
Swarm Intell
DOI 10.1007/s11721-014-0095-1

A locally convergent rotationally invariant particle
swarm optimization algorithm

Mohammad Reza Bonyadi · Zbigniew Michalewicz

Received: 13 August 2013 / Accepted: 2 June 2014
© Springer Science+Business Media New York 2014

Abstract Several well-studied issues in the particle swarm optimization algorithm are out-
lined and some earlier methods that address these issues are investigated from the theoretical
and experimental points of view. These issues are the: stagnation of particles in some points
in the search space, inability to change the value of one or more decision variables, poor
performance when the swarm size is small, lack of guarantee to converge even to a local
optimum (local optimizer), poor performance when the number of dimensions grows, and
sensitivity of the algorithm to the rotation of the search space. The significance of each of
these issues is discussed and it is argued that none of the particle swarm optimizers we are
aware of can address all of these issues at the same time. To address all of these issues at the
same time, a new general form of velocity update rule for the particle swarm optimization
algorithm that contains a user-definable function f is proposed. It is proven that the proposed
velocity update rule guarantees to address all of these issues if the function f satisfies the
following two conditions: (i) the function f is designed in such a way that for any input
vector �y in the search space, there exists a region A which contains �y and f (�y) can be
located anywhere in A, and (ii) f is invariant under any affine transformation. An example
of function f is provided that satisfies these conditions and its performance is examined
through some experiments. The experiments confirm that the proposed algorithm (with an
appropriate function f) can effectively address all of these issues at the same time. Also,

Electronic supplementary material The online version of this article (doi:10.1007/s11721-014-0095-1)
contains supplementary material, which is available to authorized users.

M. R. Bonyadi (B) · Z. Michalewicz
School of Computer Science, The University of Adelaide, Rm 4.52, Adelaide, SA 5005, Australia
e-mail: vardiar@gmail.com; mohammad.bonyadi@adelaide.edu.au; mrbonyadi@cs.adelaide.edu.au

Z. Michalewicz
Institute of Computer Science, Polish Academy of Sciences, ul. Ordona 21, 01-237 Warsaw, Poland

Z. Michalewicz
Polish-Japanese Institute of Information Technology, ul. Koszykowa 86, 02-008 Warsaw, Poland
e-mail: zbyszek@cs.adelaide.edu.au

123

http://dx.doi.org/10.1007/s11721-014-0095-1

Swarm Intell

comparisons with earlier methods show that the overall ability of the proposed method for
solving benchmark functions is significantly better.

Keywords Particle swarm optimizer · Local convergence · Rotation invariance ·
Stagnation

1 Introduction

In this paper, we modify the particle swarm optimization (PSO) algorithm to enhance its
performance for the following class of optimization problems:

minimize F (�x) , �x = 〈x1, . . . , xd〉 ∈ S ⊆ Rd ,

where d is the number of dimensions, and the search space S is defined as a hyper-cube in Rd :
li ≤ xi ≤ ui (li and ui are the values of lower bound and upper bound of the ith dimension
of the search space, respectively). In the rest of this paper, without losing generality, we
consider minimization problems only.

PSO is a stochastic population-based optimization method that had its origin in the works
by Kennedy and Eberhart (1995). It has been successfully applied to many problems such as
artificial neural network training, function optimization, fuzzy system control, and pattern
classification (Engelbrecht 2005; Poli 2008), to name but a few. Due to the ease of imple-
mentation and fast convergence to acceptable solutions, PSO has received more attention
in recent years (Poli 2008). However, there are some issues in the original version of PSO
introduced in Kennedy and Eberhart (1995) [as well as in its well-studied variant (Shi and
Eberhart 1998a)] including: stagnation [getting stuck in some points in the search space with-
out further movement (Van den Bergh and Engelbrecht 2010; Witt 2009; Van den Bergh and
Engelbrecht 2002; Spears et al. 2010)], dimensional stagnation [particles oscillate along one
of the dimensions (Van den Bergh and Engelbrecht 2010)], swarm size [poor performance
when the swarm size is small (Van den Bergh and Engelbrecht 2010)]1, local convergence
[no guarantee to converge to a local optimum (Van den Bergh and Engelbrecht 2002; Van den
Bergh and Engelbrecht 2010; Schmitt and Wanka 2013)], problem scale [poor performance
in improving the initial solution when the number of dimensions grows (Vesterstrom and
Thomsen 2004; Zhao et al. 2008; Li and Yao 2011)]2, and rotation variance [sensitivity of
the algorithm to the rotation of the search space (Wilke et al. 2007b; Spears et al. 2010)].
Many studies have been conducted so far to address one or two of these issues (Li and Yao
2011; Xinchao 2010; Wilke et al. 2007b; Van den Bergh and Engelbrecht 2002; Van den
Bergh and Engelbrecht 2010; Schmitt and Wanka 2013; Bonyadi et al. 2013).

