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Abstract

In this paper we continue our earlier study
[SM96] on boundary operators for con-
strained parameter optimization problems.
The signi�cance of this line of research is
based on the observation that usually the
global solution for many optimization prob-
lems lies on the boundary of the feasible re-
gion. Thus, for many constrained numeri-
cal optimization problems it might be bene�-
cial to search just the boundary of the search
space de�ned by a set of constraints (some
other algorithm might be used for searching
the interior of the search space, if activity of
a constraint is not certain). We present a few
boundary operators for a sphere and provide
their experimental evaluation.

1 INTRODUCTION

Evolutionary techniques (whether genetic algorithms,
evolution strategies, or evolutionary programming)
usually have di�culties in solving constrained nu-
merical optimization problems (for a recent survey
on constraint-handling techniques for parameter op-
timization problems, see [MS96]). Various search op-
erators have been proposed and investigated; several
di�erent constraint handling techniques have been ex-
perimented with. However, for many test cases, the
results of experiments were far from being satisfactory.
As already stated in our recent paper [SM96], one of
the main reasons behind this failure is the inability
of evolutionary systems to precisely search the bound-
ary area between feasible and infeasible regions of the
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search space; in the case of optimization problems with
active constraints, such ability is essential.

It seems that the evolutionary computation techniques
have a huge potential in incorporating operators which
search the boundary of feasible and infeasible regions
in an e�cient way. In this paper we discuss some possi-
ble boundary operators for such a search and illustrate
this approach on a few test cases.

The paper is organized as follows. Section 2 intro-
duces the problem, whereas section 3 presents the pro-
posed approach for numerical constrained optimiza-
tion based on the idea of searching only the boundary
of the feasible search space. This approach is discussed
in detail in section 4 where several boundary operators
on a sphere are de�ned. These operators are experi-
mented with on a few test cases; the test cases and
the results of experiments are reported in section 5.
Section 6 concludes the paper.

2 THE PROBLEM

Let us consider the following constrained numerical
optimization problem:

Find x 2 S � Rn such that

8<
:

f(x) = minff(y); y 2 Sg;
gi(x) � 0; for i = 1; : : : ; q;
gi(x) = 0; for i = q + 1; : : : ;m;

(1)

where f and gi are real-valued functions on S. The set
of feasible points (i.e., points satisfying the constraints
(2) and (3)) is denoted F . Restricting the search to
the feasible region seems an elegant way to treat con-
strained problems: in [MA94], the algorithmmaintains
feasibility of all linear constraints using a set of closed
operators, which convert a feasible solution (feasible in
terms of linear constraints only) into another feasible
solution.



However, for nonlinear constraints this ideal situation
is generally out of reach, and during the last few years,
several methods have been proposed for handling such
constraints by evolutionary algorithms. For an ex-
perimental comparison of some of these methods, see
[MS96]). In this paper we return to the idea of main-
taining feasibility of solution by a set of closed opera-
tors; however, the di�erences are that (1) constraints
are nonlinear, and (2) the closed operators transform
point(s) from the boundary of the feasible region into
other points from this boundary. We discuss it fully
in the next section of the paper.

3 SEARCHING THE BOUNDARY

OF THE FEASIBLE REGION

It is a common situation for many constrained opti-
mization problems that some constraints are active at
the target global optimum. Thus the optimum lies on
the boundary of the feasible space. On the other hand,
it is commonly acknowledged that restricting the size
of the search space in evolutionary algorithms (as in
most other search algorithms) is generally bene�cial.
Hence, it seems natural in the context of constrained
optimization to restrict the search of the solution to
some part of the boundary of the feasible part of the
space, i.e., the part of Rn where some of the inequal-
ity constraints gi; i 2 [1; q] of equation (1) actually are
equalities.

We assume in the rest of the paper that we are search-
ing a surface in Rn, be it the boundary between fea-
sible and infeasible parts of the search space (in the
case of inequality constraints gi, 1 � i � q), or the
feasible part of the search space itself (as it is the case
for equality constraints gi, q+1 � i � m, which de�ne
a surface). In this study we suppose further that the
surface is given as the n-dimensional unit-sphere, i.e.,
given as

Pn

i=1 xi
2 = 1.

