
J. Liu et al. (Eds.): IEEE WCCI 2012, LNCS 7311, pp. 98–121, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Quo Vadis, Evolutionary Computation?
On a Growing Gap between Theory and Practice

Zbigniew Michalewicz*

School of Computer Science,
University of Adelaide,

Adelaide, SA 5005, Australia
zbyszek@cs.adelaide.edu.au

Abstract. At the Workshop on Evolutionary Algorithms, organized by the In-
stitute for Mathematics and Its Applications, University of Minnesota, Minne-
apolis, Minnesota, October 21 – 25, 1996, one of the invited speakers, Dave
Davis made an interesting claim. As the most recognised practitioner of Evolu-
tionary Algorithms at that time he said that all theoretical results in the area of
Evolutionary Algorithms were of no use to him – actually, his claim was a bit
stronger. He said that if a theoretical result indicated that, say, the best value of
some parameter was such-and-such, he would never use the recommended val-
ue in any real-world implementation of an evolutionary algorithm! Clearly,
there was – in his opinion – a significant gap between theory and practice of
Evolutionary Algorithms.

Fifteen years later, it is worthwhile revisiting this claim and to answer some
questions; these include: What are the practical contributions coming from the
theory of Evolutionary Algorithms? Did we manage to close the gap between
the theory and practice? How do Evolutionary Algorithms compare with Opera-
tion Research methods in real-world applications? Why do so few papers on
Evolutionary Algorithms describe real-world applications? For what type of
problems are Evolutionary Algorithms “the best” method? In this article, I’ll
attempt to answer these questions – or at least to provide my personal perspec-
tive on these issues.

1 Inspiration

Since the publication of my first book on Genetic Algorithms (Michalewicz, 1992)
exactly twenty years ago, I have been thinking about theory and practice of these
algorithms. From my early experiments it was clear that it would be necessary to ex-
tend the binary representation of genetic algorithms by some other data structures
(hence the ‘data structure’ term in the title of the book) and incorporate problem-
specific knowledge into the algorithm. These initial thoughts were later supplemented
by various research activities as well as real world experiences – working on many

* Also at the Institute of Computer Science, Polish Academy of Sciences and at the Polish

Japanese Institute of Information Technology, Warsaw, Poland, and the Chairman of the
Board at SolveIT Software Pty Ltd.

 Quo Vadis, Evolutionary Computation? 99

projects for very large companies (e.g. Ford, General Motors, BMA Coal, Orlando
Wines, Bank of America, BHP Billiton, Viterra. Dentsu, Rio Tinto, Xstrata,
Fortescue). This chapter summarizes my dual experience – academia vs. industry –
and I hope it would be useful for the current and the future generations of researchers
in the Evolutionary Computation (EC) community. After all, it took me 20 years sit-
ting on both sides of the fence to collect my thoughts!

However, the inspiration for this chapter (and my talk at the IEEE CEC’12) came
from reading a relatively recent short article by Jeff Ullman on how to advise PhD
students (Ullman, 2009). By the way, my PhD (from 1981) was in database systems
(at that time I have not even heard about evolutionary/genetic algorithms) and Jeff
Ullman was one of my heroes – his articles and books at that time set directions for
(usually theoretical) research in many areas of database management – from database
design to concurrency control (of course, he has made also substantial contributions in
other areas of computer science). At that time I considered him as one of the leading
researchers in theoretical computer science – it is why I found his thoughts (written
up recently – six years or so after his retirement) a bit surprising!

In his article he addressed the issue of advising PhD students, and many comments
he made were applicable to a much wider audience. For example, he discussed a stan-
dard way to write and publish a paper: “Look at the last section [of some paper],
where there were always some ‘open problems.’ Pick one, and work on it, until you
are able to make a little progress. Then write a paper of your own about your
progress, and don’t forget to include an ‘open problems’ section, where you put in
everything you were unable to do.” Indeed, it is hard to disagree – and this is what we
often experience reading papers written by researchers from the Evolutionary Compu-
tation community… For example, one researcher proposes a new method for some-
thing and the method includes a few parameters – the follow-up researcher tunes these
parameters and the next researcher proposes adaptive method for handling them. The
number of examples of such papers (whether experimental or theoretical) is extensive.

However, Jeff Ullman does not believe that such approach is a good one: “Unfortu-
nately this approach, still widely practiced today, encourages mediocrity. It gives the
illusion that research is about making small increments to someone else’s work. But
worse, it almost guarantees that after a while, the work is driven by what can be solved,
rather than what needs to be solved. People write papers, and the papers get accepted
because they are reviewed by the people who wrote the papers being improved incre-
mentally, but the influence beyond the world of paper-writing is minimal.”

This is probably a fair introduction and a summary of this chapter – I will argue
that the gap between the theory and practice of Evolutionary Algorithms (EA) is
getting wider, partially because of reasons identified by Jeff Ullman, and partially
because complexity of business problems increased many times over the last 15
years (mainly due to the globalization and integration processes)1, whereas the theory
still studies the same types of problems (TSP, JSSP, Knapsack Problem, sphere

1 Scott Wooldridge, Vice President Industry Business at Schneider Electric Australia said

(private communication): “The world is becoming more dynamic and more interconnected
each year. Managers and executives are finding that changes in supply and demand can be
sudden and unexpected. The complexity of doing business is increasing at a rapid rate and it
is becoming hard to anticipate events, interpret their potential impact and understand the im-
plication of various decisions at both an operational and strategic level.”

100 Z. Michalewicz

function, etc.). Indeed, the influence of many research papers in the EC community,
beyond the world of paper-writing, is minimal. Of course, the problem is much
broader – note that publication quantity is often used as a proxy of academic success
and influences funding decisions, however the research questions that need answering
don't always lend themselves to rapid incremental publications. Moreover, there is no
substantial reward for research that demonstrates linkage with the real world, thus no
real incentive for academia to solve the problems that industry is really interested in.

His further thought was the following: “In the first years of computer science as an
academic discipline, many theses were ‘theoretical,’ in the sense that the contribution
was mostly pencil-and-paper: theorems, algorithms and the like, rather than software.
While much of this work was vulnerable to the problem just described – paper build-
ing on paper – it is quite possible for a theoretical thesis to offer a real contribution.”
Then he discussed as a case from many years ago where a “theoretical” piece of work
was not based on what some paper left open, but rather on an expressed need of the
real-world – and it was a great success in the real-world environment. Another exam-
ple given was that of Sergey Brin and Larry Page, who saw the need for a better
search engine and the key ways that goal could be reached. Clearly, “…there needs to
be an exposure to problems that are at the frontier, and that are needed by a ‘custom-
er.’ Sometimes, they can find a customer in industry […]. Summer internships can be
a great opportunity. However, advisors should encourage students to intern at a
strong industrial research group, one where the goals are more than minor tweaks to
what exists. Whether the thesis is theoretical or an implemented solution, students
need to be guided to understand who will consume their contribution if they are suc-
cessful. And the answer cannot be ‘people will read the paper I will write, and they
will use the open problems in it to help form their own theses.’ Especially when deal-
ing with theoretical theses, the chain of consumption may be long, with idea feeding
idea, until the payload is delivered. Yet if we let students ignore the question of
whether such a chain and payload plausibly exist, we are doing them a disservice.”

The EC community should be immune from the problem of identifying possible
payloads as evolutionary algorithms are directly applicable to a variety of real-world
problems. Indeed, many EA papers indicate a strong connection between the pre-
sented approach and real-world applicability. But there is a huge difference between a
“strong connection” and an “implementation” (or practice) – and it would be neces-
sary for the EC community to make this transition sooner than later. Otherwise, EAs
would be perceived as one of many methods one can just try in some special circums-
tances – whereas these algorithms have a potential to deliver a significant return on
investment for many hard real-world problems (see further sections of this chapter).

To progress our discussion on the gap between theory and practice of evolutionary
algorithms, first we have to address two fundamental questions: (1) what is an evolu-
tionary algorithm? and (2) what is practice (i.e. a real-world application)? These two
questions are important because without some discussion of them it would be difficult
to discuss the current gap2 between their theory and practice.

