
A New Version of Ant System for Subset Problems

Guillermo Leguizamón
Interest Group on Computer Systems

Universidad Nacional de San Luis, Argentina
legui@unsl.edu.ar

Zbigniew Michalewicz
University of North Carolina
Charlotte, NC 28223, USA

zbyszek@uncc.eduand
Institute of Computer Science
Polish Academy of Sciences

Abstract- Early applications of Ant Colony Optimization
(ACO) have been mainly concerned with solving order-
ing problems (e.g., Traveling Salesman Problem). In this
paper we introduce a new version of Ant System — an
ACO algorithm for solving subset problems. The com-
putational study involves the Multiple Knapsack Problem
(MKP); the reported results show the potential power of
the ACO approach for solving this type of subset prob-
lems.

1 Introduction

The Ant Colony Optimization (ACO) technique has emerged
recently [3, 4] as a new meta-heuristic for hard combinato-
rial optimization problems. This meta-heuristic belongs to
the class of problem-solving strategies derived from nature
(other categories include evolutionary algorithms, neural net-
works, simulated annealing). The ACO algorithm is basi-
cally a multi-agent system where low level interactions be-
tween single agents (i.e., artificial ants) result in a complex
behaviour of the whole ant colony.

ACO algorithms have been inspired by colonies of
real ants [3], which deposit a chemical substance (called
pheromone) on the ground. This substance influences the
choices they make: the larger amount of pheromone is on
a particular path, the larger probability is that an ant selects
the path. Artificial ants in ACO algorithms bahave in similar
way.

Early experiments with the ACO algorithm were con-
nected with ordering problems such as the Traveling Sales-
man Problem or the Quadratic Assignment Problem. In sec-
tion 2 we illustrate the basic concepts of the original Ant Sys-
tem algorithm, the first ACO algorithm introduced by Dorigo,
Maniezzo, and Colorni [5], using as example the Traveling
Salesman Problem (TSP). Further sections of this paper in-
vestigate the applicability of the ACO algorithm for solving
subset problems. The proposed application is a particular im-
plementation of the ACO meta-heuristic in which pheromone
trail is put on the problem’s components instead of the prob-
lem’s connections.

2 Ant System for the TSP

Given a set ofn cities and a set of distances between them, the
Traveling Salesman Problem (TSP) is the problem of finding
a minimum length closed path (atour), which visits every city
exactly once. Thus we have to minimize

COST (i1; : : : ; in) =

n�1X
j=1

d(Cij ; Cij+1)+ d(Cin ; Ci1); (1)

whered(Cx; Cy) is the distance between citiesx andy.
Let bi(t) (i = 1; :::; n) be the number of ants in cityi at

timet and leta =
Pn

i=1 bi(t) be the total number of ants. Let
�ij(t + n) be the intensity of pheromone trail on connection
(i; j) at timet+ n, given by

�ij(t+ n) = (1� �)�ij(t) + ��ij(t; t+ n); (2)

where0 < � � 1 is a coefficient which represents pheromone
evaporation.��ij(t; t + n) =

Pa
k=1 ��kij(t; t + n), where

��kij(t; t + n) is the quantity per unit of length of trail sub-
stance (pheromone in real ants) laid on connection(i; j) by
thekth ant at timet+n and is given by the following formula:

��kij(t+n) =

�
Q
Lk

if kth ant uses edge(i; j) in its tour
0 otherwise,

whereQ is a constant andLk is the tour length found by the
kth ant. For each edge, the intensity of trail at time 0 (�ij(0))
is set to a very small value.

While building a tour, the probability that antk in city i
visits city j is

P k
ij(t) =

8><
>:

[�ij(t)]
�[�ij]

�P
h2allowedk(t)

[�ih(t)]�[�ih]�
;

if j 2 allowedk(t)
0; otherwise,

(3)

whereallowedk(t) is the set of cities not visited by antk
at time t, and�ij represents a local heuristic. For the TSP,
�ij =

1
d(Ci;Cj)

(and it is called ‘visibility’).
The parameters� and� control the relative importance of

pheromone trail versus visibility. Hence, the transition prob-
ability is a trade-off between visibility, which says that closer
cities should be chosen with a higher probability, and trail in-
tensity, which says that if the connection(i; j) enjoys a lot of
traffic then is it highly profitable to follow it.