The main interest of the sphere as a surface in Rn come
from both its simple analytical expression and its nice
symmetrical properties. Hence di�erent methods to
design evolution operators on the sphere can be used
(see next section). However, most of the operators
presented here can be generalized easily to operators
acting on any regular (i.e., the gradient vector, or-
thogonal to the surface, is de�ned almost everywhere)
Riemanian surface S of dimension n � 1 in the space
Rn, and even on any regular Riemanian surface of di-
mension k < n |which is the case where more than
one constraint gi, q + 1 � i � m has to be taken

into account. Additional motivation for investigating
a surface de�ned by a sphere is taken from the obser-
vation that whenever the Hessian (derivatives of the
gradient) is de�ned on the surface, this surface can
be locally approximated at second order by an ellip-
soid. All operators introduced in the next section can
therefore be locally generalized.

An evolutionary system for searching the boundary be-
tween feasible and infeasible parts of the search space
should initialize the population accordingly (all gen-
erated individuals should lie on the boundary) and
the boundary operators should transform one or more
boundary points into a new boundary point. The
initialization process is conceptually quite simple: a
sphere should be sampled as uniformly as possible ac-
cording to the distance at hand. The exact initializa-
tion method depends on particular representation of
potential solutions. For example, if a (randomly gen-
erated) solution is represented as n-dimensional vector
of Euclidean coordinates (a1; a2; : : : ; an), then the ini-
tialization procedure may use a repair operator, which
divides the coordinates of the vector by its Euclidian
norm:

p = (a1=s; a2=s; : : : ; an=s); (2)

where s =
pPn

i=1 a
2
i .

For a parametric representation of a surface, it is also
easy to design a simple initialization algorithm. Sup-
pose the surface S (of dimension n � 1) is de�ned by
xi = si(t1; : : : tn�1); ti 2 [ai; bi], for i = 1; : : : ; n,
where the functions si are regular functions fromRn�1

into R. Now, a random choice of a point on S amounts
to the choice of the n � 1 values of the parameters
t1; : : :tn�1, uniformly on �[ai; bi].

For instance, the well known spherical coordinates give
such a parametric representation of the sphere:

8>>>><
>>>>:

x1 = cos(t1)
x2 = sin(t1) cos(t2)
: : :
xn�1 = sin(t1) : : : sin(tn�2) cos(tn�1)
xn = sin(t1) : : : sin(tn�2) sin(tn�1)

(3)

with ti 2 [0; �] for 1 � i � n � 2 and tn�1 2 [��; �]
(or ti 2 [0; �=2] if all Euclidean coordinates need to be
positive.

Assuming that the initial population consists of points
on the surface, we need to design closed boundary op-
erators which transform point(s) of the surface into
point(s) of the surface. It is desirable that these
boundary operators respect some experimentally and
empirically derived properties [Rad91]:



� recombination should be able to generate all
points \between" the parents;

� mutation should be ergodic, having non-zero prob-
ability to reach any point within a �nite number
of application, and should respect the principle
of strong causality [Rec73], i.e., small mutations
must result in small changes in the �tness func-
tion.

4 BOUNDARY OPERATORS

In this section we discuss several classes of surface op-
erators on a sphere.

4.1 USE OF REPAIR OPERATOR

Note that if potential solutions are represented as vec-
tors of Euclidean coordinates, then one can apply any
operators (intermediate recombination, Gaussian mu-
tation, etc.) followed by a repair operator, which (as
discussed in the previous section) normalizes coordi-
nates of an o�spring, moving it to the sphere. Note,
that the repair operator may follow any crossover and
any mutation|this approach demonstrates e�ective
use of repair algorithms in evolutionary systems.

4.2 SPHERE OPERATORS

Another possibility is to design a specialized operators
which, by themselves|without any repair procedure,
create a new boundary point. The sphere crossover is
an example of such approach: it produces one o�spring
(zi) from two parents (xi) and (yi) by:

zi =
p
�x2i + (1� �)y2i ; i 2 [1; n]; with �

randomly chosen in [0; 1].

Note, that this operator can be generalized easily into
k-parent sphere crossover (parents: x1; x2; : : : ; xk) by

xk+1i =
p
�1(x1i )

2 + : : :+ �k(xki )
2,

for non-negative �i such that �1 + : : :+ �k = 1.

