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Abstract. During the last three decades there has been a growing inter-
est in algorithms which rely on analogies to natural processes. The emer-
gence of massively parallel computers made these algorithms of practical
interest. The best known algorithms in this class include evolutionary
programming, genetic algorithms, evolution strategies, simulated anneal-
ing, classi�er systems, and neural networks.
In this paper we discuss a subclass of these algorithms|those which
are based on the principle of evolution (survival of the �ttest). A com-
mon term, recently accepted, refers to such techniques as `evolutionary
computation' methods.
The paper presents a perspective of the �eld of evolutionary computa-
tion. It discusses brie
y the concept of evolutionary computation, presents
the author's �rst experience with these methods, provides a discussion
on relationship between evolutionary computation techniques and the
problem speci�c knowledge, and identi�es some current critical issues.

1 Introduction

The �eld of evolutionary computation is approaching a stage of maturity. There
are several, well established international conferences that attract hundreds of
participants (International Conferences on Genetic Algorithms|ICGA [28, 29,
45, 7, 24], Parallel Problem Solving fromNature|PPSN [49, 33], Annual Confer-
ences on Evolutionary Programming|EP [20, 21, 50]); new annual conferences
are getting started, e.g., IEEE International Conferences on Evolutionary Com-
putation [42]. Also, there are many workshops, special sessions, and local confer-
ences every year, all around the world. A new journal, Evolutionary Computa-

tion (MIT Press) [8], is devoted entirely to evolutionary computation techniques;
many other journals organized special issues on evolutionary computation (e.g.,
[18, 36]). Many excellent tutorial papers [5, 6, 43, 53, 19] and technical reports
provide more-or-less complete bibliographies of the �eld [1, 27, 44, 39]. There is
also The Hitch-Hiker's Guide to Evolutionary Computation prepared initially by
J�org Heitk�otter and currently by David Beasley [30], available on comp.ai.genetic
interest group (Internet), and a new text, Handbook of Evolutionary Computa-

tion, is currently being prepared [4].
This paper discusses two issues related to evolutionary computation. First, a

connection between the problem speci�c knowledge, representation of individu-
als, operators and the evolutionary computation techniques is explored to some



degree; this part provides ground for further discussion on similarities and dif-
ferences between major evolutionary techniques, like genetic algorithms (GAs),
evolutionary strategies (ES), and evolutionary programming (EP). Second, we
concentrate on the current trends in the �eld.

The paper is organized as follows. The next section discusses brie
y the con-
cept of evolutionary computation. Section 3 presents the author's �rst experience
with evolutionary techniques, and Section 4 provides a discussion on relationship
between evolutionary computation techniques and the problem speci�c knowl-
edge. The �nal section identi�es some current critical issues in the �eld.

2 Evolutionary computation

Evolutionary computation algorithms are based on the principle of evolution
(survival of the �ttest). In these algorithms a population of individuals (poten-
tial solutions) undergoes a sequence of unary (mutation type) and higher order
(crossover type) transformations. These individuals strive for survival: a selection
scheme, biased towards �tter individuals, selects the next generation. After some
number of generations, the program converges|the best individual represents a
near-optimum solution.

The two most important issues in the evolution process are population diver-
sity and selective pressure. These factors are strongly related: an increase in the
selective pressure decreases the diversity of the population, and vice versa. In
other words, strong selective pressure \supports" the premature convergence of
the search and a weak selective pressure can make the search ine�ective. Di�er-
ent evolutionary techniques use di�erent scaling methods and di�erent selection
schemes (e.g., proportional selection, ranking, tournament) to strike a balance
between these two factors.

However, the structure of any evolutionary computation algorithm is very
much the same; a sample structure is shown in Figure 1.

