
EVOLUTIONARY OPERATORS FOR CONTINUOUS

CONVEX PARAMETER SPACES

Zbigniew Michalewicz

Department of Computer Science, University of North Carolina

Charlotte, NC 28223, USA

and

Thomas D. Logan

IBM, Charlotte, NC 28257, USA

and

Swarnalatha Swaminathan

Department of Computer Science, University of North Carolina

Charlotte, NC 28223, USA

ABSTRACT

This paper discusses the application of genetic algorithms to constrained optimiza-

tion problems for convex continuous parameter spaces. We present a set of six

genetic operators for GAs based on
oating point representation. Various experi-

ments indicate the importance of these operators at di�erent stages of the evolution

process.

1. Introduction

The binary representation traditionally used in genetic algorithms has some
drawbacks when applied to multidimensional, high-precision numerical optimization
problems. For example, for 100 variables with domains in the range [�500; 500]
where a precision of six digits after the decimal point is required, the length of the
binary solution vector is 3000. This, in turn, generates a search space of about
101000. For such problems genetic algorithms based on binary string representation
perform poorly. This paper describes the results of experiments with various genetic
operators for
oating point representation.

Many other researchers5;20 investigated GAs based on
oating point representa-
tion. But the optimization problems they considered were de�ned on a search space
D � Rn, where D =

Qn
k=1hlk; rki, i.e., each variable xk was restricted to a given in-

terval hlk; rki (1 � k � n). Yet it seems important to include other constraints into
the considerations; as stated in3:

\A little observation and re
ection will reveal that all optimization prob-
lems of the real world are, in fact, constrained problems. Suppose one has
an expression for the output of a chemical reaction vessel in which some
set of chemical reactions are taking place and one wishes to maximize
the output. It is also necessary to take into account material balance

restrictions on the reactans and products, the laws governing
ow of
materials into and out of the reaction vessel, and other conditions. All
of these are additional constraints on the variables of the function to be
optimized."

In a constrained optimization problem, the geometric shape of the set of solutions
in Rn is perhaps the most crucial characteristic of the problem, with respect to
the degree of di�culty that is likely to be encountered in attempting to solve the
problem3. There is only one special type of set|a convex set|for which a signi�cant
amount of theory has been developed.

In this paper we are concerned with the following optimization problem:

optimize f(x1; : : : ; xn) 2 R,

where (x1; : : : ; xn) 2 D � Rn and D is a convex set.
The domain D is de�ned by ranges of variables (lk � xk � rk for k = 1; : : : ; n)

and by a set of constraints C. From the convexity of the set D it follows that
for each point in the search space (x1; : : : ; xn) 2 D there exists a feasible range
hleft(k); right(k)i of a variable xk (1 � k � n), where other variables xi (i =
1; : : : ; k�1; k+1; : : : ; n) remain �xed. In other words, for a given (x1; : : : ; xk; : : : ; xn) 2
D:

y 2 hleft(k); right(k)i i� (x1; : : : ; xk�1; y; xk+1; : : : ; xn) 2 D,
where all xi's (i = 1; : : : ; k � 1; k + 1; : : : ; n) remain constant. We assume also that
the ranges hleft(k); right(k)i can be e�ciently computed.

For example, if D � R2 is de�ned as:

�3 � x1 � 3,
0 � x2 � 8,
and x21 � x2 � x1 + 4,

then for a given point (2; 5) 2 D:
left(1) = 1, right(1) =

p
5,

left(2) = 4, right(2) = 6.

It means that the �rst component of the vector (2; 5) can vary from 1 to
p
5 (while

x2 = 5 remains constant) and the second component of this vector can vary from 4
to 6 (while x1 = 2 remains constant).

Of course, if the set of constraints C is empty, then the search space D =Qn
k=1hlk; rki is convex; additionally left(k) = lk, right(k) = rk for k = 1; : : : ; n.

It means that the proposed operators constitute a valid set regardless the presence
of the constraints.