Similarly, the following sphere-speci�c mutation trans-
forms (xi) by selecting two indices i 6= j and a random
number p in h0; 1i, and setting:

xi ! p � xi and xj ! q � xj,
where q =

q
( xi

xj
)2(1� p2) + 1:

4.3 CURVE OPERATORS

Additional method to design suitable operators is
based on curves drawn on the surface. From curves
joining two di�erent points, one can derive a crossover
operator by choosing as o�spring one (two) point(s) on
that curve. Minimal-length curves (termed geodesi-

cal curves) seem a priori a good choice: their exis-
tence is guaranteed, locally on any regular surface from
standard Cauchy-Lipschitz theorem, and globally (i.e.,
joining any pair of points of the surface) if the sur-
face is geodesically complete1 (Hopf-Rinov theorem)
[Mar90]. Moreover, in the linear case, the geodesical
curve between two points is the line segment between
them, and the curve-based operator is nothing but the
standard linear recombination operator [Sch95]. But
recent experiments suggest that other paths between
both parents can be used successfully [SM96]: the min-
imal length requirement does not seem mandatory.

From a beam of curves starting from one point, one
can derive a mutation operator by �rst choosing ran-
domly one curve in the beam, then choosing a point
on the chosen curve. A desirable property of the beam
of curves related to the ergodicity of the resulting mu-
tation operator is that a large enough neighborhood of
the starting point is covered by such set of curves: the
local geodesical curves de�ned from the parent point
and one tangent direction are such sets, de�ned al-
most everywhere on regular surfaces [Mar90]. On the
sphere, for instance, the geodesical curves from a pole
are the meridians, which in that case cover not only
a whole neighborhood of the parent point, but the
whole surface. Furthermore, a tight control of the dis-
tance between parents and o�spring allows for a simple
implementation of adaptive mutation respecting the
strong causality principle.

Unfortunately, in the general case, even with ana-
lytical de�nitions of the constraints, the derivation
of the geodesical curves (or the exponential curves
beam) is not tractable: it involves heavy symbolic
computations, plus the numerical solution of many
local second-order systems of di�erential equations.
Moreover, unavoidable numerical errors would prob-
ably move the solutions o� the desired curves.

The case of the unit sphere, however, is an exception.
The computation of the geodesical curve is straight-
forward. The geodesical crossover uses the circle go-
ing through both parents. For the mutation, a ran-
dom vector is chosen, orthogonal to the gradient at
the parent point. The o�spring is then chosen on the

1A surface is geodesically complete if no geodesical
curve encounters a dead-end.



geodesical circle tangent to this vector; the distance
from parent to o�spring follows a Gaussian law (whose
standard deviations can be eventually adjusted adap-
tively).

However, in some other situations, the general ideas
presented above can be implemented without the need
for exact geodesical curves. The sphere operators of
section 3 constitute a particular example of a such
curve.

4.4 PLANE OPERATORS

Another general method to design curves, and hence
operators to evolve on a surface of dimension n � 1
in Rn, is to use the intersection of that surface with
2-dimensional planes.

Consider two points A and B belonging to S, and a
vector ~v which is not collinear to ~AB and which is not
orthogonal to the gradient vector at point A. Hence
the plane de�ned by (A; ~AB;~v) intersects the surface
around A, de�ning a curve on S. If this curve connects
points A and B, an appropriate crossover operator can
be designed. But this procedure can fail if the intersec-
tion is not connected (as for the \horse-shoe sausage"
of R3 with A and B at both ends).

Similarly, the mutation operator can be designed by
choosing the gradient at point A instead of vector ~AB
above, with a prescribed distance from parent point A.
Examples of plane-based operators will now be given
in the simple case where S is a sphere.

In the case of the sphere, the derivation of curves join-
ing two points by intersecting the sphere with a plane
results in straightforward calculation. Moreover, the
geodesical curves are particular cases of such plane-
based curves, corresponding to the case where the cho-
sen plane goes through the center of the sphere.

4.5 PARAMETRIC OPERATORS

For a parametric representation of a surface, it is easy
to design closed operators. Suppose the surface S (of
dimension k < n) is de�ned by xi = si(t1; : : : tk); ti 2
[ai; bi], for i = 1; : : : ; k, where the functions si are reg-
ular functions from Rk into R. Now, a random choice
of a point on S amounts to the choice of the k values
of the parameters t1; : : : tk, uniformly on �[ai; bi].

