
Decomposition Algorithms for a Multi-hard
Problem

M. R. Przybylek mrp@pjwstk.edu.pl
Polish-Japanese Academy of Information Technology, Warsaw, Poland

A. Wierzbicki adamw@pjwstk.edu.pl
Polish-Japanese Academy of Information Technology, Warsaw, Poland

Z. Michalewicz∗ zm@complexica.com
Complexica, Adelaide, Australia

Abstract
Real-world optimization problems have been studied in the past, but the work resulted
in approaches tailored to individual problems that could not be easily generalized.
The reason for this limitation was the lack of appropriate models for the systematic
study of salient aspects of real-world problems. The aim of this paper is to study
one of such aspects: multi-hardness. We propose a variety of decomposition-based
algorithms for an abstract multi-hard problem and compare them against the most
promising heuristics.

Keywords
Traveling Thief Problem, Co-evolution, Metaheuristics, Multi-hard problems, Multi-
objective optimization, Non-separable problems, Real-world optimization problems

1 Introduction

Mathematical modeling has been the basis of many natural sciences, as well as opera-
tions research, for decades. Yet, even as many advances have been made, over the years
the phenomenon of “unreasonable ineffectiveness of mathematics” in computer engi-
neering (see: Gunawardena (1998)), cognitive science (see: Poli (1999)), economics (see:
Velupillai (2005)), and biology (see: Borovik (2009)) has been noticed. In Michalewicz
(2012) and Michalewicz and Fogel (2000) authors argue that the same phenomenon oc-
curs in real-world optimization. They divided hard optimization problems into two
categories: designed and real-world problems. “Designed problems” are “mathemat-
ical” — they have simple logical formulation, are surgically precise, and the objective
function clearly indicates a better solution out of two potential solutions. This category
includes the Traveling Salesman Problem (TSP), Graph Colouring Problem (GCP), Job
Shop Scheduling Problem (JSSP), and Knapsack Problem (KP), to name a few. Real-
world optimization problems have not been designed by anyone, but occur in real
business processes. They usually have very complex formulations. To solve such prob-
lems, first we have to build their models, and the quality of the obtained solution will
depend on the quality of the model.

∗Z. Michalewicz is also with Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland,
and the Polish Japanese Academy of Information Technology, Warsaw, Poland.

c©2015 by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

M. R. Przybylek, A. Wierzbicki, Z. Michalewicz

The level of difficulty of designed and real-world optimization problems differs
in practice, even if they may be equivalent from the point of view of complexity the-
ory. In this article, the distinction between these levels of difficulty is made by re-
ferring to “single-hard”, “double-hard” and more generally “multi-hard” problems.
A single-hard problem means a designed problem of high computational complexity.
A “multi-hard” problem can be described as a non-trivial combination of “single-hard”
problems: solving sub-problems of a multi-hard problem in isolation does not lead to
a good solution of the multi-hard problem.

Through a better understanding of multi-hardness, the “ineffectiveness of mathe-
matics” for solving real-world optimization problems may be reduced. Often, in our
attempts to reduce the complexity of multi-hard problems, we create models that use
known, single-hard problems that are combined by additional interdependencies like
joint criteria or joint constraints.

The aim of this article is to develop foundations for solving multi-hard problems.
The starting point is a formulation of an abstract double-hard problem, called the Trav-
eling Thief Problem (TTP) in Bonyadi et al. (2013) that is a non-trivial composition of
two well-studied classical problems: the Traveling Salesman Problem and the Knap-
sack Problem.

In this work, TTP is studied further, with the goal of obtaining insights into the
difficulty of multi-hard problems in general through an evaluation of algorithms for
solving TTP. The goal is to compare known heuristics against algorithms that aim to
exploit the structure of a multi-hard problem.

Specialized algorithms have been developed for many (perhaps most) well-known
single-hard problems. Unfortunately, such algorithms are often very sensitive to prob-
lem modifications, such as new constraints. Moreover, such algorithms do not exist for
multi-hard problems, and it would be hard to develop them as multi-hard problems
are defined by special combinations of single-hard problems of various types. The way
these single-hard problems are combined differs from one multi-hard problem to an-
other, as well.

However, instead of throwing out our knowledge, and instead of building new al-
gorithms from scratch, it may be possible to use existing algorithms as building blocks
for solving multi-hard problems. The first candidates would be known meta-heuristics.
After all, multi-hard problems are in the same computational complexity class as single-
hard problems. However, this approach does not take into account the structure and
type of combination of a multi-hard problem.

In our previous work in Bonyadi et al. (2014) we have developed the idea of Co-
Solver and applied it to the Traveling Thief Problem obtaining some promising re-
sults. The main idea behind CoSolver is to decompose a multi-hard problem into sub-
problems, solve the sub-problems separately with some communication between the
algorithms solving sub-problems, and then combine the solutions back to obtain a so-
lution to the initial problem.

This paper makes the following contributions. CoSolver is compared against
meta-heuristics that we have thought of as most promising for multi-hard problems:
a Monte-Carlo Tree Search algorithm and Ant Colony Optimization. The algorithms
are also compared to exact solutions for a variety of instances of TTP, differing in diffi-
culty and structure. Further, CoSolver is extended by incorporating heuristics instead
of exact solvers for the TSP and KP components of TTP. This extension greatly improves
the scalability of CoSolver without compromising quality.

The structure of the paper is as follows. In the next section we discuss related

2 Evolutionary Computation Volume x, Number x

Decomposition Algorithms

work. Section 3 formally defines the Traveling Thief Problem. Section 4 introduces the
concept of decomposition algorithms for multi-hard problems, the CoSolver algorithm,
and the Monte-Carlo Tree Search algorithm for TTP. Section 5 describes the benchmark
instances of TTP. Section 6 presents results of experiments with solving benchmarks
using proposed algorithms. Section 7 concludes the paper.

2 Related Work

In 2013 The Traveling Thief Problem (TTP) was introduced (see: Bonyadi et al. (2013))
as an example of multi-level optimization problem. The problem was presented as a
combination of two well-known sub-problems: the Traveling Salesman Problem (TSP)
and the Knapsack Problem (KP). The authors showed that optimal solutions for each
sub-problem do not guarantee a global solution, because the interdependency between
the two problems affects the optimal solution for the whole problem. Although some
extensions to the Traveling Salesman Problem were studied before, they consisted of
one hard problem (i.e. the core problem, which was usually the Vehicle Routing Prob-
lem, see: Braekers et al. (2015), and Toth and Vigo (2001)) equipped with additional
constraints, and were solved as single monolithic problems. The variants of the Ve-
hicle Routing Problem that are closest to the Traveling Thief Problem are: the Time
Dependent Vehicle Routing Problem (see: Malandraki and Daskin (1992)), where the
cost of traveling between the cities varies over time, and the Capacitated Vehicle Rout-
ing Problem (see: Ralphs et al. (2003)), where the travelers (vehicles) have additional
constraints on the total weight of items that can be carried.

2.1 State of The Art

• As noted in Bonyadi et al. (2013) most of the current research in algorithm design
focuses on problems with a single hard component (Traveling Salesman Problem,
Knapsack Problem, Job Shop Scheduling Problem (see: Cheng et al. (1996), Davis
(1985), and van Laarhoven et al. (1992)), the Vehicle Routing Problem (see: Toth
and Vigo (2001)), etc.), whilst most of the real-world problems are multi-hard prob-
lems. It has also been shown in the paper that interdependencies between compo-
nents of multi-hard problems play a chief role in the complexity of these problems.
Such interdependencies do not occur in designed, single-hard problems (see, for
example: Bonyadi et al. (2014)). In order to present the complexity that results
from interdependencies in multi-hard problems, the Traveling Thief Problem was
introduced.

• Bonyadi et al. (2014) introduced a new algorithm (called CoSolver) for solving
multi-hard problems, which focuses on the aspect of communication and negoti-
ation between partial sub-problems. The main idea behind CoSolver is to decom-
pose TTP into sub-problems, solve the sub-problems separately, with some com-
munication between the algorithms solving them, and then combine such partial
solutions back to the overall solution for TTP. The article also proposed a simple
heuristics (called Density-Based Heuristic) as a second approach and compared it
to CoSolver. This heuristic first generates a solution for the TSP component of a
given TTP problem and then for the found TSP route solves the generalized KP
problem so that the objective value is maximized. It is worth noting that Density-
Based Heuristic ignores all of the interdependencies between the sub-problems.
These two algorithms were compared on a series of benchmark instances. The
results showed that the CoSolver efficiency was better than Density-Based Heuris-

Evolutionary Computation Volume x, Number x 3

M. R. Przybylek, A. Wierzbicki, Z. Michalewicz

tic, suggesting that taking into consideration the interdependencies between the
sub-problems is beneficial.