In this paper, these issues are divided into two groups: primary issues (stagnation, local
convergence, and rotation variance) and secondary issues (dimensional stagnation, swarm

1 Note that the swarm size issue should not be mixed with the concept of selecting the best population size for
an algorithm. The swarm size issue means that the algorithm should be able to perform well even with a small
number of particles. However, it does not mean that a larger population size does not affect the performance
of the algorithm.
2 Note that the definition of the “problem scale” issue should not be mixed with “large scale optimization.”
In large scale optimization the aim is to improve algorithms so that they are able to find quality solutions for
problems with high number of dimensions. In the problem scale issue (discussed in this paper) we are after
guaranteeing improvement of the initial solutions by the algorithm when the number of dimensions grows. The
presence of the problem scale issue implies that the algorithm is not a good method for large scale optimization.
However, a good performance in large scale optimization by an algorithm implies that there is no problem
scale issue in that algorithm.

123

Swarm Intell

size, and problem scale), based on dependencies among them. We show that if the primary
issues are addressed then the secondary issues are addressed as well (see Sect. 3.7). Thus,
the main focus of this paper is to address the primary issues. Also, a new general form of
velocity update rule for PSO is proposed. This new general form of velocity update rule
contains a user-definable function f . It is proven that if the function f satisfies two specific
conditions (see Sect. 4.1) then the proposed method guarantees to address all primary issues
at the same time. A particular model is derived from the proposed general model in which
a specific function f is designed that satisfies these two conditions. This particular model is
applied to some benchmark optimization functions, and its results are discussed.

The rest of the paper is organized as follows. After a brief review of the original formulation
of PSO in Sect. 2.1, the role of random matrices in the trajectory of particles is explained in
Sect. 2.2. Some variants of PSO are outlined in Sect. 2.3. In Sect. 3, some issues in PSO are
inspected in detail and the abilities of the introduced variants in Sect. 2.3 to address these
issues are analyzed. In Sect. 4, a new general form of the velocity update rule for PSO is
proposed. Also, in that section the ability of the proposed method to address the introduced
issues in Sect. 3 are investigated in detail. In Sect. 5, the proposed method is compared to
some other PSO variants and its performance is analyzed. The last section concludes by
summing up the advantages and disadvantages of the proposed method and discusses some
potential future work.

2 Background

Some basic information about PSO including its original formulation, role of random matrices
in that formulation, and some of the variants of the algorithm are discussed in this section. The
PSO variants for the overview have been selected based on their contributions in addressing
the issues that this paper investigates. These methods are investigated further in Sect. 3 to
evaluate their abilities to address primary and secondary issues.

2.1 Basics of PSO

The PSO (Kennedy and Eberhart 1995) algorithm is based on a population (referred to as
swarm) of n > 1 particles (swarm size n); each particle is defined by three d-dimensional
vectors:

• Position (�xi
t)—is the position of the ith particle in the tth iteration. This is used to evaluate

the particle’s quality.
• Velocity (�V i

t)—is the direction and length of movement of the ith particle in the tth
iteration.

• Personal best (�pi
t)—is the best position that the ith particle has visited in its lifetime (up

to the tth iteration).

All of these vectors are updated at every iteration t for each particle i :

�V i
t+1 = μ

(
�xi

t ,
�V i

t , Ni
t

)
, for i = 1, . . . , n, (1a)

�xi
t+1 = ξ

(
�xi

t ,
�V i

t+1

)
, for i = 1, . . . , n, (1b)

�pi
t+1 =

{ �pi
t if F

(�pt
t

)
< F(�xi

t+1)

�xi
t+1 otherwise

, for i = 1, . . . , n. (1c)

123

Swarm Intell

In Eq. (1a), Ni
t , known as the neighbor set of particle i , is a subset of personal best positions

of the particles which contribute to the velocity update rule of particle i at iteration t , i.e.,
Ni

t = { �pk
t |k ∈ {T i

t ⊆ {1, 2, . . . , n}}}where T i
t is a set of indices of particles which contribute

to the velocity update rule of particle i at iteration t . Clearly, the strategy of determining
T i

t might be different for various types of PSO algorithms and it is usually referred to as
the topology of the swarm. Many different topologies have been proposed so far (Mendes
et al. 2004), e.g., global best topology, ring topology, cluster topology, pyramid typology,
each of them presenting advantages and disadvantages (Mendes et al. 2004; Clerc 2006). The
functionμ(.) calculates the new velocity vector for particle i according to its current position,
current velocity �V i

t , and neighbor set N i
t . In Eq. (1b), ξ(.) is a function which calculates the

new position of particle i according to its previous position and its new velocity. Usually

ξ
(
�xi

t ,
�V i

t+1

)
= �xi

t + �V i
t+1 is accepted for updating the position of particle i . In Eq. (1c),

the new personal best position for particle i is updated according to the objective value (the
value of the function F) of its previous personal best position and the current position. In the
rest of this paper, these usual forms for the position update rule (Eq. 1b) and personal best
updating rule (Eq. 1c) are assumed. In PSO, three updating rules (Eqs. 1a–1c) are applied to
all particles iteratively until a predefined termination criterion, e.g., the maximum number
of iterations or deviation from the global optimum (if known), is met. Also, �xi

0 and �V i
0 are

generated either randomly or by using a heuristic method. Moreover, �pi
0 is initialized to �xi

0
for all particles.

