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Adaptation in Dynamic Environments:
A Case Study in Mission Planning
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Abstract— Many random events usually are associated with
executions of operational plans at various companies and or-
ganizations. For example, some tasks might be delayed and/or
executed earlier. Some operational constraints can be introduced
due to new regulations or business rules. In some cases, there
might be a shift in the relative importance of objectives associated
with these plans. All these potential modifications create a huge
pressure on planning staff for generating plans that can adapt
quickly to changes in environment during execution. In this paper
we address adaptation in dynamic environments.

Many researchers in evolutionary community addressed the
problem of optimization in dynamic environments. Through
an overview on applying evolutionary algorithms for solving
dynamic optimization problems, we classify the work into two
main categories: (1) finding/tracking optima and (2) adaptation
and we discuss their relevance for solving planning problems.
Based on this discussion, we propose a computational approach to
adaptation within the context of planning. This approach models
the dynamic planning problem as a multi-objective optimization
problem and an evolutionary mechanism is incorporated, this
adapts the current solution to new situations when a change
occurs.

As the multi-objective model is used, the proposed approach
produces a set of non-dominated solutions after each planning
cycle. This set of solutions can be perceived as an information-
rich data set which can be used to support the adaptation process
against the effect of changes. The main question is how to exploit
this set efficiently? In this paper we propose a method based on
the concept of centroids over a number of changing-time steps,
at each step we obtain a set of non-dominated solutions.

We carried out a case study on this proposed approach.
Mission planning was used for our experiments and experimental
analysis. We selected mission planning as our test environment
because battlefields are always highly dynamic and uncertain
and can be conveniently used to demonstrate different types of
changes, especially time-varying constraints. The obtained results
support the significance of our centroid-based approach.

Index Terms— adaptation, dynamic environments, evolution-
ary algorithms, multi-objective optimization

I. INTRODUCTION

Real-world problems often contain many uncertain and
dynamic factors; i.e., air traffic scheduling is usually affected
by unexpected events such as bad weather or emergencies,
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military mission planning might have to endure delays or
failures of capabilities. Therefore, it is unlikely that any
solution found for these problems would stay valid for a long
time horizon. These uncertain and dynamic factors require
an adaptive mechanism to introduce changes to the current
solution.

Evolutionary algorithms (EAs) have been a popular means
for solving optimization problems in dynamic environments
[27]. To date, there have been a significant number of
techniques proposed within the framework of EAs to solve
Dynamic Optimization Problems (DOPs). These techniques
include diversity-based approaches, either explicit, such as
random immigrant and hyper-mutation, or implicit, such as
multi-objectization, memory-based, or multi-population based.
The readers are referred to [10] for a more detailed survey in
this area.

It is interesting to see that the past work on EAs for
dynamic optimization problems can be divided into two broad
categories: (1) finding/tracking optima over time and (2)
adapting against the effect of changes. The approaches from
the first category deal with each change in the environment
by generating a new population of solutions and evolving
them further to find and track the new optima. Meanwhile,
the approaches from the second category address different
circumstances — for example, where a part of the solution has
already been executed by the time the change occurs. In these
approaches it is necessary to address the issue of adaptation
from the current solution in which any derivation from the
current solution has to take into account the associated costs.
While the approaches of the first category are more related
to the issue of theoretical convergence, the approaches of the
second one are more practical and have huge applicability to
many real-world problems [34].

Note also, that given a change in the environment where
a solution is already in execution, re-planning of the whole
solution might not be feasible or might incur a high cost.
So the adaptation process should ensure meeting the primary
objectives of the problem while keeping the cost of adjusting
the solution to a minimal level. In other words, the existence of
multi-objectivity within this adaption process is natural. Given
the importance of this issue, however there seems a lack of
dedicated research to develop computational frameworks for
dealing with this issue.

Further, there are three types of changes which have been
considered in the literature. These are time-varying objective
functions, time-varying parameters, and time-varying con-
straints, see section II for detailed descriptions. While the first
and the second types have been quite popular when using EAs
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to deal with these changes, the third type of time-varying (or
dynamic) constraints has received much less attention. This is
a bit surprising as this third type represents a typical scenario
in a business or industry environment. Note that appearance
on a new constraint (or a modification of an existing one) may
result in infeasibility of the current solution; a removal of a
constraint may result in the appearance of a better solution.
So in this paper we will also address this type of changes.

As indicated earlier, we investigated the issue of adaptation
within the scope of scheduling and planning, especially the
problem of Resource Constraint Project Scheduling — RCPS,
since this problem domain has been a popular one for studying
adaptation in dynamic environments [37]. We reformulated the
RCPS to reflect some dynamic factors and (in the context of a
planning problem) called it Adaptive Planning Problem (APP).
For this problem, there is a need to prepare adaptive plans to
deal with changes that might happen during execution. The
question is that given the current (partially executed) plan, how
to generate new plans that can satisfy both objectives: keeping
the execution within its time-limit (original objective) while
maintaining minimal cost of alteration (additional objective)?

In our approach we adapt the current plan in a reactive-style
using an evolutionary algorithm. For any component which
has already executed or is in progress, it will not be adjusted
or rescheduled. In this way the rescheduling process becomes
simpler over time since the number of tasks to be scheduled
decreases. To assist in the decision making process, we use
the second objective as an additional indication for selection
of a new plan. A set of plans is obtained by analysing trade-
off between time and cost of re-allocated resources. Further,
since changes might happen frequently during execution of
a plan, it should be worthwhile to use the results obtained
in the past to initialize the population in order to speed up
the adaptation process. The past information is contained in
a large number of non-dominated solutions. In this paper
we propose a novel mechanism where for each set of non-
dominated solutions obtained before a change, we calculate its
centroid which shows the overall tendency of the whole set.
The set of centroids will be used as an initialization factor for
the new population, whenever a change happens. We call it
the Centroid-Based Adaptation (CBA).

The selected case study was given within the context of
military mission planning, since it can be easily formulated as
an instance of the APP. Military missions are usually uncertain
and dynamic. The main objective is to minimize the execution
time of the mission with a limit on available capabilities.
Two objectives are proposed: the execution time of the plan,
and the cost of operating capabilities. Also, several time-
varying constraints are proposed, including execution time, the
failure of capabilities, and change of task-relationship network.
The performance of the proposed approach was analyzed
and discussed. We validated CBA against three other EA
methods: randomly initializing, using the last population, and
non-dominated solutions only from the last population. The
obtained results strongly support our proposal with a consistent
and better performance on all three types of changes.

The paper is organized as follows: an overview of evolution-
ary algorithms in dynamic environments, evolutionary multi-

objective optimization, and project scheduling are presented in
sections II, III, and IV, respectively. The problem formulation
and the proposed method are introduced in section V. A case
study on how can we exploit trade-off solution to facilitate the
adaptation process in section VI. The last section is devoted
to the conclusion of the work and some lessons learnt.

II. DYNAMIC OPTIMIZATION PROBLEMS AND
EVOLUTIONARY ALGORITHMS

A characteristic of dynamic optimization problems (DOPs)
is change over time. Under the effect of changes, the search
space is likely to be altered, and the current solution might
be no longer optimal, or may become infeasible. As discussed
briefly in the previous section of the paper, the paper defines
the following categories:
• Time-varying objective functions: For example enemy

units arrive at a location, making some parts of the objec-
tive more difficult. The objective function is not constant
over time. Therefore, the objective value of a solution
can be different at different times. This usually causes the
occurrence of new optima. This category of change has
been popular for research in EAs for tracking optima over
time, i.e., the moving peak benchmark (MPB) problem
[10].

• Time-varying variables: An example problem of this
category is dynamic machine scheduling where unex-
pected new jobs arrive. A time-varying variable can be
used for determination of the objective value, but can
be a late addition or change. To date, dynamic job-shop
scheduling has been a popular test case in the literature
[37].

• Time-varying constraints: For example the precedence
relationship of tasks. The objective function and variables
do not change for this category, however, the constraints
may change over time. This category of change does
not change the fitness landscape driven by the objective
function, but it will affect the areas of feasibility. It is
interesting to note that this category of change has not
been analyzed in detail in comparison to the other two
categories.

As indicated earlier, there has been an increasing number
of works applying EAs to solve optimization problems in
dynamic environments. This is mainly because of the way EAs
mimic natural evolution, a number of individual solutions are
allowed to compete and evolved over time. At the time of a
bounded change, this population of solutions (now at fairly
different areas of the search space) can easily evolve towards
the new optima. In general, the EA approaches for DOPs
are categorized into two broad areas: finding/tracking optima
and adaptation. We discuss these two areas in the following
subsections.

A. Finding/tracking optima

This research direction focuses on the convergence aspect
that allows EAs to quickly pinpoint the moving optima and
track them over time. It usually uses the last population before
the problems change as a starting point for the new search
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space. However, for this direction, it should be noted that the
change should be bounded, so that the effect is not radical and
the previous information in the individuals of the previous
population is still useful. The first and second categories of
change are usually more suitable for this. To address the
convergence issue, four popular approaches are considered:
• Generating diversity after a change. Diversity is con-

sidered as an important element for EAs to effectively
track optima after a change. The most natural way to do
this is to reinitialize the population after a change. How-
ever, with some bounded changes, the new search space
is not radically different from the previous one. In such
cases, reinitialization might slow down the convergence
process; hence reusing the previous population might be
a better option. Note that the last population might be
driven towards the area surrounding the previous optima.
However, with a change, the new optima might be at a
different location. Therefore, if we use the last population,
it needs some diversity. A popular approach is the use of
hyper-mutation [16] where the mutation rate is set to a
high value for a limited number of generations, or just the
first generation and then decreased over time. Note that a
very high mutation rate may result in a reinitialization of
the population, whereas too low mutation rate does not
help to boost diversity of the population.