2 A continuing gap between theory and practice can be viewed as a positive feature of any

dynamic, exciting, growing field, however, it seems that in the case of Evolutionary
Computation this gap is too large…

 Quo Vadis, Evolutionary Computation? 101

For example (this emerged during my recent private correspondence with Hans-
Georg Beyer, the current editor-in-chief of Evolutionary Computation Journal) some
researchers believe that for operational-type problems (i.e. problems that require op-
timisation with some regular frequency) “…you may do better by design a problem-
specific optimisation algorithm. And this will be quite often not an EA due to different
reasons.” However, the question is how to distinguish between “a problem-specific
optimisation algorithm” and “an EA with problem-specific variation operators and
some other non-standard features”?

So these two topics are discussed in the following two sections of this chapter (sec-
tions 2 and 3), whereas section 4 talks about the gap between theory and practice.
Section 5 concludes the chapter.

2 What Is an Evolutionary Algorithm?

The field of meta-heuristics has a rich history. Many meta-heuristics have emerged
during the past 30 years; many of them have been inspired by some aspects of nature,
ranging from the cooling of metal to the movements of ants. Meta-heuristics methods
include a variety of hill climbing techniques (deterministic and stochastic), ant colo-
nies, artificial immune systems, differential evolution, particle swarms, simulated
annealing, tabu search, cultural algorithms, evolutionary and co-evolutionary algo-
rithms. These meta-heuristics can be classified into some categories based on differ-
ent criteria. For example, some meta-heuristics process single solution (e.g. simulated
annealing) whereas some others process a set of solutions (and are called population-
based methods, e.g. evolutionary algorithms). Some meta-heuristics can be determi-
nistic (e.g. tabu search), some other are stochastic (e.g. simulated annealing). Some
meta-heuristic generate complete solutions by modifying complete solutions (e.g.
evolutionary algorithms), whereas some other construct new solutions at every itera-
tion (e.g. ant systems). Many of these meta-heuristics offer some unique features (e.g.
use of memory, use of 'temperature', use of methods for exchange information
between individuals in population-based methods). Further, even within a single me-
ta-heuristic, there are many variants which incorporate different representations of
solutions and different operators for generating new solutions.

However, there is one common denominator: all meta-heuristics strive to create
high quality solutions by making a series of improvements during their iterative
process. Whether they start with (randomly generated) low quality solutions or they
use smart initialisation methods to take advantage of the problem-specific knowledge,
they aim to improve solution quality during the search process. At any iteration a
meta-heuristic method must make some 'selection' decisions: which solutions of the
current iteration should be kept for further processing and which should be discarded?
And this selection step is quite important as it is often responsible for maintaining
balance between exploration and exploitation of the search space – e.g. strong selec-
tive pressure harms exploratory capabilities of the algorithm and often results in a
premature convergence. Of course, different meta-heuristics address this question in

102 Z. Michalewicz

their own way. For example, evolutionary algorithms usually split selection process
into two independent activities: (1) selection of parents and (2) selection of survivors.

So, what is an evolutionary algorithm and how does it differ from other meta-
heuristics? Well, this is actually a very good question! Of course, one can explain
evolutionary algorithms as the ones based on concepts of natural evolution. It is also
possible to discuss 'mutation' and 'crossover' operators, parents and offspring, not to
mention the Darwinian principle of natural selection and survival of the fittest. How-
ever, from a high-level perspective things are not so clear. Say, you are solving a new
challenging optimization problem and you have designed a new method. So you have
selected some appropriate representation for candidate solutions for the problem and
agreed on the evaluation function which would measure the quality of solutions. Fur-
ther, you came with (more or less clever) heuristic method for finding a few initial
solutions, and (after analysing the characteristics of the problem) you have also
designed a few variation operators which would be responsible for modifying the
current solutions (thus creating new set of candidate solutions). You have also incor-
porated some simple selection method (say, ranking method, where the better individ-
ual has better chances to be selected) at any iteration. You have extended the system
by some additional non-standard features (e.g. special repair method or decoder to
deal with problem-specific constraints). Finally, you experimented with the system
and as the result you have tuned a few parameters of the method (e.g. population size,
rates of operators).

Have you just created an evolutionary algorithm? Note that if your answer is 'yes',
meaning “yes, I have created a variant of an evolutionary algorithm”, the consequence
might be that any meta-heuristic method which searches for a solution in iterative
manner can be labelled as a variant of 'evolutionary algorithm'. For example, simu-
lated annealing can be considered as a variant of (1 + 1) evolutionary algorithm with
an adaptive selection method; tabu search can be considered as (1 + 1) evolutionary
algorithm with memory-based selection method. In general, there are many iterative
stochastic search methods – are all of these ‘evolutionary algorithms’? Recall also,
that some ‘evolutionary algorithms’ have been 'extended' by memory structures (e.g.
when they operate in dynamic environments or to keep the search history – Chow &
Yuen, 2011) or by a parameter called 'temperature' (to control mutation rates). And it
is possible to provide many other examples!

Consider, for example, the Newton method – the method for finding successively
better approximations to the roots of a real-valued function. For one-dimensional
functions, the Newton method generates an initial individual x0 and generate the next
point x1 (provided the function is reasonably well-behaved):

 x1 = x0 – f(x0)/f’(x0)

where f’(x) is derivative of f(x). Geometrically, x1 is the intersection with the x-axis
of a line tangential to f at f(x0). The process is repeated:

 xn+1 = xn – f(xn)/f’(xn)

 Quo Vadis, Evolutionary Computation? 103

until a sufficiently accurate (i.e. near-optimum) value is reached. So the method
works as follows: one starts with an initial guess which is reasonably close to the true
root (i.e. intelligent initialisation), then a variation operator (problem-specific muta-
tion) is applied to generate offspring. The selection method always selects offspring
for further processing. These steps are repeated for several iterations (we should say:
generations), until a termination condition is met (the error drops below a predefined
threshold).

Did Newton discover an ‘evolutionary algorithm’? Before you answer, recall that
(1 + 1) evolutionary strategy does not require population of solutions as it is
processing just one individual (which is compared with its only offspring). Recall,
that many 'evolutionary algorithms’ assume a deterministic selection method; many
'evolutionary algorithms' take advantage of smart initialisation and problem-specific
operators. Yes, I realise that stochastic component is missing, but it would be relative-
ly easy to modify the method from deterministic one to stochastic. For example, we
can easily modify the formula for generating the ‘offspring’:

 xn+1 = xn – f(xn)/f’(xn) + N(0,δ)

Note also that the argument that evolutionary algorithms in numerical domains are
derivative-free (hence applicable to discontinuous functions) will not hold here as
there have been many evolutionary algorithms proposed with problem-specific varia-
tion operators, which take advantage from the knowledge of the shape of the land-
scape. Not to mention that – as for evolutionary algorithms – we can test the modified
Newton method on different landscapes, investigate its convergence rates, investigate
its scalability for higher dimensions, investigate the issue of deceptiveness, etc.

Newton’s method emerged in 17th century, however, his method was probably de-
rived from a similar but less precise method by Vieta. And the essence of Vieta's me-
thod can be found in the work of the Persian mathematician, Sharaf al-Din al-Tusi. So
we can rewrite the history of evolutionary algorithms moving their roots centuries
earlier as there are many examples of search methods based on (smart) initialisation,
(problem-specific) mutation, selection, iterations (generations), termination condi-
tions… It seems that the era of evolutionary algorithms3 started with just a new
terminology – all pioneers of EAs have been using ‘right’ vocabulary – generations
(instead of iterations), mutation and/or crossover (instead of just ‘variation operator’),
the Darwinian selection – survival of the fittest (instead of just selection), etc. So what
does it take to call an iterative search algorithm – an ‘evolutionary algorithm’?
Terminology used? A stochastic component? Or something else?

These remarks are also applicable to the whole field of modern heuristic methods.
Over the last few years we saw emergence of a variety of new methods; these include
bee colony optimisation, honey-bee mating optimisation, glow-worm swarm

3 I do believe that the modern era of evolutionary algorithms started at the 4th International

Conference on Genetic Algorithms (San Diego, 1991) when Evolution Strategies and Genetic
Programming approaches were presented to the participants of the conference, together with
other approaches based on different data structures (like the original Evolutionary Program-
ming approach).