In the original form of PSO (Kennedy and Eberhart 1995), the set T i
t contained only two

indices that were {i , τt } where τt = argmin
l∈{1,...,n}

{F
(�pl

t

)} . This topology is called the global best

topology for PSO. The particle τt is referred to as the global best particle and the personal
best of the particle τt is called the global best vector (�gt). For the original PSO, the function
μ(.) in Eq. 1a was defined (Kennedy and Eberhart 1995) as:

�V i
t+1 = �V i

t + ϕ1 R1t (�pi
t − �xi

t)︸ ︷︷ ︸
Personal

Influence(
−→
P I)

+ϕ2 R2t (�gt − �xi
t)︸ ︷︷ ︸

Social
Influence(

−→
SI)

, (2)

where ϕ1 and ϕ2 are two real numbers called acceleration coefficients and �pi
t and �gt are

the personal best (of the particle i) and the global best vectors, respectively, at iteration t .
The acceleration coefficients control the effect of personal and global best vectors on the
movement of particles and play an important role in the convergence of the algorithm (Van

den Bergh and Engelbrecht 2006; Clerc and Kennedy 2002). The role of vectors
−→
P I = �pi

t −�xi
t

(Personal Influence) and
−→
SI = �gt − �xi

t (Social Influence) is to attract the particles to move
toward known quality solutions, i.e., personal and global best vectors. R1t and R2t are two
d × d diagonal matrices3 (Montes de Oca et al. 2009; Clerc 2006), whose elements are
random numbers distributed uniformly (∼ U (0, 1)) in the interval [0, 1]. Note that matrices
R1t and R2t are generated at each iteration for each particle separately.

In some PSO variants (e.g., Shi and Eberhart 1998b), the value of the velocity is restricted
to the range [−Vmax, Vmax] (if �V i

t+1 > Vmax then �V i
t+1 = Vmax and if �V i

t+1 < −Vmax then
�V i

t+1 = −Vmax), where Vmax is the maximum allowed velocity. This restriction is applied
to the velocity of the particles to limit the step size of their movements. Also, if a particle
leaves the search space then its objective value is not considered for updating the personal

3 Alternatively, these two random matrices are often considered as two random vectors. In this case, the

multiplication of these random vectors by
−→
P I and

−→
SI is element-wise.

123

Swarm Intell

and global best vectors. See Helwig and Wanka (2007, 2008) and Engelbrecht (2012) for
other studies on movement of particles out of the search space boundaries.

In 1998, (Shi and Eberhart 1998a) introduced a new coefficient ω (known as the inertia
weight) to control the influence of the last velocity value on the updated velocity. Indeed, Eq.
2 was rewritten as:

�V i
t+1 = ω �V i

t + ϕ1 R1t (�pi
t − �xi

t)+ ϕ2 R2t (�gt − �xi
t). (3)

The coefficient ω controls the influence of the previous velocity on movement. Throughout
the paper, this variant is referred to as the standard PSO, SPSO. The iterative application
of Eq. 3 (plus the position update rule) causes the particles to oscillate around personal and
global best vectors (Poli et al. 2007; Clerc and Kennedy 2002). This oscillation is controlled
by three parameters: ω, ϕ1, and ϕ2, so that the larger ω is with respect to ϕ1 and ϕ2, the more
explorative the particles are, and vice versa; for the smaller ω there is a larger tendency for
particles to exploit solutions around global and personal best vectors. If these coefficients
are not set accurately, the velocity vector might increase unboundedly (this is called “swarm
explosion”) and particles move to infinity (Clerc and Kennedy 2002). There have been some
studies on the stability of the particles, i.e., convergence of the particles to a point (called
equilibrium point) (Clerc and Kennedy 2002; Trelea 2003; Jiang et al. 2007a; Jiang et al.
2007b; Poli 2009; Van den Bergh and Engelbrecht 2006; Bonyadi and Michalewicz 2014)
to prevent the swarm explosion. It was found (Trelea 2003; Jiang et al. 2007a; Van den
Bergh and Engelbrecht 2006) that, if the value of coefficients are selected within a specific
boundary then particles converge to their equilibrium point (this boundary for coefficients
is called convergence boundary). Also, it was proven that at the equilibrium point, �V i

t = 0
and �gt = �xi

t = �pi
t (Poli 2009). In fact, particles do not stop searching until their personal

best becomes the global best of the swarm and their velocity becomes zero. Note that this
condition (�V i

t = 0 and �gt = �xi
t = �pi

t) is necessary for the convergence to an equilibrium
point.

In the remaining of this section, some background information on the role of the random
matrices (R1t and R2t) in SPSO is provided Sect. 2.2 and some variants of PSO Sect. 2.3 are
reviewed.