• Maintaining diversity during the run. Diversity is
maintained over time to make sure the population is
diverse enough to recover from the effect of change.
Typical approaches include random immigrant [23] where
new individuals are inserted into the population on regular
basis, multiobjective-based method utilizing diversity as
the second objective [14], and the thermodynamic genetic
algorithm where an entropy-based value for niching is
used during the optimization process [35].

• Memory-based approaches. A memory is used to record
information of the past optima. This information is useful
if future optima return to the vicinity of previous optima.
This can be done either in explicit or implicit styles.
For the explicit one, whenever a change happens, some
individuals from memory will be inserted into the popula-
tion [39]. Meanwhile, for implicit approaches, redundant
representations, such as diploidy, are used to generate
solutions [22].

• Multi-population approaches. Several sub-populations
are evolved together to cover several promising areas of
the landscape. In this way, it is hoped that the whole
system will be able to quickly find new optima when
experiencing a change. Also, with this approach, several
optima can be tracked simultaneously. Some typical ex-
amples are: self-organizing scouts [11]; the multi-national
approach [43]; and the shifting balance approach [48].

B. Adaptation

The task of finding and tracking optima does not take into
account the situation where a solution is already in use. Some
components of the solutions are occupied and can not be
altered or there is a high cost associated with such alteration.

Hence, it is essential to adapt the remaining parts of the
solution against the change.

Generally speaking, adaptation is a process of adjusting to
the new conditions to keep the system functioning properly.
Since the world is dynamic, adaptation is a vital process for
many existing systems from biological, ecological to social
organizations [40]. After a change in the weather, a species
might take several generations to develop new abilities to
deal with new weather conditions. A company might need
to change some components of their business solution to deal
with new market conditions. Although adaptation is a complex
process and different from system to system, it needs to be
executed in an incremental style in which the current in-use
components can not be removed without careful consideration
of cost.

In this area, scheduling and planning has emerged as a
popular test problem in which dynamic factors are common,
such as arrival of new jobs (or tasks), disruption of machines
(or resources), time delays in executing jobs. There has been
a considerable number of works on this topic [25], [45], [53],
[37]. In general there are three classes of method for tackling
this adaptation issue:
• Reactive: In these methods a pre-optimized solution is

used as a baseline for scheduling. Whenever a change
happens, this baseline solution is revised or repaired
to adapt to new conditions. However, this baseline is
obtained without any anticipation about the uncertainties.
The repairing or revising process is usually repetitive
and is considered as a local search process [31], [45].
Since this approach is based on existence of the baseline
solution, some researchers have labeled it as ’predictive-
reactive’.

• Proactive: These methods take into account some as-
sumptions (anticipation) about the uncertainties such as
the bound or level of changes, or the probabilistic dis-
tribution of changes in order to find the most suitable
solution. An example proactive approach is adding slack
time to a solution, to make it more robust. The proactive
solution is usually obtained via a sensitivity analysis
(e.g., using the Monte Carlo simulation). This is also
considered as the robustness analysis process [46].

• No-baseline: In these methods there is no baseline solu-
tion set in advance. A new search process is carried out
to find the new solution adapting to new conditions (it is
similar to the re-initialization process).

Also, the use of multi-objectivity has been also considered
as a tool for adaptation [12], [50], [49]. This is because the
consideration is not just given to the original objective, but also
to the associated impacts of adjusting the solution. We will
return to this point later in the paper. Overview: Scheduling
and Resource Allocation

III. EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION

Real-world problems often have multiple and conflicting
objectives e.g., one would like to have a good quality car, but
also to spend small amount of money to buy it. A solution to
a multi-objective problem (MOP) is called a Pareto optimal
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solution if “there exists no other feasible solution which
would decrease some criterion without causing a simultaneous
increase in at least one other criterion” [17].

This definition of Pareto optimality implies the existence
of several trade-off solutions (called the Pareto optimal set,
or Pareto optimal front (POF) for the plot of the vectors of
decision variables corresponding to these solutions in objective
space. Multi-objective evolutionary algorithms (MOEAs) are
stochastic optimization techniques to find such Pareto optimal
solutions for a particular problem [18]. Because, for a
particular problem, many Pareto optimal solutions may exist,
MOEAs are fundamentally different with respect to single-
objective optimization algorithms.

More precisely, in a k-objective optimization problem, a
vector function

−→
f (−→x ) of k objectives is defined as:

−→
f (−→x ) = [f1(

−→x ), f2(−→x ), ..., fk(−→x )] (1)

where −→x is a vector of decision variables in the n-dimensional
space Rn. Each individual (solution) is represented by a vector
−→x and its merit is given by an evaluation vector

−→
f . Hence

the comparison of solutions is not as straightforward as it is
in single-objective optimization problems.

Let’s introduce an additional concept essential for evaluating
individuals in a population: the concept of dominance. An
individual −→x 1 dominates −→x 2 if −→x 1 is better than −→x 2 when
measured on all objectives. If −→x 1 does not dominate −→x 2

and −→x 2 also does not dominate −→x 1, they are non-dominated.
Further, let us introduce the following notation: −→x 1 � −→x 2 if
−→x 1 dominates −→x 2. Also, for scalars a and b, a C b if a is
better than b (similarly, a B b if a is worse than b, and a 7
b if a is not worse than b). With this notation the domination
concept is formally defined as follows.

Definition 1: x1 � x2 if the following conditions hold:
1. fj(x1) 7 fj(x2), ∀ j ∈ [1, 2, ...,k]
2. ∃ j ∈ [1, 2, ...,k] in which fj(x1) C fj(x2).

In general, if an individual in a population is not dominated
by any other individual in the population, it is called a
non-dominated individual. All non-dominated individuals in a
population form the non-dominated set (as formally described
in definition 2):

Definition 2: A set S is said to be the non-dominated set of
a population P if the following conditions hold:

1. S ⊆ P
2. ∀ s ∈ S, @ x ∈ P | x � s

When the set P represents the entire search space, the set of
non-dominated solutions S is called the global Pareto optimal
set. If P represents a sub-space, S is called the local Pareto
optimal set. There is only one global Pareto optimal set, but
there could be multiple local ones. In general, we simply refer
to the global Pareto optimal set as the Pareto optimal set.

Over the years, many MOEAs have been developed. Usually
they are classified into two broad categories: MOEAs with and
without elitism. With the elitism approach, MOEAs employ an
external set (the archive) to store the non-dominated solutions
after each generation. This set is a part of the next generation.
With this method, the best individuals in each generation are
always preserved, and this way helps the algorithm gets closer

to the POF. Algorithms such as SPEA2 [54], PDE [2] and
NSGA-II [19] are examples of this category. In contrast, the
non elitism approach has no concept of elitism when it does
selection of individuals for the next generation from the current
population [55]. Examples of this category include VEGA [41]
and NSGA [18].

IV. RESOURCE CONSTRAINED PROJECT SCHEDULING
PROBLEMS

In the section we provide an overview of resource con-
strained project scheduling problems with emphasis on their
multi-objective aspects and adaptability.

1) Overview: Scheduling and Resource Allocation (SRA) is
a decision-making support process involving assignment and
allocation of limited resources to tasks (sometimes referred
as jobs, operations or activities) over time under certain
constraints. It also needs to deal with defining which tasks to
be executed at a specific time [38]. Metaheuristic techniques
providing approximate solutions are often used for SRA be-
cause many scheduling problems are NP-hard [30]. In these
situations the majority of exact methods fail to obtain optimal
solutions when the problem size is considerably large [5].

In scheduling and resource allocation problems there are
usually several types of resources available (machine, people,
money, etc). Traditionally, these problems are considered
in a situation where there is a scarcity of resources when
scheduling and it is usually referred to as resource constraint
project scheduling problem — RCPS. For this problem, tasks
are characterized by several aspects such as task duration,
and required resources. Tasks can be involved in several
execution modes and are constrained by a precedence graph.
Only one mode is performed at a time. Algorithms for RCPS
are expected to find an optimal schedule that minimizes the
processing time (called the makespan). In general formulation,
this is a NP-hard problem [8]. Further, there are more practical
approaches that can be transformed in the form of a RCPS such
as production sequencing, timetabling, and flight scheduling.