The recently developed Genocop system16 provides a method of handling con-
straints that is both general and problem independent. Genocop does not use the
concept of penalty functions nor does it use a technique of eliminating o�spring

generated outside the feasible space (e.g., evolution strategies). The main idea lies
in (1) an elimination of the equalities present in the set of constraints, and (2)
careful design of special operators, which guarantee to keep all o�spring within the
constrained solution space. This can be done very e�ciently for linear constraints.

The �rst version of this technique was implemented recently. The system was
tested on several linearly constrained problems; the experience based on these results
helped in the development of the improved version of the system.

The paper is organized as follows. The next section presents the experimental
results of the original Genocop system on several test cases. Section 3 discusses six
operators used in a GA based on
oating point representation in the next version of
the system. Section 4 presents a single test case and section 5 contains conclusions
and some directions for future work.

2. Test Cases

In order to evaluate the method, a set of test problems has been carefully selected
to illustrate the performance of the algorithm and to indicate its degree of success.
The eight test cases include quadratic, nonlinear, and discontinuous functions with
several linear constraints. All runs of the system were performed on SUN SPARC
station 2. We used the following parameters for all experiments:

pop size = 70, k = 28 (number of parents in each generation), b = 2 (co-
e�cient for non-uniform mutation), a = 0:25 (parameter of arithmetical
crossover).

Genocop was executed ten times for each test case. For most problems, the max-
imum number of generations T was either 500 or 1000 (harder problems required
larger number of iterations). All test cases and the results of the Genocop system
are reported in the following subsections.

2.1. Test Case #1

The problem8 is

minimize f(X; y) = �10:5x1 � 7:5x2 � 3:5x3 � 2:5x4 � 1:5x5 � 10y�
0:5

P5
i=1 x

2
i ,

subject to:

6x1 + 3x2 + 3x3 + 2x4 + x5 � 6:5, 10x1 + 10x3 + y � 20,
0 � xi � 1, 0 � y.

The global solution is (X
�
; y�) = (0; 1; 0; 1; 1; 20), and f(X

�
; y�) = �213.

Genocop found solutions that were very close to the optimum in all ten runs; a
typical discovered optimum point was:

(0.000055, 0.999998, 0.000041, 0.999989, 1.000000, 19.999033),

for which the value of the objective function is equal to �212:990997. A single run
of 1000 iterations took 29 sec of CPU time.

2.2. Test Case #2

The problem11 is

minimize f(X) =
P10

j=1 xj(cj + ln xj

x1+:::+x10
),

subject to:

x1 + 2x2 + 2x3 + x6 + x10 = 2, x4 + 2x5 + x6 + x7 = 1,
x3 + x7 + x8 + 2x9 + x10 = 1, xi � 0:000001, (i = 1; : : : ; 10),

where

c1 = �6:089; c2 = �17:164; c3 = �34:054; c4 = �5:914; c5 = �24:721;
c6 = �14:986; c7 = �24:100; c8 = �10:708; c9 = �26:662; c10 = �22:179;

The previously best known solution11 was

X
�
= (:01773548; :08200180; :8825646; :0007233256; :4907851;

:0004335469; :01727298; :007765639; :01984929; :05269826),

and f(X
�
) = �47:707579.

Genocop found points with better value than the one above in all ten runs:

X
�
= (:04034785; :15386976; :77497089; :00167479; :48468539;

:00068965; :02826479; :01849179; :03849563; :10128126),

for which the value of the objective function is equal to �47:760765. A single run
of 500 iterations took 11 sec of CPU time.

2.3. Test Case #3

The problem8 is

minimize f(X;Y) = 5x1 + 5x2 + 5x3 + 5x4 � 5
P4

i=1 x
2
i �

P9
i=1 yi,

subject to:

2x1 + 2x2 + y6 + y7 � 10, 2x1 + 2x3 + y6 + y8 � 10,
2x2 + 2x3 + y7 + y8 � 10, �8x1 + y6 � 0,
�8x2 + y7 � 0, �8x3 + y8 � 0,
�2x4 � y1 + y6 � 0, �2y2 � y3 + y7 � 0,
�2y4 � y5 + y8 � 0, 0 � xi � 1, i = 1; 2; 3; 4,
0 � yi � 1, i = 1; 2; 3; 4; 5; 9, 0 � yi, i = 6; 7; 8.