2.2 Role of the random matrices in SPSO

The main task of the random diagonal matrices (R1t and R2t in Eqs. 2 and 3) is to apply
perturbation to the movement vector, i.e., the velocity vector, of particles in SPSO. Any such
perturbation of the movement vector contains two parts: magnitude perturbation and direction
perturbation. The magnitude perturbation diversifies the step size of particles movement
(Wilke et al. 2007a) (particles do not move with fixed step sizes), whereas the direction
perturbation guarantees the direction diversity in the swarm (particles do not move following
a fixed direction); these perturbations are important for the exploitation and exploration
ability of the algorithm as was studied by Wilke et al. (2007a). Note that if a small magnitude
perturbation with large direction perturbation is applied to a particle then the particle behaves
more exploitatively. However, if the magnitude perturbation is large then the particle behaves

more exploratively. Figure 1 shows the perturbation that random matrices apply to
−→
SI and−→

P I in SPSO.
The gray rectangles in Fig. 1 indicate the area that the vectors R2t

−→
SI and R1t

−→
P I might

be in. It is obvious that after multiplying
−→
SI and

−→
P I by the random matrices the direction

and magnitude of the new vectors are different from the original vectors (Bonyadi et al.

123

Swarm Intell

Fig. 1 R1t and R2t apply

perturbation on
−→
P I and

−→
SI ,

respectively. The area that the

R2t
−→
SI and R1t

−→
P I might be in is

shown in gray
PI

SI

Personal best

Global best

Current position
Velocity

2014). These perturbations prevent particles from moving exactly towards the known quality
solutions (�pi

t and �gt); rather, they enable particles to conduct exploitation around these quality
solutions. If particles constantly move towards quality known solutions (�pi

t and �gt) without
any perturbation, all particles would collapse on these solutions at the early stage of the
optimization process, that is not desirable (Wilke et al. 2007a). Thus, the role of random
matrices is important for the exploration and exploitation abilities of the algorithm (Wilke et
al. 2007b, Wilke et al. 2007a).

2.3 Some PSO variants

There are numerous PSO variants that have been proposed over the last 15 years; they are
based on different equations for updating velocities/positions (Ghosh et al. 2010; Liang et
al. 2006), different topologies (Mendes et al. 2004; Xinchao 2010), different values for var-
ious parameters (Clerc and Kennedy 2002; Ratnaweera et al. 2004), different hybridizations
(Huang et al. 2010; Wang et al. 2011), and population sizing (Hsieh et al. 2009; Chen and
Zhao 2009). All these variants aimed at improving the searching ability of SPSO or other
PSO variants (see Tu and Lu 2004; Poli et al. 2007). In this subsection some of these PSO
variants are presented. These methods have been selected because they have tried to address
the issues that this paper investigates. The variants are presented in chronological order. These
variants are revisited in Sect. 3 and their performance in addressing related issues in PSO is
investigated in detail.

In 2002, a PSO variant, called COnstriction coefficient PSO (COPSO), was proposed
(Clerc and Kennedy 2002). The velocity update rule in COPSO (given below) is different
from the one in SPSO:

�V i
t+1 = χ

(�V i
t + c1 R1t

(
�pi

t − �xi
t

)
+ c2 R2t

(
�gt − �xi

t

))
. (4)

The parameterχ is called constriction factor. The authors demonstrated that tuning the values
of χ , c1 and c2 can prevent the swarm explosion and can lead to better exploration within
the search space. It was stated (Clerc and Kennedy 2002) that the parameters (χ , c1 and c2)

should be set so that the following equation is satisfied:

χ = 2z∣∣∣2 − c − √
c2 − 4c

∣∣∣
, (5)

where c = c1 + c2 > 4 and z ∈ [0, 1].
Another PSO variant called Guaranteed Convergence PSO (GCPSO) was proposed (Van

den Bergh and Engelbrecht 2002). In that variant, the velocity update rule for all particles

123

Swarm Intell

was the same as the one in COPSO except for the particle τt (recall that the particle τt is the
particle in which �pi

t = �gt). The velocity update rule for the GCPSO was as follows:

�V i
t+1 =

{−�xi
t + �gt + ω �V i

t + �ρ if i = τt

ω �V i
t + ϕ1 Ri

t

(�pi
t − �xi

t

)+ ϕ2 Ri
t

(�gt − �xi
t

)
otherwise,

(6)

where the values of all elements (dimensions) in �ρ are equal to ρ, ρ is a non-zero random
number. The vector �ρ applies perturbation to prevent stagnation. In that paper, the value
of ρ was determined through an adaptive approach at each iteration. Using Eq. (6), the
movement of particle τt is guaranteed because ρ is determined randomly at each iteration,
which guarantees non-zero value for �V τt

t+1 for any t .
Two years later, a general form of COPSO called the fully informed particle swarm (FIPS)

was proposed (Mendes et al. 2004). In that method, particles were able to use information
from all other particles in the swarm rather than only the global best particle. The velocity
update rule for FIPS was as follows:

�V i
t+1 = ω �V i

t +
∑

k∈T i
t

ϕk Ri
kt

(
�pk

t − �xi
t

)
. (7)

In FIPS, several different topologies (sets T i
t) were tested. Experiments showed that one

of the most successful topologies in solving the tested benchmark functions was the ring
topology. In the ring topology, each particle uses the best experience of two other particles
(known as local best particle (lb)) in its neighbor together with its own experience (Mendes
et al. 2004). Also, in all tested topologies the personal best vector of each particle contributed
in its own velocity vector, i.e., for each particle i , i ∈ T i

t . The ring topology is used for FIPS
in this paper because this topology has offered best results reported in Mendes et al. (2004)
for the algorithm.