In general, RCPS can be modeled as mixed integer program-
ming problem. Therefore, conventional linear programming,
such as the simplex method, is not really suitable, and many re-
searchers have developed a number of approaches over recent
years. Broadly speaking, these approaches can be classified
into two categories: exact and approximate methods. For exact
methods, the final solution will be the optimal one for the
RCPS. Some typical approaches of this category are branch
and bound [20], Lagrangean relaxation [21], and dynamic
programming [15]. However, exact methods usually face an
issue of execution time with large scale problems (the number
of tasks should not exceed 60, according to [5]). Therefore,
approximation methods are preferred instead, such as a vari-
ety of heuristic/meta-heuristic techniques, e.g., priority-based,
truncated branch and bound, sampling techniques, local search
techniques, tabu search, simulated annealing, scatter search,
and evolutionary algorithms [29], [26], [32]. For stochastic
project scheduling problems, several approaches have been
proposed such as dynamic PERT networks [6], or MDP-based
Q-learning [3].
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2) Multi-objective RCPS: Further, it has been surprising
that although RCPS inherently possesses a feature of multi-
objectivity, the literature of RCPS is dominated by work
considered only single objectives [42], [47]. There exist a
number of possible objectives for RCPS such as time, cost,
resource balancing, robustness, etc. These objectives might
conflict with each other to different degrees. It is clear that for
multi-objective optimization, finding good (optimal) solutions
is not the only consideration, but also addressing the trade-off
between objectives among obtained solutions.

Perhaps, the common approach in dealing with multi-
objective RCPS (also for machine scheduling [36]) is the
weighted-sum [1]. For this, objectives are summed according
to a predefined vector of weights. However, this approach
systematically faces several issues, such as objective scaling,
and further it is not easy to address the matter of trade-off
analysis. Alternatively, Pareto-based approaches are used to
obtained a set of trade-off solutions in a single run [47],
[7]. Therefore, these approaches seem to be more suitable for
solving multi-objective RCPS.

3) Adaptation in solving RCPS: As indicated in the previ-
ous section, multi-objectivity is an inherent characteristic of
adaptation. To date, there have been several papers on this.
A proactive example is described in [12], the set of trade-
off solutions with risk as an additional objective is used; also
in this manner, [50] proposed to use the obtained trade-off
solutions as alternatives when changes happen. In [49], a
reactive adaptation technique was proposed. Two objectives
are defined: one is the make-span; while the second is the
magnitude of derivation from the baseline schedule, after
every change (called reliability in the paper), a set of trade-
off solutions is obtained, one will be selected subject to the
decision makers preference towards reliability.

It is interesting from these works that they used multi-
objectivity purely for proposing alternatives for the selection
after the change. There has not been any work, especially
for the reactive style, that exploit the characteristics of multi-
objectivity to facilitate the search in the adaptation process.
One such characteristic is that multi-objective approaches
usually offer a set of trade-off solutions. This set of solutions
can provide a guide to the tendency of the search over time.
The question is how can we exploit this tendency to facilitate
the adaptation process? This becomes the focal point of the
research reported in this paper.

V. METHODOLOGY

We start with formulating a planning problem. Since it is
dealing with the matter of adaptation, we call it the Adaptive
Planning Problem (APP). By adaptation, we mean adjusting
the baseline plan, which tackles any infeasibility caused by
changes in real-time. Therefore, there are two key aspects that
need to be addressed here:
• In-use situations: We propose to solve this problem in

a reactive manner. Therefore, it is important to take into
account the fact that there might be some parts of the plan
that are already in use when the change occurs. These can
not be alternated or will have a high cost. Further, some

resources might have been transferred to the location of
the assigned task; any adjustment can result in a cost.
Therefore, adaptation from the baseline plan needs to
consider the associated cost caused by adjusting in-use
resources.

• Objective functions: As we have pointed out already,
adapting the current plan can not focus on only one
objective, such as the plan’s execution time. The use of
more objectives will give decision makers more choices
to make a decision on the results offered by the adaptation
process. In the literature of RCPS, some authors proposed
to use the derivation from the baseline plan as the
second objective. However, in problems such as APP, one
unexpected change can cause the whole plan to become
infeasible. Therefore, we should define a more concrete
objective for this issue and the natural one is the cost
of operating capabilities triggered by adjusting the plan.
Note that this cost should not be confused with the cost
of resources themselves. It can be the cost of moving
resources in terms of money, fuel, or human cost.

A. Mathematical formulation of APP

The problem formulation is described as follows:
• Inputs:

– A set V of N tasks: V = V1, V2, ..., VN , these are
non-pre-emptive. Each Vi will have:
∗ A durations di
∗ A vector rri of required resources by tasks: rri =
{rrij} with j = 1, ...,M (M is the number of
resource types)

– A network G of tasks where nodes and arcs represent
the tasks and the precedence relations respectively:
G = (V,E). Pred(j) defines a set of direct prede-
cessors, while Succ(j) is the set of direct successors
of task j. A dummy node 0 represents the starting
point (central base)

– A vector c of operational costs c = {ci,j,k}, i =
0, .., N ; j = 0, ..., N , and k = 1, ...,M . Here ci,j,k
is the cost of moving resource type k from task i to
task j. ci,0,k = 0∀i, k - no cost is imposed on the
return of items to base

– A set R of M resources R = {R1, R2, ..., RM}
• Parameters:

– A vector of start time st: st = {sti}, with sti is the
starting time of task i and i = 1, ..., N

– For each Ri at time t, a vector of locations for each
item of a resource type lit is defined to indicate
where the item is located (or the task index). A
zero value means the item is at the central base):
lit = {lijt}, j = 0, ..., Ri

– For each Ri at time t, a vector of previous locations
for each item of a capability type lcit is defined to
indicate where the item was from (or the task index).
A zero value means the item is at the central base):
lcit = {lcijt}, j = 0, ..., Ri

– For each Ri at time t, a vector of locations for each
item of a capability type mit is defined to indicate
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if the item was moved or not: mit = {mijt}, j =
0, ..., Ri

mijt =

{
1 lijt 6= lcijt
0 otherwises (2)

– A vector rt = rit, i = 1, ...,M presents the current
amount of resources being used at time t

– Indices of the tasks: I = {I1, I2, ..., IN} (a schedule)
• Constraints:

– Time constraint: If task i is predecessor of task j,
then it needs to be completed before starting task j

sti + di ≤ stj (3)

∀j, and ∀i ∈ Prec(j)
– Resource constraint: the amount of being-used re-

sources can not exceed the total amount

rit ≤ Ri (4)

∀i and t
– Precedence constraint: A task needs to be scheduled

before its successors.

Ii 6∈ Succ(Ij)∀i, j|Ii ≤ Ij (5)

• Objective functions:
– Makespan (f1): Minimization of the start time of the

last task to be scheduled

f1 = stN (6)

where N is the last task to be scheduled
– Cost of resource operations (f2): cost of moving

resources between locations of tasks. During the
time of executing the schedule (t=1,...T) with T is
the maximal number of time steps, if a resource is
moved from a location to location, the cost of moving
between locations is added to the total cost.

f2 =
∑

t=1→T

∑
j=1→M

∑
k=1→Rj

mjkt ∗ clcjkt,ljkt,j (7)

• Outputs:
A schedule st based on the obtained index I st =
{st1, st2, ..., stN}

• Dynamic factors
– Duration: Dynamic duration of a task Vi is defined

as d′i(t). It is reasonable to consider this change
following a probabilistic distribution that usually is
N(di, δ), where N is the normal distribution with
the mean as the pre-defined duration di. Constraint
Eq. 3 is rewritten as follows

sti + d′i(t) <= stj (8)

– Availability of resources: we use a sign function to
indicate the availability of resources:

l′ijt = sign(t) ∗ lijt (9)

where sign(t) is the sign function returning either
+1 or -1, a negative value means unavailable but at
the location |lij |.

– Precedence network: The dynamic function rep-
resenting this change is defined as reversing the
relationship between two tasks on network G.
∗ A function rev(i, j)(t) is defined for this change

defining reverse precedence between two tasks i
and j.

∗ i, j ∈ V ′(t) where V ′(t) is the set of un-executed
tasks.

• Parameters after a change
Structures of lit, lcit, mit and rt remain unchanged.
The only change is applied to the indices in which
I = I1, I2, ..., IN ′ where N ′ is the number of tasks in
V ′(t)

B. An evolutionary multi-objective approach for APP

The use of an additional objective for APP is to facilitate
the adaptation process. Hence, we need to design a multi-
objective approach that can offer a set of trade-off solutions
for the commanders and their staff to make the decision. Here,
we propose to use a GA approach using dominance relations.
The algorithm starts with a population being initialized by
techniques proposed in the next section. This population will
be evolved over time. During the evolution process, all good
solutions are preserved.

To perform this task, we employ the non-dominated sorting
mechanism as proposed in NSGA-II [19] where the parent
population and offspring are combined and sorted in order
to generate a population for the next generation. Selection
of solutions for producing offspring is also performed as in
NSGA-II where a scheme of crowding tournament selection
is used. However, the crossover and mutation operations are
redesigned since the original operators for NSGA-II are not
suitable for our problem.

1) Solution representation: Representation is an important
issue to our problem. In our problem, a complete solution
must contain information for the schedule of task execution. It
contains an indirect representation of a schedule. The indices
of this sequence indicate the order of scheduling, while the
element at each index is the ID of a task in V ′(t) to be
executed.