The global solution is (X
�
; Y

�
) = (1; 1; 1; 1; 1; 1; 1; 1; 1; 3; 3; 3; 1), and f(X

�
; Y

�
) =

�15.
Genocop found the optimum in all ten runs; a typical optimum point found was:

(1.000000, 1.000000, 1.000000, 1.000000, 0.999995, 1.000000, 0.999999,
1.000000, 1.000000, 2.999984, 2.999995, 2.999995, 0.999999),

for which the value of the objective function is equal to -14.999965. A single run of
1000 iterations took 55 sec of CPU time.

2.4. Test Case #4

The problem7 is

maximize f(X) = 3x1+x2�2x3+0:8
2x1�x2+x3

+ 4x1�2x2+x3
7x1+3x2�x3

,

subject to:

x1 + x2 � x3 � 1, �x1 + x2 � x3 � �1,
12x1 + 5x2 + 12x3 � 34:8, 12x1 + 12x2 + 7x3 � 29:1,
�6x1 + x2 + x3 � �4:1, 0 � xi, i = 1; 2; 3.

The global solution is X
�
= (1; 0; 0), and f(X

�
) = 2:471428.

Genocop found the optimum in all ten runs; a single run of 500 iterations took
9 sec of CPU time.

2.5. Test Case #5

The problem8 is

minimize f(X) = x0:61 + x0:62 � 6x1 � 4x3 + 3x4,

subject to:

�3x1 + x2 � 3x3 = 0, x1 + 2x3 � 4,
x2 + 2x4 � 4, x1 � 3,
x4 � 1, 0 � xi, i = 1; 2; 3; 4.

The best known global solution is X
�
= (43; 4; 0; 0), and f(X

�
) = �4:5142.

Genocop found this point in all ten runs; a single run of 500 iterations took 9
sec of CPU time.

2.6. Test Case #6

The problem2 is

minimize f(X) = 100(x2 � x21)
2 + (1� x1)

2 + 90(x4 � x23)
2+

+(1� x3)2 +10:1((x2� 1)2 + (x4� 1)2)+ 19:8(x2� 1)(x4� 1),

subject to:

�10:0 � xi � 10:0, i = 1; 2; 3; 4.

The global solution is X
�
= (1; 1; 1; 1), and f(X

�
) = 0.

Genocop approached the optimum quite closely in all ten runs; a typical opti-
mum point found was:

(0.953835, 0.909714, 1.043783, 1.089695),

for which the value of the objective function is equal to 0.007296, and

(1.018352, 1.037137, 0.980476, 0.961101),

for which the value of the objective function is equal to 0.001333. However, the
number of runs was set at 500000, which took 103 min of CPU time.

2.7. Test Case #7

The problem8 is

minimize f(x; Y) = 6:5x� 0:5x2 � y1 � 2y2 � 3y3 � 2y4 � y5,

subject to:

x+ 2y1 + 8y2 + y3 + 3y4 + 5y5 � 16,
�8x� 4y1 � 2y2 + 2y3 + 4y4 � y5 � �1;
2x+ 0:5y1 + 0:2y2 � 3y3 � y4 � 4y5 � 24,
0:2x+ 2y1 + 0:1y2 � 4y3 + 2y4 + 2y5 � 12,
�0:1x� 0:5y1 + 2y2 + 5y3 � 5y4 + 3y5 � 3,
y3 � 1, y4 � 1, and y5 � 2,
x � 0, yi � 0, for 1 � i � 5.

The global solution is (x; Y
�
) = (0; 6; 0; 1; 1; 0), and f(x; Y

�
) = �11:005.

Genocop approached the optimum quite closely in all ten runs; a typical opti-
mum point found was:

(0.000000 5.976089, 0.005978, 0.999999, 1.000000, 0.000000),

for which the value of the objective function is equal to �10:988042. A single run
of 1000 iterations took 29 sec of CPU time.