104 Z. Michalewicz

optimisation, intelligent water drops, firefly algorithm, the monkey search, cuckoo
search, galaxy-based search algorithms, spiral optimisation… Which of these are
evolutionary algorithms? For example, in cuckoo search each egg in a nest represents
a solution, and a cuckoo egg represents a new solution. The aim is to use the new and
potentially better solutions (cuckoos) to replace a not-so-good solution in the nests (in
the simplest form, each nest has one egg only and the algorithm can be extended to
more complicated cases in which each nest has multiple eggs representing a set of
solutions). Cuckoo search is based on three idealized rules: (1) each cuckoo lays one
egg at a time, and dumps its egg in a randomly chosen nest; (2) the best nests with
high quality of eggs will carry over to the next generation; and (3) the number of
available hosts nests is fixed, and the egg laid by a cuckoo is discovered by the host
bird with some probability. Clearly, it would be easy to rewrite all these in ‘evolutio-
nary’ terminology (e.g. including the island population model)…

This very issue was recently addressed by Fred Glover4 in his article Sex and Me-
taheuristic Metaphors, where a ‘new’ meta-heuristic method, the Courtship Algo-
rithm, is proposed. The algorithm is loaded with some principles that people have
applied to courtship – and these principles translate directly into rules for meta-
heuristic methods. These include: (a) Have we met before? (i.e. use memory to exploit
recurrences), (b) Your place or mine? (i.e. consider the benefits of regional explora-
tion), (c) Variety is spice (i.e. employ diversification at all levels), (d) Once is not
enough (i.e. iterate over good options), (e) No need to be timid (i.e. well-timed ag-
gressive moves can pay off), or (f) Don’t stop now! (i.e. take advantage of momen-
tum). Of course, they are many more of such useful principles one can use – reading
this article I recalled that in 1999 I published a paper (Hinterding et al. 1999) titled
Your Brains and My Beauty: Parent Matching for Constrained Optimisation – very
much in line with the Courtship Algorithm! So, is Evolutionary Algorithm a special
case of Courtship Algorithm or vice versa?

It seems that many researchers are just playing games with terminology. In particu-
lar, it is always possible to extend the definition of something to include everything
else, and people often do this, although it obviously doesn't establish any real general-
ity to the “extended definition”. Moreover, the architecture of so-called “special
cases” may be more intricate and advanced than the architecture that has been con-
structed for the “general case” (as where a general-case design of a building may have
nothing of the complexity and intricacy that must go into the design of a skyscraper).
A similar sort of thing also occurs in speaking of probabilistic and deterministic me-
thods. We can say that deterministic methods are a special case of probabilistic me-
thods, because deterministic methods result by making all probabilities 1 and 0. But
this blurs a great deal of the special essence of each category of method.

It seems that Evolutionary Algorithms, in the broad sense of this term, provide just
a general framework on how to approach complex problems. All their components,
from the initialisation, through variation operators and selection methods, to con-
straint-handling methods, might be problem-specific. Some researchers (but not that
many, I believe) in the Evolutionary Computation community agree – and view an

4 See http://optimaldecisionanalytics.typepad.com/

 Quo Vadis, Evolutionary Computation? 105

EA as a meta-heuristic in the broad sense of the term by providing a framework for
creating/instantiating problem specific heuristic methods [De Jong, 2002]. Evolutio-
nary Algorithms, to be successfully applied, must be tailored to a specific domain in
order to be useful and provide decent results in specified time; without any doubt,
incorporating domain knowledge leads to more effective EA searches. Probably this
is why so many authors talk about ‘variants’, ‘modified versions’, ‘extensions’, or just
‘knowledge-enhanced’ evolutionary algorithms in their application-oriented papers –
for which theoretical results usually are not relevant.

3 What Is ‘Practice’? What Is a Real-World Application?

Clearly, the ‘practice’ of evolutionary algorithms is connected with real-world appli-
cations – after all, this is what the term ‘practice’ means (at least in the context of
evolutionary algorithms). But as it was the case with the definition of evolutionary
algorithms, the meaning of the term ‘real-world application’ is not that clear at all!

The Evolutionary Computation community over the last 30 years has been making
claims that their methods are ideal for hard problems – problems, where other
methods usually fail. As most real-world problems are very hard and complex, with
nonlinearities and discontinuities, complex constraints and business rules, noise and
uncertainty, EAs should provide a great benefit to the real-world community.

Even today, many research papers point to ability of evolutionary algorithms to
solve real-world problems. For example, I reviewed the last two issues (Spring and
Summer 2011) of the Evolutionary Computation Journal and the last two issues (Oc-
tober and December 2011) of the IEEE Transactions on Evolutionary Computation.
In the introductory paragraphs of some papers included in these issues I found the
following sentences:

• “Evolutionary algorithms are a wide class of solution methods that have
been successfully applied to many optimisation problems,”

• “Despite the lack of theoretical foundation, simplicity of Evolutionary Algo-
rithms has attracted many researchers and practitioners,”

• “EAs are randomized search heuristics that solve problems successfully in
many cases,”

• “…but in practice they optimise many challenging problems effectively,”
• “Randomized search algorithms have been very successful is solving combi-

natorial optimisation problems,”
• “For the past three decades, many population based search techniques have

surfaced to become a mainstay of optimisation,”
• “However, as many real-world optimisation problems are black-box prob-

lems of which a priori problem knowledge is not available, the use of meta-
heuristics started to prevail,”

• “EAs are used for solving many various problems,” or
• “Recently, researchers are increasingly directing their focus on solving mul-

ti-objective optimisation problems (MOPs), since the solution of these prob-
lems is of great importance in the areas of economics, engineering, biology,
medicine, materials, and so on.”

106 Z. Michalewicz

Some papers focus on classic problems (e.g. graph partitioning, maximum clique) –
and in such cases the authors make a connection with real world:

• “Graph partitioning is one of the fundamental combinatorial optimisation
problems which is notable for its applicability to a wide range of domains,
such as very large scale integration (VLSI) design, data mining, image seg-
mentation, and so on,” and

• “The maximum clique (MC) problem in graphs is a paradigmatic combina-
torial optimisation problem with many relevant applications, including in-
formation retrieval, computer vision, and social network analysis.”

The influence of benchmark problems on the EA research manifests itself in state-
ments like “When genetic algorithms (GAs) are applied to combinatorial problems,
permutation representation is usually adopted” which is very true for many bench-
mark problems and very false for real-world problems.

It is my opinion that these sentences speak loud and clear about desires of many re-
searchers to see a stronger connection between their research and the real-world (or
their belief that this is the case!). However, these statements are harmful for the com-
munity as they give a misleading perspective on the current spread of evolutionary
methods in businesses and industries and provide unjustified psychological comfort.
Where are all these applications that the authors refer to? Where do you see the preva-
lence of EAs in business and industry? When did these techniques become the
‘mainstay of optimisation’? Where are all these success stories? What does it mean
that EAs have been successfully applied to many optimisation problems? In my recent
essay (Michalewicz, 2012) I addressed this very issue and concluded that (for many
reasons) there are not that many real world implementations of EAs after all…

Further, it seems that many researchers are interpreting the phrase “real-world appli-
cation” in a quite arbitrary way. I have looked through proceedings of many internation-
al conferences on evolutionary algorithms (e.g. GECCO, IEEE CEC, PPSN) which
often include special sessions on “real-world applications”. I have checked many jour-
nals (e.g. Journal of Evolutionary Algorithms, IEEE Transactions on Evolutionary
Computation) with special attention to their special issues on real-world applications
(e.g. scheduling) and a few edited volumes which aimed at real-world applications. The
main problem is that all these “real-world applications” look like “Guinea pigs” – not
really from Guinea, and not really pigs... It seems that researchers are interpreting the
phrase ““real-world applications” in very arbitrary way. However, it is relatively easy to
group all these “real-world applications” into four broad categories:

1. Applications used in some business/industry on daily (regular) basis.
2. Applications tested on real data (e.g. taken from a hospital, city council, a

particular business unit).
3. Applications tested on some well-known model (e.g. TSP, VRP, JSSP) of a

real-world problem.
4. Other applications (e.g. numerical optimisation, constraint-handling, multi-

objective optimisation).