S = (I1, I2, ..., IN ′)

2) Schedule generation and evaluation: We simply select
the Serial Sequence Generation Scheme (SSGS) as the scheme
for our schedule generation (Figure 1). For this scheme, when
a task is scheduled, it is necessary to check whether it will
violate the precedence relation and resource constraint. For the
details of SSGS, the readers are referred to [24]

Evaluation of a solution involves calculation of two objec-
tives. The task list is to make the schedule and therefore the
makespan. The cost objective will be determined by simulating
the plan with regards to the current in-use plan.

3) Genetic operators: The crossover operator is crucial
for the behavior of GAs. Two solutions are selected and
their features are combined to generate two offspring. Similar
mechanisms occur in biology, this operator allows children
to inherit characteristics from their parents. However, from
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Procedure SSGS
Begin
Determine a set of eligible tasks ε
For g=1 to N ′

Select a task j ∈ ε
Determine t = max{0,max{sti + di|i ∈ Pred(j)}}
Schedule j at the earliest precedence - and resource- feasible
start time t′ > t
Set stj = t′ and update ε
End
End

Fig. 1. Serial sequence scheduler procedure.

a search and optimization perspective, this operator provides
exploitation ability to the algorithm in which offsprings are
generated in sub-spaces around parents.

We apply a two-point crossover strategy to our algorithm.
This means that for each crossover operation, we need to select
two crossing points. Let us assume that we select two parents
P1 and P2 for crossover and two newly generated offspring
O1 and O2. There are three parts separated by two crossing
points. O1 takes the first part from P2 as its first part. In turn,
O1 inherits from P1 for its second part, and P2 again for its
third part. The process is the same for O2 with the inverse
order: P1− > P2− > P1. However, inheriting of the second
and third parts of the offspring is different from the first part
in which all elements that already exist in the previous parts
will be eliminated in order to satisfy the precedence constraint.
This is done similarly as the PMX crossover [33].

Also, mutation is another important operator. It randomly
changes the values of one or more genes in the chromosomes
according to a certain distribution. This bio-inspired operator
helps to reintroduce some genetic materials lost during the
evolutionary process and some variability to the population. In
search/optimization, this operator strengthens the exploration
ability of the algorithm. It might help the algorithm to search
unexplored areas of the search space. The mutation operation
works as follows two consecutive genes are swapped with a
predefined probability, if the newly formed sequence of tasks
is precedence feasible.

C. Starting a population after a change

The initial population is very important in such time-
demanding scenarios as dynamic planning. A good initial-
ization will give the search a quick convergence towards the
optimal solution. For APP, a natural way should be to start with
random initialization of the initial population as done in [49]
for RCPS. This method is very straightforward to implement,
but gives a slow convergence during the adaptation process
since the population is started from scratch. An opposite view
is also taken when adapting the current plan for APP that
is to start the population from the last population obtained
from the previous change. This helps to speed up the search
if the new optima is somewhere close to the area of the old
population. However, if the effect of the change is large, the
old population becomes entirely infeasible, this method turns
to be the random initialization method.

Here, we propose a new method for initializing the popu-
lation. With the existence of a non-dominated set after each
change, there is an opportunity to exploit information from this
set to facilitate initialization of the population. The difference
from single-objective problems is that here we can use an area
of attraction (the area occupied by the set of non-dominated
solutions) to initialize the population instead of a single point
(the single best solution).

In many single-objective cases, changes over time will make
the optima jump among the peaks. Therefore, it is worthwhile
to keep track all the optima found in the past. Hence when a
change happens, we can start searching from those past optima
in order to quickly find the new optimal solution. However,
for APP, the challenge is that we are dealing with a set of
non-dominated solutions over time. Two issues arise:

• Memory limitation: One option might be to keep all
solutions, created over time. However, this requires a
large amount of memory and will slowdown the whole
system. So, this is not really a suitable approach.

• Selection: Given enough memory, keeping all non-
dominated solutions is possible, but we face a selection
problem, since the size of the initial population is limited.
Hence we need to decide how to select solutions and that
is not a trivial matter.

To ease these issues, we introduce the concept of centroid
to store the set of non-dominated solutions. In a broad sense,
we just need to know the tendency of the previous population,
via their non-dominated solutions, rather than all the solutions
themselves. We define the centroid C(t) of a set of non-
dominated solutions P (t), is defined as an average vector of
this set. Each element of the centroid is calculated as follows

Ci(t) =
1

N

∑
j=1,...,N

xji (t) (10)

where xj(t) is a non-dominated solution that belongs to P (t)
and i = 1, ..., n. N is the size of P (t), n is the dimension of
the search space, and N is the size of P (t).

Note that, this centroid is not necessarily precedence-
feasible. We accept this because the purpose of using the
centroid is just for determining the tendency of a solution
set. If this set of centroids is included to the population, the
search process will quickly locate the area of attraction and
hence speed up the search. An example is given in Figure
2 to demonstrate this idea. In both left and right graphs, the
dots represent the centroids of previous non-dominated sets.
The shaded area P represents the previous area of the non-
dominated set. There are two scenarios: (1) the new area
of the non-dominated set C is similar to the previous area,
represented by a centroid, meaning the centroid is feasible. In
this case, the search will quickly jump to this area via offspring
of the centroid. (2) the new area C (in the right graph) does
not overlap with the centroid, but it is quite close. The centroid
is now infeasible, but a small mutation can generate solutions
that belong to the new area C.

Inclusion of C to P(t) is done as follows: a set C ′(t− 1) is
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adapted from C(t-1) as in Eq 11

C ′i(t− 1) =

 Ci(t− 1) Ci(t− 1) is
precedence-feasible

rnd(Ci(t− 1)) otherwise
(11)

where rnd(Ci(t−1)) is a feasible node (following constraint
3) that randomly mutated from Ci(t− 1)

Therefore, P (t) is defined as

P (t) = C ′(t− 1) + P1(t) (12)

where P1(t) is the set of N −|C ′| solutions randomly chosen
from P(t-1). We call our approach Centroid-based Adaptation
(CBA).

Fig. 2. A Demonstration of Centroid-based Adaptation: the dots represent
the centroids of previous non-dominated sets. The shaded area P represents
the previous area of the non-dominated set. The shaded area C represents the
current area of the non-dominated set

VI. A CASE STUDY

A. Military Mission Planning

1) Overview of planning process: Mission planing is a
decision making process in which the commander’s intent
is materialized. It is a vital element in military command
and control aiming at providing a solution that implements
the commander’s intent, establishes activities, time or condi-
tions for the operation, allocates resources, assigns tasks and
coordinates subordinates. This is a complicated process that
involves two aspects: (1) Science that deals with measurable
factors such as capabilities, techniques and procedures, and it
is closely related to the analytic decision making; and (2) Art
where the intuition of the commanders about the relationships
between friendly forces, enemies and environment as well as
the effects of the operation on the solders are the focus and it
can be considered as a kind of the intuitive decision making.
Mission planning is usually done for a matter of urgency or
within a short time frame of a planning horizon [44].

It is quite common in military domain that each level in
mission planning corresponds to a level of conflict: strategic,
operational, and tactical, although the borders between these
three is not always clear. The strategic level of a conflict

involves determining national or alliance security objectives
and developing and using national resources to accomplish
those objectives. It establishes strategic military objectives,
sequences the objectives, defines limits and assesses risks for
the use of military and other instruments of power. Developing
strategic plans to achieve the objectives providing armed
forces and other capabilities in accordance with strategic plans.
Meanwhile, the operational level is designated for campaigns
and major operations in order to accomplish strategic objec-
tives within theaters or areas of operations. Linking between
tactics and strategies is done by establishing operational objec-
tives needed to accomplish the strategic objectives, sequencing
events to achieve the operational objectives, initiating actions
and applying resources to bring about and sustain those events.
Lastly, the tactical level involves battles and engagements, they
are planned and executed to accomplish military objectives
assigned to tactical units. The focus of this level is on the
ordered arrangement and manoeuvre of combat elements in
relation to each other and to the enemy in order to achieve
combat objectives established by the operational level com-
mander. In other words, the context of tactical operations is
defined at the strategic and operational levels [9], [44].

Here, we focus on the planning process at the operational
level. Planners at this level need to follow the Operational Art
(OA) of using military forces. According to OA, the issues
at this level include (1) identifying the military conditions or
end-state that constitute the strategic objectives, (2) deciding
the operational objectives that must be achieved to reach the
desired end-state, (3) ordering a sequence of actions that lead
to fulfilment of the operational objectives, and (4) applying the
military resources (capabilities) allocated to sustain the desired
sequence of actions. From this point onwards, we use the term
mission planning to indicate planning at the operational level,
unless otherwise stated.

There is no doubt that the planning process is based on
a particular military doctrine. However, the main steps are
similar among militarised forces. We will take the JMAP
framework from Australian Defence Forces (ADF) [51] as an
example

• Step 0 Initialization: including obtaining mission infor-
mation (basically called Intelligence Preparation of the
Battle-space - IPB)

• Step 1 Mission Analysis: Determining the objectives,
available capabilities and other constraints for the mis-
sion. Also forming the commanders planning guidance
for the next step.

• Step 2 Course Of Action (COA) Development: Develop-
ing the course of actions (ways to achieve the objectives
with regards to the constraints)

• Step 3 COA Analysis: Comparing and analyzing COAs
to obtain an optimal plan.

