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Abstract. Over the past 30 years many researchers in the field of evo-
lutionary computation have put a lot of effort to introduce various ap-
proaches for solving hard problems. Most of these problems have been
inspired by major industries so that solving them, by providing either
optimal or near optimal solution, was of major significance. Indeed, this
was a very promising trajectory as advances in these problem-solving ap-
proaches could result in adding values to major industries. In this chap-
ter we revisit this trajectory to find out whether the attempts that started
three decades ago are still aligned with the same goal, as complexities of
real-world problems increased significantly. We present some examples
of modern real-world problems, discuss why they might be difficult to
solve, and whether there is any mismatch between these examples and
the problems that are investigated in the evolutionary computation area.

1 Motivation

The Evolutionary Computation (EC) community over the last 30 years has made
a lot of effort designing optimization methods (specifically Evolutionary Algo-
rithms, EAs) that are well-suited for hard problems — problems where other
methods usually fail (Michalewicz, 2012b). As most real-world problems1 are
quite complex, set in dynamic environments, with nonlinearities and discon-
tinuities, with variety of constraints and business rules, with a few, possibly
conflicting, objectives, with noise and uncertainty, it seems there is a great op-
portunity for EAs to be applied to such problems.

Some researchers investigated features of real-world problems that served
as “reasons” for difficulties that EAs experience in solving them. For example,

? Also with Centre for Advanced Imaging, the University of Queensland
?? Also with Complexica Pty Ltd, Suite 75, 155 Brebner Drive, West Lakes, SA 5021, Aus-

tralia, with Polish-Japanese Academy of Information Technology, ul. Koszykowa 86,
02-008 Warsaw, Poland, and with the Institute of Computer Science, Polish Academy
of Sciences, ul. Ordona 21, 01-237 Warsaw, Poland.

1 See (Michalewicz, 2012b) for details on different interpretations of the term “real-
world problems”.

http://cs.adelaide.edu.au/~optlog/


2 Bonyadi, Michalewicz, Wagner, and Neumann

in (Weise et al., 2009) the authors discussed premature convergence, rugged-
ness, causality, deceptiveness, neutrality, epistasis, and robustness, that make
optimization problems hard to solve. However, it seems that these reasons are
either related to the landscape of the problem (such as ruggedness and decep-
tiveness) or the optimizer itself (like premature convergence and robustness)
and they are not focusing on the nature of the problem. In (Michalewicz and Fo-
gel, 2004), a few different reasons behind the hardness of real-world problems
were discussed; that included the size of the problem, presence of noise, multi-
objectivity, and presence of constraints. Apart from these studies there have
been EC conferences (e.g., GECCO, IEEE CEC, PPSN) that have had special ses-
sions on “real-world applications”. The aim of these sessions was to investigate
potentials of EC methods in solving real-world optimization problems.

Most of the features discussed in the previous paragraph have been cap-
tured in optimization benchmark problems (many of these benchmark prob-
lems can be found in OR-library2). As an example, the size of benchmark prob-
lems has been increased during the last decades and new benchmarks with
larger problems have appeared (e.g., knapsack problems, KP, with 2,500 items
and traveling salesman problems, TSP, with more than 10,000 cities). Presence
of constraints has also been captured in benchmark problems (e.g., constrained
vehicle routing problem, CVRP) and studied by many researchers. Some re-
searchers also studied the performance of evolutionary optimization algorithms
in dynamic environments (Nguyen and Yao, 2012; Jin and Branke, 2005). Thus,
the expectation is, after capturing all (or at least some) of these pitfalls and
addressing them, EC optimization methods should be effective in solving real-
world problems. However, after over 30 years of research and many articles
written on Evolutionary Algorithms in dedicated conferences and journals with
special sessions on applications of evolutionary methods on real-world appli-
cations, still it is not that easy to find EC-based applications in real-world.

There are several reasons (Michalewicz, 2012a) for such mismatch between
the contributions made by researchers to the field of Evolutionary Computation
over many years and the number of real-world applications which are based on
concepts of Evolutionary Algorithms. These reasons include:

(a) Experiments focus on single component (also known as single silo) bench-
mark problems

(b) Dominance of Operation Research methods in industry
(c) Experiments focus on global optima
(d) Theory does not support practice
(e) General dislike of business issues in research community
(f) Limited number of EA-based companies

It seems that the reasons (a) and (b) are primary while the reasons (c) to (f)
are secondary. Let us explain.