The evolutionary algorithm maintains a population of individuals, P (t) =
fxt1; : : : ; x

t
ng for iteration t. Each individual represents a potential solution to the

problem at hand, and is implemented as some data structure S. Each solution
xti is evaluated to give some measure of its \�tness". Then, a new population
(iteration t+1) is formed by selecting the more �t individuals (select step). Some
members of the new population undergo transformations (alter step) by means
of \genetic" operators to form new solutions. There are unary transformations
mi (mutation type), which create new individuals by a small change in a single
individual (mi : S ! S), and higher order transformations cj (crossover type),
which create new individuals by combining parts from several (two or more)
individuals (cj : S � : : : � S ! S). After some number of generations the
algorithm converges|it is hoped that the best individual represents a near-
optimum (reasonable) solution.

The data structure S used for a particular problem and a set of `genetic'
operators constitute the most essential components of any evolutionary algo-
rithm. For example, the original genetic algorithms, devised to model adaptation



procedure evolutionary algorithm
begin

t 0
initialize P (t)
evaluate P (t)
while (not termination-condition) do
begin

t t+ 1
select P (t) from P (t� 1)
alter P (t)
evaluate P (t)

end
end

Fig. 1. The structure of an evolutionary algorithm

processes, mainly operated on binary strings and used recombination operator
with mutation as a background operator [31]. Evolution strategies [48] used real
variables1 and aimed at numerical optimization. Because of that, the individ-
uals incorporated also a set of strategic parameters. Evolution strategies relied
mainly on mutation operator (Gaussian noise with zero mean); only recently
a discrete recombination was introduced for object variables and intermediate
recombination|for strategy parameters. On the other hand, evolutionary pro-
gramming techniques [23] aimed at building a system to solve prediction tasks.
Thus they used a �nite state machine as a chromosome and 5 mutation opera-
tors (change the output symbol, change a state transition, add a state, delete a
state, or change the initial state).2

In the next section we discuss a particular evolutionary system which is
hard to classify into categories of genetic algorithms, evolution strategies or
evolutionary programming. The system was developed for the transportation
problem and it uses matrix representation for chromosomes with a problem-
speci�c mutation and arithmetical crossover. It is unclear whether the system
can be classi�ed as genetic algorithm without any support of scheme theorem
or building-block hypothesis. It uses 
oating point representation (as evolution
strategies do), however, it does not incorporate any control parameters into
the structure of its chromosomes. The matrix representation may suggest the
case of evolution programming since �nite state machines were represented as
matrices, however, the problem is clearly `to optimize' and not `to predict'.
After discussing the features of the evolutionary system for the transportation
problem (next section) we will return to the general discussion on similarities
and di�erences between various techniques from the perspective of incorporating

1 However, they started with integer variables as an experimental optimum-seeking
method.

2 `Change', `add', and `delete' are specialized versions of mutation.



problem-speci�c knowledge into these algorithms (Section 4).

3 Evolutionary algorithm for the transportation problem

In 1991 two papers were published on GA-based systems for the transportation
problem: for linear [52] and nonlinear [37] cases. To the best of the author's
knowledge they were the �rst GA-based system to use non-string chromosome
structures;3 specialized `genetic' operators were introduced to preserve feasibility
of solutions. This section summarizes this research by stating the problem and
discussing possible representations and operators.

The transportation problem is one of the simplest constrained optimization
problems that have been studied. It seeks the determination of a minimum cost
transportation plan for a single commodity from a number of sources to a number
of destinations. A destination can receive its demand from one or more sources.
The objective of the problem is to determine the amount to be shipped from each
source to each destination such that the total transportation cost is minimized.

If the transportation cost on a given route is directly proportional to the
number of units transported, we have a linear transportation problem. Otherwise,
we have a nonlinear transportation problem.

Assume there are n sources and k destinations. The amount of supply at
source i is source(i) and the demand at destination j is dest(j). The cost of
transporting 
ow xij from source i to destination j is given as a function fij .
Thus the total cost is a separable function of the individual 
ows rather than
interactions between them. The transportation problem is given as:

minimize total =
Pn

i=1

Pk

j=1 fij(xij)

subject to

Pk

j=1 xij � source(i), for i = 1; 2; : : : ; n,
Pn

i=1 xij � dest(j), for j = 1; 2; : : : ; k,
xij � 0, for i = 1; 2; : : : ; n and j = 1; 2; : : :; k.