• It was argued in Przybylek et al. (2016) that multi-hardness is not the only cru-
cial aspect of real-world optimization problems. Another important character-
istic is that real-world problems usually have to operate in an uncertain and a
dynamically-changing environment. This observation resulted in a formulation of
a probabilistic variant of TTP. The authors also showed how the decomposition-
based approach (namely, CoSolver) can be incorporated in this new setting.

• The first attempts to solve multi-hard problems were based on methods for large-
scale optimization. Typical methods used in such approaches are: Newton’s
method and conjugate gradient method (see: Faires and Burden (2003)), the par-
titioned quasi-Newton method (see: Griewank and Toint (1982)), and linear pro-
gramming (see: Bertsimas and Tsitsiklis (1997)). The main disadvantage of these
methods is, however, their dependency on the algebraic formalization of the prob-
lem and the availability of information about the gradients. In case of many of
the real-world problems an algebraic formalization is simply impossible. There-
fore, the simulation has to be used to get the evaluation of potential solutions,
by providing an output value for a given set of input decision values. This kind
of optimization (i.e. a black-box optimization) is widely used in mechanical en-
gineering and many other disciplines. In black-box optimization, meta-heuristics
such as evolutionary algorithms (EAs) have a considerable advantages over con-
ventional single-point derivative-based methods of optimization. Meta-heuristics
do not base on gradient information and are less likely to stuck on local optima due
to the use of a population of possible solutions. In addition, the recent advances
in meta heuristics show that the cooperative coevolutionary algorithms hold great
promise for such problems as shown in Yang et al. (2008), Li and Yao (2009), and Li
and Yao (2012). Nonetheless, major challenges remain. Finally, there is also mod-
ern research on multi-level optimization, where the optimization problems consist
of multiple sub-components that are subject to certain hierarchical relationships
(see: Colson et al. (2007), and Talbi (2013)). In such setting, the components that
are lower in the hierarchy do not include in the optimization process the solutions
of the components that are higher in the hierarchy.

• To solve complex problems human computational potential can be used (see:
Kearns (2012)). This is, however, a completely new approach in the context of
multi-hard problems and at the same time it is promising and interesting direction
of the research. Teams of human decision makers and new heuristic algorithms
could improve solutions of these problems.

3 Real-World Inspiration

Real, multi-hard optimization problems are solved in practice every day by human
decision makers. A good example of such multi-hard problem is the optimization
of the supply chain operations from the mines to the ports (see also: Bonyadi and
Michalewicz (2016), and Bonyadi et al. (2016)). These operations include mine plan-
ning and scheduling, stockpile management and blending, train scheduling, and port
operations — with an overall objective to satisfy customer orders by providing pre-
defined quantity of products by a specified date.

Lets look at the some of these operations in more detail:

4 Evolutionary Computation Volume x, Number x

Decomposition Algorithms

1. Train scheduling. To operate the trains, there is a railway network, which is usually
hired by the mining company so that trains can travel between the mines and the
ports. The owner of the railway network sets some restrictions for the operation
of trains for each mining company, for example: the number of trains per day for
each junction in the network is constant (set by the owner of the railway network)
for each mine company. There are a number of self-unloading stations, which
are scheduled to unload products from the trains arriving in the port. The mine
company schedules and loads trains in the mines of requested material and then
sends them to the port, while respecting all constraints (that is, the train scheduling
procedure).

2. Train unloading. The mine company also has to plan train dumpers to unload the
trains and place unloaded products at a port. A port encloses a huge area called
the stockyard, several places to berth ships (called the berth) and a waiting area for
ships. The stockyard contains certain stockpiles, which are storages of individual
products (mixing products in stockpiles is not allowed) and are limited by some
capacities.

3. Ship scheduling. Ships arriving in ports (time of arrival is often approximate, due to
weather conditions) have to wait in the waiting area until the port manager assigns
them to a particular berth, where they take specific products to be delivered to
the customers. Ships are subject to the penalty costs, called the demurrage — the
penalty is applied for each unit of time while the ship is waiting in the port of
its arrival. The mining company’s goal is to plan the ships and fill them with the
requested products, so that the total demurrage consumed by all ships is limited
to a minimum.

4. Loading ships. There are several ship loaders, which are assigned to each berthed
ship to load it with requested products. The ship loaders take products from ap-
propriate stockpiles and load them into ships. It should be noted that different
ships may have different requirements for the products, and each product can be
taken from a different stockpile, so that the scheduling various ship loaders and
choosing different stockpiles in order to meet the demand of the ships may result
in different amount of time to finish the loading. It is the task of the owner of the
mine to ensure sufficient quantities of each type of products in the stockyard until
the ships arrive.

Each of the above-mentioned procedures (train scheduling, train unloading, ship
scheduling, ship loading) is a component of the optimization problem. Of course, each
of these components is a problem on its own, which is difficult to solve. In addition to
the complexity of the components, solving the components in isolation does not lead
to an overall solution to the whole problem. As an example, the optimal solution to
the problem of train scheduling (carrying as much materials as possible from mines
to ports) may result in an insufficient amount of available landfill capacity or even the
lack of suitable products for ships that will arrive on schedule. Also, the best plan for
dumping products from the trains and keeping them in the stockyard can lead to poor
quality of the plan for ship loaders, which would have to move too many times to load
the ship.

While TTP is an abstract model of a multi-hard problem, it is also inspired by a
real multi-hard problem of optimizing supply-chain operations of a mining company.
The KP component of TTP models train loading, while the TSP component models

Evolutionary Computation Volume x, Number x 5

M. R. Przybylek, A. Wierzbicki, Z. Michalewicz

A-subproblem
Approximator

B-subproblem
Approximator

B-problem
Checker

A-problem
Checker

Balance
Control

Y
B

Y
A

Global S
olutio

n

Initia
l P

roblem
Decomposer Composer

A-solution

B-solution

B-feedback loop

A-feedback loop

Negotiation

X
A

X
B

Figure 1: Decomposition of a problem on two sub-problems: A and B.

scheduling a train that has to visit several mines. It is clear from this analogy how TTP
could be extended to create new multi-hard problems (possibly with more than two
components).

However, this complex, real multi-hard problem is solved by the mining corpo-
ration, applying two basic approaches: specialization and collaboration or negotiation
(see: Derrouiche et al. (2008)). Teams of decision makers work on each component
of the problem, such as scheduling trains and ships, separately. These teams are spe-
cialized and experienced in solving their particular problem. This kind of a unit in
a corporation is also referred to as a “silo”, since it is responsible only for a selected
part of operations and does not need deal with other issues. Silos can collaborate and
negotiate with each other: a solution proposed by the silo should be consulted with so-
lutions of other silos, since independent solutions frequently interfere or even disturb
one another. This collaboration is usually crucial to the success of the management of
the whole supply-chain, and hence it is usually the responsibility of higher-level man-
agement to carry out or oversee negotiations among silos.

The concept of decomposition algorithms and CoSolver is inspired by this social
or managerial solution of real multi-hard problems. Decomposition algorithms use
solvers of sub-problems of the multi-hard problem instead of silos of human decision
makers. Moreover, a decomposition algorithm needs a method of “negotiation” of the
solutions found by its sub-problem solvers. This negotiation method can be crucial
to the algorithm’s success. The general idea is shown on Fig 1. The initial problem
is decomposed onto two, possibly overlapping, sub-problems: XA and XB . Each of
the sub-problems XA, XB (optionally with some knowledge about the solution YB , YA
to the other sub-problem from the previous iteration) is passed to a domain-specific
solver giving a partial solution A-solution (B -solution). Then, the negotiation protocol
starts modifying A-solution to respect B -solution and modifying B -solution to respect A-
solution. Finally, the solutions are composed together to obtain a solution to the initial
problem.