2 Available at: http://people.brunel.ac.uk/˜mastjjb/jeb/info.html
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There are thousands of research articles addressing traveling salesman prob-
lems, job shop and other scheduling problems, transportation problems, inven-
tory problems, stock cutting problems, packing problems, various logistic prob-
lems, to name but a few. Although most of these problems are NP-hard and de-
serve research efforts, they are not exactly what the real-world industries need.
Most companies run complex operations and they need solutions for problems
of high complexity with several components (i.e., multicomponent problems3).
In fact, problems in real-world usually involve several smaller subproblems
(several components) that interact with each other and companies are after a so-
lution for the whole problem that takes all components into account rather than
only focusing on one of the components. For example, the issue of scheduling
production lines (e.g., maximizing the efficiency or minimizing the cost) has
direct relationship with inventory costs, transportation costs, delivery-in-full-
on-time to customers, etc., hence it should not be considered in isolation. More-
over, optimizing one component of the operation may have negative impact
on other activities in other components. These days businesses usually need
“global solutions” for their operations that includes all components together,
not single-component solutions. This was recognized already over 30 years ago
by Operations Research (OR) community; in (Ackoff, 1979) there is a clear state-
ment: “Problems require holistic treatment. They cannot be treated effectively
by decomposing them analytically into separate problems to which optimal so-
lutions are sought.” However, there are very few research efforts which aim
in that direction that is mainly due to the lack of appropriate benchmarks or
test cases available. It is usually harder to work with a company on such global
level because the delivery of a successful software solution involves many other
(apart from optimization) skills such as understanding the company’s internal
processes and complex software engineering issues.

Further, there are many reasons why OR methods are widely used to deal
with such problems. One reason is that the basic OR approaches (e.g., linear
programming) are introduced to many students in different disciplines. This
makes these approaches well-known by researchers and industries, and, con-
sequently, widely used. Also, OR community has a few standard and powerful
configurable products (e.g., CPLEX) that are used in many organizations es-
pecially for complex systems with many components (Wang and Sarker, 2006)
(see also (Michalewicz, 2012a) for further discussion).

Let us illustrate differences between single-component and multicompo-
nent problems by presenting a puzzle (see Figure 1)4. There is a ball that has
been cut into two parts in a special way, and a cuboid with a hole inside, that
has been also cut into two parts in a special way. The two parts of the ball can
be easily set up together to make a complete ball (see Figure 1a). Also, the two
parts of the cuboid can be put easily together to shape the cuboid (see Fig-

3 There are concepts similar to multicomponent problems in other disciplines, e.g., OR
and management sciences, with different names such as integrated system, integrated
supply chain, system planning, and hierarchical production planning.

4 The name of this puzzle is the “Cast Marble”, created by Hanayama company.
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ure 1b). The size of the hole inside the cuboid is slightly larger than the size of
the ball, so that, if the ball is inside the hole it can spin freely. However, it is
not possible to set up the cuboid and then put the ball inside the cuboid as the
entry of the hole of the cuboid is smaller than the size of the ball (see Figure 1c).
Now, the puzzle is stated as follows: set up the cuboid with the ball inside (see
figure Figure 1d). Setting up the ball separately and the cuboid separately is
easy. However, setting up the cuboid while the ball is set up inside the cuboid
is extremely hard.5

(a) (b)

(c) (d)

Fig. 1. The Cast Marble puzzle: (a) two pieces of a ball and the ball that is generated
by setting up the pieces, (b) two pieces of a cuboid and the cuboid that is generated by
setting up the pieces, (c) the ball is not fit in the hole of the cuboid if the cuboid is set up
first, and (d) the solution of the puzzle.

This puzzle nicely represents the difference between single-component and
multicomponent problems. In fact, solving a single component problem (set-
ting up the ball or the cuboid separately) might be easy; however, solving the
combination of two simple component problems (setting up the ball while it is
inside the cuboid) is potentially extremely harder.

5 The difficulty level of this puzzle was reported as 4 out of 6 by the Hanayama website,
that is equal to the difficulty of Rubiks cube.
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The purpose of this letter is to encourage the EC community to put more
effort in researching multicomponent problems. First, OR community is already
doing this. Second, such research seems necessary if we would like to see the
emergence of powerful EC-based applications in the real-world. Third, because
of the flexibility of EC techniques, we believe that they are more than suitable
for delivering quality solutions to multicomponent real-world problems.

So, in this letter we explore this issue further and we organize the letter as
follows. In section 2 two real-world examples are explained, in section 3 some
important observations about real-world problems are discussed, in section 4
a recently presented benchmark multicomponent problem is introduced and
discussed, and in section 5 some discussions and directions for future research
are provided.