• Step 4 Decision & Execution: Deciding on the plan and
executing it

Note that this is a repetitive process. Step 0 will be used to
update information for all other steps. Once updated, the steps
will be restarted for further analysis. If the time is available
and the urgency is low, we will have a DEliberate Planning
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(DEP) process. It is used to produce plans for contingencies
and for later execution. When we need a plan for immediate
action or in a very short time with a high urgency, we will
have a crisis action planning (or immediate planning) process
(CAP). These two types of planning are highly interrelated
with each other. DEP produces the plans, while CAP uses
these plans and adapt them to the current situations. In other
words, CAP provides situation awareness.

For OA, it is also essential to define several key concepts.
The concept of an end-state can be considered the final
behaviour of the system when the system stops operating. For
JMAP, end-state is defined as the set of conditions which will
achieve the strategic objective. The national end-state is the set
of desired conditions, incorporating the elements of national
power, that will achieve the national objectives. The military
end-state is the set of desired conditions beyond which the use
of military forces is no longer required to achieve the national
objectives. The military end-state for a mission planned at the
operational level is defined by the command at the strategic
level. This needs to be done in Step 1.

The next one is the concept of Centre Of Gravity (COG). For
JMAP, COG is considered as the key characteristic, capability,
or locality from which a military force derives its freedom of
action, strength or will to fight. Another concept is critical
vulnerability (CV). That is a characteristic or key element of
a force that if it is destroyed, captured, or neutralized will
significantly reduce the fighting capability of the force and its
COG. Also the concept of decisive point (DP) needs to be
considered. JMAP defines a DP as a major event that is a
precondition to the successful disruption or negation of COG.
A DP can be defined either in a time or geographical space. A
mission plan might have many DPs. The line of DPs forms a
path of attack or defeat to achieve the end-state. We also call it
the line of operations - (LOP). Determining LOP is the most
important component of the operational level planning. The
sequence of operations needs to be done in order to achieve
the end-state. Each operation or (action or task) is defined to
take care one DP.

2) Mission planning problem: Determining COG, CV, and
especially DPs is a challenge. It relies very much on the
experience and knowledge of the staff and commanders.
Further, given that these concepts are defined, finding LOPs
is also a big deal. The scope of the problem means a large
number of possible LOPs exist. The limitation of capabilities,
synchronization of operations (the precedence relationship
between operations), and time, make it very difficult to arrange
sequences of tasks to achieves all DPs. From a computational
point of view, it is valuable to quantify these concepts. Given
the limitation of capabilities, precedence, and time , there is a
need to schedule the tasks to obtain the optimal sequence.

Note that a task is defined as a tactical operation (or action)
that a military force must do for achieving a DP. From the
previous analysis, we can see that modeling tasks is a very
important component. Quantitatively, a task usually has
• A set of pre-conditions: Defining operational conditions

for a task that need to be achieved before commencing it.
It might be derived from the defined relationship between
tasks.

• A set of effects: it is usually defined by the DP.
• A duration for execution: A task can not be executed

without a time limit in order to synchronize with other
tasks.

• A set of required capabilities: This might be equipment,
weapon, vehicles or troops.

Based on this definition, the planning problem can be
transformed as follows

Parameters
• A set of tasks (a decomposition of the mission).
• A set of synchronization constraints for tasks.
• A limit on the capabilities available for the mission.

Objective
• Military end-state (that can be expressed as a set of

conditions).

Outcome
• Plans that offer different lines of operations.

3) Dynamics and uncertainties: Dynamics and uncertain-
ties are unavoidable factors for military missions. This is the
nature of wars where enemies as well as environmental aspects
are highly unpredictable. That is the reason for introducing the
concept of the crisis action planning. One important require-
ments from the US Army is that the planning process needs
to be continuous and adaptive to any changes. The presence
of these factors, such as delaying in mission execution, failure
of capabilities, or uncertain intuition of commanders on the
relationship between operations of the mission, makes the task
of mission planning more complex [44], [51], [28] with a
large number of what-if scenarios that usually goes beyond the
handling ability of human planners. Hence, there is a need for
finding a robust and responsive mechanism in support planning
staff.

There are many aspects that might be changed during the
mission. Here, we describe three typical changes to demon-
strate the concept, the execution time of tasks, the availability
of capabilities, and the relative relationship of tasks. During
the mission, there is no guarantee that a task will be completed
in time. That might be caused by fatigue of the troops, equip-
ment, logistics, or reinforcement by the enemy. Because of the
limitation on the capabilities, if a task is late, there will be no
return of the capabilities to do other tasks that are scheduled
at that time. The question is how to adapt the current plan to
deal with this change? It should be aware that any changes of
the plan can cause a huge cost in terms of logistics and safety.
Further disruption of capabilities might happen. This might be
because of wounded troops or equipment damage. There is a
need to adjust the plan to deal with this disruption. Finally,
during the mission, the importance of a task might change
due to reinforcement or changes by enemy forces. This might
affect the relationship between tasks. Some tasks might be
better to be executed before others. The staff and commanders
have to figure out how to deal with this without too much cost
(bearing in mind that the plan is already in use).

The case study looks at Re-active adaptation. Pro-active
adaptation, sometimes called robustness, is not covered by the
study.
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4) Computational approaches for the mission planning
problem: To date, a large amount of attention has been paid
to applying computational approaches to deal with mission
planning. An excellent review of computational approaches
can be found at [9]. The computational techniques range from
a formal method of Petri Net [52], decision theoretic method
using Markov decision processes [4] to heuristic techniques
such as tabu search [7], and evolutionary algorithms [50].
Moreover, mission planning problems can be formulated as
a resource constrained project scheduling problem, a popular
class of NP-hard problems, the use of heuristics and evolu-
tionary algorithms should be the favorite choice.

Further, multi-objectivity is also addressed when introduc-
ing computational approaches to mission planning. In [50],
the authors proposed a hierarchical planning system where
the objectives can be the mission execution time, the cost of
assets or the accuracy of executing tasks. Meanwhile, in [7]
reliability was taken into account as as an objective together
with the execution time. An interesting overview has been
given in [13].

As stated in the above section, mission planning is a contin-
uous and adaptive process. It constantly revises the plan over
time to deal with changes. However, the issue of adaptation
has been neglected in the area of computational decision
support for mission planning. Most of the works focuses
on addressing the aspect of robustness under uncertainties.
In other words, they concentrated on the methodology of
pro-activeness only. For examples, in [7], the authors used
reliability as an additional objective to obtain a set of trade-off
solutions; depending on the awareness of the decision makers,
a solution is selected with an acceptable reliability with a hope
that this solution can cope well with uncertainties. With a
different perspective, the authors of [50] proposed to obtain
a set of trade-off solutions, whenever a change happens, this
set will be reviewed in order to select the best suitable one.
For these approaches, the changes usually assumed happening
with some bounds or with some anticipation. However, these
assumptions might not always be satisfied; and further the
changes over time might not be incremental. It can be the
case that, once a change happened, all existing alternatives
become infeasible. Hence there is a need to have a re-active
adaptation mechanism for this case.

B. Test scenarios

We designed a military mission to validate our proposal.
Note that this mission is aimed at providing an educational
test only; it does not imply any particular mission. For this
mission, the military is to face a major peacekeeping operation
of protecting a troubled island. The strategic objective for this
mission is to protect the newly installed government. The end
state for this mission is the defeat of the insurgents. There will
be three scenarios that the forces might have to deal with. They
are described as follows.

For the first scenario (and we will call the equivalent APP as
P1), the main available capabilities for this mission are limited
to four types only including (exclude the landing facilities that
are already provided conveniently):

Task ID Duration C1 C2 C3 C4
1 18 4 0 0 0
2 14 10 0 0 0
3 16 0 0 0 3
4 23 3 0 0 0
5 18 0 0 0 8
6 15 4 0 0 0
7 19 0 1 0 0
8 12 6 0 0 0
9 17 0 0 0 1
10 19 0 5 0 0
11 22 0 7 0 0
12 16 4 0 0 0
13 23 0 8 0 0
14 19 3 0 0 0
15 10 0 0 0 5
16 16 0 0 0 8
17 15 0 0 0 7
18 23 0 1 0 0
19 17 0 10 0 0
20 22 0 0 0 6
21 27 2 0 0 0
22 22 3 0 0 0
23 13 0 9 0 0
24 13 4 0 0 0
25 17 0 0 4 0
26 18 0 0 0 7
27 23 0 8 0 0
28 17 0 7 0 0
29 20 0 7 0 0
30 20 0 0 2 0

TABLE I
PROPERTIES OF TASKS

• 12 Light Mortar Batteries (C1)
• 13 Infantry Companies (C2)
• 4 C130s (C3)
• 12 Apache helicopters (C4)
After analyzing the mission, the commanders and staff

concluded that the mission will have 30 tactical tasks in-
cluding setting up bases/checkpoints, conducting surveillance
by some special troops taken from infantry companies and
by helicopters, securing the government, diplomatic missions,
and foreigners, protecting some key infrastructures, attacking
insurgent sites, and regular patrolling either in the cities or
countryside. The precedence relationship between tasks is
given in Figure 3. The requirements for these tasks are listed
in Table I.