The �rst set of constraints stipulates that the sum of the shipments from a source
cannot exceed its supply; the second set requires that the sum of the shipments
to a destination must satisfy its demand.

The above problem implies that the total supply
Pk

i=1 source(i) must at
least equal total demand

Pn

j=1 dest(j). When total supply equals total demand
(total 
ow), the resulting formulation is called a balanced transportation prob-
lem. It di�ers from the above only in that all constraints are equations; that
is,

Pk

j=1
xij = source(i), for i = 1; 2; : : : ; n,

Pn

i=1 xij = dest(j), for j = 1; 2; : : : ; k.

3 Fogel, Owens & Walsh [22] in their EP technique represented �nite state machines
as matrices.



In constructing an evolutionary algorithm for the transportation problem, a
selection of appropriate data structure S together with the set of appropriate
`genetic' operators is of utmost importance. It is because there are several hard
constraints to be satis�ed. As stated by Davis [12]:

\Constraints that cannot be violated can be implemented by imposing
great penalties on individuals that violate them, by imposing moderate
penalties, or by creating decoders of the representation that avoid cre-
ating individuals violating the constraint. Each of these solutions has its
advantages and disadvantages. If one incorporates a high penalty into
the evaluation routine and the domain is one in which production of an
individual violating the constraint is likely, one runs the risk of creating
a genetic algorithm that spends most of its time evaluating illegal indi-
viduals. Further, it can happen that when a legal individual is found, it
drives the others out and the population converges on it without �nding
better individuals, since the likely paths to other legal individuals require
the production of illegal individuals as intermediate structures, and the
penalties for violating the constraint make it unlikely that such interme-
diate structures will reproduce. If one imposes moderate penalties, the
system may evolve individuals that violate the constraint but are rated
better than those that do not because the rest of the evaluation function
can be satis�ed better by accepting the moderate constraint penalty than
by avoiding it. If one builds a \decoder" into the evaluation procedure
that intelligently avoids building an illegal individual from the chromo-
some, the result is frequently computation-intensive to run. Further, not
all constraints can be easily implemented in this way."

There are other possibilities as well. Sometimes it is worthwhile to design a
repair algorithm which would `correct' an infeasible solution into a feasible one.
In such cases, there is an additional question to be resolved: it is whether the
repaired chromosome should replace the original one in the population, or rather
the repair process is run only for evaluation purpose.4 Also, there is a possibility
of using a data structure appropriate for the problem at hand together with the
set of specialized operators; such approach was described in detail in [35]. We
will examine brie
y these possibilities in turn.

It is possible to build a \classical" genetic algorithm for the transportation prob-
lem, where chromosomes (i.e. representation of solutions ) are bit strings|lists
of 0's and 1's. A straightforward approach is to create a vector hv1; v2; : : : ; vpi
(p = n � k), such that each component vi (i = 1; 2; : : : ; p) is a bit vector
hwi

0; : : : ; w
i
si representing a value associated with row j and column m in the

allocation matrix, where j = b(i � 1)=k + 1c and m = (i� 1) mod k + 1.

4 Recently Orvosh and Davis [40] reported so-call 5% rule which states that if replacing
original chromosomes with a 5% probability, the performance of the algorithm is
better than if replacing with any other rate. In particular, it is better than with `never
replacing' or `always replacing' strategies. However, the rule has some exceptions [35].



However, it is di�cult to design a meaningful set of penalty functions. If
penalty functions are moderate, the system often returns [34] an infeasible solu-
tion xij = 0:0 for all 1 � i � n, 1 � j � k, which yields the \optimum" trans-
portation cost (zero)! It seems that high penalties have much better chances to
force solutions into a feasible region of the search space, or at least to return
solutions which are `almost' feasible. However, it should be stressed that

{ with high penalties very often the system would settle for the �rst feasible
solution found, or

{ if a solution is `almost' feasible, the process of �nding a `good' correction
can be quite complex for high dimensional problems. We can think about
this step as a process of solving a new transportation problem with modi-
�ed marginal sums (which represent di�erences between actual and required
totals), where variables, say, �ij , represent respective corrections to original
variables xij.