In 2007, the usage of the random rotation matrices rather than the random diagonal matrices
was proposed (Wilke et al. 2007b) and the resulting algorithm was called Rotation PSO
(RPSO). In that method the velocity vector of each particle was multiplied by a random
rotation matrix at each iteration. This rotation could guarantee direction diversity throughout
the swarm. Also, the magnitude diversity was generated by multiplying a random scalar with
the velocity vector. Experiments showed that the new method performs better than SPSO in
solving some standard benchmark optimization functions. However, the time complexity of
generating random rotation matrices had higher order in comparison to generating random
diagonal matrices (O(d2) to generate random rotation matrices versus O(d) to generate
random diagonal matrices). This causes RPSO to become slower in a quadratic order when
the number of dimensions grows.

The velocity update rule of COPSO was further revised in Xinchao (2010), where the
authors proposed a method called perturbed particle swarm algorithm (pPSA). In pPSA, the
vector �gt in the velocity update rule of SPSO was substituted by N (�gt , σ

2 I), where N is the
normal distribution and σ is the standard deviation. The velocity update rule was revised as
follows:

�V i
t+1 = ω �V i

t + ϕ1 Ri
1t

(
�pi

t − �xi
t

)
+ ϕ2 Ri

2t

(
�g’t − �xi

t

)
, (8)

where �g′
t = N

(�gt , σ
2 I
)

and σ was a real number indicating the standard deviation of the
distribution. Definitions for Ri

1t and Ri
2t were the same as that of SPSO (randomly generated

diagonal matrices). The value of σ is either σmin or σmax and is switched after a certain number
of iterations; for the first 50 percent of iterations σ = σmax = 0.15 and for the last 50 percent,
σ = σmin = 0.001. The algorithm was applied to some standard unimodal/multimodal

123

Swarm Intell

optimization benchmarks. Results showed that the algorithm performs better than SPSO in
terms of the quality of solutions and of robustness.

Another variant of PSO was introduced in Li and Yao (2011). In this method, the position
of particle i in the jth dimension is determined by applying the following formulae:

xi, j
t+1 =

{
pi, j

t + C(1)|pi, j
t − lbi, j

t | if rand < q

lbi, j
t + N (0, 1)|pi, j

t − lbi, j
t | otherwise

(9)

where C(1) is a random number generated following the Cauchy distribution, N (0, 1) is a
random number generated following the normal distribution with mean 0 and variance 1, q
is a user specified value and rand generates a uniform random value in the interval [0, 1].
Also, lbi is the best particle in the neighbor of particle i . This method was called Cauchy-
Gaussian PSO (UGPSO) which belongs to a class of PSO variants known as Bare-Bones
PSO (Kennedy 2003). UGPSO was combined with a cooperation coevolution (Potter and De
Jong 1994) approach to enable the algorithm to perform better on large scale problems.

3 Some issues in PSO and their significance

In this section, some issues in SPSO are investigated and existing methods for addressing
these issues are discussed. These methods are the ones that were overviewed in Sect. 2.

The main reason behind the emergence of several variants of PSO was the need to address
some issues identified in the formulation of SPSO, e.g., stagnation (Van den Bergh and
Engelbrecht 2002, 2010; Witt 2009), rotation variance (Wilke et al. 2007a,b; Wilke 2005),
swarm size issue (Van den Bergh and Engelbrecht 2002, 2010), biases (Spears et al. 2010),
and large scale optimization (Li and Yao 2011; Cheng et al. 2011). The issues in SPSO (six
issues) that are investigated in this paper are presented in detail in the following Sect. 3.1–
3.6. Each of these subsections contains: an introduction to the issue, a discussion on the
significance of the issue, and an investigation of the ability of the methods outlined in Sect.
2 in addressing that issue. At the end of this Sect. 3.7 the dependencies among these issues
are discussed.

Note that there are some methods which address these issues in SPSO at the meta-
algorithmic level, e.g., hybridization of the algorithm to address problem scale (Van den
Bergh and Engelbrecht 2004); restarting particles to address stagnation (Garcia-Nieto and
Alba 2011); and changing the population size if the algorithm does not work with the cur-
rent number of individuals (Hsieh et al. 2009). However, the main focus of this paper is to
understand the reasons behind these issues in SPSO and how we can revise the algorithm to
address them. This in fact results in the designation of a comprehensive method which is able
to work in different environments with a variety of parameters. Thus, we only concentrate
on the methods which have analyzed these issues at the algorithmic level.