Fig. 3. Precedence network of tasks for P1.
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Fig. 4. Precedence network of tasks for P3.

For the second scenario (P2), there will be two more types
of capabilities for the forces in dealing with the mission.
That include 8 armor vehicles (C5) enforcing the troop
mobilities and 4 companies (C6) of special forces tackling
some dedicated tasks. The requests of these two types from
the tasks are as follows [(0,0), (6,0), (3,2), (0,0), (0,0),
(0,0), (2,0), (4,3), (0,0), (0,0), (0,0), (0,4), (0,0), (0,0), (0,0),
(5,0),(0,0),(0,0), (3,0), (0,0), (0,0),(0,0),(0,0),(0,0),(0,0),(0,0),
(3,0), (0,0),(0,0),(0,0),(0,0)]. These requests would constitute
columns C5 and C6 of Table I for second scenario.

The last scenario (P3) includes only 25 main tasks. Five
tasks (4, 5, 12 ,17, and 19) from the previous scenarios are no
longer important, and hence they are removed from the list.
The network of precedence is much simpler with 10 precedent
of the arcs removed (see Fig. 4, noting the new indices of
tasks). There are only four types of capabilities used in the
first scenario.

Further, during the mission, the time delay in executing
tasks is unavoidable. The intelligence source at that island
is not highly reliable that cause the estimation of insurgents
less accurate. This can be considered as a time-varying in-
stance of the constraint in Eq. 3. Further, because of tropical
weather, the failure of capabilities are highly expected. The
dynamic version of the constraint in Eq. 4 is demonstrated via
this. However, the current logistic supports at the island can
help to quickly repair or reinforce the capabilities. Also, the
precedence of the tasks is quite relative because of unreliable
intelligence information. So changes of the precedence rela-
tionship is expected. Again it is used for a time-varying version
of the third constraint in Eq. 5. So, we will have 9 problem
instances being equivalent with three types of change (called
Type 1, 2, and 3).

C. Parameter settings

From the problem description, we can see that the chro-
mosome size is equal to the number of tasks. We used a
population size of 40. The crossover and mutation rates were
0.9 and 1/n respectively. The size of the centroid set was 10
and the results were recorded after the tenth change. There
is no particular reason for selecting these parameter’s values,
except they were set after a number of trials and they gave

the most reliable performance. Each experiment was repeated
for 30 times with different random seeds in the hope of
eliminating the stochastic behavior caused by the random
generator.

D. Validating methods

In the previous section, we described our evolutionary multi-
objective approach using the CBA technique for starting a
population after a change. In order to validate the proposed
method, we also implemented it with three others adjusting
from adaption for RCPS with a single objective:
• The last population - LPOP: For this approach, we use

the last population obtained from the previous adaption
period P (t − 1) (dealing with change at change t − 1)
as the initial population P (t) to deal with the change t.
Any solution that is infeasible with regard to the new
conditions caused by the change will be randomly re-
initialized. So, if P (t−1) is the last population with size
N, then P (t) is defined as

P (t) = P1(t− 1) + P ′(t) (13)

where P1(t−1) is the set of N1 solutions that are feasible
under the new conditions caused by the change and P ′(t)
is the set of N −N1 newly randomly initialized.

• The set of non-dominated solutions from the last
population- NDLPOP: Instead of using all individuals
in the last population, we propose to use the non-
dominated only. This will help to focus on the area of
the best solutions only. The rest of the population will be
randomly initialized to ensure diversity of the population
at some degrees. P (t) is defined as

P (t) = P (t− 1)′ + P ′(t) (14)

where P (t− 1) is the set of N ′ non-dominated solutions
that are feasible under the new conditions caused by the
change and P ′(t) is the set of N −N ′ newly randomly
initialized.

• Randomly initialized population - RI: This method
simply creates P (t) by randomly initialization without
caring any information in the past.

E. Results and discussion on behaviour of CBA

We use the first test scenario (or equivalently the dynamic
instances of problem P1) to demonstrate the behaviour of the
proposed approach. We look at the results after 10 changes
from a run and take these results for our analysis. For the first
instance (Type 1), the changes happened at time slots 1, 3, 7,
10, 13, 14, 17, 18, 19, and 22. A visualization of the plans
can be found in Figures 5, 6, and 7 - the baseline schedule,
the adapted schedule after the first change, and the adapted
schedule after the tenth change respectively. At time zero, the
baseline plan in Figure 5 indicated that task 2 was only one
that needed to be executed first and it was followed by tasks 1,
3, and 7 at time 14. The objective values of the plan were (225
and 719.387). Note that tasks 1 and 2 can not be scheduled
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at the same time since both required 14 units of C1 while
the maximum of C1 is 12. After a change at time 1 (note
that task 2 was in-progress), it found 7 new adaptive plans.
The plan with objective values of (194.517 and 721.451) was
selected with an assumption that it is a suitable one from the
commander’s perspective. With this plan, task 3 was scheduled
at time 1, as illustrated in Figure 6. The process continued until
the change number 10. Again, we obtained 8 plans trading-off
on time and cost. Note in Figure 7 that at this time tasks 2
and 3 were already completed and tasks 1, 4, 7, and 12 were
in-progress. So their time was not affected by the adaptation
process. The optimization process found a better solution after
the change which prove the adaptability of the system. This
can be seen by looking at Figures 5, 6, and 7. They show
the new plan after every change is a non-dominated solution
which implies that the new plans are better and so shows the
system is adapting.

For the second instance (Type 2), the first change was at
time 4 when only task 2 was in-progress (it started at time 0)
and task 3 was about to start. After the change, we adapted the
plan with the remaining tasks (including task 3). We obtained
7 new plans, assumed the plan with objective values of (194
and 1066.669) for execution. With this plan, tasks 1, 3, 4, 6,
7, 9, 10 , and 11 were kept for their original starting-times and
the rest was adjusted with new starting-times. Finally, after the
tenth change, we obtained new 4 plans for adaptation process
and these plans can be submitted to the decision makers.

In the case of the third instance (Type 3), after the first
change (at time 4), we obtained 10 trade-off solutions. The
process continued in the manner described above. However,
with the third instance the new adapted plan kept the same
starting-times for only two tasks. This result shows the nature
of the change caused by this type, it shows a large difference
in terms of feasibility before and after a change.

Regarding the constraints of APP, we need to recall that
the plans must be feasible against the precedence, time, and
capability constraints. Also, from the obtained results, we
observed that with Types 1 and 2, the solutions in the last
population (before a change) were all infeasible to the time
and capability constraint. The precedence is still preserved
in all solutions. Meanwhile, this rate was (40, 40, 40, 0,
5, 40, 15, 31, 21, and 37) for Type 3 with regards to the
precedence constraint (note that if the precedence is violated
by a solution, this solution will not be considered further to
the next constraints). However, this does not means that this
type is easy, but in fact it is the hardest one since the sequence
of indices (genotypes) requires a change while the first two
do not.

It should be noted that the original solutions are still re-
considered after every change. If they are still feasible, they
will be included for consideration, and they might be excluded
during the evolution process if they become dominated. The
above results indicated that for our examples, the original
solutions did not appear at the end in the non-dominated set
as they were either infeasible or eliminated during evolution
process.

Further, our approach relies on the use of centroids to boost
the ability of the search. This depends a lot on the diversity of

this set. It is worthwhile to look at the variation of centroids
over the range of changes (see Figure 8). In this figure, we
visualized the set of centroids for each type of changes (the
first graph for Type 1, the second is for Type 2, and the last
graph is for Type 3). The index axis has 30 values representing
30 values of a centroid, while the second axis is for the value
of each element of the centroid. We can see from the figure
that the set of centroids is quite diverse over all three types
of dynamics. The location of the centroid moved. The nature
of the change is also shown via this visualization where the
changes for the first two types seemed to happen more with
the lower index tasks than the higher-index ones. Meanwhile
for Type 3, this seemed not the case, all tasks appeared quite
similar. That is because of the effect of changes on Type 3
problems. A change of precedence between two tasks can
cause the whole sequence to become infeasible and therefore
the schedule. A change in Type 1 does not alter the skeleton
of this sequence.

Diverse Pareto fronts can be seen in Figure 9. The figure
shows a visualization of the non-dominated solutions obtained
from all runs with different grey scale. The demonstrates the
wide diversity of solutions obtained. It shows us quite diverse
sets of non-dominated solutions spreading over two objectives:
time and cost. It is important to have this diversity since we
need to offer the decision makers alternatives for adapting
against the change. Based on the capacity to afford the cost of
the plan, the decision makers will select the final plan for the
adaptation process. Further this indirectly affects the diversity
of the centroid set that we use to guide the search. The above
analysis has shown this matter.

The views of mission planning experts are naturally difficult
to release. The views of mission planning experts are not
covered because of confidentially issues.

F. Comparison of CBA to other methods

Understanding the behaviour of the method is important.
However, it is essential to validate the performance of the
obtained solutions. Here we discuss the relative performance
of CBA in comparison to other methods (LPOP, NDLPOP,
and RI) on all instances of all test problems. We compare
them using the non-dominated plans obtained after the last
change (after change No 10) for each of the 30 runs. Here we
use the measure of the ’set coverage’ - SC [18] to access the
performance of these approaches. SC is determined between
two sets A and B (SC(A,B)) by counting the number of
solutions in B that are dominated by a solution in A:

SC(A,B) =
|b ∈ B|∃a ∈ A : a � b|

|B|
(15)

where a � b indicates a dominates b. Obviously SC(A,B) is
not necessarily equal to SC(B,A).