4 TTP: a Model Multi-hard Problem

In this section we provide a formal definition of the Traveling Thief Problem (see:
Bonyadi et al. (2013)). Given:

• a weighted graph G = 〈V,E〉, whose nodes m,n ∈ V are called cities, and whose

edges m
d(m,n)−→ n ∈ E from m to n are called distances

6 Evolutionary Computation Volume x, Number x

Decomposition Algorithms

• an initial city s ∈ V

• a list of pairs of natural numbers 〈wi, pi〉1≤i≤I , called the list of items; each item
〈wi, pi〉 has its weight wi and its profit pi

• a relation a, called the availability of the items, between the cities V and a set
{1, 2, . . . , I}; the i-th item is available in city n ∈ V iff a(n, i) is satisfied

• a natural number C, called the capacity of the knapsack

• a real number R ≥ 0, called the rent ratio

• two positive real numbers vmin ≤ vmax , called the minimal and maximal speed

the Traveling Thief Problem (TTP) asks what is the most profitable picking plan on the
best route that starts and ends in the initial city s and visits each other city exactly once.
In more details, let:

• π = 〈π1, π2, . . . , πN , πN+1〉 be a Hamiltonian cycle in G such that π1 = πN+1 = s is
the starting node

• σ : {1, 2, . . . , I} → V be a partial function (“the picking plan”) such that ev-
ery item i which belongs to the domain of σ is available in city σ(i) (that is,
i ∈ dom(σ) ⇒ a(i, σ(i))) and the capacity of the knapsack in never exceeded (that
is,
∑
i∈dom(σ) wi ≤ C)

the profit of the traveler is defined as:

P =
∑

i∈dom(σ)

pi −R
|V |∑
n=1

t(πn, πn+1) (1)

where t(πn, πn+1) is the time to travel from πn to πn+1 assuming the cumulative weight
of all picked items by city πn on cycle π is W (n). This is given by the formula:

t(πn, πn+1) =
d(πn, πn+1)

vmax −W (n) vmax−vmin

C

W (n) =
∑

i∈dom(σ)∩{i : ∃
m≤n

a(i,πm)}

wi
(2)

We shall note that, if more items are picked while traveling through cities, the value
t(πn, πn+1) will grow, which in turn will cause the reduction of the total profit (see the
value P in Eq. 1). Likewise, by choosing better Hamiltonian cycles in terms of the total
distance, some possibly high quality items (items which have a high profit) might only
be available at the beginning of the cycle and, hence, by picking those items, the travel
time will increase (items will be carried for a longer time), which in turn will also cause
the reduction the total profit. This shows that the interdependency between the two
problems influences the optimum solutions for the whole problem. Also, solving each
component in isolation does not necessarily lead to the optimum of the problem (see:
Bonyadi et al. (2013)).

Evolutionary Computation Volume x, Number x 7

M. R. Przybylek, A. Wierzbicki, Z. Michalewicz

5 Algorithms

In our previous work (see: Bonyadi et al. (2014)) we have developed the idea of a
decomposition-based algorithm and applied it to TTP obtaining some promising re-
sults (see also Section 7). Instances of TTP were decomposed into two components1:
TSKP — the Traveling Salesman with Knapsack Problem and KRP — the Knapsack on
the Route Problem. In this section we develop two additional variants of this algorithm:
one using a heuristic approach to solve the TSKP component and exact solver for KRP
component and another using heuristics for both components. We also describe two
heuristic solvers: one which is based on Monte-Carlo Tree Search and another which is
based on Ant Colony Optimization. In Section 6 we compare these algorithms against
each other.

5.1 Decomposition Algorithms

We have identified the following sub-problems of TTP — one corresponding to a gen-
eralization of TSP, which we shall call the Traveling Salesman with Knapsack Problem
(TSKP), and another corresponding to a generalization of KP, which we shall call the
Knapsack on the Route Problem (KRP).

Let us start with the definition of TSKP. Given:

• a weighted graph G = 〈V,E〉, whose nodes m,n ∈ V are called cities, and whose

edges m
d(m,n)−→ n ∈ E from m to n are called distances

• an initial city s ∈ V

• a function ω : V → R assigning to every node n ∈ V a non-negative real number
ω(n), which may be thought of as the total weight of items picked at city n

• a natural number C, called the capacity of the knapsack

• a real number R ≥ 0, called the rent ratio

• two positive real numbers vmin ≤ vmax , called the minimal and maximal speed

the Traveling Salesman with Knapsack Problem asks what Hamiltonian cycle π that
starts and ends in the initial city s minimizes the following function:

T = R

|V |∑
n=1

t(πn, πn+1) (3)

where:

t(πn, πn+1) =
d(πn, πn+1)

vmax −W (n) vmax−vmin

C

W (n) =
∑

1≤i≤n

ω(πi)
(4)

(compare the above functions with Eq. 1 and Eq. 2 from Section 2). Note that in this
formulation of the problem, constants R and C are excessive — we keep them for con-
venience only.

The Knapsack on the Route Problem is the counterpart of the above problem.
Given:

1See Section 5.1 for definitions

8 Evolutionary Computation Volume x, Number x

Decomposition Algorithms

• a set V = 〈1, 2, . . . , N〉, whose elements are called cities,

• a function δ : V → R that assigns to each city n a non-negative real number δ(n),
which may be thought of as the distance from city n to the “next” city on some
route

• a list of pairs of natural numbers 〈wi, pi〉1≤i≤I , called the list of items; each item
〈wi, pi〉 has its weight wi and its profit pi

• a relation a, called the availability of the items, between the cities V and a set
{1, 2, . . . , I}; the i-th item is available in city n ∈ V iff a(n, i) is satisfied

• a natural number C, called the capacity of the knapsack

• a real number R ≥ 0, called the rent ratio

• two positive real numbers vmin ≤ vmax , called the minimal and maximal speed

Knapsack on the Route Problem asks what picking plan σ : {1, 2, . . . , I} → V maxi-
mizes the following function:

P =
∑

i∈dom(σ)

pi −R
N∑
n=1

t(i) (5)

where:

t(n) =
δ(n)

vmax −W (n) vmax−vmin

C

W (n) =
∑

i∈dom(σ)∩{i : ∃
m≤n

a(i,m)}

wi
(6)

(also compare the above functions with Eq. 1 and Eq. 2 from Section 2).
Observe that our decomposition preserves the relative difficulties of the original

components. First of all, because there is a trivial gap-preserving reduction from TSP
to TSKP, we obtain the following theorem.

Theorem 1. There is no polynomial constant-factor approximation algorithm for the Traveling
Salesman with Knapsack Problem unless P = NP .

On the other hand, in this section we construct an algorithm for KRP that is poly-
nomial under unary encoding of profits of items (Algorithm 2), which may be turned
into a fully polynomial approximation scheme for KRP in the usual way.

Theorem 2. There is a fully polynomial approximation scheme for the Knapsack on the Route
Problem.

Therefore TSP is computationally equivalent to TSKP and KP is computationally
equivalent to KRP.

At this point, one may wonder why we have identified TSKP and KRP subcompo-
nents of TTP, instead of the obvious TSP and KP. As mentioned earlier, two key factors
of decomposition-based approach are:

• identification of subcomponents of the problem

• development of a communication protocol for the subcomponents

Evolutionary Computation Volume x, Number x 9

M. R. Przybylek, A. Wierzbicki, Z. Michalewicz

Algorithm 1: CoSolver
1: δ(k)← 0
2: P ∗ ← −∞
3: for r ← 1 to MaxIter do
4: σ ← solve KRP with 〈pi, wi〉i∈I , δ and parameters C,R, vmin , vmax

5: ω(k)←
∑
i∈dom(σ)∧a(i,πk)} wi

6: π ← solve TSKP with ω and parameters d,R, vmin , vmax

7: P ← profit(π, σ)
8: if P > P ∗ then
9: P ∗ ← P

10: π∗ ← π
11: σ∗ ← σ
12: δ(k)← d(πk, πk+1)
13: else
14: break
15: return σ∗, π∗

These factors are, of course, not completely independent of each other and there are
very many important aspects that we have to take into consideration when making
such choices:

• there should be efficient approximation algorithms for subcomponents

• the algorithms for subcomponents should be “stable”, by what we mean that,
whenever possible, similar instances of the problem should lead to similar solu-
tions

• subcomponents have to be chosen is such a way that makes it possible to develop
an effective and efficient negotiation protocol

• a good solution to the problem has to be found in a possibly small number of
executions of approximation algorithms for subcomponents

• the computational overhead of the communication protocol should be reasonably
small

Having the above in mind, we can now better understand our choice of subcomponents
of TTP. One could naively think that since TTP has been designed as a generalisation of
both TSP and KP problems, the natural choices for subcomponents are exactly TSP and
KP. Nonetheless, the highly non-linear interdependencies between TSP and KP parts of
TTP, make it difficult to develop efficient and effective negotiation protocol for them.

The negotiation protocol between TSKP and KRP components is presented as Al-
gorithm 1.

Given an instance of TTP, CoSolver starts by creating an instance of KRP that con-
sists of all items of TTP, and distances δ(k) equal zero. After finding a solution σ for this
instance, it creates an instance of TSKP by assigning to each city a weight equal to the
total weights of items picked at the city according to σ. A solution for TTP at the initial
step consists of a pair σ, π, where π is the route found as a solution to the instance of
TSKP. Then the profit P of the solution is calculated. If profit P is better than the best

10 Evolutionary Computation Volume x, Number x

Decomposition Algorithms

Algorithm 2: Pseudo-polynomial solver for KRP
1: P [1] stores initial profits; if not supplied to the procedure P [1][w]← 0
2: for n← 2 to N + 1 do
3: P [n]← solve KP with initial profits P[n-1] and items from city n
4: for w ← 0 to C do
5: t← δ(n− 1)(1

vmax
− 1

vmax−w
vmax−vmin

C

)

6: P [n][w]← P [n][w]−Rt
7: m = 0
8: for w ← 0 to C do
9: if P [N + 1][w] > P [N + 1][m] then

10: m← w
11: track down the structures to find which items σ correspond to the optimal real

profit P [N + 1][m] with total weight m
12: return σ

profit P ∗ that has been found so far, the process repeats with distances between nodes
adjusted along tour π.