 Quo Vadis, Evolutionary Computation? 107

Of course, this classification is not that precise – one can imagine a border case be-
tween categories 1 and 2, where an application might be used intermittently, e.g. in
some relatively infrequent planning or modelling task. However, the question is: Are
the applications in all these four categories real-world applications? Clearly, category
1 is beyond any dispute. But the case of category 2 is not that clear – it is true that
real-world data were used in experimentation; however, application as such is not
real-world application – as no one uses it. It is rather an indication, that such approach
– in the real-world setting – may have a merit. Category 3 is also muddy – there is no
question that some models, e.g. for vehicle routing, scheduling, distribution, are
models of real-world environments, however, these applications do not operate in
real-world environment (and most likely, they never will). And most other novel ap-
plications (category 4), whether they aim at handling constraints, many objectives, or
the issue of noise – while very important and directly applicable for real-world set-
tings, are hardly real-world applications.

Clearly, there are also EA-based “solvers” and a variety of EA-based “tools”
available; however, there is a huge difference between these and real-world software
applications. Solvers and tools are sometimes useful, but they have very limited ap-
plicability and a limited audience. Some individuals in some companies use solvers
which are based on modern heuristic methods (and Evolutionary Algorithms in par-
ticular) for solving some small-scale optimisation problems; however, due to the li-
mited usefulness of such tools I heard quite often negative statements from various
researchers employed in major companies, e.g. “I tried a Genetic Algorithm on my
problem, but I did not get any results…They do not work”.

Some senior researchers agree. Garry Greenwood, the current editor-in-chief of the
IEEE Transactions on Evolutionary Computation, wrote recently:5 “I believe the
MATLAB GA toolbox has been devastating to the EC field and has done far, far more
damage than good. I wish it had never been created. It was designed to do searches
over an extremely broad class of optimisation problems. No domain knowledge could
be incorporated so the search results on non-toy problems were often mediocre. More
than one person has told me he tried a GA using that MATLAB toolbox and wasn’t
impressed with the results. Hence, he was convinced GAs weren’t very good. The EC
community has taken a bad rap for years because people formed a negative opinion
of GAs based on one encounter with that damn MATLAB toolbox.”

There are, of course, papers describing some interesting applications (e.g. applica-
tions of Covariance Matrix Adaptation Evolution Strategies – CMA-ES6), however,
many of these are not real-world applications, they are usually restricted to continuous
variables only, and they hardly address complex business problems. There are also
many papers which aim at classic Operation Research (OR) problems, e.g. traveling
salesman problems, job shop scheduling problems, graph colouring problems, variety
of vehicle routing problems, knapsack problems, packing and cutting problems – but
all these have very limited significance for today’s real-world problems.

5 Private correspondence.
6 See http://www.lri.fr/~hansen/cmaapplications.pdf

108 Z. Michalewicz

Let’s illustrate the point of expectations of the real-world community in the context
of supply chain – understood as “…a combination of processes, functions, activities,
relationships and pathways along which products, services, information and financial
transactions move in and between enterprises, in both directions (Gattorna, 2010).
One can visualise a supply chain as a combination of multiple logistic networks which
involve many upstream and downstream organisations – and clearly, the potential of
significant improvement in performance of such network is much greater than within
a single silo7. Note, for example, that the issue of scheduling production lines (e.g.
maximising the efficiency, minimizing the cost) has direct relationships with invento-
ry and stock-safety levels, replenishments strategies, transportation costs, deliver-in-
full-on-time, to name a few. Moreover, optimising one silo of the operation may have
negative impact on upstream and/or downstream silos8. Thus businesses these days
need “global solutions” for their whole operation, not silo solutions. This was recog-
nised over 30 years ago by Operations Research community; in 1979 R. Ackoff
wrote: “Problems require holistic treatment. They cannot be treated effectively by
decomposing them analytically into separate problems to which optimal solutions are
sought.” Only an integrated view of supply chain operations would increase visibility
and transparency across end-to-end supply chains. Managers these days are looking
for applications that, for example, will enable fully integrated, financially-driven
Sales & Operations Planning with, for example, transportation costs, working capital
requirements, and stock outs as priorities. They need to create within such
applications consistent what-if scenarios to facilitate the planning, scheduling, and
optimisation of multi-site sourcing, production, storage, logistics, and distribution
activities – all these in time changing (dynamic) environments.

It seems to me that (from a high level perspective) most real-world problems fall
into two categories: (1) design/static problems, and (2) operational/dynamic problems.
The first category includes a variety of hard problems, like TSP, VRP, JSSP, graph
coloring, knapsack problem, and millions of others. Some of them are really hard –
and I believe that 99% of research aims at these type of problems. I do believe, how-
ever, that the problems from the second category are (a) much harder, (b) the standard
methods usually fail for them, and (c) they represent a huge opportunity for EAs. Let
me explain further.

The systems to address problems in the 2nd category are really decision-support
systems that require continuous flow of data, predictive components, almost imme-
diate recommendations for recovering from sudden changes, etc. Not to mention that
they should handle the 1st category instances as they have to solve static versions of
the problem as well. This is altogether a different game, and the differences between
problems in the 1st and 2nd categories are huge. Problems in the 2nd category are usual-
ly multi-silo problems as opposed to single silo for the 1st category problems. Prob-
lems in the 2nd category usually deal with many variables, nonlinear relationships,
huge varieties of constraints (e.g. constraints in real-world settings often include

7 We use the term ‘silo’ for one component of a supply chain.
8 Of course, there are some real-world scientific and engineering problems where a good solu-

tion to a silo problem is beneficial (e.g. a variety of design problems), but they do not
represent complexities of today’s business problems.

 Quo Vadis, Evolutionary Computation? 109

'if-then' conditions), business rules, many (usually conflicting) objectives – and all of
these are set in a dynamic and noisy environment. These problems belong to an opti-
mization class, as they require recommendations for “the best” decision at the mo-
ment (whichever complex characteristic of what “the best” may mean – often with
risk factors included). An additional feature of these systems is that they do not oper-
ate on crisp values but rather on probability distributions. For example, one thing is to
assume that the travel from one point to another takes 36 hours, another thing is to
accept a probability distribution with mean 36 and standard deviation determined
from past data. Not to mention that these probability distributions change over time
(the system learns) as new data are coming in (e.g. due to some improvements, six
months later the mean is 35.5 hours, and standard deviation is much smaller). Further,
the response time is expected to be much shorter – applications for the design-type
problems are not time-critical, whereas applications for operational-type problems
are. Finally, robustness of a solution is as important as its quality... In comparison
with such problems, NP-hard problems like TSP seem to be toy problems (which they
are, in a sense).

Clearly, these are types of problems which should be addressed by Evolutionary
Computation community, as they represent hard real-world problems where other
methods usually fail.9 These are the problems for which meta-heuristic methods in
general (and EA-based methods in particular) should be the methods of choice.

4 Theory versus Practice

As indicated in the abstract of this chapter, at the Workshop on Evolutionary Algo-
rithms, organized by the Institute for Mathematics and Its Applications, University of
Minnesota, Minneapolis, Minnesota, October 21 – 25, 1996, one of the invited speak-
ers, Dave Davis made a claim that all theoretical results in the area of Evolutionary
Algorithms were of no use to a practitioner. At that time there was – in his opinion – a
significant gap between theory and practice of Evolutionary Algorithms.

So where are we 15 years later with this issue? Did we manage to close the gap
between the theory and practice? It seems that there is still a significant mismatch
between the efforts of hundreds of researchers who have been making substantial
contributions to the theory of evolutionary computation over the years and the number
of real-world applications which are based on concepts of evolutionary algorithms – it
seems also, that this gap is still growing.