We conclude that the penalty function approach is not the most suitable for
solving constrained problems of this type.

Judging from the previous paragraph it should be clear that the `repair algo-
rithm' approach has also slim chances to succeed. Even if the initial population
consists of feasible solutions only, there are some serious di�culties. For example,
let us consider a required action when a feasible solution undergoes mutation.
The mutation is usually de�ned as a change in a single bit in a solution-vector.
This would correspond to a change of one value, vi. This, in turn, would trig-
ger a series of changes in di�erent places (at least 3 other changes) in order to
maintain the constraint equalities (note also, that we always have to remember
in which column and row a change was made|despite a vector representation
we think and operate in terms of rows and columns).

There are some other open questions as well. Assume that two random points
(vi and vm, where i < m) are selected such that they do not belong to the same
row or column. Let us assume that vi, vj , vk, vm (i < j < k < m) are components
of a solution-vector (selected for mutation) such that vi and vk as well as vj and
vm belong to a single column, and vi and vj as well as vk and vm belong to a
single row. That is, in matrix representation:

... . ... . ...

... . ... . ...

... vi ... vj ...

... . ... . ...

... . ... . ...

... vk ... vm ...

... . ... . ...

... . ... . ...

Now in trying to determine the smallest change in the solution vector we
have a di�culty. If we increase the value vi by a constant C we have to decrease
each of the values vj and vk by the same amount. What happens if vj < C or



vk < C? We could set C = min(vi; vj; vk), but then most mutations would result
in no change, since the probability of selecting three non-zero elements would
be close to zero for solutions from the surface of the simplex. Thus methods
involving single bit changes result in ine�cient mutation operators with complex
expressions for checking the corresponding row or column of the selected element.

The situation is even worse if we try to de�ne a crossover operator. Breaking
a vector at a random point can result in the appearance of numbers vi larger
than all sour(i) and dest(j), obviously violating constraints. Even if we design
a method to provide that all numbers in the solution-vectors of o�spring result-
ing from crossovers are in a reasonable range it is more than likely that these
new solutions would still violate the constraints. If we try to modify these solu-
tions to obey all constraints we would then lose all similarities with the parents.
Moreover, the way to do this is far from obvious. We conclude that the repair
algorithm approach is not the most suitable for solving constrained problems of
this type.

The third possibility, the use of decoders, is almost out of question. Decoders
are used mainly for discrete optimization problems (e.g., knapsack problem,
see [35]), and it might be di�cult to design a decoder scheme for continuous
case. A GA-based system based on decoders was built for the linear case of the
transportation problem [52], but is impossible to use the proposed decoder for
the nonlinear case [37]. It was clear that decoders were not the most suitable for
solving constrained problems of this type.

The general conclusion from the above discussion is that the vector represen-
tation (whether used with penalty functions, repair algorithms, or decoders) is
not the best data structure for the transportation problem. Perhaps the most
natural representation of a solution for this problem is a two dimensional struc-
ture. After all, this is how the problem is presented and solved by hand. In other
words, a matrix V = (xij) (1 � i � k; 1 � j � n) may represent a solution;
each xij is a real number.