A data structure, called atabu list, is associated to each ant
in order to avoid that ants visit a city more than once. This
list tabuk(t) maintains a set of visited cities up to timet by
thekth ant. Therefore, the setallowedk(t) can be defined as
follows: allowedk(t) = fjjj =2 tabuk(t)g. When a tour is
completed, thetabuk(t) list (k = 1; : : : ; a) is emptied and
every ant is free again to choose an alternative tour for the
next cycle.

By using the above definitions, we can describe the Ant
System algorithm as follows:

Initialize
for t=1 to number of cycles do

for k=1 to a do
Repeat until k has completed a tour

Select city j to be visited next with probabilityP k
ij

given by Eq. (3)
end
Calculate the lengthLk of the tour generated by ant k

end
Save the best solution found so far
Update the trail levels�ij on all paths according to Eq. (2)

end
Print the best solution found

3 Ant System for Subset Problems

Subset problems are quite different from ordering problems.
Out of a setS of n items we have to select the best subset
of s items, possibly satisfying some additional constraints.
There is no concept of a path here, so it is difficult to ap-
ply the concepts described in the previous section directly to
subset problems. The main difference is the following. In
ordering problems, the sequence~S =< i1; i2; :::; ij > and
the setR = fij+1; ij+2; :::; ing represent a partial solution
to the problem and the set of remaining cities to be consid-
ered in order to complete the ordering ofn items from the
setS, respectively. The selection processes of the next item
from the setR involves probabilitiesP k

ij ip
(t) (e.g., Eq. (3))

(p 2 fj + 1; j + 2; :::; ng), which depend on the trail�ij ip on
the edge(ij ; ip) and the local heuristic measure�ij ip (Fig-
ure 1).

 i ij ppj
τi i +η

1 j-1 i

i

i

j+1

j+2

n

2 ji i i i

S R
~

. . .

Figure 1: A sequence representing a partial solution~S at step
j during a particular cycle

On the other hand, in subset problems we are not in-
terested in solutions giving a particular order (e.g., a tour
in the TSP). Therefore, a partial solution is represented by
~S = fi1; i2; :::; ijg and the most recent element incorporated
to ~S, ij , need not be involved in the process for selecting the
next element (Figure 2).

ητ
pi+ pi

1 j-1 i

i

i

j+1

j+2

n

2 ji i i i

S R
~

. . .

Figure 2: A set representing a partial solution~S at stepj
during a particular cycle

Moreover, solutions for ordering problems have a fixed
length, as we search for a permutation of a known number of
elements. Thus, for example, the update of the pheromone
trails could be done once everyn steps, that is onceall the
ants have completed an ordering (which happens, of course,
at the same time). Solutions for subset problems, however,
do not have a fixed length. Thus it is necessary to establish
a number,Nmax, which will be used to determine the end
of the construction cycle for all the ants. The original Ant
System must therefore be modified accordingly.

First of all, the pheromone trail is now laid on each el-
ement from setS, with the intended meaning that elements
with a higher trail level are more profitable. Therefore, the
intensity of pheromone trailon item i at time t + Nmax is
given by:

�i(t+Nmax) = (1� �)�i(t) + ��i(t; t+Nmax); (4)

whereNmax < n is the maximum number of items allowed
to be added to some solution by some ant. The constantNmax

was introduced to achieve consistency with the definitions of
Ant System for ordering problems, wheren items must be
considered to obtain a permutation and where the updating
process on the trail values is done everyn “units of time” (that
is, after the ants have simultaneously completed a permuta-
tion). On the other hand, for subset problems, the length of a
cycle varies as the ants start simultaneously to build solutions,
but they finish at different times, depending on the number of
items satisfying the problem constraints. The ants always fin-
ish before the time(t+n), that is at time(t+Nmax). Let us
denote

��i(t; t+Nmax) =
Pa

i=1 ��ki (t; t+Nmax),
which is obtained by summing the contribution��ki (t; t +
Nmax) of each antk. In other words, this is the quantity of
pheromone trail laid on itemi by thekth ant at timet+Nmax.