2 Two Examples

The first example relates to optimization of the transportation of water tanks (Stolk
et al., 2013). An Australian company produces water tanks with different sizes
based on some orders coming from its customers. The number of customers
per month is approximately 10,000; these customers are in different locations,
called stations. Each customer orders a water tank with specific characteristics
(including size) and expects to receive it within a period of time (usually within
one month). These water tanks are carried to the stations for delivery by a fleet
of trucks that is operated by the water tank company. These trucks have differ-
ent characteristics and some of them are equipped with trailers. The company
proceeds in the following way. A subset of orders is selected and assigned to a
truck and the delivery is scheduled in a limited period of time (it is called sub-
set selection procedure). Because the tanks are empty and of different sizes they
might be packed inside each other (it is called bundling procedure) to maximize
trucks load in a trip. A bundled tank must be unbundled at special sites, called
bases, before the tank delivery to stations. Note that there might exist several
bases close to the stations where the tanks are going to be delivered and select-
ing different bases (it is called base selection procedure) affects the best overall
achievable solution. When the tanks are unbundled at a base, only some of them
fit in the truck as they require more space. The truck is loaded with a subset of
these tanks and carries them to their corresponding stations for delivery. The
remaining tanks are kept in the base until the truck gets back and loads them
again to continue the delivery process (it is called delivery routing procedure).

The aim of the optimizer is to divide all tanks ordered by customers into
subsets that are bundled and loaded in trucks (possibly with trailers) for de-
livery and to determine an exact routing for bases and stations for unbundling
and delivery activities to maximize the total “value” of the delivery at the end
of the time period. This total value is proportional to the ratio between the total
prices of delivered tanks to the total distance that the truck travels.

Each of the mentioned procedures in the tank delivery problem (subset se-
lection, base selection, and delivery routing, and bundling) is just one compo-
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nent of the problem and finding a solution for each component in isolation does
not lead to the optimal solution of the whole problem. As an example, if the
subset selection of the orders is solved to optimality (the best subset of tanks is
selected in a way that the price of the tanks for delivery is maximized), there is
no guarantee that there exists a feasible bundling such that this subset fits in a
truck. Also, by selecting tanks without considering the location of stations and
bases, the best achievable solutions might not be very high quality, e.g., there
might be a station that needs a very expensive tank but it is very far from the
base, which actually makes delivery very costly. On the other hand, it is im-
possible to select the best routing for stations before selecting tanks—without
selection of tanks, the best solution (lowest possible tour distance) is to deliver
nothing. Thus, solving each subproblem in isolation does not necessarily lead
to the overall optimal solution.

Note also that in this particular case there are many additional consider-
ations that must be taken into account for any successful application. These
include scheduling of drivers (who often have different qualifications), fatigue
factors and labor laws, traffic patterns on the roads, feasibility of trucks for par-
ticular segments of roads, maintenance schedule of the trucks.

The second example relates to the optimization of a wine supply chain (Michalewicz
et al., 2010), from grape to bottle. The overall aim of the wine producer is to de-
liver the orders in time while minimize the useless storage. The wine producer
needs to decide if the grape is at its peak of ripeness, i.e., optimal maturity, to
be collected and used for wine production. This is done through a predictive
model that assesses different characteristics of the grape (e.g., sugar, acidity,
berry metabolites, berry proteins, taste) to determine when is the grape in its
”optimal maturity” for harvest. The definition of optimal maturity may vary
depending upon the style of wine being made; the working definition of qual-
ity; varietal; rootstock; site; interaction of varietal, rootstock and site; seasonal
specific factors; viticultural practices; and downstream processing events and
goals. Once the ripeness was verified, the grapes are removed and sent to the
weighbridge (this stage is called intake planning). After weighting the grapes,
they are crushed using specific crushers to provide grape juice (this is called
crusher scheduling). The grape juice is then stored in some tanks where they
are fermented to provide wine, each tank may have different capacities and ca-
pabilities (this is called storage scheduling). Different types of wine may require
specific tank attributes for processing, such as refrigeration jackets or agitators.
As some special types of wine may need a blend of different grapes juice, it is
better to store the juice in adjacent tanks to facilitate such blending if necessary.
Also, it is better to fill/use the tanks to their full capacity as a half-empty tank
affects the quality of the wine inside to a degree that the wine might become
useless (because of its quality) after a while. To prepare the final product, the
wines in the tanks should be bottled that requires scheduling the bottling lines
(this is called the bottling line scheduling). This is done through bottling lines
where appropriate tank of wine (according to the placed orders) are connected
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to the line and the wine is bottled and sent for either storage or to direct deliv-
ery.