It is relatively easy to initialize a population so it contains only feasible indi-
viduals. In [37] a particular initialization procedure is discussed which introduces
as many zero elements as possible. Such initialization procedure can be used to
de�ne a set of `genetic' operators (two mutations and one crossover) which would
preserve feasibility of solutions:

mutation-1. Assume that fi1; i2; : : : ; ipg is a subset of f1; 2; : : : ; kg , and fj1; j2;
: : : ; jqg is a subset of f1; 2; : : :; ng such that 2 � p � k, 2 � q � n.
Denote a parent for mutation by the (k�n) matrix V = (xij). Then we can
create a (p�q) submatrixW = (wij) from all elements of the matrix V in the
following way: an element xij 2 V is in W if and only if i 2 fi1; i2; : : : ; ipg
and j 2 fj1; j2; : : : ; jqg (if i = ir and j = js, then the element xij is placed
in the r-th row and s-th column of the matrix W ).
Now we can assign new values sourW [i] and destW [j] (1 � i � p, 1 � j � q)
for matrix W :

sourW [i] =
P

j2fj1;j2;:::;jqg
xij, 1 � i � p,



destW [j] =
P

i2fi1;i2;:::;ipg
xij, 1 � j � q.

We can initialize the matrix W (procedure initialization) so that all con-
straints sourW [i] and destW [j] are satis�ed. Then we replace corresponding
elements of matrix V by new elements from the matrix W . In this way all
the global constraints (sour[i] and dest[j]) are preserved.

mutation-2. This operator is identical to mutation-1 except that in recalcu-
lating the contents of the chosen sub-matrix W , a modi�ed version of the
initialization routine is used (for details, see [37]) which avoids zero entries
by selecting values from a range.

crossover. Starting with two parents (matrices U and V ) the arithmetical
crossover operator will produce two childrenX and Y , whereX = c1�U+c2�V
and Y = c1 �V + c2 �U (where c1; c2 � 0 and c1+ c2 = 1). As the constraint
set is convex this operation ensures that both of children are feasible if both
parents are. This is a signi�cant simpli�cation of the linear case where there
was an additional requirement to maintain all components of the matrix as
integers.

It is clear that all above operators maintain feasibility of potential solutions:
(arithmetical) crossover produces a point between two feasible points of the
convex search space and both mutations were restricted to submatrices only to
ensure no change in marginal sums.

The experimental results of the developed system are discussed in [37, 35,
34]. It is worthwhile to underline, that the results were much better than these
obtained from the GAMS (General Algebraic Modeling System)5 with MINOS
optimizer.

The main conclusions from the experiments on the transportation problem were
as follows:

{ the most interesting problems are constrainted ones,
{ coding of chromosome structures S need not be binary,
{ the `genetic' operators need not be `genetic' and may incorporate the problem
speci�c knowledge, and

{ the problem-speci�c knowledge incorporated into the system enhances an
algorithm's performance and narrows its applicability.

In the next section we discuss further the last conclusion.

4 Evolutionary computation techniques and the problem

speci�c knowledge

The idea of incorporating a problem speci�c knowledge in genetic algorithms is
not new and has been recognized for some time. Several researchers have dis-

5 GAMS is a package for the construction and solution of mathematical programming
models [9]. GAMS represents a typical example of an industry-standard e�cient
gradient-controlled method.



cussed initialization techniques, di�erent representations, and the use of heuris-
tics for genetic operators. In [11] Davis wrote:

\It has seemed true to me for some time that we cannot handle most
real-world problems with binary representations and an operator set con-
sisting only of binary crossover and binary mutation. One reason for this
is that nearly every real-world domain has associated domain knowledge
that is of use when one is considering a transformation of a solution in
the domain [...] I believe that genetic algorithms are the appropriate al-
gorithms to use in a great many real-world applications. I also believe
that one should incorporate real-world knowledge in one's algorithm by
adding it to one's decoder or by expanding one's operator set."

The observation seems straightforward, however, it is not clear whether the
resulting system should be still called `genetic algorithm'. For arbitrary data
structure S which implements the solution chromosome and expanded set of
`genetic' operators, we get just some evolutionary algorithm, which might be
closer to other evolutionary techniques. The system discussed in the previous
section is just one example of such phenomena.

In [34] we discussed e�ciency versus problem spectrum for evolutionary com-
putation methods. The main observation was that the problem-speci�c knowl-
edge incorporated into the system enhances an algorithm's performance and
narrows its applicability; it was summarized in Figure 2.