This quantity is given by the following formula:

��ki (t; t+Nmax) =

8<
:

G(Lk); if kth ant
incorporates itemi

0; otherwise
(5)

In Eq. (5) the functionG depends on the problem and
gives the amount of trail being added to itemi. Usually,
G(Lk) = Q=Lk or G(Lk) = QLk for minimization or
maximization problems, respectively (Q is a parameter of the
method).Lk is the value of theobjective functionobtained
by the kth ant. Further, the local heuristic should assign a
value to each element without any considerations about possi-
ble connections between them (ordering is not important any
longer). Although not present in the original formulation of
Ant System, we consider two types of heuristics for our new
version,1 static and dynamic.

� Static: �i is set at the beginning of the run to a fixed
value8i 2 S

� Dynamic: �i(~Sk(t)) depends on the partial solution,
i 2 S � ~Sk(t) and ~Sk(t) is thekth partial solution at
time t

Then, for a partial solution~Sk(t) = fi1; :::; ijg being built by
antk, the probabilityP k

ip
(t) of selectingip as the next item

(p 2 fj + 1; j + 2; :::; ng) is given as

P k
ip
(t) =

8>><
>>:

[�ip(t)]
�[�ip (

~Sk(t))]
�P

j2allowedk(t)
[�j(t)]�[�j(~Sk(t))]�

if ip 2 allowedk(t)
0; otherwise,

(6)

whereallowedk(t) � S� ~Sk(t) is the set of remaining feasi-
ble items. Thus, the higher the value of�ip and/or�ip(~Sk(t)),
the more profitable it is to include itemip in the partial solu-
tion.

The outline of the new version of the Ant System algo-
rithm for subset problems is as follows:

Initialize
for t=1 to number of cycles do

Nmax = 0

for k=1 to a do
Nitems = 0

Repeat Untilallowedk is empty
Select item i to be incorporated with probabilityP k

i

given by Eq. (6)
Nitems Nitems + 1

end
CalculateLk, the objective function of the generated

solution
Save the best solution so far
Nmax = maxfNitem; Nmaxg

end
Update the trail levels�i on all items according to Eq. (4)

end
Print the best solution found

1In this work we use only a dynamic local heuristic. See [7] for a defini-
tion of a static local heuristic.

The subset-based and permutation-based Ant Systems
have many features in common. However, in the permutation-
based Ant System the pheromone is laid onpaths while
for subset problems no path exists connecting the items. A
subset-based Ant System takes advantage of one of the cen-
tral ideas involved in the selection process of a permutation-
based ant system: “the more amount of trail on a particular
path, the more profitable is thatpath”. This idea was adapted
here in the following way: “the more pheromone trail on a
particular item, the more profitable thatitem is”. In other
words, we move the pheromone from paths to items. At the
same time, a local heuristic is also used in the new version,
but now it considersitemsonly instead ofconnectionsbe-
tween them.

4 Formulation of Ant System for the MKP

The Multiple Knapsack Problem (MKP)2 can be formulated
as follows [2]:

maximize
Pn

j=1 pjxj
subject to

Pn
j=1 rijxj � ci i = 1; :::;m;

xj 2 f0; 1g j = 1; :::n:

(7)

There arem constraints in this problem, so the MKP is
also called them-dimensional Knapsack Problem. Let I =
f1; :::;mg andJ = f1; :::; ng, with ci � 0 for all i 2 I .
A well-statedMKP assumes thatpj > 0 and rij � ci �Pn

j=1 rij for all i 2 I , j 2 J , since any violation of these
conditions will result in somexj being fixed to zero or some
constraints being eliminated. Note that the[rij]m�n matrix
and [ci]m vector are both non-negative, which distinguishes
this problem from the general 0-1 linear integer program-
ming problem. Many practical problems can be formulated
as a MKP, for example, the capital budgeting problem, where
a projectj has profitpj and consumesrij units of resource
i. The goal is to find a subset of projectsJ� � J such that
the total profit is maximized and all resource constraints are
satisfied. For solving MKP, the ants look for a subset ofn
items (see the MKP formulation) such that the total profit is
maximized and all resource constraints are satisfied.