In the following, we denote this relation (xi) = S[(ti)].

The crossover can be de�ned by:

S[(ti)]; S[(ui)]! S[(�ti + (1� �)ui)];

for some � randomly chosen in [0; 1].

Similarly, the mutation can be given by

S[(ti)]! S[(ti +N (0; �i))];

where N (0; �) denotes the normal distribution with
zero mean and � variance. The parameters �i can be
either user-supplied (eventually dynamically) or adap-
tive, i.e., encoded in the individual, as in evolution
strategies.

For the case ot the unit sphere, these formulas can be
applied to the spherical coordinates given by equation
(3). In that context, the choice of a speci�c parametric
representation fully determines the operators. Note
that there are n! valid parametric representations for
the sphere, corresponding to the permutations among
coordinates. Figure 1 gives an example of three curves
de�ning these operators on the sphere in the case n = 3
(denoted P1, P2, and P3), together with the geodesical
curve (denoted G) and the curve corresponding to the
spherical crossover (denoted Sp).

x y

z

Figure 1: Crossover operators on the sphere. From
top to bottom, P1; P2; G; Sp; P3, where Pi correspond
to 3 di�erent spherical parametric representation, G
to the geodesical curve and Sp to the speci�c sphere-
operators

5 TEST CASES, EXPERIMENTS

AND RESULTS

This section presents experimental comparative results
involving some operators discussed in the previous sec-
tion.

5.1 EXPERIMENTAL CONDITIONS

The following operators were considered:

� Standard intermediate crossover and Gaussian
mutation (with adaptive standard deviations



[Sch95]) on Euclidian coordinates followed by the
repair operator given by equation (2).

� The specialized spherical operators described in
section 4.2.

� The operators based on geodesical curves (section
4.3). Note that the geodesical curve between two
points is the repaired segment between there two
points. Hence, the crossover is equivalent to the
repair crossover with a slightly di�erent probabil-
ity distribution of o�spring along the circle.

� The plane-based operators described in section
4.4. Note that, on the sphere, the geodesical oper-
ators are a special case of plane-based operators.

� Standard intermediate crossover and Gaussian
mutation (again with adaptive standard devia-
tions) on spherical parametrical representation, as
given by equation (3).

In order to try to determine the respective in
uence
of mutation and crossover, two di�erent evolution
schemes were considered, with varying probabilities of
applying operators:

� a generational genetic algorithm (
oating-point
representation) with 2-tournament selection, pop-
ulation size of 60, crossover probability of 0:6,
and mutation probability of 0:2 per individual (i.e.
when an individual undergoes mutation, all its co-
ordinates are modi�ed following a Gaussian law).

� (7; 60){ES, where 7 individual give birth to 60
o�spring by mutation only, among which the 7
best are retained to become the parents of next
generation.

5.2 TEST CASES

All considered test cases are de�ned on Rn with con-
straints

Pn

i=1 x
2
i = 1 and 0 � xi � 1 for 1 � i � n.

The �rst test case considered in this paper is to max-
imize [SM96]

P (~x) = (
p
n)n �

nY
i=1

xi;

The function has a global solution at (x1; : : : ; xn) =
( 1p

n
; : : : ; 1p

n
) and the value of the function in this

point is 1.

The second test case is to maximize [Bal95]:

B1(~x) =
100

0:00001+
Pn

i=1 jyij
;

where yi = xi + yi�1 for i = 1; : : : ; n with y0 = 0,Pn

i=1 x
2
i = 1. On the sphere with positive coordinates,

the function has a global solution at (x1; : : : ; xn) =
(0; 0; : : : ; 0; 1) and the value of the function in this
point is 99.999 (the original function in [Bal95] was de-
�ned for �2:56 � xi � 2:56 and reached its maximum
value of 107 at point (0,0,...0)). This function was cho-
sen for its di�culty, at least in the unconstrained case.

The third test case is to maximize [Bal95] B2 (which
is expressed by the same formula as B1, except yi =
xi + sin(yi�1) for i = 1; : : : ; n with y0 = 0. As for
function B1, the function has a global solution at
(x1; : : : ; xn) = (0; 0; : : :; 0; 1) and the value of the func-
tion in this point is 99.999.