I believe that there are two main reasons for this phenomenon; these are:

1. The growing complexity of real-world problems
2. The focus of research community on issues which are secondary for real-world

applications

9 A recent report (private correspondence) generated by several Operations Research experts on

optimisation of a particular supply chain with 37 nodes and 69 arcs, 862,000 variables and
1.6 million constraints, would require 18 hours per objective by mixed integer programming.

110 Z. Michalewicz

The first point was already touched on in the previous section of the chapter. For
many reasons today’s business problems are of much higher complexity than 30 years
ago and the real-world is searching for techniques which would address their prob-
lems – problems which are loaded with nonlinearities and/or discontinuities, many
(possibly conflicting) objectives, variety of business rules, soft and hard constraints,
and noise.

However, it seems to me that many researchers in the EC community are quite dis-
connected with today’s business, and they still believe that10: “In business applica-
tions, the goal function is often quite simple, a linear one. Most of the modelling is put
into the inequality constraints which very often can be linearized and integer condi-
tions can be relaxed. As a result, one often ends up with an LP11. And if not, then the
modelling is changed in such a manner that the resulting problem is again an LP.
This is the main reason why CPLEX (and some others) is so prevalent.”

I think that a perception that in business applications the goal function is often
quite simple, was right 30 years ago, but today it is just wrong and there is nothing
further from the truth. The real complexity exists mainly in real-world problems (and
not in artificial benchmarks). The business goal functions usually are extremely com-
plex, not to mention constraints and business rules, which are often conditional, ca-
lendarised, dynamic, etc. and they interact with many objectives in complex ways.
And the main reasons of the popularity of LP methods are the ease of their use and the
knowledge, how to use them – which is not the case with EAs. The main reason of
their popularity is not the quality of results... Many business units dream about replac-
ing their software which incorporates LP as their optimisation engine, but they do not
see alternatives. There is also an amazing amount of inertia in the business that has
nothing to do with what technology really works – and it is much easier to plug-in
CPLEX than to develop an EA for a problem at hand…

Real-world optimisation problems involve large number of variables, numerous
objectives, constraints, and business rules, all contributing in various ways to the
quality of solutions. The complexity of such problems makes it virtually impossible
for human domain experts to find an optimal solution. Further, manual adjustments of
scenarios (what-if scenarios and trade-off analysis), which are needed for strategic
planning, become an expensive or unaffordable exercise. The main reason behind this
complexity is that large-scale business problems consist of several interconnected
components, which makes many standard approaches ineffective. Even if we know
exact and efficient algorithms for solving particular components or aspects of an
overall problem, these algorithms only yield solutions to sub-problems, and it remains
an open question how to integrate these partial solutions to obtain a global optimum
for the whole problem. Moreover, optimising one silo of the operation may have neg-
ative impact on upstream and/or downstream silos. For example, at PPSN’10 I gave a
keynote talk on a powerful EA-based enterprise12 software application that was

10 This is the exact quote from my private correspondence with one of senior members of the

EC community.
11 Linear Programming.
12 Enterprise software addresses the needs of organization processes and data flow, often in a

large distributed environment (e.g. supply-chain management software).

 Quo Vadis, Evolutionary Computation? 111

developed recently13 to address many of wine production challenges present in differ-
ent parts of the wine supply chain. This enterprise software application for wine in-
dustries consists of a suite of software modules (these include predictive modelling
for grape maturity, using weather forecasts and readings on Baum, PH, and TA, vin-
tage planning, crush scheduling, tank farm optimisation, bottling-line sequencing, and
demand planning) that can optimise the end-to-end wine supply chain.. When dep-
loyed together, these applications can optimise all planning & scheduling activities
across a winery’s entire supply chain.

Each of these individual software application deals with a silo problem; for exam-
ple, the bottling module (Mohais et al. 2011) is responsible for generating optimal
production schedules for the wineries’ bottling operations. Opportunities for optimisa-
tion include manipulating the sequencing order, selecting which bottling lines to use,
consolidating similar orders within the planning horizon, and suggesting changes to
the requested dates to improve the overall schedule. Some of the key objectives are to
maximise export and domestic service levels (i.e. DIFOT), maximising production
efficiency, and minimising cost. As the module provides decision-support, the user
has full control over the optimisation process in that they are able to lock in manual
decisions, set the business rules and constraints, re-optimise after making changes,
and compare the current solution with an alternative plan. The module also provides a
what-if tab that can be used to analyse strategic business decisions and events such as
capital investment in new equipment, or to look at operational decisions like adding
or removing extra shifts, or even for crisis management (what is the impact of a bot-
tling line going down or key staff being ill). Reporting is provided on a number of
levels and to suit different stakeholders; for example the daily bottling programs for
execution, a report on particular wine blends, or a report on expected production effi-
ciency. Users are also able to generate an alternative to the current production sche-
dule, with the system providing a comparison to help the user evaluate the impact of
any changes. The comparison includes performance metrics (KPI’s) such as any dif-
ference in the number of late orders, and changes to production efficiency and cost
(this could include measures such as cost per unit, total production throughput, pro-
duction line utilisation, etc.). This allows the user to experiment with different sche-
dules before committing to making any changes; for example, trying to incorporate a
last minute export order without disrupting existing orders.

Each of these modules (whether predictive modelling for grape, vintage planning,
crush scheduling, tank farm optimisation, bottling-line sequencing, and demand plan-
ning) represents a significant large-scale optimisation/prediction problem in itself and
includes several interesting research aspects (e.g. variable constraints in the bottling
module). However, finding the optimal solution in one silo of the operation may have
negative impact downstream and/or upstream of the whole operation. Consider, for
example, the following example. The bottling plant has to process 700,000 litres of
Jacob’s Creek14 to satisfy demand. However, the closest (in terms of volume) tank on

13 The application was developed at SolveIT Software (www.solveitsoftware.com) together

with similar applications in other verticals (e.g. for grain handling, pit-to-port mining logis-
tics, and mine-planning activities).

14 Jacob’s Creek is one of the most known, trusted and enjoyed Australian wines around the
world.

112 Z. Michalewicz

the tank farm contains 800,000 litres of Jacob’s Creek – and what is the optimal deci-
sion here? Clearly, from the bottling perspective they should get just 700,000 litres of
that wine and process it – but it would be a bad decision from the perspective of
another silo: tank farm. They will be left with 100,000 litres leftover with all risks (the
quality of these 100,000 litres will go down quickly due to oxygen levels in the tank)
and inefficiencies in operations (the tank with the leftover 100,000 litres can’t be used
in their operation). From tank farm perspective, the ‘optimal’ decision would be to
send 800,000 litres of Jacob’s Creek for bottling (no leftovers with clear benefits), but
the bottling operation would not be happy with such a solution (note that once a wine
is bottled and labelled, the choice for its destination is quite limited as different cus-
tomers have different requirements for packaging). This is why the global optimum
here should consider implications of various decisions across all silos. Further, it is
next to impossible to compare the result to some theoretical global optimum – usually
the comparisons are made with respect to some metrics from the previous year (i.e.
before the system went live). Further, by considering the entire supply chain we can
attempt to answer some key (global) questions, as “What is the impact of increasing
demand by 10% of Jacob’s Creek across all operations”? And the answers for such
questions are sought today by businesses and industries.

Darrell Whitley (the former editor-in-chief of Evolutionary Computation Journal
who also participated actively in a few real-world projects), wrote:15 “Your comments
about silos and up-stream and down-stream side effects is spot-on and is something I
have worried about for some years now. If you say ‘I ran an experiment and I can
increase line-loading by 10 percent, what does this do to inventory?’ Is that increase
in line-loading sustainable or just temporary because if you increase line-loading,
you decrease inventory, which might reduce your ability to line-load. When you in-
troduce a change in one silo you move the steady-state in other silos. You almost
NEVER see this in academic studies.”

A decision-support system that optimises multi-silo operational problems is of a
great importance for an organisation; it supports what-if analysis for operational and
strategic decisions and trade-off analysis to handle multi-objective optimisation prob-
lems; it is capable of handling and analysing variances; it is easy to modify – con-
straints, business rules, and various assumptions can be re-configured by a client.
Further, from end-user perspective, such decision-support system must be easy to use,
with intuitive interfaces which lead to faster and easier adoption by users with less
training.