The aim of the optimizer is to find a feasible schedule for the intake plan to
remove grapes in their pick of ripeness, schedule crushers to press these grapes,
assign the crushed grapes to proper tank farms with appropriate facilities de-
pending on the desired wine, and schedule bottling lines to the tank farms to
perform bottling and deliver placed orders as soon as possible.

Each of the mentioned models in the optimization of the wine supply chain
(intake planning, crushing stage, storage scheduling, and bottling line schedul-
ing) is just one component of the overall problem and finding a solution for
each component in isolation does not lead to the optimal solution of the whole
problem. For example, daily decisions on the crushing should not be done in
isolation from storage of wines and juices in the tank farm, as even if the crush-
ing can be done in a very efficient way, the capacity of tanks might constraint
the process. Also, the storage scheduling should consider the crushing too as
the optimal choice for the storage depends on the amount and type of the pro-
cessed material in the crushing stage.

In the real-world case, there are some other considerations in the problem
such as scheduling of workers for removing grapes and required transports,
maintenance schedule for tools and machines, deal with sudden changes and
uncertainty (e.g., weather forecast) and take into account risk factors.

3 Lessons Learned - Dependencies

Let us take a closer look at the examples presented in section 2. Obviously, both
optimization problems contain constraints and noise; both of them might be
large in terms of the number of decision variables. However, there is another
characteristic present in both problems: each problem is a combination of sev-
eral subproblems (components/silos). The tank delivery problem is a combina-
tion of tank selection, delivery routing, base selection, and bundling. Also, the
wine industry problem is a combination of intake planing, crushers schedul-
ing, storage scheduling, and bottling line scheduling. Because of this character-
istic we call them multicomponent problems. Each component might be hard
to solve in isolation and solving each component to optimality does not nec-
essarily direct the search towards good overall solutions if other components
are not considered. In fact, solutions for each subproblem potentially affect the
variables of some other subproblems because of the dependencies among com-
ponents. As an example, in the tank delivery problem, delivery routing (best
route to deliver tanks) is affected by the base selection (best choice for the base
to unbundle the tanks) as choosing different bases imposes different lengths of
travels between the base and stations. Delivery routing is also affected by the
tank selection (selecting the tanks for delivery) as the selected subset of tanks
determines the stations to visit. In short, a solution for each component affects
the feasibility or the best achievable solution in other components. In spite of
the importance of this topic in real-world problems, the progress to address
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such problems with dependencies has been very limited in the EC community
so far.

Dependency causes appearance of some other features in real-world prob-
lems. As an example, the dependency among components in a problem some-
times causes a special flow of data among components of that problem. For in-
stance, generating a solution for the delivery routing in the tank delivery prob-
lem is impossible without being aware of the selected subset of tanks.

Definition 1. If generating a solution (independent from the quality) for a component
A is impossible because of some data that needs to be provided by the component B, we
say that A is the data follower of B.

This indeed imposes a special sequence of solution procedure for some com-
ponents that need to be taken into account by the solver.

Also, dependencies among components make (mathematical) modeling of
problems more complex. In fact, modeling of existing benchmark problems
(such as TSP, multidimensional KP, job shop scheduling, etc) is relatively easy
and many different models for them already exist. However, a multicomponent
problem involves a more complex model, even if it has been composed of com-
ponents that have been modeled in previous studies. The main reason is that in
a multicomponent problem a constraint that is in one of the components may
influence feasible set of solutions of other components because of dependency.
Thus, modeling each component in isolation and putting these models together
does not express the model for the whole problem.

Another effect that is caused by dependency in multicomponent problems
is the propagation of noise. Noise in benchmark problems is usually defined by
a stochastic function like a normal or Poisson distribution that is simply added
to the objective function or constraints. However, with the presence of depen-
dency noise is propagated from each component to the others. Because depen-
dency between components might follow a complex function, the propagated
noise from one component to the others might also become complex (even if
the original noise was based on a simple distribution) which causes difficulties
in solving the problem. As an example, if the break-down distribution of the
crushers in the wine supply chain problem is Poisson with some parameters
and this break-down has some other distribution for the tanks maintenances,
the effect of these noises on the objective function cannot be treated as a simple
Poisson and it is actually hard to even estimate. Note also that investigation
of noise over the whole system results in a better risk analysis in the whole
operation and a better estimation tolerance in the final benefit.

An additional interesting feature that comes into play because of depen-
dency is the concept of bottleneck component. A bottleneck component is a
component in the whole system that constrains the best overall achievable so-
lution. If there is a bottleneck component in the system, adding more resources
to other components does not cause improvement of the best achievable ob-
jective value (see also (Bonyadi et al., 2014b) for details). As an example, in the
wine supply chain problem if the bottleneck component is the number of crush-
ers then investment on any other parts of the system (expanding the number of
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tanks, hiring more workers to remove grapes, or establishing new bottling line)
has minimal affect (or even no effect) on the best overall achievable solution in
the system.