5.3 RESULTS

Product function P

The �rst test function P is relatively simple: all its
variables can be set independently, but for the con-
straint of being on the sphere.

The �rst three comparison experiments were done for
various number of variables of the function, namely
n = 50, 100 and 200. The performance of the GA
described in section 5.1 using various boundary oper-
ators for n = 100 is displayed in Figure 2; the plots
for n = 50 and n = 200 were almost identical. It is
clear that the spherical operators are the best, with
plane and geodesical operators only slightly worse; on
the other hand, repair and parametric operators gave
very poor performance.
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Figure 2: Comparison of various boundary operators;
GA on P with n = 100

To di�erentiate the roles of mutations vs. crossovers



(for each category of these boundary operators), we
run the ES described in section 5.1 with mutation only.
The results were quite poor (see Figure 3 for the test
case of n = 100).
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Figure 3: Comparison of various boundary operators;
ES on P with n = 100

For a fair comparison, additional runs were made: the
GA was used with probability of mutation 1 and prob-
ability of crossover 0 and 0.6; in both cases the per-
formance of the system was much worse than for GA
reported in Figure 2. Also, the ES (Figure 3) with the
boundary crossover operator (probability of crossover
being 0.6), showed improved performance (Figure 4).
The above experiments demonstrate clearly the impor-
tance of boundary crossovers!
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Figure 4: Comparison of various boundary operators;
ES on P with n = 100 with boundary crossovers

Note, also, that the relationship between boundary op-
erators was the same in all cases: spherical operators
were the best, followed closely by plane and geodesical
operators, with repair and parametric operators per-
forming poorly.

Baluja's functions B1 and B2

The same series of experiments were run for the B1

and B2 functions. Both functions B1 and B2 gave
very similar results, so only results on B1 are presented
here.

For both functions, the general picture is rather dif-
ferent. Still, the spherical mutation seems to be the

operator designed to optimize functions B1 and B2:
its e�ect is to move some \weight" from one coordi-
nate to another, \knowing" that the sum of all squares
remains constant. Hence, half of spherical mutations
result in an improvement of the �tness (when the co-
ordinate of a higer index is increased). So it is not
surprising that the spherical mutation alone gives the
best results (whether using GA or ES selection)|see
Figures 5 and 6.
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Figure 5: Comparison of various boundary operators;
GA on B1 with n = 100
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Figure 6: Comparison of various boundary operators;
ES on B1 with n = 100

However, it is interesting to note that
{ adding crossover degrades the performance of GA
and ES,
{ even for other boundary operators, boundary mu-
tation seems always better than the corresponding



crossover,
{ standard operators plus repair operator gave good
results|in comparison with other operators|though
far behind those of spherical mutation.

Rotated Baluja functions

To eliminate the bias favoring spherical mutation in
test cases B1 and B2, we slightly modi�ed B1 func-
tions using rotations centered at the origin. Thus the
coordinates are somehow intermixed.

The �rst interesting result regards the parametric
representation given by equation (3): in all previ-
ous experiments, the parametric representation gave
the worst results. However, a close examination of
these results on function B1 showed that the popu-
lation rapidly converged to the local optimum E1 =
(1; 0; 0; :::; 0). The appealing experiments were to put
the global optimum �rst at E1, then at di�erent Ei.
Figure 7 shows the results of parametric representation
in such cases for i = 1; : : : ; 6, and shows that indeed
parametric representation performances highly depend
on the order in which the parameters are considered
in equation 3.
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Figure 7: Parametric representation with di�erent ro-
tations; B1 with n = 100

Two other rotations were also experimented with: the
former one
brought the optimum to (1=

p
(n); : : : ; 1=

p
(n)) while

the optimum of the latter one was randomly chosen
with positive coordinates (see Tables 1 and 2, respec-
tively). Here, the results are \back to normal": sphere
operators being the best; boundary crossover being of
importance.