2.8. Test Case #8

The problem was constructed from three separate problems11 in the following
way:

minimize f(X) =

8><
>:

f1 = x2 + 10�5(x2 � x1)2 � 1:0 if 0 � x1 < 2
f2 =

1
27
p
3
((x1 � 3)2 � 9)x32 if 2 � x1 < 4

f3 =
1
3(x1 � 2)3 + x2 � 11

3 if 4 � x1 � 6

subject to:

x1=
p
3 � x2 � 0,

�x1 �
p
3x2 + 6 � 0,

0 � x1 � 6, and x2 � 0.

The function f has three global solutions:

X
�
1 = (0; 0), X

�
2 = (3;

p
3), and X

�
3 = (4; 0),

in all cases f(X
�
i) = �1 (i = 1; 2; 3).

We made three separate experiments. In experiment k (k = 1; 2; 3) all functions
fi except fk were increased by 0:5. As a result, the global solution for the �rst
experiment was X

�
1 = (0; 0), the global solution for the second experiment was

X
�
2 = (3;

p
3), and the global solution for the third experiment was X

�
3 = (4; 0).

Genocop found global optima in all runs in all three cases; a single run of 500
iterations took 9 sec of CPU time.

3. Six operators

In this section we describe six genetic operators based on
oating point repre-
sentation, which were used in modi�ed version of the Genocop system. The �rst
three are unary operators (category of mutation), the other three are binary (various
types of crossovers). We discuss them in turn.

3.1. Uniform mutation

This operator requires a single parent ~x and produces a single o�spring ~x0. The
operator selects a random component k 2 (1; : : : ; n) of the vector ~x = (x1; : : : ; xk; : : : ;
xn) and produces ~x0 = (x1; : : : ; x0k; : : : ; xn), where x0k is a random value (uniform
probability distribution) from the range hleft(k); right(k)i.

The operator plays an important role in the early phases of the evolution process
as the solutions are allowed to move freely within the search space. In particular,
the operator is essential in the case where the initial population consists of multi-
ple copies of the same (feasible) point. Such situations may occur quite often in
constrained optimization problems where users specify the starting point for the
process. Moreover, such a single starting point (apart from its drawbacks) has
powerful advantage: it allows for developing an iterative process, where the next
iteration starts from the best point of the previous iteration. This very technique
was used in a development of a system to handle nonlinear constraints in spaces
that were not necessarily convex17.

Also, in the later phases of an evolution process the operator allows possible
movement away from a local optimum in the search for a better point.

3.2. Boundary mutation

This operator requires also a single parent ~x and produces a single o�spring ~x0.
The operator is a variation of the uniform mutation with x0k being either left(k) or
right(k), each with equal probability.

The operator is constructed for optimization problems where the optimal solu-
tion lies either on or near the boundary of the feasible search space. Consequently,
if the set of constraints C is empty, and the bounds for variables are quite wide, the
operator is a nuisance. But it can prove extremely useful in the presence of con-
straints. A simple example demonstrates the utility of this operator. The example
is a linear programming problem; in such case we know that the global solution lies
on the boundary of the search space.

Example 1.
Let us consider the following test case19:

maximize f(x1; x2) = 4x1 + 3x2,

subject to the following constraints:

2x1 + 3x2 � 6,
�3x1 + 2x2 � 3,
2x1 + x2 � 4, and
0 � xi � 2, i = 1; 2.

The known global optimum is (x1; x2) = (1:5; 1:0), and f(1:5; 1:0) = 9:0.
To determine the utility of this operator in optimizing the above problem, ten

experiments were run with all operators functioning and another ten experiments
without boundary mutation. The system with boundary mutation found the global
optimum easily in all runs, on average within 32 generations, whereas without
the operator, even in 100 generations the best point found (in ten runs) was ~x =
(1:501; 0:997) and f(~x) = 8:996 (the worst point was ~x = (1:576; 0:847) with f(~x) =
8:803).

3.3. Non-uniform mutation

This is the (unary) operator responsible for the �ne tuning capabilities of the
system. It is de�ned as follows. For a parent ~x, if the element xk was selected for
this mutation, the result is ~x0 = hx1; : : : ; x0k; : : : ; xqi, where

x0k =

(
xk +4(t; right(k)� xk) if a random binary digit is 0
xk �4(t; xk � left(k)) if a random binary digit is 1

The function 4(t; y) returns a value in the range [0; y] such that the probability
of 4(t; y) being close to 0 increases as t increases (t is the generation number).
This property causes this operator to search the space uniformly initially (when t
is small), and very locally at later stages. We have used the following function:

4(t; y) = y � r � (1 � t

T
)b;

where r is a random number from [0::1], T is the maximal generation number, and
b is a system parameter determining the degree of non{uniformity.

