.g., traveling sales-
man problem, knapsack problem, set covering problem, etc.) it is relatively easy
to `repair' an infeasible individual. Such a repaired version can be used either
for evaluation only, i.e.,

evali(y) = evalf (x),



where x is a repaired (i.e., feasible) version of y, or it can also replace (with some
probability) the original individual in the population.

The process of repairing infeasible individuals is related to a combination
of learning and evolution (the so-called Baldwin e�ect, Whitley et al. 1994).
Learning (as local search in general, and local search for the closest feasible
solution, in particular) and evolution interact with each other: the �tness value
of the improvement is transferred to the individual. In that way a local search is
analogous to learning that occurs during one generation of a particular string.

The weakness of these methods is in their problem dependence. For each par-
ticular problem a speci�c repair algorithm should be designed. Moreover, there
are no standard heuristics on design of such algorithms: usually it is possible to
use a greedy repair, random repair, or any other heuristic which would guide the
repair process. Also, for some problems the process of repairing infeasible indi-
viduals might be as complex as solving the original problem. This is the case for
the nonlinear transportation problem (see Michalewicz 1993), most scheduling
and timetable problems, and many others.

On the other hand, the recently completed Genocop III system (Michalewicz
and Nazhiyath 1995) for constrained numerical optimization (nonlinear con-
straints) is based on repair algorithms. Genocop III incorporates the original
Genocop system (which handles linear constraints only; see section H), but also
extends it by maintaining two separate populations, where a development in one
population in
uences evaluations of individuals in the other population. The �rst
population Ps consists of so-called search points which satisfy linear constraints
of the problem. As in Genocop, the feasibility (in the sense of linear constraints)
of these points is maintained by specialized operators. The second population
Pr consists of so-called reference points from F ; these points are fully feasible,
i.e., they satisfy all constraints. Reference points r from Pr, being feasible, are
evaluated directly by the objective function (i.e., evalf (r) = f(r)). On the other
hand, search points from Ps are \repaired" for evaluation and the repair pro-
cess works as follows. Assume, there is a search point s 2 Ps. If s 2 F , then
evalf (s) = f(s), since s is fully feasible. Otherwise (i.e., s 62 F), the system se-
lects one of the reference points, say r from Pr and creates a sequence of points
z from a segment between s and r: z = as + (1 � a)r. This can be done either
(1) in a random way by generating random numbers a from the range h0; 1i, or
(2) in a deterministic way by setting ai = 1=2; 1=4; 1=8; : : : until a feasible point
is found. Once a fully feasible z is found, evali(s) = evalf (z) = f(z). Clearly,
in di�erent generations the same search point S can evaluate to di�erent values
due to the random nature of the repair process.

The question of replacing repaired individuals is related to so-called Lamar-

ckian evolution (Whitley et al. 1994), which assumes that an individual improves
during its lifetime and that the resulting improvements are coded back into the
chromosome. As stated in Whitley et al. 1994:

\Our analytical and empirical results indicate that Lamarckian strate-
gies are often an extremely fast form of search. However, functions ex-
ist where both the simple genetic algorithm without learning and the



Lamarckian strategy used [...] converge to local optima while the sim-
ple genetic algorithm exploiting the Baldwin e�ect converges to a global
optimum."

This is why it is necessary to use the replacement strategy very carefully.

Recently (see Orvosh and Davis 1993) a so-called 5%-rule was reported: this
heuristic rule states that in many combinatorial optimization problems, an evolu-
tionary computation technique with a repair algorithm provides the best results
when 5% of repaired individuals replace their infeasible originals. However, many
recent experiments (e.g., Michalewicz 1994) indicated that for many combinato-
rial optimization problems this rule did not apply. Either a di�erent percentage
gives better results, or there is no signi�cant di�erence in the performance of the
algorithm for various probabilities of replacement.

In continuous domains, a new replacement rule is emerging. The Genocop
III system (see section E) for constrained numerical optimization problems with
nonlinear constraints is based on the repair approach. The �rst experiments
(based on 10 test cases which have various numbers of variables, constraints,
types of constraints, numbers of active constraints at the optimum, etc.) indicate
that the 15% replacement rule is a clear winner: the results of the system are
much better than with either lower or higher values of the replacement rate.

At present, it seems that the `optimal' probability of replacement is problem-
dependent and it may change over the evolution process as well. Further research
is required for comparing di�erent heuristics for setting this parameter, which is
of great importance for all repair-based methods.

3.3 Specialized data structures and operators

There are some other possibilities for handling constraints by evolutionary al-
gorithms. One of the popular directions is based on maintenance of feasible
populations by special representations and genetic operators.

During the last decade several specialized systems were developed for partic-
ular optimization problems; these systems use a unique chromosomal representa-
tions and specialized `genetic' operators which alter their composition. Some of
such systems were described in Davis (1991); other examples include various sys-
tems developed for the traveling salesman problem (Michalewicz, 1996), as well
as Genocop (Michalewicz and Janikow 1991) for optimizing numerical functions
with linear constraints and Genetic-2N (Michalewicz et al. 1991) for the nonlin-
ear transportation problem. For example, Genocop assumes linear constraints
only and a feasible starting point (or feasible initial population). A closed set of
operators maintains feasibility of solutions. For example, when a particular com-
ponent xi of a solution vector X is mutated, the system determines its current
domain dom(xi) (which is a function of linear constraints and remaining values
of the solution vector X) and the new value of xi is taken from this domain
(either with 
at probability distribution for uniform mutation, or other proba-
bility distributions for non-uniform and boundary mutations). In any case the



o�spring solution vector is always feasible. Similarly, arithmetic crossover2

aX + (1� a)Y

of two feasible solution vectors X and Y yields always a feasible solution (for
0 � a � 1) in convex search spaces (the system assumes linear constraints only
which imply convexity of the feasible search space F). Consequently, there is no
need to de�ne the function evali; the function evalf is (as usual) the objective
function f .