Efficiency

EA

Problems P

Q

EA

EA

5

3

1

Fig. 2. E�ciency/problem spectrum and a hierarchy of EAs



The specialized algorithm Q is suitable for a particular problem P . In gen-
eral, it is possible to construct a family of evolutionary algorithms EAi, each
of which would `solve' the problem P . The term `solve' means `provide a rea-
sonable solution', i.e., a solution which need not, of course, be optimal, but is
feasible (it satis�es problem constraints). The evolutionary algorithmEA5 is the
strongest one (i.e., the most problem speci�c) and it addresses the problem P
only. The system EA5 will not work well for any modi�ed version of the problem
(e.g., after adding a new constraint or after changing the size of the problem).
The next evolutionary algorithm,EA4, can be applied to some (relatively small)
class of problems, which includes the problem P ; other evolutionary algorithms
EA3 and EA2 work on larger domains, whereas EA1 is the weakest method
(i.e., domain independent) and can be applied to any optimization problem6 (in
[34] we discussed �ve such evolutionary algorithms for a given problem P : the
transportation problem).

Note that we talk about evolutionary algorithms in general, without speci-
fying whether such system is a genetic algorithm, an evolution strategy, an evo-
lutionary programming technique, or other. The reason was explained partially
in the previous section, where we discussed a particular evolutionary system for
the transportation problem, which was hard to classify into these categories.
It seems that neither of the evolutionary techniques is perfect (or even robust)
across the problem spectrum; only the whole family of algorithms based on evo-
lutionary computation concepts (i.e., evolutionary algorithms) have the property
of robustness. For example, if we concentrate on classical GAs (binary represen-
tation, crossover and mutation) and take into account that [15]:

\...virtually all decision making situations involve constraints. What dis-
tinguish various types of problems is the form of these constraints. De-
pending on how the problem is visualized, they can arise as rules, data
dependencies, algebraic expressions, or other forms",

it is clear, that major modi�cations should be incorporated in the GA to obtain
satisfactory results. Because of these modi�cations, we deal rather with some
evolutionary algorithms (as discussed in the previous section). Classical GAs
aim mainly at adaptive problems; their applications in the area of Arti�cial Life
prove this point. Similary, evolution strategies aim at numerical optimization,
whereas evolutionary programming|at task prediction.7 In the same time, ap-
plication of GAs to numerical optimization results often in systems more similar
to evolution strategies than genetic algorithms [35]! In some sense we can look at
the main three instances of evolutionary computation (i.e, genetic algorithms,
evolution strategy, evolutionary programming) from the perspective of incor-
porating problem-speci�c knowledge into evolutionary algorithm. Each of these
techniques incorporates the problem-speci�c knowledge in their data structures
(binary string, 
oating point string representing values of variables and values

6 Note, that only EA5, EA3, and EA1 are displayed in Figure 2.
7 Only recently evolutionary programming techniques were extended to handle numer-
ical optimization problems [17].



of control parameters, �nite state machines, respectively) and operators (binary
crossover and mutation, Gaussian mutation, special mutations for �nite state
machines, respectively). This is why it is di�cult (or even unfair) to compare
these techniques on some particular subset of problems. Figure 3 illustrates these
points.

Efficiency

ES EP GA

ProblemsCB A

Fig. 3. E�ciency/problem spectrum and GA, ES, EP

In Figure 3 the problem A might be a problem of modeling ecological sys-
tem, the problem B|numerical optimization problem, and C|for example,
prisoner's dilemma problem.

In 1985 De Jong [14] addressed this issue from the perspective of genetic
algorithms:

\What should one do when elements in the space to be searched are
most naturally represented by more complex data structures such as
arrays, trees, digraphs, etc. Should one attempt to `linearize' them into
a string representation or are there ways to creatively rede�ne crossover
and mutation to work directly on such structures."

It seems that more than often the second possibility (i.e., rede�ning crossover(s)
and mutation(s) to work directly on complex structures) provides with better
experimental results. This point of view is shared by Koza [32]:

\Representation is the key issue in genetic algorithm work because the
representation scheme can severely limit the window by which the system



observes its world."