Dependency is the source of some complexities in multicomponent prob-
lems. Thus, a proper definition for dependency among components is of impor-
tance. The concept of dependency among components and effects of the com-
ponents on each other is similar to the concept of separability of variables in
continuous space optimization problems (Whitley et al., 1997). As it was men-
tioned earlier, dependency stems from the effects of components on each other,
i.e., changing the solution of a component affects feasibility or quality of solu-
tions of other components. Accordingly, we suggest the following definition for
dependency among components:

Definition 2. We say component B is dependent on component A (notation: A→ B)
if
(1) A is not data follower of B (see Definition 1), and
(2) changing the solutions of component A can change the best achievable solution for
the component B in terms of the overall objective value.

The part (1) of the definition prevents introduction of dependency between
two components, A and B, where A needs a flow of data from B. If A is a
data follower of B then B cannot be dependent to A. Assessing the first part of
the definition is not a hard task. The part (2) of the definition ensures that the
components are not separable. To assess if B is dependent to A, assume that
there exist a solution a for the component A and, given A is fixed to a (showing
by A = a), setting B = b results in the best possible overall objective value.
Now, if there exists an a that for A = a, B = b′ 6= b results in the best overall
objective value, then A → B (B is dependent to A). This means that, changing
the solution for A actually might change the best solution for B. Dependency is
shown in a diagram for the example problems (see Figure 2).

Fig. 2. Diagram of dependency among components of tank delivery problem.
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Figure 2 shows the diagram of dependency among components of the tank
delivery problem. The links in the figure refer to a dependency among different
components. As an example, one can fix the solution for the base selection (of
course with being aware of the solution for the subset selection) without being
aware of the delivery routing solution. Also, by changing the base, the best
achievable solution (shortest tours) for delivery routing is changed. Thus, the
base selection is linked to delivery routing. Note that generating a solution for
delivery routing is impossible without being aware of the location of the base,
hence, there is no link from delivery routing to the base selection.

Hypothetically, any dependency can exist between a set of problems. These
dependencies can be represented by a digraph, which can potentially form a
complex network. In the simplest case, there are some problems with no de-
pendencies. In this case, one can solve each problem separately to optimality
and combine the solutions to get the global optimal solution.

4 Traveling Thief Problem (TTP)

A recent attempt (Bonyadi et al., 2013) to provide an abstraction of multi-
component problems with dependency among components was introduced re-
cently; it was called the traveling thief problem (TTP). This abstraction com-
bined two problems and generated a new problem, which contains two com-
ponents. The TSP and KP were selected and combined, as both problems were
well known and researched for many years in the field of optimization. TTP was
defined as follows. A thief is supposed to steal m items from n cities, where the
distances dj,k between cities j and k, profits of each item (pi), and weights of
the items (wi) are given. The thief carries a limited-capacity W knapsack to store
the collected items. The problem is to find the best plan for the thief (in terms
of maximizing its total benefit) to visit all cities exactly once (a TSP component)
and select the items from these cities (a KP component) so its total benefit is
maximized.

To make these two components dependent, it was assumed that the current
speed of the thief is affected by the current weight of the knapsack (Wc). In other
words, the more items the thief selects, the slower he can move. A function v :
R→ R was defined that maps the current weight of the knapsack to the current
speed of the thief: v(W ) is the minimum speed of the thief (full knapsack) and
v(0) is the maximum speed of the thief (empty knapsack). Further, the thiefs
profit is reduced (e.g., rent of the knapsack, r) by the total time he needs to
complete the tour. So the total profit B of the thief is then calculated by

B = P − r × T

where P is the aggregation of the profits of the selected items, r is the rent of
the knapsack, and T is the total tour time.

It is possible to generate solutions for KP or TSP in TTP sequentially. Note,
however, that each solution for the TSP component impacts the best possible
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Fig. 3. TTP dependency graph.

solution for the KP because of the total profit is a function of travel time. Fur-
ther, each solution for the KP component impacts the tour time for TSP as the
weight of the knapsack impacts the speed of travel due to the variability of
weights of items.