We may obtain various variants of CoSolver algorithms by plugging various KRP
and TSKP components in the negotiation protocol.

We have implemented the following algorithms for KRP component.

1. Exact solver for KRP (Algorithm 2). The algorithm runs in time and space poly-
nomial under unary encoding of profits of items. It inductively builds a two-
dimensional array P , such that P [n][w] stores the real profit that can be obtained
by transporting items of total weight w through cities up to n. The initial val-
ues P [1][w] are set to zero for every 0 ≤ w ≤ C. Assuming that we have com-
puted P [n− 1][w], the values P [n][w] can be obtained by using the usual dynamic-
programming routine for the Knapsack Problem (Algorithm 3) on items that are
available at city n minus the difference in costs between traveling from city n − 1
to city n carrying the empty knapsack and carrying a knapsack that weights w.

2. Heuristic reduction from KRP to KP and exact solver for KP.

Let W (i) denote the total weight of items picked at cities {1, 2, . . . , N} according
to some picking plan. We create an instance of KP with “relaxed profits” in the
following way:

pi = pi −R(ti − t′i)

where t(i) and t′(i) are given by:

t(i) =
L(i)

vmax − (W (i− 1) + wi)
vmax−vmin

C

t′(i) =
L(i)

vmax −W (i− 1) vmax−vmin

C

and:

L(i) =


0 for i = 1
N∑
n=i

δ(n) otherwise

Evolutionary Computation Volume x, Number x 11

M. R. Przybylek, A. Wierzbicki, Z. Michalewicz

Algorithm 3: Pseudo-polynomial solver for KP
1: P [0] is a vector of initial profits; if not supplied to the procedure P [0]← 0
2: for i← 1 to I do
3: for w ← 0 to C do
4: if wi > w then
5: P [i][w]← P [i− 1][w]
6: else
7: P [i][w]← max(P [i− 1][w], P [i− 1][w − wi] + pi)
8: m← 0
9: for w ← 0 to C do

10: if P [I][w] > P [I][m] then
11: m← w
12: w ← m
13: p← P [C][w]
14: σ ← {}
15: for t← 0 to I − 1 do
16: i← I − t
17: if p > P [i− 1][w] then
18: σ ← σ ∪ {i}
19: w ← w − wi
20: p← p− pi
21: return σ

The items whose relaxed profit is not strictly positive are not taken into considera-
tion when forming an instance of KP.

Instances of KP are solved exactly by the dynamic programming approach (Algo-
rithm 3).

3. Heuristic reduction from KRP to KP and weighted greedy approach to KP.

The reduction proceeds like in the above. To solve an instance of KP we use a
variant of the greedy approach — the items are sorted according to the ratio pi

wΘ
i

,
where Θ ≥ 0 is a weighting parameter, and then greedily packed into the knapsack
(Algorithm 4). We use a constant set of weighting parameters Θ ∈ {0, 1e , 1, e} and
return the picking plan for the best parameter Θ. Observe that for Θ = 0 we get the
usual naive algorithm (“best value first”), and for Θ = 1 we get the usual greedy
algorithm (“best ratio first”). It may be shown that by using these two parameters
only, we get a 1.5-approximation scheme.

We have implemented the following algorithms for TSKP component.

1. Exact solver for TSKP implemented by the usual by the usual branch-and-bound
technique.

2. Heuristic reduction from TSKP to TSP and exact solver for TSP.

Given an instance of TSKP, we create an instance of TSP with the same nodes, but
whose distances are substituted by the time needed for the travel:

d(πn, πn+1) =
d(πn, πn+1)

vmax −W (n) vmax−vmin

C

12 Evolutionary Computation Volume x, Number x

Decomposition Algorithms

Algorithm 4: Heuristic solver for KP
1: P ∗ ← 0, σ∗ ← {}
2: for Θ ∈ {0, 1e , 1, e} do
3: s← sorted list of items according to pi

wΘ
i

4: W ← 0, P ← 0, σ ← {}
5: for i = 1 to I do
6: if W + wsi < C then
7: W ← wsi
8: P ← P + psi
9: σ ← σ ∪ {si}

10: if P > P ∗ then
11: P ∗ ← P
12: σ∗ ← σ
13: return σ∗

The instances of TSP obtained in this way are exactly solved by the branch-and-
bound technique.

3. Heuristic reduction from TSKP to TSP and heuristic TSP.

The reduction proceeds like in the above. Instances of TSP are solved by the state-
of-the-art solver for TSP (that is, Concorde: Cook (1995)).

5.2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (see: Abramson (1991)) is a metaheuristic for decision pro-
cesses. Originally, it has been proposed to play board games such as Hex (see: Arneson
et al. (2010)), Othello (see: Robles et al. (2011)) and most notably: GO (see: Coulom
(2009)). It has been also successfully applied to some optimization problems, including
a variant of TSP (see: Perez et al. (2012)) and VRP (see: Takes (2010)).

The idea behind Monte-Carlo Tree Search is to sample random solutions and based
on their quality make the most promising local decision. Here we apply this idea to
solve TTP. Starting from the initial city and the empty knapsack we interchangeably
perform the following two steps:

• (TSP Phase) extend the current route by a node n and run a number of random sim-
ulations with the extended route; calculate the best profit pn from all simulations;
add to the route node n having maximal profit pn

• (KP Phase) for every set of items J ⊆ In that are available at the current city n,
extend the knapsack by J and run a number of random simulations with the ex-
tended knapsack; calculate the best profit pJ from all simulations; add to the knap-
sack items J having maximal profit pJ

until a complete tour is constructed (Algorithm 5).

5.3 Ant Colony Optimization

Methods based on Ant Colony Optimization (ACO) were proposed in early ’90 to solve
the Traveling Salesman Problem (see: Dorigo and Blum (2005)), and later have been
extended to problems like: the Scheduling Problem (see: Martens et al. (2007)), the
Assignment Problem (see: Ramalhinho Lourenço and Serra (2002)), the Vehicle Routing

Evolutionary Computation Volume x, Number x 13

M. R. Przybylek, A. Wierzbicki, Z. Michalewicz

Algorithm 5: Monte-Carlo Tree Search for TTP
1: π ← ∅
2: σ ← ∅
3: for n← 1 to N do
4: E(π)← possible extensions of partial cycle π
5: for πE ∈ E(π) do
6: P (πE)← −∞
7: for k ← 1 to maxIter do
8: π+ ← extend π followed by πE to a random cycle
9: σ+ ← extend σ with random items

10: P+ ← profit(π+, σ+)
11: if P+ > P (πE) then
12: P (πE)← π+
13: P (πE)← P+

14: π ← extend partial cycle π with such πE that maximizes estimated profit P (πE)
15: IπE ← set of items avaliable at city πE
16: for i ∈ IπE do
17: S ← 0
18: for k ← 1 to maxIter do
19: π+ ← extend π to a random cycle
20: σ+ ← extend σ with item i and some random items
21: σ† ← extend σ with some random items
22: P+ ← profit(π+, σ+)
23: P† ← profit(π+, σ†)
24: if P+ > P† then
25: S ← S + 1
26: else
27: S ← S − 1
28: if S > 0 then
29: σ ← σ ∪ {i}
30: return π, σ

Problem (see: Toth and Vigo (2002)), the Set Cover Problem (see: Leguizamon and
Michalewicz (1999)), and many more.

The general idea behind ACO is to iteratively perform the following steps:

• construct a number of random solutions; the solutions are constructed incremen-
tally by making local choices with some probabilities ρ

• evaluate solutions and adjust probabilities ρ of local choices — increase the proba-
bilities of choices that have led to better solutions

until a stopping condition is satisfied. For example, in an ACO approach to TSP, a tour
in a graph G is constructed by locally choosing the next edge from a given node. The
edge (i, j) from i to j is chosen with probability:

ρ(i, j) =
τα(i, j)d(i, j)−β∑

(i,k)∈G τ
α(i, k)d(i, k)−β

14 Evolutionary Computation Volume x, Number x

Decomposition Algorithms

where α, β ≥ 0 are parameters of the algorithm and τ(i, j) indicates “the amount of
pheromone” on edge (i, j). The pheromone is updated during each iteration of the
algorithm for each random solution πr according to the following rule:

τ ′(i, j) = (1− γ)τ(i, j) +
∑
k

H(πr)−1

where 0 ≤ γ ≤ 1 is the pheromone decay parameter, and H(πr) is the total length of
the tour πr, i.e.:

H(πr) =

N∑
i=1

d(πri , π
r
i+1)

Alaya et al. (2004), and Fidanova (2002) discuss applications of ACO to the Knap-
sack Problem. A local choice corresponds to picking an item. The probability of picking
an item i is given by:

ρ(i) =
τα(i)q(i)−β∑

1≤i≤n τ
α(i)q(i)−β

(7)

where q(i) is a function of “attractiveness” of item i, usually given by:

q(i) =

{
0 if item i cannot be picked anymore
pi
wi

otherwise (8)

and the pheromone τ(i) is updated during each iteration of the algorithm for each
random solution σr according to a rule similar to the above:

τ ′(i) = (1− γ)τ(i) +
∑
k

P (σr)

where P (Kr) is the total profit of items in Kr.
Algorithm 6 uses ideas from Alaya et al. (2004), and Dorigo and Blum (2005) to

solve TTP. Because there are non-trivial interactions between TSP and KP components
in TTP, we had to apply several modifications:

1. Because the cost of traveling between cities depends on the current weight of the
Knapsack, we build first a random solution to the KP part of the problem, and
then extend it with a random tour. The probability of picking an item is given as
in Formula 7:

ρ(i) =
τ(i)α(i)q(i)−β∑

1≤i≤n τ(i)α(i)q(i)−β

but the probability of moving from city i to city j is defined according to the time
of the travel instead of its distance:

ρ(i, j) =
τα(i, j)t(i, j)−β∑

(i,k)∈G τ
α(i, k)t(i, k)−β

2. Contrary to KP, in TTP an optimal solution may consist of less items than it is al-
lowed by the capacity of the knapsack (i.e. because the weight of the knapsack
impacts the speed of the thief, dropping an item from a solution may lead to
a better solution). Therefore ACO has to discover an upper bound on the total
weight of items in the knapsack. If W is the capacity of the knapsack, then we use

Evolutionary Computation Volume x, Number x 15

M. R. Przybylek, A. Wierzbicki, Z. Michalewicz

Algorithm 6: Ant Colony Optimization for TTP
1: P ∗ ← −∞
2: τ(i, j)← ε
3: τ(i)← ε
4: τ(i = x)← ε
5: for k ← 1 to MaxIter do
6: for r ← 1 to PopultaionSize do
7: σ ← ∅
8: π ← ∅
9: ρ← τ(i=x)

τ(i=1)+τ(i=0)

10: U ← min(C, random(ρ))
11: while true do
12: ρ(i)← τα(i)q(i)−β∑

1≤i≤n τ
α(i)q(i)−β

13: i← sellect a random item with probability τ and upper bound U
14: if no item can be selected then break
15: σ = σ ∪ {i}
16: for n← 1 to N do
17: ρ(i, j)← τα(i,j)t(i,j)−β∑

(i,k)∈G τ
α(i,k)t(i,k)−β

18: i← select at random the next city to travel with probability τ
19: if there is no city to select then break from the loop
20: π(n) = i
21: P (r)← profit(π, σ)
22: if P (r) > P ∗ then
23: P ∗ ← P (r)
24: π∗ ← π
25: σ∗ ← σ
26: τ(i, j)← (1− γ)τ(i, j) +

∑
r P (r)−1

27: τ(i)← (1− γ)τ(i) +
∑
r P (r)−1

28: τ(i = x)← (1− γ)τ(i = x) +
∑
r P (r)−1

29: return π∗, σ∗

blog(W)c+ 1 bits to encode the upper bound on the weight of items. The probabil-
ity that the i-th bit of the upper bound is x is:

ρ(i = x) =
τ(i = x)

τ(i = 1) + τ(i = 0)

and the pheromone τ(i = x) is updated during each iteration of the algorithm for
each random solution σrx with the upper bound having i-th bit set to x:

τ
′
(i = x) = (1− γ)τ(i = x) +

∑
σrx

P (σrx)

3. The initial pheromone is uniformly distributed across cities and items.

5.4 Exact solver for TTP

Exact solver implements the branch-and-bound technique to solve TTP. For each
Hamiltonian cycle an instance of the Knapsack Problem is considered, where the value

16 Evolutionary Computation Volume x, Number x

Decomposition Algorithms

of an item is amortized by the minimal cost required for its transport. Branch-and-
bound is used both in generating Hamiltonian cycles, as well as in solving the Knap-
sack Problems. Exact solver guarantee optimality of produced solutions and serves as
a benchmark algorithm against which other algorithms are compared.

6 Benchmarks

To compare performance of algorithms for TTP, we prepared in Bonyadi et al. (2014) a
generic framework for generating classes of TTP-instances. Each class was composed of
three independent components: meta, TSP and KP. We recall from Bonyadi et al. (2014)
the explanation of these components in the below. Depending on the configuration
parameters of the components, one is able to create separate classes of TTP-instances. In
addition to Bonyadi et al. (2014), the TSP component includes well-known benchmark
instances from a public database.

1. (Meta) This component describes graph and items independent parameters of the
Traveling Thief Problem: a natural number C describing the capacity of the knap-
sack, a non-negative real number R indicating the rent ratio, and two positive real
numbers vmin ≤ vmax corresponding to the minimal and maximal speed of the
traveler. Thanks to these parameters we can adjust the coupling between the sub-
components of TTP (if vmax = vmin the subproblems are “fully sequential” — there
are no interaction between subproblems) and their relative importance (if the rent
rate R = 0, the solution to the TSP part may be completely ignored, as it has no
impact on the objective function of TTP)

2. (TSP) This component describes the graph of the Traveling Thief Problem. Such a
graph is a pair 〈V,E〉 consisting of a set of nodes m,n ∈ V (called cities), and a set

of edges m
d(m,n)−→ n ∈ E from m to n (called distances). We have used four sources

of graphs (for more details see: Bonyadi et al. (2014)): random graphs Solomonoff
and Rapoport (1951) (distances are independently assigned according to some pri-
ori distribution), Euclidean graphs (the nodes of the underlying graph are embed-
ded in some low-dimensional Euclidean space), Hamiltonian-dense graphs (the num-
ber of paths that cen be extended to the full Hamilttonian cycle is relatively high;
the main motivation behind this class of graphs is to make the problem of finding
Hamiltonian-cycles easy), a class based on a well-known set of benchmark for TSP:

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95

3. (KP) This component describes the set of items together with the availability rela-
tion of the Traveling Thief Problem. An item i is a pair of natural numbers 〈wi, pi〉,
where wi is called the weight of the item, and pi is called the profit of the item.
The availability relation between the cities V and a set {1, 2, . . . , I} says that the
i-th item is available at city n ∈ V iff a(n, i) is true. We have used two classes
of KP instances: uncorrelated weights and values (weights, values and availability of
the items are independently sampled from some priori distributions) and greedy-
prof (because a KP-instance in which values and weights of items are uncorre-
lated can be easily solved by the greedy algorithm to high quality solution, see:
Pisinger (2005), we generated KP-component instances that are resistant to such
approaches).

The parameters of the benchmark instances are set to the same values as in Bonyadi
et al. (2014).

Evolutionary Computation Volume x, Number x 17

M. R. Przybylek, A. Wierzbicki, Z. Michalewicz

Figure 2: Translation of profits by a non-negative constant D. The starting node S is
split into two nodes S′ and S′′ with the distance from S′ to S′′ set to D vmax

R , and such
that: S′ inherits input edges from S, whereas S′′ inherits output edges from S.

7 Experimental Results

In order to compare algorithms for TTP, we generated various instances with different
number of cities (from 3 to 76) and items (from 10 to 146) with the parameters listed
in Section 6. The full set of benchmark instances together with the scripts to generate
them is available at the website (see: Przybylek (2015)).

Before we present the results, we have to face one additional issue — the instances
of TTP are not normalised, and in fact, the structure of the TTP itself makes it impossible
to perform normalisation of its instances. Therefore, there is no direct way to compare
relative performances of different algorithms on different instances. Let us recall the
objective function of TTP (Equation 1):

P =
∑

i∈dom(σ)

pi −R
|V |∑
n=1

t(πn, πn+1)

Observe that for any positive constant K, one may rescale the values pi and R in
an instance by K, obtaining another instance, whose solutions are exactly the same,
but profits of the solutions are rescaled by K (thus, the qualities of the solutions are
preserved by the rescaling operation). Moreover, the instances are not localised, which
means that for any non-negative constant D and any instance of TTP, one may build
an equivalent instance whose solutions have profits translated by D — it suffices to
substitute the starting node by a pair of nodes with a single edge of an appropriate
distance (Figure 2).