Tables 1 and 2 provide with a rich experimental ma-
terial. Note that in the case with the optimum on the
diagonal (Table 1), GA with parameters 0.6 and 0.2
(for probabilities of crossover and mutation) outper-

Sph. Pl. Geo. Rep. Par
GA 61.7 54.24 48.66 53.38 38.99

(0.6,0.2) (3.66) (4.99) (4.12) (3.93) (3.47)
GA-M+ 53.29 44.47 37.70 15.60 15.91
(0.6,1) (2.06) (2.82) (2.83) (1.03) (4.44)
GA-:X 27.57 26.71 26.22 15.69 14.15
(0,1) (1.56) (1.87) (2.36) (1.39) (6.12)
ES 29.59 27.25 27.18 16.27 12.62
(0,1) (1.36) (1.74) (1.38) (1.25) (4.76)
ES-X 38.88 41.27 37.32 15.77 13.37
(0.6,1) (2.96) (2.96) (2.52) (0.88) (5.82)

Table 1: Average o�-line results (std. deviation)
of di�erent operators for di�erent evolution schemes
(crossover rate, mutation rate) on function B1 rotated
such that the optimum is at on the diagonal

Sph. Pl. Geo. Rep. Par
GA 30.48 27.23 25.76 21.75 13.99

(0.6,0.2) (1.83) (4.03) (40.50) (1.98) (2.27)
GA-M+ 31.64 27.00 26.21 14.90 15.67
(0.6,1) (1.3) (1.81) (1.97) (1.85) (6.40)
GA-:X 25.45 22.31 22.43 15.30 15.33
(0,1) (1.35) (1.70) (1.83) (3.33) (9.12)
ES 27.41 24.61 25.17 14.70 12.20
(0,1) (1.33) (1.24) (1.17) (0.59) (4.93)
ES-X 29.71 32.35 30.86 14.43 13.33
(0.6,1) (2.15) (2.54) (2.32) (0.57) (4.42)

Table 2: Average o�-line results (std. deviation)
of di�erent operators for di�erent evolution schemes
(crossover rate, mutation rate) on function B1 ran-
domly rotated

forms all other schemes. Also, in this test case repair
operators are better than plane and geodesical ones.
In the case of random rotation (Table 2), if ES with
crossover is used, plane operators perform better than
sphere operators!

6 CONCLUSIONS

The results of experiments indicate that di�erent
boundary operators for di�erent test functions, may
give di�erent performance. It seems that for the test
function P the boundary crossover is of great impor-
tance (e.g., ES with boundary crossover is far better
than ES without; GA with probability of crossover 0.6
and mutation 0.2 is far ahead from all other settings.
Moreover, the increase in mutation rates decreases the
performance of GA).

On the other hand, the test functions B1 and B2 yield
just the opposite results: the optimum is reached only



when the probability of mutation is set to 1; addi-
tion of boundary crossover rather harms the algorithm
(whether GA or ES) than helps; ES was much bet-
ter than GA. However, the performance of spherical
mutation can be easily explained (see section 5.3); the
results of experiments made on rotated B1 and B2 con-
�rm the performance hierarchy of boundary operators
similar to this of the test function P . The parametric
representation is quite sensitive on the order in which
the parameters are considered in equation 3.

It is interesting to note the weak performance of the
standard operators undergoing repair. It can be easily
understood why the repaired mutation can fail: even if
the self-adaptive mechanism works perfectly, the stan-
dard mutationwill select an o�spring out of the sphere.
The repair operator moves the o�spring closer to the
parent (it can even be repaired to the parent posi-
tion). So the self-adaptive mutation mechanism is bi-
ased twice: �rst, because the distance between o�-
spring and parent does not have the same probability
distribution than for unconstrained problems; second,
because of the �rst, the feed-back on self-adaptiveness
is biased too, resulting in wrong selection criterion.

All other adaptive mechanism for the standard devi-
ations we tried on the repair algorithm (one standard
deviation per individual, or one standard deviation for
the population updated via the one-�fth rule) proved
much worse than the one used here (self-adaptation of
one standard deviation per coordinate). On the other
hand, the mutations for both the plane operators and
the geodesical operators only used one self-adaptive
standard deviation for the distance parent-o�spring,
the direction of mutation being randomly chosen.

This suggest to design yet another mutation opera-
tor, that would bene�t from both features: use one
standard deviation parameter for each variable, thus
determining the direction of mutation, and have an
additional|self-adaptive|parameter to control the
distance from parent to o�spring.

Further study will investigate further complex connec-
tions between characteristic of the objective function,
evolutionary scheme used, adaptiveness, and bound-
ary operators, as well as study other (than sphere)
surfaces.
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