The operator has proven to be extremely useful in many test cases16.

3.4. Arithmetical crossover

This binary operator is de�ned as a linear combination of two vectors: if ~x1
and ~x2 are to be crossed, the resulting o�spring are ~x01 = a � ~x1 + (1 � a) � ~x2 and
~x02 = a � ~x2 + (1 � a) � ~x1. This operator uses a random value a 2 [0::1], as it
always guarantees closedness (~x01; ~x

0
2 2 D). Such a crossover was called a guaranteed

average crossover4 (when a = 1=2); intermediate crossover1; linear crossover20; and
arithmetical crossover14;15;16.

An importance of arithmetical crossover is presented by the following example.

Example 2.
Let us consider the following problem8:

minimize f(x1; x2; x3; x4; x5) = �5sin(x1)sin(x2)sin(x3)sin(x4)sin(x5)+
�sin(5x1)sin(5x2)sin(5x3)sin(5x4)sin(5x5),

where

0 � xi � �, for 1 � i � 5.

The known global solution is (x1; x2; x3; x4; x5) = (�=2; �=2; �=2; �=2; �=2), and
f(�=2; �=2; �=2; �=2; �=2) = �6.

It appears that the system without arithmetical crossover has slower conver-
gence. After 50 generations the average value of the best point (out of 10 runs) was
�5:9814, and the average value of the best point after 100 generations was �5:9966.
In the same time, these averages for the system with arithmetical crossover were
�5:9930 and �5:9996, respectively.

Moreover, an interesting pattern that emerged showed that the system with
arithmetical crossover was more stable, with much lower standard deviation of the
best solutions (obtained in ten runs).

3.5. Simple crossover

This binary operator is de�ned as follows: if ~x1 = (x1; : : : ; xn) and ~x2 = (y1; : : : ; yn)
are crossed after the k-th position, the resulting o�spring are: ~x01 = (x1; : : : ; xk; yk+1; : : : ; yn)

and ~x02 = (y1; : : : ; yk; xk+1; : : : ; xn). Such operator may produce o�spring outside the
domain D. To avoid this, we use the property of the convex spaces stating, that
there exists a 2 [0; 1] such that

~x01 = hx1; : : : ; xk; yk+1 � a+ xk+1 � (1� a); : : : ; yn � a+ xn � (1� a)i
and

~x02 = hy1; : : : ; yk; xk+1 � a+ yk+1 � (1� a); : : : ; xn � a+ yn � (1 � a)i
are feasible.

The only remaining question to be answered is how to �nd the largest a to obtain
the greatest possible information exchange. The simplest method would start with
a = 1 and, if at least one of the o�spring does not belong to D, decreases a by
some constant 1

q
. After q attempts a = 0 and both o�spring are in D since they

are identical to their parents. The necessity for such maximal decrement is small
in general and decreases rapidly over the life of the population.

It seems that the merits of simple crossover are the same as of arithmetical
crossover (for experiments, we have used the problem from Example 3). The results
showed that the system without simple crossover was even less stable than the
system without arithmetical crossover; in this case the standard deviation of the best
solutions obtained in ten runs was much higher. Also, the worst solution obtained in
100 generations had value of �5:9547|much worse then the worst solution obtained
with all operators (�5:9982) or the worst solution obtained without arithmetical
crossover (�5:9919).

3.6. Heuristic crossover

This operator20 is a unique crossover for the following reasons: (1) it uses values
of the objective function in determining the direction of the search, (2) it produces
only one o�spring, and (3) it may produce no o�spring at all.