However, it seems to me that the research done within the EC community diverges
further and further from complexities of today’s problems mainly because the focus
of the research is on issues which are secondary for real-world applications. This is
partially due to the reasons identified by Jeff Ullman and discussed in the Inspiration
section of this article – most researchers follow up of some previous work of other
researchers, making progress on some ‘open issues’, and, in the words of Jeff Ullman:
“it almost guarantees that after a while, the work is driven by what can be solved,
rather than what needs to be solved.” Thus the influence of many research papers in
the EC community, beyond the world of paper-writing, is minimal.

15 Private correspondence.

 Quo Vadis, Evolutionary Computation? 113

In my recent correspondence with Hans-Georg Beyer he identified: “… 3 fields
where theory should focus on or contribute to in the future: (1) mathematical charac-
terization of evolutionary dynamics (in a sense of a predictive theory); (2) population
sizing rules for highly multimodal optimization problems, and (3) development of
stopping rules based on evolutionary dynamics.” However, it is not clear to me how
even breakthrough results in these areas would help practitioners for approaching
complex real-world problems of growing complexity, as described earlier?

Consider, for example, the number of published papers on EAs in dynamic envi-
ronments. Most researchers focused at recovery rates in cases there was a change in
the shape of a landscape. I think it is of no significance, as in real-world problems (1)
the objective is usually fixed (e.g. say, you minimize the cost of some operation and
you do not change this objective), (2) constraints are changing (e.g. failure of a truck),
and (3) we deal with partially-executed solutions. Thus the concept of recovery is
very different. There is an enormous gap between theoretical models and practice.
The same is in many other research areas. For example, I remember that I was amazed
when (over 20 years ago) I discovered the first textbook on genetic algorithms (Gold-
berg, 1989). The book was around 400 pages, and it included one paragraph on how
to deal with constraints (!). The same is true today – many theoretical results are
achieved in constraints-free environments and their applicability to real world situa-
tions is quite limited.

Further, as discussed in Section 2, it is unclear what is (and what is not) an Evolu-
tionary Algorithm. On one hand, EA practitioners usually employ hybrid forms of
evolutionary algorithms (e.g. extending the system by problem-specific initialisation,
problem-specific operators) and a successful application of EA to a complex business
problem requires a significant dose of ‘art’; on the other hand most of theoretical
research concentrates on classic versions of EAs and toy problems. There are many
research papers published in the EC community on convergence properties of evolu-
tionary algorithms, diversity, exploration, exploitation, constraint-handling, multi-
objective optimisation, parallel EAs, handling noise and robustness, ruggedness of the
landscape, deceptiveness, epistasis, pleiotropy – to name just a few areas of research.
In most cases some standard versions of EA are studied: binary coded GA with a
tournament selection or (1+1) ES. Whatever the results, their applicability to solving
complex real-world problem are questionable.

A large portion of the research on Evolutionary Algorithms is experimental –
hence the researchers use a variety of benchmark functions and test cases. However,
these experiments are usually conducted on simple silo problems. The researchers use
some classic sets of functions (from f1,…, f5 proposed by Ken De Jong [De
Jong,1975] to fn today, where n approaches 100) for numerical optimisation and clas-
sic benchmarks (e.g. on graph colouring, traveling salesman, vehicle routing, job shop
scheduling) for combinatorial optimisation. However, these small-scale silo problems
are far cry from complexity of real-world problems – consequently these theoretical
and experimental results are of little help (if any) to any practitioner who works on
EA-based enterprise software applications. There are hundreds (if not thousands) of
research papers addressing traveling salesman problems, job shop scheduling prob-
lems, transportation problems, inventory problems, stock cutting problems, packing

114 Z. Michalewicz

problems, etc. While most of these problems are NP-hard and clearly deserve research
efforts, it is not exactly what real-world community needs. Most companies run com-
plex operations and they need solutions for complex multi-silo problems with all their
complexities (e.g. many objectives, noise, constraints). In the same time Evolutionary
Computation offers various techniques to experiment with, e.g., cooperative coevolu-
tion [Potter and De Jong, 1994], where several EAs, each corresponding to a single
silo, are run in parallel. Communication between silos may occur during evaluation of
individual solutions. Solutions from one silo might be evaluated based on their per-
formance when combined with representative solutions from the other silos.

However, there are very few research efforts which aim in the direction of optimis-
ing interdependent multi-silo operational problems with many conflicting objectives,
complex constraints and business rules, variability issues and noise. This might be
due to the lack of benchmarks or test cases available. It is also much harder to work
with a company on such global level as a delivery of successful software solution
usually involves many other (apart from optimisation) skills, from understanding the
company’s internal processes to complex software engineering issues. And it is much
harder to report the results, as they may involve revealing company’s confidential
data. It is also much harder to run significant number of experiments to satisfy re-
quirements of many journals.

Further, in almost in all cases a new method (whether new representation, new set
of operators, new selection method, a novel way to incorporate problem-specific
knowledge into the algorithm, a novel way to adapt parameters in the algorithm, and
so on) is tested against such accepted benchmarks – and the most popular quality
measure of a new method is the closeness of the generated solution to the known,
global optima in a number of function evaluations. Of course, it is helpful that some
silo problems are used for testing, as for many of these the global optima are known
(or it is possible to estimate their values). However, for many real-world applications
getting to the global optima is secondary. First, the concept of global optima in busi-
ness is different to that in academia – a global optimum for a silo is referred to as a
local optimum solution, as it does not take into account other interacting silos of the
business. And the global optimum solution refers to whole multi-silo operation of the
organisation. Second, for large-scale (e.g. multi-silo) problems, it would take days (if
not more) to generate a global optimum solution, while decision-makers have minutes
to react. Third, the multi-silo environment is highly variable (delays, unexpected or-
ders, failures, etc.) and a robust, quality solutions are of higher importance, as the
current solution would be modified, anyway, due to changes in the environment.
Fourth, due to many, possibly conflicting, objectives, business rules, and soft con-
straints, the meaning of the term “global optimum” is not that clear – even expe-
rienced decision makers often have difficulties in pointing to a better solution out of
two available solutions. Finally, the name of the game in industry is not to find an
elusive global optimum, but rather to match (and hopefully improve) the results of the
human team of experts16, who have been involved in particular decision-making

16 There is a nice, one sentence summary of how evolution works: “You don't have to outrun

the bear, but you just have to outrun the other hunter”.

 Quo Vadis, Evolutionary Computation? 115

activity for a significant time – however, technical journals reject such comparisons.
Not to mention that it would be extremely hard to document such comparisons in a
systematic way without revealing sensitive data of an organisation.

Each EA possesses a number of algorithm-specific parameters. Clearly, theory
should provide guidelines how to choose those parameters (this is what Dave Davis
referred to in his talk from 15 years ago). But theory can only consider simple toy
problems. Many researchers would like to believe that if these toy problems cover
certain aspects of real-world problem, the results of the theory can be used as a first
guideline to choose these parameters. But it seems to me that this is just a wishful
thinking – there is no comparison in terms of complexity between real-world prob-
lems are and toy problems – and I cannot see any justified transition of results. Fur-
ther, most research papers focus on one selected aspect of a problem, whether this is
constraint-handling method, handling many objectives, dealing with noise and/or
uncertain information. In business problems, however, all these aspects are usually
present in every problem – and there is hardly a paper which addresses problems of
such complexity. Further, real-world applications usually require hybrid approaches –
where an ‘evolutionary algorithm’ is loaded with non-standard features (e.g. decoders,
problem-specific variation operators, memory) – but the current theory of evolutio-
nary algorithms does not support such hybrid approaches very well.

5 Conclusions and Recommendations

Let us conclude by returning to the questions from the second paragraph of the ab-
stract: What are the practical contributions coming from the theory of Evolutionary
Algorithms? Did we manage to close the gap between the theory and practice? How
Evolutionary Algorithms do compare with Operation Research methods in real-world
applications? Why do so few papers on Evolutionary Algorithms describe the real-
world applications? For what type of problems Evolutionary Algorithm is “the best”
method? Let’s address these questions in turn.