Koza developed a new methodology, named `genetic programming' (GP), which
provides a way to run a search of the space of possible computer programs for
the best one (the most �t). In other words, a population of computer programs
is created, individual programs compete against each other, weak programs die,
and strong ones reproduce (crossover, mutation)... . It is important to note that
the structure which undergoes evolution is a hierarchically structured computer
program.8 The search space is a hyperspace of valid programs, which can be
viewed as a space of rooted trees. Each tree is composed of functions and ter-
minals appropriate to the particular problem domain; the set of all functions
and terminals is selected a priori in such a way that some of the composed trees
yield a solution. The initial population is composed of such trees; construction
of a (random) tree is straightforward. The evaluation function assigns a �tness
value which evaluates the performance of a tree (program). The evaluation is
based on a preselected set of test cases; in general, the evaluation function re-
turns the sum of distances between the correct and obtained results on all test
cases. The primary operator is a crossover that produces two o�spring from two
selected parents. The crossover creates o�spring by exchanging subtrees between
two parents. There are other operators as well: mutation, permutation, editing,
and a de�ne-building-block operation [32]. The paradigm of genetic program-
ming constitutes another important example of incorporating problem speci�c
knowledge by means of data structures and operators used.

5 Current critical issues

There are several issues which deserve a special attention of the evolutionary
computation community. As De Jong observed [13] recently:

\... the �eld had pushed the application of simple GAs9 well beyond our
initial theories and understanding, creating a need to revisit and extend
them."

In this section we examine a few important directions in which we expect a lot
of activities and signi�cant results.

Function optimization
For many years, most evolutionary techniques were evaluated and compared

with each other in the domain of function optimization. In the view of the pre-
vious section, it is not surprising that quite often ES outperformed simple GAs;
this was also the case with EP techniques when they were extended to handle
numerical optimization problems [17]. To adapt a GA to the task of function
optimization it was necessary to extend simple GA by additional features; these
included

8 Actually, Koza has chosen LISP's S-expressions for all his experiments.
9 This is true not only for GAs, but for any evolutionary technique.



{ dynamic scaled �tness,
{ rank-proportional selection,
{ inclusion of elitist strategy,
{ adaptation of various parameters of the search (probabilities of operators,
population size, etc.)

{ various representations: binary or Gray coding (plus Delta Coding or Dy-
namic Parameter Encoding), and 
oating point representation,

{ new operators (for binary and 
oating point representation).

Most of these modi�cations pushed a simple GA away from its theoretical basis,
however, they enhanced the performance of the systems in a signi�cant way. It
seems that the domain of function optimization would remain as the primary
test-bed for many new features. It is expected that new theories of evolutionary
techniques for function optimization would emerge (e.g., breeder genetic algo-
rithms [38]). Additionally, we should see a progress in

{ development of constraint-handling techniques. This is a very important area
in general, and for function optimization, in particular; most real problems
of function optimization involve constraints. However, so far very few tech-
niques were proposed, analysed, and compared with each other.

{ development of systems for large-scale problems. Until now, most experi-
ments assume relatively small number of variables. It would be interesting
to analyse how evolutionary techniques scale up with the problem size for
problems with thousand variables.

{ development of systems for mathematical programming problems. Very lit-
tle work was done in this area. There is a need to investigate evolutionary
systems to handle integer/Boolean variables, to experiment with mixed pro-
gramming as well as integer programming problems.

Representation and operators
Traditionally, GAs work with binary strings, ES|with 
oating point vec-

tors, and EP|with �nite state machines (represented as matrices), whereas GP
techniques use trees as a structure for the individuals. However, there is a need
for a systematic research on

{ representation of complex, non-linear objects of varying size, and, in partic-
ular, representation of `blueprints' of complex objects, and

{ development of evolutionary operators for such objects at the genotype level.