The operator generates a single o�spring ~x3 from two parents, ~x1 and ~x2 accord-
ing to the following rule:

~x3 = r � (~x2 � ~x1) + ~x2,

where r is a random number between 0 and 1, and the parent ~x2 is not worse than ~x1,
i.e., f(~x2) � f(~x1) for maximization problems and f(~x2) � f(~x1) for minimization
problems.

It is possible for this operator to generate an o�spring vector which is not fea-
sible. In such a case another random value r is generated and another o�spring
created. If after w attempts no new solution meeting the constraints is found, the
operator gives up and produces no o�spring.

It seems that heuristic crossover contributes towards the precision of the solution
found; its major responsibilities are (1) �ne local tuning, and (2) search in the
promising direction.

Example 3. For a test case, we used the test case #6 from Section 2.
The system without this operator, in 10,000 generations, produced solutions

where each variable stayed within 10% from its optimal value; for example a typical
output was

(x1; x2; x3; x4) = (0:95534354; 0:91261518; 1:04239142; 1:08687556),

with f(x1; x2; x3; x4) = 0:00683880. On the other hand, the system with heuristic
crossover performed much better; its results are reported in the next section, where
we compare the original system with its revised version.

4. Summary and a Test Case

All of the operators discussed were incorporated in the new version of the Geno-
cop system and they di�er from those of the original version.

The �rst change is connected with non-uniform mutation. The function 4(t; y)
was changed; instead of

4(t; y) = y �
�
1 � r(1�

t
T
)b
�
,

(used in the original Genocop), the following function was used:

4(t; y) = y � r � (1� t

T
)b.

The second change was incorporated in the arithmetical crossover. The original
Genocop uses a constant a = 0:25, whereas the new version generates a random
number (between 0 and 1) every time the operator is called.

The third (most signi�cant) change is introduction of the heuristic crossover,
not present at all in the original system. The results of many test cases indicated
the importance of this operator.

Both versions use an additional operator: an application of non-uniform mu-
tation on all components of the selected parent. However, the original Genocop
applied non-uniform mutation \from left to right," whereas the new version gener-
ates a random order of vector's components.�

The signi�cant di�erence in performance between the original and the new ver-
sion of the Genocop system is demonstrated in the following test case.

All runs of the system were again performed on SUN SPARC station 2. We used
the following parameters for all experiments:

pop size = 70, k = 28 (number of parents in each generation), and b = 6
(coe�cient for non-uniform mutation).

�Additionally, the new version of the Genocop uses a di�erent mechanism for parents' selection, and

a new random number generator; however, we will not discuss these topics in this paper.

For each test case we run the system ten times.

Example 4.

This example is case #6 (Section 2). The typical solution found by the original
Genocop system in 1,000,000 generations (!) was

(x1; x2; x3; x4) = (0:983055; 0:966272; 1:016511; 1:033368),

with f(x1; x2; x3; x4) = 0:001013, whereas a typical solution returned by the revised
system with six (revised) operators discussed in the paper in only 10,000 generations
was

(x1; x2; x3; x4) = (1:000581; 1:001166; 0:999441; 0:998879),

with f(x1; x2; x3; x4) = 0:0000012.
This is an excellent improvement|the above (unconstrained) test function (a

famous Colville function #7) proved di�cult for many optimization methods. Even
VFSR (Very Fast Simulated Reannealing13) produced an inferior result:

(x1; x2; x3; x4) = (1:1244; 1:2633; 0:8614; 0:7416),

with f(x1; x2; x3; x4) = 0:062267.
It seems that the proposed set of six operators performs its task in guiding the

system towards the optimum.

5. Conclusions

We have presented six operators suitable for real-coded genetic algorithms. The
proposed operators (three mutations and three crossovers) emerged from many ex-
periments with Genocop and proved useful on many test cases. Since Genocop is in
the public domain, it provides a convenient reference point for any further research
on GAs with
oating point representation.

Another aspect of our research provided some observations on the appropriate
choice of frequencies of the proposed operators. There is no doubt that the best
arrangement would be a design of an adaptive mechanism for these frequencies (as it
is done in evolution strategies1); this would be done in the next version of Genocop
system together with the introduction of integer and Boolean variables. Also, it
seems worthwhile to investigate the interdependence of the proposed operators (i.e.,
the importance of one operator may depend on the existence of another).