3.1 Stagnation

In SPSO, if the current position of each particle is equal to its personal best and global best
vectors and the velocity of all particles is zero, i.e., �xi

t = �pi
t = �gt

4 and �V i
t = 0 for all

4 Note that in continuous space, the probability of hitting a particular point is zero. Thus, the probability of
�pi

t = �gt or �xi
t = �gt or any other equality like �xi

t = �pk
t is zero. However, because of the representation of the

floating points on computers, the probability of this situation is non-zero. In addition, the particles converge to
their equilibrium point if their coefficients are set within the convergence boundary. As in the equilibrium point

123

Swarm Intell

particles i , then all particles stop moving and no further improvement can take place (Van
den Bergh and Engelbrecht 2002); this is called stagnation issue throughout this paper. Note
that if the coefficients of the velocity vector are selected from the convergence boundary
then particles converge to their equilibrium (see Sect. 2.1). However, there is no guarantee
that this equilibrium point is a local optimizer of the objective function. Thus, it would be
better to search the points around this equilibrium point for better solutions rather than stop
moving. A general form of stagnation is defined in this paper as

∃t∀i ∈ {1, 2, . . . , n} ∀k ∈ T i
t �xi

t = �pk
t and �V i

t = 0, (10)

where T i
t is the set of indices of all particles which contribute to the velocity update rule of

particle i . Note that this general form is equivalent to stagnation as introduced in Van den
Bergh and Engelbrecht (2002) if T i

t = {i, τt }. The significance of addressing stagnation is
that as long as this issue exists, there is no guarantee that the algorithm can even improve the
initial solution.

The stagnation issue was addressed in Van den Bergh and Engelbrecht (2002) [further
investigated in Van den Bergh and Engelbrecht (2010)] and Xinchao (2010), where the
authors proposed GCPSO and pPSA, respectively. In GCPSO, a new velocity update rule
was introduced for the particle τt , in which a random location around �gt was generated and
the particle τt (global best particle) was moved to this location in each iteration (see Eq. 6).
The velocity rule for particle τt in GCPSO forced this particle to move in any situation with
the hope of finding better solutions and updating �gt . If movement of the particle τt leads to
updating �gt then other particles jump out of the stagnation situation as well. In pPSA, in order
to address the stagnation issue, a perturbed global best position (shown by �g′

t), rather than
the original global best position (�gt), was used in the velocity update rule for all particles.
In fact, in each iteration t and for each particle i , a new position �g′

t was randomly generated
around �gt and used for calculating �V i

t+1. Thus, even if �xi
t = �pi

t = �gt and �V i
t = 0 for all

particles in a particular iteration t , �V i
t+1 is nonzero with nonzero probability due to the usage

of �g′
t rather than �gt .

Clearly, the stagnation can happen in COPSO and FIPS. In FIPS, there is no strategy in
the algorithm to move the particles after stagnation. Stagnation can happen also in UGPSO
because, if all particles collapse to a single point then pi j = lbi j for all particles i and
dimensions j (see Eq. 10). Thus, the value of |pi, j

t − lbi, j
t | becomes zero for all particles and

dimensions. In this situation, there is no chance for the particles to move and they cannot be
further improved.

3.2 Dimensional stagnation

A special case of stagnation happens when stagnation takes place only in one dimension. This
special case is called dimensional stagnation (Clerc 2006; Van den Bergh and Engelbrecht
2010; Bonyadi et al. 2014).

∃t∃ j ∈ {1, 2, . . . , d} ∀i ∈ {1, 2, . . . , n} ∀k ∈ T i
t xi j

t = pkj
t and V i j

t = 0, (11)

where T i
t is the set of indices of all particles which contribute to the velocity update rule of

particle i . Clearly, if dimensional stagnation happens for all dimensions then Eq. 11 becomes

�V i
t = 0 and �xi

t = �pi
t = �gt , the stagnation happens for the particles at the equilibrium point. However, there is

no guarantee that the equilibrium point is a local minimizer of the objective function. Also, the convergence
to an equilibrium point is independent from the starting position of the particles, which means that restarting
particles cannot guarantee avoidance of stagnation.

123

Swarm Intell

the same as Eq. 10. Addressing dimensional stagnation is important because as long as
this issue exists, the particles might oscillate along one dimension and miss the global/local
optimum. This has also been discussed in Schmitt and Wanka (2013) and Bonyadi et al.
(2013) for SPSO.

In RPSO (Wilke et al. 2007b), the dimensional stagnation issue has been addressed by
applying direction perturbation (using rotation matrices) to the velocity vector of the particles
in each iteration. This guarantees that, even if xi j

t = pi j
t = g j

t and V i j
t is 0 for a particle i

and a dimension j , V i j
t+1 may have a nonzero value due to the rotation that is applied to the

velocity vector. Nevertheless, RPSO still does not guarantee to address stagnation. In fact,
when �xi

t = �pi
t = �gt and �V i

t = 0, the length of �V i
t+1 becomes zero and no rotation can take

place on the velocity.
The issue of dimensional stagnation has not been addressed in FIPS, COPSO, and UGPSO.

For example, in UGPSO, if pi j = lbi j for a specific dimension j , the algorithm is in the
dimensional stagnation situation.

3.3 Swarm size

In SPSO, particles may stop moving in the early stages of the optimization process if the
swarm size is small (Van den Bergh and Engelbrecht 2010) (this is called swarm size issue in
this paper). Although a particle swarm benefits from a group of particles cooperating with each
other to solve a problem, it is sometimes beneficial to use a small swarm size. Examples of
situations where a small swarm size is preferable include: cooperative coevolution with PSO
(Van den Bergh and Engelbrecht 2004, 2001) and large scale optimization (Li and Yao 2011).
Also, a small swarm size is more desirable in multi-agent search strategies or for problems
with an expensive evaluation function (see Malan and Engelbrecht 2008; Engelbrecht 2011)
for a discussion on the importance of swarm size).