Note that different values of the rent r and different functions v result in
different instances of TTPs that might be “harder” or “easier” to solve. For
example, for small (relative to P ) values of r, r × T contributes a little to the
value of B. In the extreme case (r = 0), the contribution of r × T is zero, so
the best solution for a given TTP is equivalent to the best solution of the KP
component. In other words, in such a case there is no need to solve the TSP
component at all. By increasing the value of r, the contribution of r×T becomes
larger and if the value of r is very large (relative to P ) then the impact of P on
B becomes negligible. In such a case the optimum solution of the TTP would
be very close to the optimum solution of the given TSP.
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Fig. 4. (a) The impact of the rent rate r on dependency in TTP. For r = 0, the TTP solution
is equivalent to the solution of KP, while for larger r the TTP solutions become more
closer to the solutions of TSP. (b) The impact of the speed v on dependency in TTP.

When v does not drop significantly for different weights of picked items (
∣∣∣ v(W )−v(0)

W

∣∣∣is
small), the two problems can be decomposed and solved separately. The value Dep.=1
(Dep. is the short for Dependency) shows that the two components are dependent while
Dep.=0 shows that two components are not dependent.
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Similar analysis can be done for the function v. For a given TSP and KP com-
ponents, different functions v would result in different instances of TTPs. These
instances, as before, might be “harder” or “easier” to solve. For example, lets
assume that v is a decreasing function of weight of the knapsack, i.e., selecting
items with positive weight would not increase the value of v. In such a case, if
selected items do not affect the speed of the travel (i.e.,

∣∣∣v(W )−v(0)
W

∣∣∣is zero) then
the optimal solution of the TTP is the composition of the optimal solutions of
KP and TSP that are solved separately, as selection of items does not change the
time of the travel. As the value of

∣∣∣ v(W )−v(0)
W

∣∣∣grows, the TSP and KP become
more dependent on each other (i.e., selection of items have more significant
impact on the travel time), so selecting more items reduces the value of B sig-
nificantly. In the extreme case (

∣∣∣v(W )−v(0)
W

∣∣∣is infinitely large) it would be better
not to pick any item (i.e., the solution for the KP would be to pick no items at
all) and only solve the TSP component as efficiently as possible. This has been
also discussed in (Bonyadi et al., 2014a).

By now, quite a number of researchers have reported experimental results
and analytical investigations of TTP. Opportunities to decompose instances of
TTP to KP and TSP were studied in (Mei et al., 2014). Reported experimental re-
sults indicated that methods which consider both components simultaneously
consistently achieve better results than methods which decompose the prob-
lem and solve them separately. Further, (Polyakovskiy et al., 2014) proposed
a comprehensive benchmark set for TTP and the experimental results on per-
formances of three methods (one simple heuristic and two evolutionary based
methods) were reported.

A recent case study (Wagner et al., 2017) analysed the instances and com-
pared 21 algorithms. It was observed that only a small subset of the published
algorithms was needed for well-performing TTP portfolios, as some of the early
approaches are already outperformed by newer ones. As the instances vary
significantly in size, it is not a big surprise that the current best approaches
range from swarm-intelligence approaches for small instances (Wagner, 2016),
to hyper-heuristics for mid-sized instances (El Yafrani et al., 2017), and to cus-
tomised fast implementations of 2-opt variants (El Yafrani and Ahiod, 2016).

Until 2017, exact approaches have been unknown. For a constrained ver-
sion for the TTP, where the tour is fixed, a fully polynomial time approximation
scheme is known (Neumann et al., 2017), and very recently several exact ap-
proaches for the original TTP have been presented as well (Wu et al., 2017).

5 Discussion and Future Directions

There are a few challenges in dealing with multicomponent problems. In this
section we discuss some of these challenges and present some potential oppor-
tunities for EC-based methods to address them.

As it was mentioned earlier, a collection of optimal solutions that corre-
spond to components of a multicomponent problem does not guarantee global
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optimality. This is because of presence of dependencies among components. To
solve a multicomponent problem, however, it is often necessary to decompose
the problem taking into account the dependencies among components. Com-
plexity of such decomposition is usually related to the dependencies among
the components. For example, if in the cast marble puzzle the final objective
was to set up the ball on top of the cuboid (a simple dependency between com-
ponents) then the puzzle would be extremely easy (one could set up the ball
and the cuboid separately and put the ball on the cuboid). In contrast, setting
up the ball inside the cuboid (a complex dependency between components) is
extremely hard as the ball and the cuboid need to be set up simultaneously one
inside another. Likewise, one can define a simple dependency between KP and
TSP in the TTP problem that makes the problems decomposable or make them
tighter together so that they are not easily decomposable.

The lack of abstract problems that reflect the presence of dependencies among
components is apparent in the current benchmarks6. In fact, real-world supply
chain optimization problems are a combination of many smaller subproblems
dependent on each other in a network while benchmark problems are singu-
lar. Because global optimality (in the sense of the overall objective) is of inter-
est for multicomponent problems, singular benchmark problems cannot assess
quality of methods which are going to be used for multicomponent real-world
problems with the presence of dependencies.