The mean values and standard errors from 30 runs are
reported in Table II for all methods and all problems. It is clear
that CBA obtained quite consistent results on all problems.
It performed well in comparison to the others, for all nine
problem-instances. We will look in more detailed at each
problem in the following paragraphs.
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Fig. 8. Sets of 10 centroids (10 curves) obtained after ten changes and for
each type of change : Each curve represents a centroid with 30 values (we
have 30 tasks) - ”index” means the vector of the centroid while the axis of
”value” is for values of each index of the vector

Fig. 9. Sets of non-dominated solutions over all 30 runs with two axes of
time (horizontal) and cost (vertical): First graph is for Type 1, the second is
for Type 2, and the last one is for Type 3
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In the case of P1, for the first type, it obtained values of
SC around 0.45 against all other methods (SC(CBA,X), where
X is LPOP, NDLPOP or RI), while the reverse figures are
just (0.325, 0.303, and 0.341) for LPOP, NDLPOP and RI
respectively (SC(X,CBA), with X is either LPOP, NDLPOP or
RI). Similarly, for P12 CBA obtained better SC values, that is
(0.438, 0.437, and 0.556) in comparison to (0.345, 0345, and
0.195) respectively for LPOP, NDLPOP and RI. Meanwhile
the third type showed an obvious difficulty for methods in
finding non-dominated solutions. However, CBA still obtained
much better SC values of (0.488, 0.488, and 0.458) in contrast
to (0.214, 0.214, and 0.228) gained by others. The above
finding provides strong support for our hypothesis of using
centroids of non-dominated sets within the adaptation process.
This information helped the search process quickly find a new
area of optima.

With regards to the other methods, it seems that the use of
the last population (LPOP) is a reasonable way to deal with
change. However, it is not enough to effectively guide the
search in general. With changes that have a significant impact
(i.e. make the whole population severely infeasible), LPOP
does not offer a good starting point for the adaptation process.
That is why in comparison to RI, LPOP was better than RI for
Types 1 and 2, but it was worse for the third type. As indicated
above, for the third type, a single change might cause all of
the current population to become infeasible, and if so the use
of LPOP does not make much sense. RI was unstable, as it
was inferior to LPOP in almost all cases. This is expected
since the initial population is randomly re-initialized without
any past information. Meanwhile, LPOP and NDLPOP had
quite similar results. That is because for our test cases, the
set of obtained non-dominated solutions occupied almost all
the last population, especially in the case of Type 3, the last
population was entirely filled by non-dominated solutions.

Further the results indicate the degree of difficulty of chang-
ing types. For Types 1 and 2, the changes did not make the
sequence of tasks infeasible in terms of precedence constraint.
The problem of adaptation is to find alternatives that give a
suitable cost of adjusting capabilities. However, for Type 3, the
sequence can become infeasible with even a single flip of the
precedence network. This is reflected in the obtained results.
For Type 3, the SC rates obtained against CBA were less than
the other two (around 0.2 while 0.3 for the other types ).

The findings are similar in the case of problem P2. Note
that for the second scenario, the troops are supported with
two additional resource types and P2 is formed with different
requests for C5 and C6. Also, due to the new support, the
cost values are re-adjusted. Again, RI still had the worst
performance. It was better than LPOP and NDLPOP only in
the case of Type 3 (0.394-0.273 for both LPOP and NDLPOP -
in this case, LPOP and NDLPOP had the same performance).
Again, this shows the difficulty from Type 3 for LPOP and
NDLPOP as indicated in the case of problem P1. Meanwhile
CBA obtained better performance overall with the exception
of Type 2, where LPOP and NDLPOP were better.

However, for the the last problem (P3), the difficulty caused
by changes was decreased since we dropped a significant
number of tasks. Especially, for Type 3, 10 arcs were deleted

from the precedence network. In other words, P3 is much
simpler than P1 and P2. This might explain why RI gains
in comparison to others. And the results have shown this. RI
was better than the others for Types 1 and 2. However, for
Type 3, RI was still unable to compete. The nature of Type 3
really made it hard for un-guided approaches (RI, LPOP and
NDLPOP). Once more, CBA was much better for this type.
For Types 1 and 2, CBA outperformed LPOP and NDLPOP.

To get more concrete support for CBA, we calculated the SC
values of the non-dominated sets for several changes around
the current being-considered change (change number 10). We
started from the fifth change to allow the set of centroids had
enough information until the change number 12. The average
values of SC obtained after adapting to these changes were
given in Table III. It turns out that the results firmly support
the above finding. Again, CBA was consistently better than
the others for almost all problem instances, especially for the
most difficult one: Type 3. Meanwhile LPOP, NDLPOP and
RI all had inconsistent behaviour. This clearly strengthens our
preposition, that the use of centroid type past information
certainly offers significant advantages for searching under
new conditions caused by changes, without the need for any
complex and costly mechanism.

G. Effects of the last population on CBA

A question that might be of interest with CBA is why we
use the last population as a part of our new initial population
to adapt against the change instead of random initialization?
Recall that after using the set of centroids to derive some
offspring, the remaining solutions will be adapted from the
last population. To ease this concern, we will compare the
performance of CBA with the original design and CBA using
the randomly-initialized solutions (we call it CBAR). For
CBAR, the remaining solutions will be re-initialized instead
of adapting the the last population. Again the values of SC
for both CBA and CBAR were reported in Table IV after the
change No 10 and in Table V for the average from changes
around change No. 10.

From the tables, we can see that CBA has slightly better
performance than that of CBAR for either the 10th change
or the average. For P1, CBA was better than CBAR for
Types 2 and 3 while slightly worse for Type 1. It is similar
for the case of P2 when comparing CBA and CBAR where
CBA was better CBAR for all types in average (Table V).
Meanwhile, for P3 CBAR was slightly better than CBA on
Type 1 and worse on Types 2 and 3. This means that the use
of the last population still makes more sense than a completely
random re-initialization. For the difficult changes (like type
2 and 3), the random re-initialization does not help. This is
also consistent with our above finding in the previous section
between LPOP and RI.

VII. CONCLUSION AND FUTURE WORK

In this paper, we provide an overview on the use of EAs for
solving DOPs. Via this overview, we identify the essential need
for an adaptation process in dealing with DOPs in real-world
scenarios. We proposed a novel evolutionary multi-objective
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Problems Types CBA LPOP NDLPOP RI

P1

CBA NA±NA 0.458±0.070 0.479±0.072 0.452±0.069
1 LPOP 0.325±0.067 NA±NA 0.083±0.037 0.389±0.073

NDLPOP 0.303±0.067 0.040±0.015 NA±NA 0.350±0.068
RI 0.341±0.069 0.376±0.075 0.400±0.074 NA±NA
CBA NA±NA 0.438±0.063 0.437±0.063 0.556±0.058†

2 LPOP 0.345±0.074 NA±NA 0.021±0.012 0.532±0.068†
NDLPOP 0.345±0.061 0.010±0.006 NA±NA 0.532±0.068
RI 0.195±0.053† 0.283±0.066† 0.286±0.066 NA±NA
CBA NA±NA 0.488±0.077† 0.488±0.077† 0.458±0.082†

3 LPOP 0.214±0.068† NA±NA 0.014±0.010 0.235±0.062
NDLPOP 0.214±0.068† 0.014±0.010 NA±NA 0.235±0.062
RI 0.228±0.066† 0.409±0.073 0.409±0.073 NA±NA

P2

CBA NA ±NA 0.432±0.057 0.416±0.056 0.493±0.066
1 LPOP 0.387±0.055 NA ±NA 0.023±0.013 0.493±0.063

NDLPOP 0.405±0.056 0.038±0.026 NA ±NA 0.512±0.066
RI 0.323±0.057 0.290±0.059 0.296±0.058 NA ±NA
CBA NA ±NA 0.288±0.055 0.301±0.056 0.441±0.066

2 LPOP 0.481±0.075 NA ±NA 0.037±0.028 0.549±0.070†
NDLPOP 0.469±0.074 0.035±0.027 NA ±NA 0.535±0.072
RI 0.328±0.058 0.273±0.060† 0.288±0.063 NA ±NA
CBA NA ±NA 0.436±0.066 0.436±0.066 0.353±0.069

3 LPOP 0.254±0.065 NA ±NA 0.000±0.000 0.273±0.069
NDLPOP 0.254±0.065 0.000±0.000 NA ±NA 0.273±0.069
RI 0.336±0.070 0.394±0.068 0.394±0.068 NA ±NA

P3

CBA NA ±NA 0.299±0.070 0.299±0.070 0.289±0.075
1 LPOP 0.271±0.068 NA ±NA 0.028±0.024 0.380±0.082

NDLPOP 0.271±0.068 0.028±0.024 NA ±NA 0.380±0.082
RI 0.483±0.078 0.488±0.084 0.488±0.084 NA ±NA
CBA NA ±NA 0.475±0.089 0.480±0.090 0.370±0.076