GCPSO and COPSO were applied to some standard benchmark test functions with a small
swarm size (Van den Bergh and Engelbrecht 2010). Experiments showed that GCPSO was
able to find acceptable solutions even with a small swarm size. However, COPSO performed
poorly when the number of particles was small (n = 2). In this paper, the ability of PSO
variants, outlined in Sect. 2.3, in dealing with the swam size issue is examined through some
experiments (see Sect. 5.3).

3.4 Local convergence

We define a local minimizer of objective function F over the search space S as follows: ci is
a local minimizer if there exists an open set Ii ⊆ S (ci cannot be on the borders of Ii) such
that ∀x ∈ Ii , F(ci) ≤ F(x). We define Rεi for each ci as

Rεi = {xε Ii : F(x) < F(ci)+ ε},

where ε is an arbitrarily small positive value. The optimality region of the objective function
F is defined as Rε = ⋃

i
Rεi . The aim of a local search algorithm is to find a point in the

search space that is within the optimality region (Van den Bergh and Engelbrecht 2010; Solis
and Wets 1981).

A PSO method is locally convergent if

∀i lim
t→∞ P

(
�pi

t ∈ Rε
)

= 1,

123

Swarm Intell

that is, for each particle i , the probability that the personal best of that particle, �pi
t , is in the

optimality region Rε approaches 1 when the iteration number t approaches infinity5.
Some optimization algorithms are not locally convergent, i.e., they cannot guarantee to find

a local optimum in the search space. This is called local convergence issue. It is important to
address the local convergence issue in PSO because as long as this issue exists, the algorithm
might be unable to find better solutions close to the global best vector. In other words, the
gradient of the objective function at �gt is non-zero while the algorithm has been stagnating.
However, when the gradient at the point �gt is non-zero, it is expected that the optimization
algorithm finds better solutions than the current �gt . The local convergence property is also
desirable in niching where it is required to find multiple local optima in the search space.

The stagnation situation can serve as an example to show that COPSO, RPSO, UGPSO,
and FIPS did not address the local convergence issue. In fact, if these methods stick in the
stagnation situation, the probability of movement of particles is zero, no matter whether any of
the particles is in the optimality region. However, this issue does not exist in GCPSO because
of the perturbation component ρ. Also, pPSA is able to locate a local optimum because the
normal distribution around the global best vector guarantees movement of particles at every
iteration.

Note also that global convergence has been studied for PSO variants (Hao and Wenbo
2011; Van den Bergh and Engelbrecht 2010). However, this topic is not in the scope of this
study and it is left for future research.

3.5 Problem scale

Another well-studied issue of SPSO is that the performance of the algorithm is radically
impaired when the problem scale grows (Vesterstrom and Thomsen 2004; Van den Bergh
and Engelbrecht 2004). In fact, when the algorithm is applied to a large scale problem (we
consider a problem to be large scale in our experiments if the number of dimensions is larger
than 100) and it is not initialized to local minima of the objective function, particles are barely
improved and sometimes are not improved at all (see Sect. 4.3 for detailed experiments on
this issue). This issue is called problem scale issue throughout the paper.

The experimental results in Vesterstrom and Thomsen (2004) showed that SPSO is
defeated by differential evolution and evolutionary strategies in large scale optimization
(problems larger than 100 dimensions in those experiments). Addressing the problem scale
issue is important as there are many optimization problems that involve many dimensions,
e.g., in oil industry, chemistry, and physics. Note that the performance of SPSO can be
improved at the meta-algorithmic level, e.g., by adding a local search method to the algo-
rithm (Montes de Oca et al. 2011) or by restarting the particles (Garcia-Nieto and Alba 2011).
However, the aim of this study is to investigate the reasons behind this issue and propose
solutions at the algorithmic level.

To the best of our knowledge, the problem scale issue is not addressed in RPSO, COPSO,
FIPS, pPSA, UGPSO, and GCPSO. In fact, there are no available results of applying these
methods in their original form (without any hybridization or external processes, like the ones
in Li and Yao (2011) and Van den Bergh and Engelbrecht (2004)) to large scale problems.

5 Note that, as local convergence is a property of an algorithm, it is sufficient if the final solution presented
by the algorithm is in the optimality region. As the final solution generated by a PSO algorithm is (usually)
the global best vector, a PSO algorithm is locally convergent if the condition limt→∞ P (�gt ∈ Rε) = 1 is
satisfied. However, if a PSO method satisfies this condition, there is only a guarantee that one particle (the
global best particle) will converge to the optimality region. Thus, the other particles might converge to any
other points in the search space that are not in the optimality region.

123

Swarm Intell

In order to investigate the ability of these methods in dealing with the problem scale issue,
all of them are examined through experiments in this paper (see Sect. 5.3).