One of the challenges in solving multicomponent problems relates to the
way the problem is modeled. There are two general ways to model such prob-
lems. One way is to design a monolithic model to represent all variables, con-
straints, and objectives of all components of the problem and then design a
method to apply to such a model (see (Wang and Sarker, 2006) for example for
a complex large linear model for a supply chain problem). The other way is to
model the components separately and consider the dependencies to integrate
the components. A monolithic model for a multicomponent problem carries
some disadvantages. As an example, such a model is usually large and hard
to define because of potential complications raising form different variables
in different domains, different constraints in different components and their
potential relations, etc. Also, it is hard to maintain such a model because all
components have been fed into a large system (when for example a new com-
ponent is added or a configuration is changed then the whole model should
be redesigned). Finally, such a model usually disregards potential knowledge
about the individual components. Note also that the model needs to represent
the details of the system such as potential noises and dynamicity on different
components that might be of different natures. These issues are, however, easier
to address if the model is composed of smaller models, each model represent a
component, and their integration represents a modeling for the problem, i.e., a

6 There are some problems such as multiprocessor task scheduling problem (MTSP)
(Bonyadi and Moghaddam, 2009) or resource investment scheduling problem
(RISP)(Xiong et al., 2014) that can be also considered as two-component problems
with a simple dependency between the components.
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multicomponent model. Such a model is easier to define as it follows the natu-
ral representation of the problem, is easier to maintain because of its modularity
(adding, removing, or modifying a component only affects a part of the whole
model), and enables the possible usage of existing knowledge, algorithms, and
modeling ideas (with modifications) to deal with the problem as some compo-
nents might be already well-studied7.

One can also consider modeling a multicomponent problem in several lev-
els (Deb and Sinha, 2009) and then apply the bi-level optimization (and in the
more general case, the multi-level optimization) approaches to that model of
the problem. This approach for modeling is in fact a special case of multicompo-
nent modeling. There have been some advances related to single-objective (Legillon
et al., 2012) and multi-objective (Deb and Sinha, 2010) bi-level optimization in
the evolutionary computation community. Bi-level models of a problem can be
split into an upper and a lower level that depend on each other. Usually, there
is a leader-follower relation between the upper and lower level. For the multi-
component problems, however, such relation might not exist. Instead, we can
have multiple problems that depend on each other in an arbitrary way. As a
bi-level problem can be seen as a special case of a multi-component problem,
we assume that techniques developed in the area of evolutionary bi-level op-
timization can be very useful for designing evolutionary algorithms for multi-
component problems.

Clearly, choosing among different modeling approaches for multicompo-
nent problems depends on the problem at hand. However, there might be situ-
ations that existing knowledge about the problem and its components can assist
the designer to model the problem. As an example, if there is existing knowl-
edge about the components of a multicomponent problem (as some compo-
nents are well-studied problems), then it might be better to use the multicom-
ponent modeling (rather than the monolithic modeling) approach as the exist-
ing knowledge may assist in solving the problem effectively. Also, if there is a
well-studied bi-level model that can formulate the multicomponent problem at
hand, then it might be better to use that model to make use of existing knowl-
edge about the model. Nevertheless, there might be a need to tailor the existing
models to fit the components of the problem at hand. Such tailoring should be
conducted with consideration of the dependencies as, otherwise, the solution
of the model might deviate (potentially significantly) from the solution of the
original problem. In addition, it might be possible to model the problem at hand
as a single objective or multiple objectives. This again depends on the problem
and potential existing knowledge about the objectives as well as the nature of
the objectives (whether they can be combined into one objective or, in the case
of single objective, if that objective can be decomposed into several objectives).
One should note that combining objectives might result in irregularities in the

7 An example of different modeling can be seen for MTSP: one can design a large model
to solve MTSP (Moghaddam and Bonyadi, 2012) or, alternatively, the components can
be modeled separately and different methods are applied to the components and the
results are integrated to solve the problem (Bonyadi and Moghaddam, 2009).
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landscape of the problem and make the problem harder or easier to solve for
different optimization algorithms.