Such systems are much more reliable than any other evolutionary techniques
based on the penalty approach (Michalewicz 1994). This is a quite popular trend.
Many practitioners use problem-speci�c representations and specialized opera-
tors in building very successful evolutionary algorithms in many areas; these in-
clude numerical optimization, machine learning, optimal control, cognitive mod-
eling, classic operation research problems (traveling salesman problem, knapsack
problems, transportation problems, assignment problems, bin packing, schedul-
ing, partitioning, etc.), engineering design, system integration, iterated games,
robotics, signal processing, and many others.

Also, it is interesting to note, that original evolutionary programming tech-
niques (Fogel et al. 1966) and genetic programming techniques (Koza 1992) fall
into this category of evolutionary algorithms: these techniques maintain feasi-
bility of �nite state machines or hierarchically structured programs by means of
specialized representations and operators.

Another possibility for restricting the search to feasible individuals only is
based on the idea of decoders. In these techniques a chromosome \gives instruc-
tions" on how to build a feasible solution. For example, a sequence of items for
the knapsack problem can be interpreted as: \take an item if possible"|such
interpretation would lead always to feasible solutions. Let us consider the follow-
ing scenario: we try to solve the 0{1 knapsack problem with n items; the pro�t
and weight of the i-th item are pi and wi, respectively. We can sort all items in
decreasing order of pi=wi's and interpret the binary string

(1100110001001110101001010111010101:::0010)

in the following way: take the �rst item from the list (i.e., the item with the
largest ration of pro�t to weight) if the item �ts in the knapsack. Continue with
the second, �fth, sixth, tenth, etc. items from the sorted list, until the knapsack
is full or there are no more items available. Note that the sequence of all 1's
corresponds to a greedy solution. Any sequence of bits would translate into a
feasible solution, every feasible solution may have many possible codes. We can
apply classical binary operators (crossover and mutation): any o�spring is clearly
feasible.

2 The arithmetical crossover operator generate o�spring by linear combinations of the
parents. As noted, such a strategy of generating a set of diverse trial points by linear
and convex combinations (and allowing the o�spring to in
uence the search) was
proposed some years ago in the scatter search approach by Glover (1977).



However, it is important to point out that several factors should be taken into
account while using decoders. Each decoder imposes a relationship T between
a feasible solution and decoded solution. It is important that several conditions
are satis�ed: (1) for each solution s 2 F there is a decoded solution d, (2) each
decoded solution d corresponds to a feasible solution s, and (3) all solutions in
F should be represented by the same number of decodings d.3

Additionally, it is reasonable to request that (4) the transformation T is com-
putationally fast and (5) it has locality feature in the sense that small changes
in the decoded solution result in small changes in the solution itself. An inter-
esting study on coding trees in genetic algorithm was reported by Palmer and
Kershenbaum (1994), where the above conditions were formulated.

The third option for maintaining feasible individuals only is based on the
idea of exploring boundaries between feasible and infeasible parts of the search
space. Some other heuristic methods recognized the need for searching areas
close to the boundary of the feasible region. For example, one of the most re-
cently developed approaches for constrained optimization is strategic oscillation.
Strategic oscillation was originally proposed in accompaniment with the strat-
egy of scatter search (Glover, 1977), and more recently has been applied to a
variety of problem settings in combinatorial and nonlinear optimization (see, for
example, the review of Glover, 1995). The approach is based on identifying a
critical level, which represents a boundary between feasibility and infeasibility.
The basic strategy is to approach and cross the feasibility boundary, by a design
that is implemented either by adaptive penalties and inducements (which are
progressively relaxed or tightened according to whether the current direction
of search is to move deeper into a particular region or to move back toward
the boundary) or by simply employing modi�ed gradients or sub-gradients to
progress in the desired direction.

It seems that the evolutionary computation techniques have a huge poten-
tial in incorporating specialized operators which search the boundary of feasi-
ble and infeasible regions in an e�cient way. The �rst results were reported in
Michalewicz et al. (1996); for resent results, see Schoenauer and Michalewicz
(1996, 1997).

3 However, as observed by Davis (1997), the requirement that all solutions in F should
be represented by the same number of decodings seems overly strong: there are cases
in which this requirement might be suboptimal. For example, suppose we have a
decoding and encoding procedure which makes it impossible to represent subopti-
mal solutions, and which encodes the optimal one: this might be a good thing. (An
example would be a graph coloring order-based chromosome, with a decoding proce-
dure that gives each node its �rst legal color. This representation could not encode
solutions where some nodes that could be colored were not colored, but this is a
good thing!)



4 Conclusions

This paper surveys several methods which support the most important step of
any evolutionary technique: evaluation of the population. It is clear that further
studies in this area are necessary: di�erent problems require di�erent \treat-
ment". It is also possible to mix di�erent strategies described in this paper;
for example, Paechter et al. 1994 built a successful evolutionary system for a
timetable problem, where \each chromosome in the population gives instruc-
tions on how to build a timetable. These instruction may or may not result in a
feasible timetable", thus allowing other heuristics to be added to the proposed
decoder. The author is not aware of any results which provide heuristics on
relationships between categories of optimization problems and evaluation tech-
niques in the presence of infeasible individuals; this is an important area of future
research.
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