To overcome this obstacle, we first perform a localisation of solutions at estimated
average solutions, and then use for the measure profits relative to the optimal profits.
In more detail, let us assume that for a given instance the profit of an optimal solution
is P ∗, the average profit is P# and our algorithm produced a result with profit P . Then
the quality q of the solution returned by the algorithm is computed in the following
way:

Q =
P − P#

P ∗ − P#

18 Evolutionary Computation Volume x, Number x

Decomposition Algorithms

Benchmark Exact Average CoSolver CoSolver E CoSolver H MCTS ACO
Profit Profit Profit Q Profit Q Profit Q Profit Q Profit Q

Euclidean

-230563 -317652 -241667 87% -241667 87% -230585 100% -248449 79% -244484 84%
-18210 -30219 -18210 100% -18210 100% -19918 86% -21683 71% -22087 68%
-38782 -48162 -57438 -99% -66482 -195% -38833 99% -39560 92% -39136 96%

-155161 -205688 -155161 100% -155815 99% -155334 100% -155334 100% -156253 98%
5038 323 5009 99% 5009 99% 4981 99% 2838 53% 2688 50%

-36042 -51009 -36042 100% -36042 100% -38696 82% -39101 80% -40688 69%
1289 -854 1289 100% 788 77% 538 65% 486 63% 228 50%

-122329 -202694 -143547 74% -159672 54% -122329 100% -134387 85% -151206 64%
Euclidean avg -74345 -106994 -80721 70% -84012 53% -75022 91% -79399 78% -81367 72%

Dense
-88984 -116443 -93952 82% -93952 82% -89299 99% -96257 74% -98218 66%
-32662 -82552 -32921 99% -32860 100% -59606 46% -63856 37% -59136 47%
-25346 -69790 -36360 75% -36360 75% -49236 46% -53125 37% -48176 49%

Dense avg -48997 -89595 -54411 86% -54391 86% -66047 64% -71079 49% -68510 54%

Small

17274 -19338 17024 99% 17024 99% 11590 84% -4283 41% -1482 49%
-38181 -63763 -38181 100% -38659 98% -38181 100% -44329 76% -44446 76%
-17695 -24310 -19277 76% -19277 76% -17771 99% -18549 87% -18561 87%
-30616 -38015 -34807 43% -35259 37% -30796 98% -31832 84% -30796 98%
-63706 -72850 -75158 -25% -75291 -27% -63706 100% -65071 85% -63706 100%
-58489 -77757 -63518 74% -63641 73% -59258 96% -61949 82% -63230 75%
-32946 -74510 -34105 97% -34817 95% -32946 100% -42821 76% -50334 58%

Small avg -32051 -52935 -35432 66% -35703 65% -33010 97% -38405 76% -38936 77%

Random

-19428 -34468 -22100 82% -21945 83% -19591 99% -23082 76% -24401 67%
-20176 -38693 -28872 53% -28872 53% -20482 98% -22229 89% -23556 82%

7369 1696 7351 100% 7351 100% 7108 95% 3731 36% 4222 45%
5521 1632 5521 100% 5521 100% 5507 100% 2603 25% 3043 36%
2104 470 2104 100% 2104 100% 2085 99% 670 12% 740 17%
9969 1661 9955 100% 9964 100% 8221 79% 2741 13% 3105 17%
8834 1023 8834 100% 8830 100% 8833 100% 3406 30% 3331 30%

Random avg -829 -9525 -2458 91% -2435 91% -1189 96% -4594 40% -4788 42%

KP Centric

39937 2459 39935 100% 39937 100% 29281 72% 28917 71% 17926 41%
69336 1532 69335 100% 69331 100% 36542 52% 38272 54% 17117 23%
90025 1828 89992 100% 90019 100% 81479 90% 55366 61% 18346 19%
69484 1906 69478 100% 69484 100% 62682 90% 40603 57% 17778 23%
74234 1824 74233 100% 74234 100% 60684 81% 46817 62% 21952 28%
65531 1850 65524 100% 65524 100% 65043 99% 34558 51% 17983 25%
80049 2629 80046 100% 80046 100% 56291 69% 52480 64% 19881 22%
59604 1611 59597 100% 59604 100% 51167 85% 30234 49% 17478 27%
50766 2498 50743 100% 50757 100% 27678 52% 36377 70% 18115 32%
27358 886 27358 100% 27358 100% 17082 61% 21651 78% 11272 39%

KP cent. avg 62632 1902 62624 100% 62629 100% 48793 75% 38527 62% 17785 28%

Greedy

1178064 49008 1178064 100% 1178064 100% 1002796 84% 1168390 99% 1008409 85%
1551296 61677 1551296 100% 1551296 100% 1342664 86% 1447922 93% 1353361 87%

659186 29237 659186 100% 659186 100% 576326 87% 650737 99% 580318 87%
1384486 79465 1384486 100% 1384486 100% 1186825 85% 1331286 96% 1195859 86%
1401970 58205 1401970 100% 1401970 100% 1224622 87% 1340589 95% 1233473 87%
1188129 54522 1188129 100% 1188129 100% 1020886 85% 1131986 95% 1038696 87%
1143685 40462 1143685 100% 1143685 100% 997422 87% 1131531 99% 1006294 88%
2099247 106191 2099247 100% 2099247 100% 1812908 86% 2056908 98% 1843659 87%

771036 36070 771036 100% 771036 100% 649061 83% 721852 93% 662999 85%
1425409 87466 1425409 100% 1425409 100% 1225759 85% 1367081 96% 1241604 86%

Greedy avg 1264122 57204 1264122 100% 1264122 100% 1090390 86% 1220133 96% 1102563 87%
Average 276820 -20903 274545 87% 273924 84% 233100 86% 257425 70% 226222 61%

Table 1: Performance of the algorithms on various benchmarks. Columns: Exact shows
optimal solutions, Average shows an average solution from 1000 random solutions,
CoSolver, CoSolver E, CoSolver H show solutions obtained by various CoSolver algo-
rithms, MCTS shows solutions obtained by Algorithm 5, and ACO shows solutions
obtained by Algorithm 6.

Evolutionary Computation Volume x, Number x 19

M. R. Przybylek, A. Wierzbicki, Z. Michalewicz

Any reasonable algorithm should return a solution having quality between 0% and
100%. Here 0% means that the algorithm produced an average (i.e. random) solution,
and 100% means that the algorithm produced an optimal solution. One may actually
think of this quality as of the “smartness” of an algorithm, where 0% does not require
any work (i.e. statistically, it suffices to construct a random solution), negative val-
ues indicate that the algorithm has been misled (i.e. it has produced solutions worse
than the solutions that do not require any computation) and values 0 − 100% measure
the real effectiveness of the algorithm. Nonetheless, there is one problem here — the
average profit P# depends, of course, on the probability distribution on the spaces of
possible solutions; and since a solution to TTP comprises of a solution to the Hamilto-
nian Problem, which is NP-complete, one should not expect that a random solution to
TTP generated according to any polynomial distribution would be feasible. We were
forced to use a different strategy — first we generated a random Hamiltonian cycle, and
then supplied it with randomly chosen items. Therefore, one has to remember, that a
“random solution” is not-that-easy to obtain — there is a highly non-trivial problem
underlying the random samples.

For large competitive instances, where we could not obtain the exact solutions in
any reasonable time, we present the “gain” obtained by an algorithm over an average
random solution:

Gain = P − P#

Our algorithms are applied to the benchmark problems and their results are com-
pared. The methods that use any kind of non-determinism (Ant Colony Optimiza-
tion, Monte-Carlo Tree Search) were run sixteen times and the average solutions have
been taken for the final results. In addition, for the main set of benchmark problems,
where we could obtain exact results, we present a graph of the performance of non-
deterministic algorithms with error bars indicating the best and worst solutions and
the 95% confidence interval for every instance (see Figures 3 and 4). Figure 4 shows
that the confidence intervals are usually quite narrow, allowing for a clear comparison
of performance of the various methods, which justifies our choice of the number of
runs for the non-deterministic heuristics.

We also designed an exhaustive search algorithm that solves the main benchmark
set to the optimality, and estimated an average solution of each of the benchmark prob-
lems. The benchmarks are divided on three classes. The full set of results is available
at the website (see: Przybylek (2015)).

7.1 Typical

This class of benchmarks contains typical instances of TTP as described in the previ-
ous section. The results are presented in Table 1, where Average is an estimated aver-
age profit, CoSolver is the original CoSolver algorithm as introduced in Bonyadi et al.
(2014), CoSolver Exact is a variant of CoSolver based on a heuristic method for TSKP
component and exact solver for KRP component (Algorithm 2), CoSolver Heuristic is a
variant of CoSolver based on a heuristic methods for both of its components, MCTS is a
heuristic based on Monte-Carlo Tree Search (Algorithm 5), and ACO is a method based
on Ant Colony Optimization (Algorithm 6). The table shows that CoSolver Heuristic
and MCTS never produce bad solutions — the worst are almost twice as good as the
average solution. Moreover, MCTS outperforms ACO in most cases.