In order to define the local heuristic for MKP, let us con-
sider the following example. Letn = 4 andm = 3 be the
number of items and constraints, respectively. The following
vectors and matrix represent the values forpj , ci, andrij :
(p1; p2; p3; p4) = (4; 10; 2; 6), (c1; c2; c3) = (8; 12; 10), and0

@ r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34

1
A =

0
@ 4 4 2 1

6 6 3 3
4 4 2 2

1
A

Recall, that~Sk(t) denotes the set of items that have been se-
lected by antk at timet. Suppose that~Sk(1) = f4g. Some
definitions are given before we define the local heuristic. Let
ui(k; t) =

P
l2 ~Sk(t)

ril be the amount of resourcei con-
sumed at the timet, with respect to the solution being built
by antk. Following our example, we have:

2MKP belongs to the family ofNP-hardproblems.

u1(k; t) =
P

l2f4g r1l = r14 = 1

u2(k; t) =
P

l2f4g r2l = r24 = 3

u3(k; t) =
P

l2f4g r3l = r34 = 2

Let
i(k; t) = ci�ui(k; t) be the remaining amount to reach
the boundary of the constrainti:

1(k; t) = c1 � u1(k; t) = 8� 1 = 7

2(k; t) = c2 � u2(k; t) = 12� 3 = 9

3(k; t) = c3 � u3(k; t) = 10� 2 = 8

The following formula gives thetightness of item j on con-
strainti according to the~Sk(t), i.e., the ratio betweenrij , the
amount of resourcei consumed by projectj, and
i(k; t). So,
the lower the ratio, the better the item:

Æij(k; t) =
rij

i(k; t)
(8)

EachÆij(k; t) is computed as follows:

Æ11(k; t) =
4
7 Æ12(k; t) =

4
7 Æ13(k; t) =

2
7

Æ21(k; t) =
6
9 Æ22(k; t) =

6
9 Æ23(k; t) =

3
9

Æ31(k; t) =
4
8 Æ32(k; t) =

4
8 Æ33(k; t) =

2
8

Finally, we define the average tightness on all constraintsi in
case of itemj being chosen to be included in~Sk(t):

�Æj(k; t) =

Pm
i=1 Æij(k; t)

m
(9)

For our example, larger values are obtained for variablesj =
1 andj = 2:

�Æ1(k; t) = 0:579; �Æ2(k; t) = 0:579; �Æ3(k; t) = 0:290
However, we need to take in account the profitspj in order
to obtain apseudo-utilitymeasure for each candidate item.
Therefore, the local heuristic for the MKP,�j(~Sk(t)), is de-
fined as follows:

�j(~Sk(t)) =
pj

�Æj(k; t)
(10)

Referring to our example, the most profitable item isj = 2,
since its profitp2 is larger thanp1. These values of�j :

�1(f4g) =
4

0:579 = 6:908, �2(f4g) = 10
0:579 = 17:271,

�3(f4g) =
2

0:290 = 6:897

will affect the probability values for item selection (Eq. 6).
Hence, the transition probability values represent a trade-
off betweenpseudo-utility(which says, that more profitable
items which use less resources should be chosen with a high
probability) and trail intensity (which says, that if an itemj
is included in many solutions, then it is highly desirable).

A data structure, calledtabu list, is also associated with
each ant in order to prevent an ant from chosing an item more
than once, i.e.,tabuk(t) maintains a set of items included in
the solution up to timet by thekth ant. This list also main-
tainsuj(k; t) (j = 1; : : : ;m) in order to reduce the com-
putational time. Thus the setallowedk(t) can be defined as
follows:

allowedk(t) = fjjj =2 tabuk(t) and ~Sk(t), in case itemj is
added, satisfies all the constraintsg,

andtabuk(t) list represents~Sk(t) according to our definition
of section 3. Since MKP is a maximization problem, then
G(Lk) = QLk, whereQ = 1P

n

j=1
pj

.