All presented test-cases are relatively small (up to 13 variables). It is interesting
to test the performance of Genocop on larger scale problems (more than 100 vari-
ables). A careful analysis should provide some hints on the behavior of the system
as a function of variables; we plan to run all necessary tests as soon as the next
version of the system is ready.

The original Genocop system and its revised versions are available from anonymous
ftp unccsun.uncc.edu, directory coe/evol, �les genocop.tar.Z and genocop2.tar.Z,
respectively.
Acknowledgements:

The author wishes to thank David Fogel for his constructive comments.

References:

1. B�ack, T., Ho�meister, F., and Schwefel, H.-P., A Survey of Evolution Strate-

gies, Proceedings of the Fourth International Conference on Genetic Algo-
rithms, R.K. Belew and L. Booker (Eds.), Morgan Kaufmann Publishers,
Los Altos, CA, 1991, pp.2{9.

2. Colville, A.R., A Comparative Study on Nonlinear Programming Codes, IBM
Scienti�c Center Report 320-2949, New York, 1968.

3. Cooper, L., and Steinberg, D., Introduction to Methods of Optimization, W.B.
Saunders, London, 1970.

4. Davis, L., Adapting Operator Probabilities in Genetic Algorithms, Proceedings
of the Third International Conference on Genetic Algorithms, J.D. Scha�er
(Ed.), Morgan Kaufmann Publishers, Los Altos, CA, 1989, pp.61{69.

5. Davis, L., (Ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold,
New York, 1991.

6. Eshelman, L.J., and Scha�er, J.D., Real-Coded Genetic Algorithms and

Interval-Schemata, in D. Whitley (Ed.), Foundations of Genetic Algorithms
II, Morgan Kaufmann, San Mateo, CA, 1992.

7. Floudas, C.A. and Pardalos, P.M., A Collection of Test Problems for Con-

strained Global Optimization Algorithms, Springer-Verlag, Lecture Notes in
Computer Science, Vol.455, 1987.

8. Floudas, C.A. and Pardalos, P.M., Recent Advances in Global Optimization,
Princeton Series in Computer Science, Princeton University Press, Princeton,
NJ, 1992.

9. Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine

Learning, Addison Wesley, Reading, MA, 1989.
10. Goldberg, D.E., Real-Coded Genetic Algorithms, Virtual Alphabets, and Block-

ing, University of Illinois at Urbana-Champaign, Technical Report No.
90001, September 1990.

11. Hock, W. and Schittkowski K., Test Examples for Nonlinear Programming

Codes, Lecture Notes in Economics and Mathematical Systems, Vol.187,
Springer-Verlag, 1981.

12. Holland, J., Adaptation in Natural and Arti�cial Systems, University of Michi-
gan Press, Ann Arbor, 1975.

13. Ingber, L., Simulated Annealing: Practice and Theory, Technical Paper, 1993.
14. Michalewicz, Z. and Janikow, C., Genetic Algorithms for Numerical Opti-

mization, Statistics and Computing, Vol.1, No.2, pp.75{91, 1991.
15. Michalewicz, Z. and Janikow, C., Handling Constraints in Genetic Algorithms,

Proceedings of the Fourth International Conference on Genetic Algorithms,

R.K. Belew and L. Booker (Eds.), Morgan Kaufmann Publishers, Los Altos,
CA, 1991, pp.151{157.

16. Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs,
Springer-Verlag, AI Series, New York, 1992.

17. Michalewicz, Z., and Attia, N.F., Evolutionary Optimization of Constrained

Problems, in this volume.
18. Schwefel, H.-P., Numerical Optimization for Computer Models, Wiley, Chich-

ester, UK, 1981.
19. Taha, H.A., Operations Research: An Introduction, 4th ed, Collier Macmillan,

London, 1987.
20. Wright, A.H., Genetic Algorithms for Real Parameter Optimization, in G.

Rawlins (Ed.), Foundations of Genetic Algorithms, First Workshop on the
Foundations of Genetic Algorithms and Classi�er Systems, Morgan Kauf-
mann Publishers, Los Altos, CA, 1991, pp. 205{218.