Typically EC methods offer a great flexibility in terms of incorporating sev-
eral factors (constraints, multiple objectives, noise, etc.) that allows a designer
to retain intricacies of the problem in the model. One possible EC-based ap-
proach to deal with a multicomponent model involves cooperative coevolu-
tion: a type of multi-population Evolutionary Algorithm (Potter and De Jong,
1994). Coevolution is a simultaneous evolution of several genetically isolated
subpopulations of individuals that exist in a common ecosystem. Cooperative
coevolution uses divide and conquer strategy: all parts of the problem evolve
separately; fitness of each individual of particular species is assigned based on
the degree of collaboration with individuals of other species. It seems that co-
operative coevolution is a natural fit for multicomponent problems with pres-
ence of dependencies. Individuals in each subpopulation may correspond to
potential solutions for particular components, with their own evaluation func-
tions, whereas the global evaluation function would also include dependencies
between components. In a more generic framework, one can consider a net-
work of solvers (including heuristics, meta heuristics, and exact methods) to
deal with each component where each solver decides individually while com-
municates with others to meet a global goal.

Cooperative coevolution has already been used to address a few real-world
multicomponent problems. For example, in (Ibrahimov et al., 2012a,b) a prob-
lem similar to the tank delivery example discussed in section 2 was formulated
and a method based on cooperative coevolution was experimented with. Re-
sults of experiments showed that the cooperative coevolution method can pro-
vide high quality solutions. These applications were, however, developed “ad
hoc” with the lack of any guidance from theoretical investigations. One can con-
sider a systematic way to investigate the dependencies among components and
their potential impacts on the performance of the algorithm and its parameters.
Also, investigation of different approaches to deal with different components
and integration of the solutions can be other research topics in this regard.

The method described in (Ibrahimov et al., 2012a,b) could also provide the
solutions within a 10 minutes time frame, that is another important aspect that
need to be satisfied in solving real-world problems. The reason is that decisions
in real-world problems need to be taken in a small amount of time (5-10 min-
utes), otherwise, those decisions are not of much use. A team of OR experts
designed a method to solve a multicomponent problem with almost the same
complexity of the one considered in (Ibrahimov et al., 2012a,b). After applica-
tion of the algorithm to the real-case it was found that the algorithm needs 18
hours per objective to deal with the problem8. Such delay for providing a solu-
tions is, however, not acceptable.

One should note that the concept of global optimality is usually not of a
great importance when dealing with real-world problems. One reason is that
the model that is designed for the problem (whether it is a monolithic model or

8 Private correspondence.
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several small models that need to be integrated to represent the problem) usu-
ally includes some simplifications. These simplifications can range from relax-
ations of constraints to accuracy adjustments of time-consuming exact simula-
tors and to the creation of approximative surrogate models. Hence, as the solver
is applied to this model, even if it solves the model to optimality, it still has
some deviations from real-world (expected) solution because of the simplifica-
tion. Also, because of the dynamic nature of the problems in real-world, even if
the solver finds the optimum solution, that solution might not be valid anymore
after a (possibly short) period of time due to unexpected events, e.g., delay of
products, failure of trucks, extreme changes of whether (see also (Michalewicz,
2012b,a) for further discussion).

Multicomponent problems pose new challenges for the theoretical investi-
gations of evolutionary computation methods. The computational complexity
analysis of evolutionary computation is playing a major role in this field (Auger
et al., 2011; Neumann and Witt, 2010). Results have been obtained for many NP-
hard combinatorial optimization problems from the areas of covering, cutting,
scheduling, and packing. We expect that the computational complexity analysis
can provide new rigorous insights into the interactions between different com-
ponents of multicomponent problems. As an example, we consider again the
TTP problem. Computational complexity results for the two underlying prob-
lems (KP and TSP) have been obtained in recent years. Building on these re-
sults, the computational complexity analysis can help to understand when the
interactions between KP and TSP make the optimization process harder.

In a similar way, feature-based analysis might be helpful to provide new
insights and help in the design of better algorithms for multicomponent prob-
lems. Analyzing statistical feature of classical combinatorial optimization prob-
lems and their relation to problem difficulty has gained an increasing atten-
tion in recent years (Smith-Miles et al., 2014). Classical algorithms for the TSP
and their success depending on features of the given input have been studied
in (Smith-Miles et al., 2010; Mersmann et al., 2013; Nallaperuma et al., 2013)
and similar analysis can be carried out for the knapsack problem. Furthermore,
there are different problem classes of the knapsack problem which differ in their
hardness for popular algorithms (Martello and Toth, 1990). Understanding the
features of the underlying subproblems and how the features of interactions in
a multicomponent problem determines the success of different algorithms is an
interesting topic for future research which would guide the development and
selection of good algorithms for multicomponent problems.

It seems multicomponent problems provide great opportunity for further
research in EC community. Thus, we believe that future research in this direc-
tion can potentially close the gap between academic research in EC community
and needs for optimization methodologies in industries.
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