5 Experiments and results

The Ant System was coded in C language and was run in
the Parallel Virtual Machine environment to take advantage
of the distributed features of the algorithm [10]. The par-
allel version of the Ant System run on a Parsytec based on
PowerPC processors. In experiments reported in this sec-
tion, different parameters values were considered:� = 1;
� = 1; 5; 9; � = 0:3, and the total number of ants in the sys-
tema is equal ton, wheren = jSj, i.e., the cardinality of the
MKP. The maximum number of cycles was set to 100 for all
experiments. The results are expressed in terms of averages
out of ten runs (with different seeds).

The Ant System was tested on 11 MKP instances taken
from [1]. Tables 1 and 2 show, for each instance, the known
optimum, the average best result, and the number ofhits —
runs (out of 10) in which the system found the optimum so-
lution.

Table 1:The results of AS for the 11 test cases of MKP
(�; �)

Instance Opt (1,1) (1,5) (1,9)
mkp1 7772 7772 10 7772 10 7772 10
mkp2 8722 8717 4 8722 10 8719 9
mkp3 141278 141078 6 140778 0 140778 0
mkp4 130883 130645 5 130819 6 130883 10
mkp5 95677 95667 8 95667 8 95667 8
mkp6 119337 119337 10 119337 10 119337 10
mkp7 98796 98796 10 98796 10 98796 10
mkp8 130623 130389 4 130623 10 130311 1
mkp9 1095445 1095253 0 1095382 0 1095382 0

mkp10 624319 622821 6 624319 10 622238 1
mkp11 4554 4554 10 4554 10 4554 10

Table 2:The results of AS for the 11 test cases of MKP
(�; �)

Instance Opt (5,1) (5,5) (5,9)
mkp1 7772 7635 0 7768 7 7770 8
mkp2 8722 8655 0 8720 7 8716 0
mkp3 141278 139583 0 140778 0 140778 0
mkp4 130883 127558 0 130439 0 130787 4
mkp5 95677 94351 0 95657 6 95637 1
mkp6 119337 116690 1 119337 10 119337 10
mkp7 98796 97460 4 98796 10 98796 10
mkp8 130623 125742 0 130311 2 130233 0
mkp9 1095445 1092659 0 1095376 0 1095382 0

mkp10 624319 615414 0 624178 8 622066 0
mkp11 4554 4491 0 4554 10 4554 10

The results reported in Tables 1 and 2 indicate that the
best performance (i.e., largest number of hits) is obtained for
cases where� = 1 (in accordance with the earlier results re-
ported in [6, 7]). The test case mkp9 was the hardest; the Ant
System failed to find the optimum for all parameters combi-
nations. For this test case, the best obtained result is equal

to the suboptimal value (1095382) reported in [9]. Note also,
that the largest instances in this test set were mkp9 and mkp10
with n = 105 variables andm = 5 constraints; all other test
cases were of smaller size.

Additional MKP instances (taken also from [1]) were
tested with(�; �) = (1; 5); one of the combinations that
showed the best performance on the earlier instances. All
these instances haven = 100 variables andm = 5 orm = 10
constraints.3 The AS found the optimum solution for 13 (out
of 20) test cases with 100 variables. In 13 test cases the
best solution was found within 40 cycles; only 3 test cases
required more than 70 cycles (Table 3).