5.1 What Are the Practical Contributions Coming from the Theory
of Evolutionary Algorithms?

It seems that the practical contributions coming from the theory of Evolutionary Al-
gorithms are minimal at the best. When a practitioner faces complex business problem
(problem which involved many silos of the operation, significant number of business
rules and constraints, many (possibly conflicting) objectives, uncertainties and noise –
all of these combined together, there are very few hints available which might be used
in the algorithms being developed. None of the results on convergence properties,
diversity, exploration, exploitation, ruggedness of the landscape, deceptiveness, epi-
stasis, pleiotropy that I know of would help me directly in developing EA-based en-
terprise software application. This is partially due to the lack of benchmarks or test
cases of appropriate complexity and partially that the EC technical journals are not
appropriate for publicizing business successes (see later questions/answers).

116 Z. Michalewicz

5.2 Did We Manage to Close the Gap between the Theory and Practice?

No, we did not – and as a matter of fact, the gap is growing. As discussed in this ar-
ticle, there are two main reasons for this phenomenon (1) Growing complexity of
real-world problems and (2) focus of research community on issues which are sec-
ondary for real-world applications.

5.3 How Do Evolutionary Algorithms Compare with Operation Research
Methods in Real-World Applications?

It seems to me that (after talking to many practitioners at many major corporations)
they compare quite poorly… The main reason (I think) is due to the wide spread of
standard Operation Research methods which dominated optimisation aspects of busi-
ness operations for more than 30 years. Further, the Operation Research community
has a few standard and powerful tools (e.g. integer programming methods) which are
widely in use in many organisations. On the other hand, this is not the case for the EC
community – there are no ‘plug-in’ software tools appropriate to deal with thousands
of variables and hundreds of constraints, there are no tools available of comparable
power to integer programming. Further, many Operation Research methods are exact
– they guarantee the optimum solution, which is not the case with heuristic methods
in general and Evolutionary Algorithms in particular.

However, there is one catch here, as every time we solve a problem we must real-
ize that we are in reality only finding the solution to a model of the problem. All mod-
els are a simplification of the real world – otherwise they would be as complex and
unwieldy as the natural setting itself. Thus the process of problem solving consists of
two separate general steps: (1) creating a model of the problem, and (2) using that
model to generate a solution:

Problem → Model → Solution

Note that the “solution” is only a solution in terms of the model. If our model has a
high degree of fidelity, we can have more confidence that our solution will be mea-
ningful. In contrast, if the model has too many unfulfilled assumptions and rough
approximations, the solution may be meaningless, or worse.

So in solving real-world problem there are at least two ways to proceed:

1. We can try to simplify the model so that traditional OR-based methods might
return better answers.

2. We can keep the model with all its complexities, and use non-traditional ap-
proaches, to find a near-optimum solution.

In either case it's difficult to obtain a precise solution to a problem because we either
have to approximate a model or approximate the solution. In other words, neither
exact methods nor heuristic methods return optimum solution to the problem, as the
former methods simplify the problem (by building simplified, usually linear, model of
the problem) so the optimum solution to the simplified model does not correspond to
the optimum solution of the problem, and the latter methods return near-optimum

 Quo Vadis, Evolutionary Computation? 117

solutions (but to the more precise models). Further, as discussed in section 4, for
many real-world applications the issue of getting to the global optima is secondary as
robust, quality (i.e. near-optimum) solutions are of higher importance. And the more
complexity in the problem (e.g., size of the search space, conflicting objectives, noise,
constraints), the more appropriate it is to use a heuristic method. A large volume of
experimental evidence shows that this latter approach can often be used to practical
advantage.

5.4 Why Do So Few Papers on Evolutionary Algorithms Describe Real-World
Applications?

The journal editors and reviewers of submitted papers are well versed in the standard
criteria for acceptance: (a) clearly revealed algorithms, so the reader can at least at-
tempt to replicate you approach, (b) well characterized problems, so the reader can
tell if his problem is the right type, (c) rigorous comparison with known results, so the
reader can have confidence your results are significant. All this is needed for verifia-
bility – the soul of science. On the other hand, a successful application of EA to com-
plex business problem requires a significant dose of ‘art’ – and technical journals and
(to some lesser extend) conferences generally have difficulties with that. For addi-
tional thoughts on this very topic, see (Michalewicz, 2012).

5.5 For What Type of Problems Evolutionary Algorithm Is “The Best”
Method?

A submission of a survey article on Evolutionary Algorithms (written with Marc
Schoenauer) – for Wiley Encyclopedia of Operations Research and Management
Science, 2010 edition – generated editor’s comment/request: “Can the authors pro-
vide objective guidance on the types of problems for which evolutionary methods are
more appropriate than standard methods? I know a lot of ‘hearsay’ related to this
issue but I am wondering if there is more objective evidence. Is there any solid evi-
dence of EA superiority in a class of problems?” More and more people question the
usefulness and applicability of Evolutionary Computation methods and it is essential
that our community would get ready to answer such questions.

And I think that the right answers for above questions are not of the type: “EA
techniques are superior for, say, symmetrical TSP” or “EA techniques are superior
for, say, such-and-such types of scheduling problems,” as the main issue is just in size
and complexity of the problems – for example, multi-silo operational problems with
many conflicting objectives, tens of thousands of variables, complex constraints and
business rules, variability issues and noise, interdependencies between operational
silos – problems, for which standard Operations Research methods are not appropri-
ate. For such problems the business starts looking for optimization support because
rational decision making and logical decomposition of the problem are no longer
possible. This is a big chance for Evolutionary Computation community, and the time
is right to move that direction. However, this would require some fundamental
changes in a way the EC community looks at real-world problems…

118 Z. Michalewicz

Many traditional decision-support applications at large corporations worldwide
have failed, not realising the promised business value, mainly because small im-
provements and upgrades of systems created in the 1990s do not suffice any longer
for solving 21st century companies’ problems. Also, the existing applications often are
not flexible enough to cope with exceptions, i.e. it is very difficult, if not impossible,
to include problem-specific features – and most businesses have unique features
which need to be included in the underlying model, and are not adequately captured
by off-the-shelf standard applications. Thus, the results are often not realistic. A new
approach is necessary which seamlessly integrates local models and optimisation
algorithms for different components of complex business problems with global mod-
els and optimisation algorithms for the overall problem. Such decision-support sys-
tems should allow also manual adjustments by domain experts, to achieve optimal
decisions with the flexibility to be adapted to business rules and unforeseen circums-
tances. And I believe that this new generation of decision-support systems will be
based on Evolutionary Algorithms (understood in a broad sense of this term).

So let’s move to the last part of this article and discuss what should be done to re-
medy the current state of the art with respect to Evolutionary Algorithms? Before we
start this discussion, let’s go back 20 years…

Most of the readers might be aware that the field of evolvable hardware (EHW) is
about 20 years old. Some of the first really serious work was done by John Koza – in
fact, EHW was one of the applications Koza used to show the power of Genetic Pro-
gramming (GP). He used GP to evolve a series of analog filters (both circuit configu-
ration and passive component values). He was able to evolve a series of filters that
were essentially identical to filters that were patented in the 1930s for the telephone
industry. Based on those results he coined the phrase “human competitive designs”
and claimed this was something GP can do. Ten years ago there was the annual
(small, but enthusiastic) NASA/DOD sponsored EHW conference. However, that
conference is no longer held and a majority of the main players have moved on to
other areas. Why? Well, the human competitive designs were just that and little else.
GP could duplicate what people had done before, but really didn’t (couldn’t?) evolve
much new and innovative. Consequently people figured all of the low hanging fruit
had been picked and EHW had little new to offer. So they moved on to new areas…

This story should serve as a warning to the whole EC community – I believe that
the future of EAs would be determined by the applicability of EAs. The excitement
connected with terms like ‘genetic’, ‘evolution’, ‘emergence’, if not supported by
practice, would wear off (this is, to some extent, already happening in industry). And
as long as EAs would produce just ‘interesting’, ‘promising’, or ‘comparable to an
OR method’ results on some benchmark problems, and the theory would focus on
standard properties of EAs, it would be hard to compete in the real-world
environment.