2 LPOP 0.316±0.079 NA ±NA 0.008±0.033 0.333±0.067
NDLPOP 0.313±0.079 0.004±0.004 NA ±NA 0.326±0.068
RI 0.451±0.070 0.450±0.081 0.483±0.081 NA ±NA
CBA NA ±NA 0.288±0.076 0.321±0.079 0.399±0.074

3 LPOP 0.258±0.068 NA ±NA 0.008±0.028 0.451±0.085
NDLPOP 0.239±0.068 0.000±0.000 NA ±NA 0.423±0.083
RI 0.228±0.069 0.249±0.074 0.249±0.074 NA ±NA

TABLE II
THE VALUES OF SC OBTAINED AFTER ADAPTING TO THE CHANGE NO. 10. SYMBOL † IS USED TO SHOW THAT THE DIFFERENCE BETWEEN TWO

APPROACHES ARE STATISTICALLY DIFFERENT (USING T-TEST WITH 0.05 LEVEL OF SIGNIFICANCE)

approach for adaption in dynamic environments using schedul-
ing and planning as test beds. We investigate a special class of
planning problems called Adaptive Planning Problem (APP).
For this problem, decision makers are expected to prepare
adaptive plans to deal with any changes that might happen
during execution of a selected plan. The question is that
given the current being-used plan, how to generate the new
adaptation policy that can satisfy both objectives: keeping the
execution within its time-line while maintaining the less cost
of adjusting?

We adapt the current plan in a reactive-style using an evo-
lutionary algorithm. For any task, which is already executed
or in progress, it will not be scheduled again. In this way,
the rescheduling process will be smaller and simpler over
time since the number of tasks to be scheduled decreases.
To assist the decision making, we use the second objective
as an additional indication to select a new adapted plan. A

set of plans are obtained trading-off between time and cost of
re-allocating the capabilities. Further, since the change might
happen frequently during the mission, it should be worthwhile
to use the the results obtained in the past to initialization of
the first population in order to speed up the adaptation process.
We introduced the concept of centroid of the non-dominated
set to this context. Each centroid presents the area of optimal
obtained by our approach and a set of centroids will keep
track all areas of optima in the past. The initialization of the
population dealing with the effects of a change will be guided
by a a set of centroids. This helps to speed up the search
process toward the new area of optima setup by the change.

A case study based on a military mission was used to
validate our approach. Three different scenarios were used
to analyze the performance of the proposed approach. Also,
three types of changes are proposed to the mission planning
problem including the execution time variation, the failure of
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Problems Types CBA LPOP NDLPOP RI

P1

CBA NA±NA 0.404±0.009 0.409±0.009 0.407±0.007
1 LPOP 0.355±0.012 NA±NA 0.056±0.005 0.391±0.008

NDLPOP 0.344±0.010 0.036±0.002 NA±NA 0.377±0.008
RI 0.376±0.007 0.379±0.006 0.383±0.006 NA±NA
CBA NA±NA 0.426±0.008† 0.426±0.008† 0.470±0.009†

2 LPOP 0.357±0.008† NA±NA 0.035±0.002 0.470±0.008
NDLPOP 0.355±0.008† 0.028±0.002 NA±NA 0.469±0.008
RI 0.292±0.009† 0.292±0.006 0.294±0.007 NA±NA
CBA NA±NA 0.438±0.013† 0.438±0.013† 0.386±0.015

3 LPOP 0.310±0.012† NA±NA 0.007±0.001 0.246±0.006
NDLPOP 0.289±0.010† 0.007±0.001 NA±NA 0.246±0.006
RI 0.310±0.012 0.329±0.015 0.329±0.015 NA±NA

P2

CBA NA ±NA 0.410±0.010 0.399±0.009 0.490±0.010†
1 LPOP 0.366±0.003 NA ±NA 0.020±0.002† 0.484±0.007

NDLPOP 0.381±0.003 0.035±0.001† NA ±NA 0.502±0.007
RI 0.339±0.010† 0.326±0.007 0.322±0.007 NA ±NA
CBA NA ±NA 0.320±0.009† 0.319±0.011 0.437±0.010†

2 LPOP 0.470±0.013† NA ±NA 0.030±0.004 0.501±0.013
NDLPOP 0.471±0.015 0.038±0.004 NA ±NA 0.503±0.014
RI 0.368±0.006† 0.319±0.010 0.316±0.011 NA ±NA
CBA NA ±NA 0.373±0.016† 0.373±0.016 0.343±0.012

3 LPOP 0.301±0.010† NA ±NA 0.006±0.001 0.269±0.012
NDLPOP 0.301±0.010 0.006±0.001 NA ±NA 0.269±0.012
RI 0.352±0.012 0.342±0.011 0.342±0.011 NA ±NA

P3

CBA NA ±NA 0.383±0.011† 0.383±0.011† 0.249±0.013†
1 LPOP 0.228±0.005† NA ±NA 0.023±0.003 0.284±0.016†

NDLPOP 0.228±0.005† 0.008±0.002 NA ±NA 0.284±0.016
RI 0.560±0.012† 0.532±0.011† 0.532±0.011 NA ±NA
CBA NA ±NA 0.419±0.011† 0.421±0.010† 0.307±0.020†

2 LPOP 0.253±0.010† NA ±NA 0.023±0.003† 0.225±0.020†
NDLPOP 0.253±0.010† 0.008±0.002† NA ±NA 0.219±0.019†
RI 0.509±0.015† 0.515±0.030† 0.525±0.029† NA ±NA
CBA NA ±NA 0.290±0.004 0.320±0.004 0.366±0.013†

3 LPOP 0.313±0.013 NA ±NA 0.039±0.001† 0.334±0.013
NDLPOP 0.286±0.014 0.009±0.001† NA ±NA 0.311±0.012
RI 0.263±0.009† 0.293±0.009 0.293±0.009 NA ±NA

TABLE III
AVERAGE VALUES OF SET-COVERAGE OBTAINED FROM ADAPTATION OVER A RANGE OF CHANGES. SYMBOL † IS USED TO SHOW THAT THE DIFFERENCE

BETWEEN TWO APPROACHES ARE STATISTICALLY DIFFERENT (USING T-TEST WITH 0.05 LEVEL OF SIGNIFICANCE)

capabilities, and the change of the precedence network. We
also implement three other initialization techniques within the
proposed evolutionary approach. The obtained results clearly
showed the good performance of centroid-based technique on
dealing with the effects of changes.

Contributions are as follows:
• A survey and classification on dealing with dynamic

environments. We first pinpoint three types of change,
and then classify two categories of dealing with dynamic
factors: tracking optima and adapting the current solu-
tions to the change.

• A new method CBA that exploits multi-objectivity to
facilitate the adaptation process.

For future work, we plan to investigate more complex
instances of APP and with the use of a more complex
simulation that allows us to present the factor of human in the
loop. This human factor could be simulated by holons; defined

as autonomous and self-reliant agents in [50] which models
battlefield scenario. Application of CBA to the evolutionary
process involved in the task and resource assignment of these
agents could enhance computational speed. A comparison
with non-EA type methods would improving our understand-
ing of Adaptation in Dynamic Environments
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Problems Types CBA CBAR

P1

1 CBA NA±NA 0.399±0.067
CBAR 0.403±0.068 NA±NA

2 CBA NA±NA 0.435±0.061
CBAR 0.313±0.062 NA±NA

3 CBA NA±NA 0.328±0.068
CBAR 0.156±0.053 NA±NA

P2

1 CBA NA±NA 0.443 0.067
CBAR 0.360 0.058 NA±NA

2 CBA NA±NA 0.452 0.071
CBAR 0.385 0.068 NA±NA

3 CBA NA±NA 0.229 0.062
CBAR 0.318 0.067 NA±NA

P3

1 CBA NA±NA 0.569 0.237
CBAR 0.584 0.087 NA±NA

2 CBA NA±NA 0.498 0.076
CBAR 0.413 0.075 NA±NA

3 CBA NA±NA 0.316 0.073
CBAR 0.213 0.065 NA±NA

TABLE IV
THE VALUES OF SET COVERAGE OBTAINED BY CBA AND CBAR AFTER

ADAPTING TO THE CHANGE NO 10.

Problems Types CBA CBAR

P1

1 CBA NA±NA 0.368±0.010
CAR 0.396±0.014 NA±NA

2 CBA NA±NA 0.450±0.009
CBAR 0.343±0.011 NA±NA

3 CBA NA±NA 0.323±0.006
CBAR 0.261±0.009 NA±NA

P2

1 CBA NA±NA 0.453 0.004
CBAR 0.351 0.006 NA±NA

2 CBA NA±NA 0.478 0.009
CBAR 0.348 0.006 NA±NA

3 CBA NA±NA 0.273 0.012
CBAR 0.248 0.002 NA±NA

P3

1 CBA NA±NA 0.282 0.023
CBAR 0.596 0.013 NA±NA

2 CBA NA±NA 0.387 0.019
CBAR 0.467 0.016 NA±NA

3 CBA NA±NA 0.286 0.011
CBAR 0.264 0.017 NA±NA

TABLE V
AVERAGE SET-COVERAGE VALUES GAINED FROM ADAPTATION OVER A

RANGE OF CHANGES
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