Table 3:The results of AS for additional test cases of MKP
Instance Best known Best Found Average #cycle
5.100-00 24381 24381 24331.2 35
5.100-01 24274 24274 24245.6 23
5.100-02 23551 23551 23527.6 11
5.100-03 23534 23527 23463.0 78
5.100-04 23991 23991 23949.8 34
5.100-05 24613 24613 24563.0 22
5.100-06 25591 25591 25504.8 35
5.100-07 23410 23410 23361.8 22
5.100-08 24216 24204 24173.4 43
5.100-09 24411 24411 24326.0 17

10.100-00 23064 23057 22996.4 59
10.100-01 22801 22801 22672.2 55
10.100-02 22131 22131 21980.0 24
10.100-03 22772 22772 22631.0 72
10.100-04 22751 22654 22578.4 42
10.100-05 22777 22652 22565.2 77
10.100-06 21875 21875 21758.2 21
10.100-07 22635 22551 22519.4 11
10.100-08 22511 22418 22292.4 62
10.100-09 22702 22702 22588.0 24

It is interesting to compare this performance of AS with
some other meta-heuristic technique. We have developed an
evolutionary algorithm (EA) where an individual is repre-
sented as permutation vector ofn numbers (forn variables
of the MKP) and a decoder uses the solution vector to build
a (unique) feasible solution. The operators used were order
crossover and “swap two numbers” mutation. The parame-
ter values werepc = 0:65, pm = 0:2, generation gap equal
50%, population size of 100, maximum number of genera-
tions: 10000. All discussed results report averages of 10 runs.

On the set of 11 test cases (mkp1 – mkp11) the perfor-
mance of the EA was quite similar to the performance of AS.
EA scored 10 hits (out of 10) for cases mkp3, mkp4, mkp5,
mkp6, and mkp11. It failed (i.e., 0 hits) on cases mkp2, mkp9,
and mkp10. For the remaining test cases (e.g., mkp1, mkp7,
and mkp8) the number of hits were 4, 6, and 8, respectively
(Table 4).

It was also interesting to note that an increase in popula-
tion size (from 100 to 200) improved only slightly the per-
formance of the EA: for test cases mkp1, mkp2, mkp7, and
mkp8, the number of hits increased to 6, 2, 10, and 10, respec-

3The namem.n-qof an instance indicates: the number of constraintsm,
variablesn, and a sequence numberq.

Table 4:The results of EA for 11 test cases of MKP
Instance Best known Best Found #hits #gen(avg)

mkp1 7772 7772 4 1736.2
mkp2 8722 8695 0 2069.3
mkp3 141278 141278 10 365.4
mkp4 130833 130833 10 2069.3
mkp5 95677 95677 10 430.5
mkp6 119337 119337 10 850.5
mkp7 98796 98796 6 40.3
mkp8 130623 130623 8 341.1
mkp9 1095445 1092626 0 4032.0

mkp10 624319 603801 0 2385.2
mkp11 4554 4554 10 585.3

tively. These values are similar to those reported in column
(�; �) = (1; 5) of Table 1. However, on the harder set of 20
test cases the performance of the EA was much worse than
the performance of AS.

Table 5 displays the results of EA on 20 harder instances
of MKP. It shows for each instance the known optimum [2],
the best values found by AS and EA (out of 10 runs), the
(rounded) number of cycles for AS required for finding the
best solution, the number of hits (which is always zero) and
the average generation number for EA required for finding
the best solution.

Table 5:The results of EA for additional test cases of MKP
Instance Best known Best Found #hits #gen(avg)
5.100-00 24381 23626 0 5203.7
5.100-01 24274 23504 0 4307.3
5.100-02 23551 22628 0 3381.3
5.100-03 23534 23223 0 3381.3
5.100-04 23991 23427 0 5038.1
5.100-05 24613 23593 0 6183.1
5.100-06 25591 24506 0 5903.0
5.100-07 23410 22727 0 2836.2
5.100-08 24216 23262 0 4703.3
5.100-09 24411 23539 0 3908.2

10.100-00 23064 22747 0 3428.0
10.100-01 22801 21755 0 3117.5
10.100-02 22131 21114 0 3674.3
10.100-03 22772 21867 0 3410.0
10.100-04 22751 21784 0 3465.6
10.100-05 22777 22101 0 2879.1
10.100-06 21875 21481 0 4381.2
10.100-07 22635 21916 0 3952.0
10.100-08 22511 21726 0 2353.2
10.100-09 22702 21737 0 2522.3

Comparing the results given in Tables 3 and 5 it is clear
that the AS performs better than EA on selected instances of
the MKP. It should be pointed out, however, that a parame-
ter tuning was done for the Ant System (selection of the best
parameters� and�), whereas EA was run with a standard
set up. Additionally, EA incorporated a particular constraint-
handling technique based on a decoder. It would be inter-
esting to check other constraint-handling techniques for EA,
like penalty methods or repair algorithms, as well as different
representations (binary) and different operators.