Some theoreticians do not worry: one of them wrote to me: “Good problem solv-
ers/theoreticians can also work in other fields. I do not see this as a severe problem.”
I found such comments quite depressing, as they remind me of a sad story where a
group of scientists (astronomers) were studying climate patterns of a planet X which

 Quo Vadis, Evolutionary Computation? 119

was located millions of light-years from the Earth. One day the planet exploded, and
these scientists moved to study another planet, Y…

So, what should we do? What can be done? Well, apart from suggesting that the
IEEE should give a post mortem Evolutionary Computation Pioneer Award to Isaac
Newton, it seems there are a few things that are worth considering; these include:

1. revisiting the policies of some EC journals – and introduce a different set of
criteria to evaluate application papers. After all, the whole purpose of the jour-
nal is to disseminate knowledge. It assumes that only the top researchers, the
leading edge theory types, are the only ones who might read the journals. Gar-
ry Greenwood summarized it nicely: “The notion that a paper has to have
some theoretical component or it doesn't rise to the level of a journal publica-
tion is absurd”. However, due to complexities of evaluating the merit of an ap-
plication paper, this task is far from trivial. There is need for a framework that
would give the reader confidence that: (a) the described methods really are an
advance on previous industrial practice (validity); (b) the described methods
will often port to other industrial problems (generalisability), and (c) the ad-
vances described really are new (novelty). And there are no easy ways to ac-
complish that. Note that application papers that describe systems which are in
daily use (whatever their significance) are routinely rejected as, for example, it
is impossible to run millions scenarios, which is usually required for the evalu-
ation of the approach. However, papers which document millions of scenarios
run on a meaningless problem (e.g. an unconstrained sphere problem) have
much better chance – as this is real science… Whichever way I look at this, it
does not seem right.

2. removing ‘lip-service’ from publications, e.g. the authors of accepted papers
should be asked to remove sentences about applicability of EAs to a wide-
range of real-world problems in many verticals (as discussed in section 3 of
this paper), not to misled the EC community (unless some concrete examples
are provided).

3. educating the research community on real-world problems, as it seems that
most of the researchers are disconnected from the real-world and its chal-
lenges. Some of these challenges include separation of business rules and con-
straints from the optimisation engine, as no industrial user is going to accept a
software that needs to be modified (or worse, redesigned) if the application
problem slightly changes. The methods have to be robust in the sense they can
work with just about any variation of the application problem domain without
redesign or recoding – but rather just by changing environmental settings in
the configuration file of the system17. Garry Greenwood, summarised this18
very well: “If you have to take your EC method offline to change it for every
new application problem variation and the user interface keeps changing,

17 Similar issue was raised in [Goertzel, 1997]: AI-based software applications are quite fra-

gile, often a slight change in problem definition will render them useless. This problem is the
main motivation for the establishment of Artificial General Intelligence community.

18 Private correspondence.

120 Z. Michalewicz

forget it.” Additional challenges include “explanatory features” of the optimis-
er – as usually end-users hate “black-boxes” which return just a recommended
result without any “explanations” and interactive components, which are very
helpful in influencing the optimiser into particular directions, to name a few.

4. encouraging researchers who deal with theoretical aspects of EAs to pay atten-
tion to commercial developments. Theoreticians should understand that the
work in vacuum is not that significant. For many people it is clear that a re-
searcher working on internet search engines should not ignore developments at
Google – so the same should apply to an EA researcher who works on optimi-
sation of supply chain type of problems and such researcher should be know-
ledgeable on offerings of SAP (Kallrath and Maindl, 2006).

5. developing artificial problem sets that better reflect real-world difficulties
which the research community can use to experience (and appreciate) for
themselves what it really means to tackle a real-world problem. This would
lead to some meaningful classification of different types of problems to under-
stand the effectiveness of various algorithms. This would require studying the
problem representation and modeling issues, as these are the key components
in approaching any real-world problem. Finally, more emphasis should be
placed on studying the reliability of algorithms versus the frequency of hitting
the global optimum, as in the real world setting reliability (in the sense of get-
ting quality solution every run) is more desirable than getting global optimum
in 95% of runs (and poor quality solutions in the remaining 5% of runs).

I think the following story nicely concludes this chapter and illustrates the gap be-
tween the theory and practice in Evolutionary Algorithms:

A scientist discovered a special dog food with amazing characteristics. He has proved
(by a scientific method) that if a dog eats this food on regular basis, its fur would be
always shiny, its teeth would be always white, it would never be sick, it would be well-
behaved, together with many additional advantages. However, there was just one
problem with this invention – when it was commercialized, it was discovered that
dogs refused to eat this food…

Acknowledgements. The author is grateful to Manuel Blanco Abello, Brad Alexan-
der, Hans-Georg Beyer, Yuri Bykov, Ken De Jong, Fred Glover, Garry Greenwood,
Dennis Hooijmaijers, Pablo Moscato, James Whitacre, and Darrell Whitley for their
comments – many of them were incorporated in the final version of this chapter. Also,
a few quotes from our private correspondence were included in the text (with permis-
sion of the author).

References

[Ackoff, 1979] Ackoff, R.: The Future of OR is Past. JORS (1979)
[Chow & Yuen, 2011] Chow, C.K., Yuen, S.Y.: An Evolutionary Algorithm That Makes

Decision Based on the Entire Previous Search History. IEEE
Transactions on Evolutionary Computation 15(6), 741–769
(2011)

 Quo Vadis, Evolutionary Computation? 121

[De Jong, 1975] De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic
Adaptive Systems. Doctoral Dissertation, University of Michi-
gan, Ann Arbor, MI. Dissertation Abstract International 36(10),
5140B (University Microfilms No 76-9381) (1975)

[De Jong, 2002] De Jong, K.A.: Evolutionary Computation: A unified approach.
Bradford Book (2002)

[Gattorna, 2010] Gattorna, J.: Dynamic Supply Chains. Prentice Hall (2010)
[Goertzel, 1997] Goertzel, B.: From Complexity to Creativity: Explorations in

Evolutionary, Autopoietic, and Cognitive Dynamics. Plenum
Press (1997)

[Goldberg, 1989] Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley (1989)

[Hinterding et al. 1999] Hinterding, R., Michalewicz, Z.: Your Brains and My Beauty:
Parent Matching for Constrained Optimisation. In: Proceedings
of the 5th IEEE International Conference on Evolutionary Com-
putation, Anchorage, Alaska, May 4-9, pp. 810–815 (1998)

[Ibrahimov et al. 2011] Ibrahimov, M., Mohais, A., Schellenberg, S., Michalewicz, Z.:
Advanced Planning in Vertically Integrated Supply Chains. In:
Bouvry, P., González-Vélez, H., Kołodziej, J. (eds.) Intelligent
Decision Systems in Large-Scale Distributed Environments. SCI,
vol. 362, pp. 125–148. Springer, Heidelberg (2011)

[Kallrath and Maindl, 2006] Kallrath, J., Maindl, T.I.: Real Optimization with SAP-APO. Sprin-
ger (2006)

[Michalewicz, 1992] Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolu-
tion Programs, 1st edn. Springer (1992)

[Michalewicz, 2012] Michalewicz, Z.: The Emperor is Naked: Evolutionary Algo-
rithms for Real-World Applications. ACM Ubiquity (2012)

[Mohais et al. 2011] Mohais, A., Ibrahimov, M., Schellenberg, S., Wagner, N.,
Michale wicz, Z.: An Integrated Evolutionary Approach to
Time-Varying Constraints in Real-World Problems. In: Chiong,
R., Weise, T., Michalewicz, Z. (eds.) Variants of Evolutionary
Algorithms for Real-World Applications. Springer (2011)

[Potter and De Jong, 1994] Potter, M.A., De Jong, K.A.: A Cooperative Coevolutionary
Appro ach to Function Optimization. In: Davidor, Y., Männer,
R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–
257. Springer, Heidelberg (1994)

[Ullman, 2009] Ullman, J.D.: Advising Students for Success. Communications
of the ACM 53(3), 34–37 (2009)