The two last set of benchmarks was tuned to mislead “greedy heuristics” of the
KP-subcomponent. Notice that the solutions generated by algorithms that are sensitive
to greedy-proof instances — i.e. CoSolver Heuristic and Monte Carlo Tree Search —

20 Evolutionary Computation Volume x, Number x

Decomposition Algorithms

Page 1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ACO MCTS CoSolver Heuristic

Figure 3: Performance of CoSolver Heuristic against ACO and MCTS with error bars
on instances from Table 1.

are still of a reasonable quality.
Figure 3 shows performances of CoSolver Heuristic against ACO and MCTS with

error bars indicating the best and worst solutions for every instance, and Figure 4 shows
the 95% confidence intervals.

It is worth noticing that for many classes of problems the version of CoSolver that
is based on purely heuristic components (CoSolver Heuristic) performs better than the
original CoSolver on the average. Moreover, Table 1 shows that both the original Co-
Solver and CoSolver Exact may get misled and produce a worse than random solu-
tions (red cells in Table 1). One may explain this phenomenon by the fact that although
heuristic components give partial solutions that are locally worse than optimal, the so-
lutions are also less sensitive to further changes and, therefore, can potentially lead to
better global solutions. Additionally, CoSolver Heuristic greatly improves the scalabil-
ity of CoSolver without compromising quality. Observe, also, that while not as good as
methods based on pre-existing components, Monte-Carlo Tree Search may provide an
interesting alternative in case when there is a little knowledge about sub-components
of the initial problem, or the coupling between the sub-components is high making
negotiation protocols infeasible.

7.2 Known TSP Benchmarks

To build a competitive set of benchmarks for TTP, we decided to use a well-known
public database of symmetric and asymmetric TSP instances:

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95

and extend them with randomly generated items. The instances, however, are too big

Evolutionary Computation Volume x, Number x 21

M. R. Przybylek, A. Wierzbicki, Z. Michalewicz

Page 1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ACO MCTS CoSolver Heuristic

Figure 4: Performance of CoSolver Heuristic against ACO and MCTS with 95% confi-
dence intervals on instances from Table 1.

22 Evolutionary Computation Volume x, Number x

Decomposition Algorithms

Benchmark Average CoSolver H MCTS ACO
Profit Profit Gain Profit Gain Profit Gain

att48 -1189 -165 1024 -682 507 -929 260
bayg29 -199 -67 132 -113 87 -155 44
bays29 -200 -67 132 -119 80 -159 41
berlin52 -585 -57 528 -366 219 -482 103
br17 -289 19 308 19 308 -98 191
brazil58 -1205 -160 1045 -721 484 -967 237
burma14 -79 -40 40 -45 34 -56 23
dantzig42 -874 -126 748 -443 431 -695 179
eil51 -503 4 507 -217 286 -381 122
eil76 -2039 -208 1831 -1306 734 -1688 351
fri26 -237 -82 155 -112 125 -183 54
ft53 -615 -162 453 -434 181 -531 84
ft70 -973 -383 590 -625 347 -841 132
ftv33 -239 -70 169 -125 114 -191 48
ftv35 -721 -214 506 -453 267 -588 133
ftv38 -122 -36 86 -64 59 -94 28
ftv44 -986 -166 820 -630 357 -800 186
ftv47 -975 -167 807 -628 346 -800 175
ftv55 -1671 -203 1468 -1070 600 -1403 268
ftv64 -1128 -223 904 -764 364 -958 170
ftv70 -2304 -404 1900 -1523 782 -1929 375
gr17 -100 40 140 18 118 -11 89
gr21 -173 -61 112 -94 79 -132 41
gr24 -172 -63 109 -52 120 -112 60
gr48 -1053 -221 833 -620 434 -846 208
hk48 -1081 -171 910 -673 408 -865 215
p43 -955 -168 787 -190 765 -522 432
pr76 -2350 -244 2106 -1483 868 -1927 423
ry48p -960 -166 794 -577 382 -747 212
swiss42 -748 -117 631 -440 308 -588 160
ulysses16 -93 -52 42 -18 76 -42 51
ulysses22 -220 -93 127 -125 94 -168 52
Average -782 -134 648 -459 324 -622 161

Table 2: Performance of the algorithms on known graphs. Columns: Average shows an
average solution from 1000 random solutions, CoSolver H shows solutions obtained by
CoSolver Heuristic, MCTS shows solutions obtained by Algorithm 5, and ACO shows
solutions obtained by Algorithm 6.

Evolutionary Computation Volume x, Number x 23

M. R. Przybylek, A. Wierzbicki, Z. Michalewicz

Benchmark
Average CoSolver H MCTS ACO

Profit Profit Gain Profit Gain Profit Gain
Highly dependant 120211 335000 214789 389007 268796 314353 194142
Dependant 121727 425000 303273 401650 279923 336261 214534
Balanced 121482 455000 333518 405873 284391 330917 209435
Moderately sequential 130486 465000 334514 418095 287609 349277 218791
Fully sequential 137186 470000 332814 420003 282817 355598 218411

Table 3: Performance of the algorithms wrt sequentiality. Columns: Average shows an
average solution from 1000 random solutions, CoSolver H shows solutions obtained by
CoSolver Heuristic, MCTS shows solutions obtained by Algorithm 5, and ACO shows
solutions obtained by Algorithm 6.

to be solved to optimality by the exact solver, or even to be solved by the CoSolvers with
exact components. Therefore, we produced the results for CoSolver Heuristic, MCTS
and ACO only. The benchmarks are presented in Table 2. Columns Profit describe the
profit obtained by a given algorithm, and columns Gain describe the “gain” obtained
by an algorithm with respect to the average solution.

This table confirms that CoSolver Heuristic outperforms MCTS and ACO, and that
MCTS is fairly better than ACO.

7.3 Coupling based

We have also tested performance of our algorithms with respect to coupling between
sub-components. An instance of TTP is “sequential” if a good solution can be obtained
by independently solving its first component, and on top of it solving its second com-
ponent. We have prepared six sets of instances with increasing level of sequentiality
and applied both the CoSolver and MCTS algorithms to them. The normalised results
are shown in Table 3.

The impact of “coupling” of TTP components on the difficulty of obtaining good
results using our heuristics is clear. TTP instances in which components are more de-
pendent on each other are more difficult to solve well. This result gives insight into
the difficulty of other multi-hard problems. Even though multi-hard problems may be
in the same complexity class as their components, they can be more difficult than each
of the components and this difficulty increases with increasing component interdepen-
dence.

Also, for most of the considered instance types, CoSolver H (the algorithm that
aims to exploit multi-hard problem structure) does a better job than MCTS and ACO.
However, results also suggest that MCTS-based algorithms perform better on problems
that have large cohesion between their subcomponents (highly dependent). This shows
that further work is needed to design algorithms that can better exploit problem struc-
ture. Recall that CoSolver’s design relies on good methods to “negotiate” a solution
between solvers for the components of a multi-hard problem. A very high coupling
(dependency) between the components of a multi-hard problem seems to make this
“negotiation” less effective.

8 Conclusions and Further Work

In this paper we have introduced the concept of multi-hardness — i.e. problem that are
non-trivial combinations of classical hard problems. We have studied algorithms that
exploit the structure of multi-hard problems through an evaluation of such algorithms
for solving TTP, a model multi-hard problem. We have extended the idea of CoSolver

24 Evolutionary Computation Volume x, Number x

Decomposition Algorithms

by incorporating heuristics instead of exact solvers for the Traveling Salesman Problem
and Knapsack Problem components of the Traveling Thief Problem. Moreover, we have
introduced a new promising heuristic for multi-hard problems that bases on Monte-
Carlo Tree Search. We also examined a heuristic based on Ant Colony Optimisation.
We have developed a set of publicly available benchmarks for TTP and have used it to
compare the heuristics against each other.

Our experiments show that, when it comes to partial solutions, heuristic compo-
nents may lead to better global solutions, because the results produced by such com-
ponents are generally “more stable” — i.e. are less sensitive to further changes. In the
experiments, the version of CoSolver that is based on purely heuristic components (Co-
Solver Heuristic) performs better than the original CoSolver on the average. Moreover,
CoSolver Heuristic and MCTS never produce bad solutions. We also note that Monte
Carlo Tree Search may provide an interesting alternative to CoSolver-based heuristics
in case there is a little knowledge about sub-components of the initial problem, or if the
coupling between the sub-components is high enough to make any negotiation pro-
tocols between sub-components ineffective. Our results confirms the effectiveness of
using a decomposition-negotiation approach to multi-hard problems.

The coupling between TTP components has a great impact on the difficulty of ob-
taining good results. TTP instances in which components are more dependent on each
other are more difficult to solve well by our decomposition-based algorithms. This
gives insight into the difficulty of other multi-hard problems. Even though multi-hard
problems may be in the same complexity class as their components, they can be more
difficult than each of the components and this difficulty increases with increasing com-
ponent interdependence. Also, for most of the considered instance types, CoSolver
Heuristic (the algorithm that aims to exploit multi-hard problem structure) does a bet-
ter job than MCTS and ACO. However, results also suggest that MCT-based algorithms
perform better on problems that have large cohesion between their subcomponents
(i.e. are highly dependent). This shows that further work is needed to design algo-
rithms that can better exploit problem structure. Recall that CoSolver’s design relies
on good methods to “negotiate” a solution between solvers for the components of a
multi-hard problem. A very high coupling (dependency) between the components of
a multi-hard problem seems to make this “negotiation” less effective. We believe that
better methods for such “negotiation” may still be discovered.