This direction can be perceived as a step towards building complex hybrid evo-
lutionary system which incorporate additional search techniques. For example,
it seems worthwhile to experiment with Lamarckian operators, which would im-
prove an individual during its lifetime|consequently, the improved, \learned"
characteristics of such individual would be passed to the next generation.

Non random mating



Most current techniques which incorporate crossover operator use random
mating, i.e, mating, where individuals are paired randomly. It seems that with
the trend of movement from simple to complex systems, the issue of non random
mating would be of growing importance. There are many possibilities to explore;
these include introduction of sex or \family" relationships between individuals.
Some simple schemes were already investigated by several researchers (e.g., Es-
helman's incest prevention technique [16]), however, the ultimate goal seems to
be to evolve rules for non random mating.

Self-adapting systems

Since evolutionary algorithms implement the idea of evolution, it is more than
natural to expect some self-adapting characteristics of these techniques. Apart
from evolutionary strategies, which incorporate some of its control parameters in
the solution vectors, most other techniques use �xed representations, operators,
and control parameters. One of the most promising research area is based on
inclusion of self adapting mechanisms within the system for

{ representation of individuals (as proposed by Shaefer [51]; the Dynamic Pa-
rameter Encoding technique [47] and messy genetic algorithms [26] also fall
into this category),

{ operators. It is clear that di�erent operators play di�erent roles at di�erent
stages of the evolutionary process. The operators should adopt (e.g., adaptive
crossover [46]). This is true especially for time-varying �tness landscapes.

{ control parameters. There were already experiments aimed at these issues:
adaptive population sizes [2] or adaptive probabilities of operators [11]. How-
ever, much more remains to be done.

Co-evolutionary systems

There is a growing interest in co-evolutionary systems, where more than one
evolution process takes place: usually there are di�erent populations there (e.g.,
additional populations of parasites or predators) which interact with each other.
In such systems the evaluation function for one population may depend on the
state of the evolution processes in the other population(s). This is an impor-
tant topic for modeling arti�cial life, some business applications, etc. Also, co-
evolutionary systems might be important for approaching large-scale problems
[41].

Diploid/polyploid versus haploid structures

Diploidy (or polyploidy) can be viewed as a way to incorporate memory into
the individual's structure. Instead of single chromosome (haploid structure) rep-
resenting a precise information about an individual, a diploid structure is made
up of a pair of chromosomes: the choice between two values is made by some
dominance function. The diploid (polyploid) structures are of particular signi�-
cance in non-stationary environments (i.e., for time-varying objective functions)



and for modeling complex systems (possibly using co-evolution models). How-
ever, there is no theory to support the incorporation of a dominance function
into the system; there is also quite small experimental data in this area.

Parallel models
Parallelismpromises to put within our reach solutions to problems untractable

before; clearly, it is one of the most important areas of computer science. Evolu-
tionary algorithms are very suitable for parallel implememtations; as Goldberg
[25] observed:

\In a world where serial algorithms are usually made parallel through
countless tricks and contortions, it is no small irony that genetic al-
gorithms (highly parallel algorithms) are made serial through equally
unnatural tricks and turns."

However, during the last 5 years several parallel models of evolutionary tech-
niques were investigated. They can be classi�ed into several categories (e.g.,
synchronous vs. asynchronous, or master-slave vs. network, �ne-grain vs. coarse-
grain, continuous vs. discontinuous neighborhood). Many experimental results
indicate a signi�cant speedup in the processing time, however, there is very little
theory to assist in understanding parallel systems.

Parallel models can also provide a natural embedding for other paradigms
of evolutionary computation, like non random mating, some aspects of self-
adaptation, or co-evolutionary systems.

6 Conclusions

It might be meaningful to conclude the paper with a citation from the recent
meeting of the evolutionary computation community, which provides the main
direction for future research [23]:

\If the aim is to generate arti�cial intelligence, that is, to solve new prob-
lems in new ways, then it is inappropriate to use any �xed set of rules.
The rules required for solving each problem should simply evolve..."
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