It is difficult to compare running times of both algorithms

as the Ant System was designed to run in the Parallel Virtual
Machine environment. However, running both algorithms in
a serial environment (on Sun Ultra 1) we observed that 100
cycles of AS took approximately one third of a time required
by 10,000 generations of EA.

6 Conclusions

In this paper we presented a new version of Ant System ex-
tended to handle subset problems. In the proposed version
of the system, pheromone trail is put on the problem’s com-
ponents instead of the problem’s connections. The AS per-
formed very well on several instances of multiple knapsack
problem. It outperformed a standard evolutionary algorithm
on harder instances of the problem. The results indicate the
potential of the ACO approach for solving constrained subset
problems.

In the full version of the paper [8] we report the results of
this new version of Ant System on other subset problems: the
set covering problem and maximum independent set problem.
We also look at various local heuristics which can be used
for constructing solutions and examine their influence on the
performance of Ant System.

Acknowledgments

The authors would like to thank Marco Dorigo for his valu-
able comments on the earlier draft of this paper.

Bibliography

[1] Beasley, J., “OR-Library: Distributing Test Problems by
Electronic Mail”; e-mail: o.rlibrary@ic.ac.uk.

[2] Chu, P. and Beasley, J. (1998). “A Genetic Algorithm
for the Multi-constraint Knapsack Problem”, Journal of
Heuristics, Vol.4, pp.63-86.

[3] Dorigo M. and G. Di Caro (1999). “The Ant Colony Op-
timization Meta-Heuristic”. In D. Corne, M. Dorigo and
F. Glover (eds), New Ideas in Optimization. McGraw-
Hill, 1999. (Also available as: Tech. Rep. IRIDIA/99-1,
Université Libre de Bruxelles, Belgium.)

[4] Dorigo M. and L.M. Gambardella (1997). “Ant Colony
System: A Cooperative Learning Approach to the Trav-
eling Salesman Problem”. IEEE Transactions on Evolu-
tionary Computation, Vol.1, No.1, pp.53-66.

[5] Dorigo M., V. Maniezzo, and A. Colorni (1991). “Posi-
tive feedback as a search strategy”. Tech. Rep. No. 91-
016, Politecnico di Milano, Italy.

[6] Leguizamón, G.; Crespo, M.L.; Kavka, C, and Cena, M.
(1997). “The Ant Colony Metaphor for Multiple Knap-
sack Problem”. Proceedings of the 3th Congreso Ar-
gentino en Ciencias de la Computacion. pp. 1080-1090.
La Plata, Argentina. October 1997.

[7] Leguizamón, G.; Crespo, M.L.; Kavka, C. and Cena,
M. (1998). “A Study of Performance of an Ant Colony
System applied to Multiple Knapsack Problem”. Pro-
ceedings of EIS-98, E. Apayd (ed), pp. 567-573. ICSC
Academic.

[8] Leguizamón, G. and Michalewicz, Z. (1999). “Ant Sys-
tems for Subset Problems”, in preparation.

[9] Khuri, S.; Bäck, T. and Heitk¨otter, J. (1994). “The
Zero/One Multiple Knapsack Problem and Genetic Al-
gorithms”. Proceedings of the 1994 ACM Symposium
on Applied Computing, E.Deaton and D.Oppenheim
and J.Urban and H.Berghel (eds), pp.188-193. ACM
Press, New York.

[10] Wilkinson, B. and Allen, M. (1997). “Parallel Program-
ming Techniques and Application Using Networked
Workstations”. Preliminary Draft. Prentice Hall.