Our long-term goal is to provide a broad new methodology for integration of
multi-hard problems progressing from simpler couplings of silos and sequences, to
heterogeneous highly connected models. In the future work we will be interested in
extending our model Traveling Thief Problem with additional subcomponents and var-
ious aspects that may be found in real-world systems (such as incompleteness and un-
certainty of information, or information that changes over time) and developing new
decomposition-based methodologies for such extensions. We will be also interested in
validating our methods in an industrial environment.

References

Abramson, B. (1991). The Expected-outcome model of two-player games. Research notes in artificial
intelligence. Pitman, London.

Alaya, I., Solnon, C., and Ghédira, K. (2004). Ant algorithm for the multi-dimensional knapsack
problem. In International Conference on Bioinspired Optimization Methods and their Applications
(BIOMA 2004). Citeseer.

Evolutionary Computation Volume x, Number x 25

M. R. Przybylek, A. Wierzbicki, Z. Michalewicz

Arneson, B., Hayward, R., and Henderson, P. (2010). Mohex wins hex tournament. Icga Journal,
33(3):181.

Bertsimas, D. and Tsitsiklis, J. N. (1997). Introduction to linear optimization, volume 6. Athena
Scientific Belmont, MA.

Bonyadi, M. R. and Michalewicz, Z. (2016). Evolutionary computation for real-world problems.
In Challenges in Computational Statistics and Data Mining, pages 1–24. Springer.

Bonyadi, M. R., Michalewicz, Z., and Barone, L. (2013). The travelling thief problem: The first
step in the transition from theoretical problems to realistic problems. In IEEE Congress on
Evolutionary Computation (CEC), pages 1037–1044.

Bonyadi, M. R., Michalewicz, Z., Neumann, F., and Wagner, M. (2016). Evolutionary computation
for multicomponent problems: opportunities and future directions. CoRR, abs/1606.06818.

Bonyadi, M. R., Michalewicz, Z., Przybylek, M. R., and Wierzbicki, A. (2014). Socially inspired
algorithms for the travelling thief problem. In Proceedings of the 2014 Conference on Genetic and
Evolutionary Computation, GECCO ’14, pages 421–428, New York, NY, USA. ACM.

Borovik, A. V. (2009). Mathematics under the Microscope: Notes on Cognitive Aspects of Mathematical
Practice. American Mathematical Society.

Braekers, K., Ramaekers, K., and Van Nieuwenhuyse, I. (2015). The vehicle routing problem:
State of the art classification and review. Computers & Industrial Engineering.

Cheng, R., Gen, M., and Tsujimura, Y. (1996). A tutorial survey of job-shop scheduling problems
using genetic algorithms—i: Representation. Comput. Ind. Eng., 30(4):983–997.

Colson, B., Marcotte, P., and Savard, G. (2007). An overview of bilevel optimization. Annals of
Operations Research, 153(1):235–256.

Cook, W. J. (1995). A computer code for tsp. http://www.math.uwaterloo.ca/tsp/
concorde.html.

Coulom, R. (2009). The monte-carlo revolution in go. In The Japanese-French Frontiers of Science
Symposium (JFFoS 2008), Roscoff, France.

Davis, L. (1985). Job shop scheduling with genetic algorithms. In Proceedings of an International
Conference on Genetic Algorithms and Their Applications, volume 140. Carnegie-Mellon Univer-
sity Pittsburgh, PA.

Derrouiche, R., Neubert, G., and Bouras, A. (2008). Supply chain management: a framework to
characterize the collaborative strategies. International journal of computer integrated manufactur-
ing, 21(4):426–439.

Dorigo, M. and Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical computer
science, 344(2):243–278.

Faires, J. and Burden, R. (2003). Numerical Methods. Number t. 1 in Numerical Methods. Thom-
son/Brooks/Cole.

Fidanova, S. (2002). Aco algorithm for mkp using various heuristic information. In International
Conference on Numerical Methods and Applications, pages 438–444. Springer.

Griewank, A. and Toint, P. L. (1982). Local convergence analysis for partitioned quasi-newton
updates. Numerische Mathematik, 39(3):429–448.

Gunawardena, J. (1998). The unreasonable ineffectiveness of mathematics in computer engineer-
ing. Research seminar at University of Sydney.

Kearns, M. (2012). Experiments in social computation. Communications of the ACM, 55(10):56–67.

26 Evolutionary Computation Volume x, Number x

Decomposition Algorithms

Leguizamon, G. and Michalewicz, Z. (1999). A new version of ant system for subset problems.
In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, volume 2. IEEE.

Li, X. and Yao, X. (2009). Tackling high dimensional nonseparable optimization problems by
cooperatively coevolving particle swarms. In Evolutionary Computation, 2009. CEC’09. IEEE
Congress on, pages 1546–1553. IEEE.

Li, X. and Yao, X. (2012). Cooperatively coevolving particle swarms for large scale optimization.
Evolutionary Computation, IEEE Transactions on, 16(2):210–224.

Malandraki, C. and Daskin, M. S. (1992). Time dependent vehicle routing problems: Formula-
tions, properties and heuristic algorithms. Transportation science, 26(3):185–200.

Martens, D., De Backer, M., Haesen, R., Vanthienen, J., Snoeck, M., and Baesens, B. (2007). Classi-
fication with ant colony optimization. IEEE Transactions on Evolutionary Computation, 11(5):651–
665.

Michalewicz, Z. (2012). Quo vadis, evolutionary computation? In Advances in Computational
Intelligence, pages 98–121. Springer.

Michalewicz, Z. and Fogel, D. B. (2000). How to solve it: Modern Heuristics. Springer New York.

Perez, D., Rohlfshagen, P., and Lucas, S. M. (2012). Monte-carlo tree search for the physical trav-
elling salesman problem. In European Conference on the Applications of Evolutionary Computation,
pages 255–264. Springer.

Pisinger, D. (2005). Where are the hard knapsack problems? Comp. & Op. Res., 32(9):2271–2284.

Poli, R. (1999). Poli seminar abstract. research seminar at Category Theory Research Center,
McGill University.

Przybylek, M. R. (2015). Multihard problems. https://sites.google.com/site/
travellingthief.

Przybylek, M. R., Wierzbicki, A., and Michalewicz, Z. (2016). Multi-hard problems in uncer-
tain environment. In Proceedings of the Genetic and Evolutionary Computation Conference 2016,
GECCO ’16, pages 381–388, New York, NY, USA. ACM.

Ralphs, T. K., Kopman, L., Pulleyblank, W. R., and Trotter, L. E. (2003). On the capacitated vehicle
routing problem. Mathematical programming, 94(2-3):343–359.

Ramalhinho Lourenço, H. and Serra, D. (2002). Adaptive search heuristics for the generalized
assignment problem. Mathware & soft computing. 2002 Vol. 9 Núm. 2 [-3].

Robles, D., Rohlfshagen, P., and Lucas, S. M. (2011). Learning non-random moves for playing
othello: Improving monte carlo tree search. In 2011 IEEE Conference on Computational Intelli-
gence and Games (CIG’11), pages 305–312. IEEE.

Solomonoff, R. and Rapoport, A. (1951). Connectivity of random nets. The bulletin of mathematical
biophysics, 13(2):107–117.

Takes, F. W. (2010). Applying monte carlo techniques to the capacitated vehicle routing problem.
In Proceedings of 22th Benelux Conference on Artificial Intelligence (BNAIC 2010).

Talbi, E.-G. (2013). Metaheuristics for Bi-level Optimization. Springer Publishing Company, Incor-
porated.

Toth, P. and Vigo, D. (2001). The Vehicle Routing Problem. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA.

Toth, P. and Vigo, D. (2002). Models, relaxations and exact approaches for the capacitated vehicle
routing problem. Discrete Applied Mathematics, 123(1):487–512.

Evolutionary Computation Volume x, Number x 27

M. R. Przybylek, A. Wierzbicki, Z. Michalewicz

van Laarhoven, P. J. M., Aarts, E. H. L., and Lenstra, J. K. (1992). Job shop scheduling by simulated
annealing. Oper. Res., 40(1):113–125.

Velupillai, K. V. (2005). The unreasonable ineffectiveness of mathematics in economics. Cambridge
Journal of Economics, 29(6):849–872.

Yang, Z., Tang, K., and Yao, X. (2008). Large scale evolutionary optimization using cooperative
coevolution. Information Sciences, 178(15):2985–2999.

28 Evolutionary Computation Volume x, Number x