3.6 Rotation variance

The performance of SPSO is changed if the search space is rotated (Wilke et al. 2007b; Spears
et al. 2010; Wilke 2005); this is called the rotation variance issue throughout the paper.
Rotation of the search space of a problem usually causes the dimensions of the problem to
become non-separable (the optimum solution cannot be located by optimizing the objective
function along each dimension separately). As many optimization functions in real-world are
non-separable, it is important that the optimization algorithm performs well when optimizing
non-separable functions (see also Hansen et al. 2011). Addressing the rotation variance issue
is desirable. Indeed, if an algorithm is rotation variant, it should be applied to a problem with
a rotated search space to find out if any better solution under different rotations is achieved.
However, this process is time consuming, especially for large scale optimization problems.

It was proven (Wilke et al. 2007b) that SPSO is rotationally variant and that RPSO is
rotationally invariant. In order to confirm the theoretical investigations, the authors applied
RPSO and SPSO to some benchmark test functions. These experiments confirmed that RPSO
is rotationally invariant while SPSO is rotationally variant. RPSO was further investigated in
Bonyadi et al. (2014). The rotation variance issue was also investigated in Spears et al. (2010).
There are no results available to indicate whether other PSO variants, such as GCPSO, FIPS,
pPSA, are rotation variant or not. In this paper, all of these methods are tested using the
Ellipse function, proposed in Spears et al. (2010). This function has been designed to test the
ability of optimization methods in addressing the rotation variance issue (see Sect. 4.3). Note
that finding one example is sufficient to show that a PSO variant is not rotation invariant.
However, a mathematical proof is needed to guarantee that a PSO variant is rotation invariant.
Also, we have some experiments in Sect. 5.7 to evaluate the ability of some of these variants
in addressing the rotation variance issue.

3.7 Relations between the issues

The discussed issues (stagnation, dimensional stagnation, swarm size, local convergence,
problem scale, and rotation invariance) are not independent of each other, i.e., addressing
one issue may offer a solution for another. Hence, in this paper these issues are categorized
into two groups: primary and secondary. Primary issues are the issues that are not addressed
even if any other issue is resolved. The remaining issues, the issues that are addressed if
primary issues are resolved, are called secondary issues.

For example, it is obvious that addressing stagnation resolves dimensional stagnation.
However, addressing dimensional stagnation does not resolve the stagnation issue. Thus,
dimensional stagnation is a secondary issue and stagnation is a primary issue. In addition, by
addressing the stagnation issue the movement of particles is guaranteed, no matter whether
the swarm size is small or large. Thus, the swarm size issue (recall that the swarm size issue
was defined as particles ceasing to move in the early stage of the optimization process when
the swarm size is small) is resolved if stagnation is addressed. Hence, the swarm size issue
is categorized as a secondary issue.

Also, the problem scale issue is resolved if the local convergence issue is addressed because
the local convergence is independent of the number of dimensions. Thus, if an algorithm is
locally convergent it can improve the initial solution for any number of dimensions. Hence,
the local convergence is a primary and the problem scale is a secondary issue. Note that

123

Swarm Intell

Stagnation

Dimensional
stagnation

Swarm size
Problem

scale

Local
convergence

Rotation
variancePrimary issues

Secondary issues

Fig. 2 Diagram of dependencies among PSO issues

the local convergence issue is addressed for an algorithm if the probability of finding the
optimality region grows to one. Thus, candidate solutions might stop moving if the best
found solution is in the optimality region. However, stagnation is addressed only if the
particles are moved in the next steps of the algorithm with non-zero probability (no matter
whether they are in the optimality region or not). Also, to address stagnation, there is no need
to guarantee improving the solutions in each step and only moving the solutions is enough.
Nevertheless, in addressing the local convergence issue, the improvement of the best found
solution should happen with non-zero probability. Hence, local convergence and stagnation
issues are independent of each other. The diagram in Fig. 2 shows dependencies among the
issues.

By addressing stagnation, the swarm size and the dimensional stagnation issues are
resolved (Fig. 2). Also, by addressing the local convergence issue, the problem scale issue is
resolved. The rotation variance issue is independent of the other discussed issues. Also, the
local convergence and the stagnation issues are independent of each other. Thus, the focus of
this paper is on addressing three issues: stagnation, local convergence, and rotation variance.
In the rest of this paper these three issues are referred to as the primary issues.

4 Proposed method

A new general form of the velocity update rule is proposed in this section to address all
the primary issues discussed in Sect. 3.7. The new algorithm is called Locally convergent
Rotationally invariant PSO (LcRiPSO). It is proven that this variant of PSO with its new
form of the velocity update rule addresses all primary issues at the same time under some
identified conditions. These conditions serve as a guideline for extracting specific models
from the proposed general model. One particular model is derived (and tested experimentally)
from this general model.

4.1 Proposed velocity update rule—general form

The proposed general form of the velocity update rule follows the formulation introduced in
FIPS (Eq. 7) with some important modifications. Eqs. 12a and 12b show the original velocity
update rule in FIPS and the proposed velocity update rule, respectively. The position update

123

Swarm Intell

rule remains the same as in SPSO (see Sect. 2.1).

�V i
t+1 = ω �V i

t +
∑

k∈T i
t

ϕk Ri
kt

(
�pk

t − �xi
t

)
, (12a)

�V i
t+1 = ω �V i

t +
∑

k∈T i
t

ϕkr i
kt

(
f i
kt (�pk

t)− �xi
t

)
. (12b)

In Eq. 12b, f i
kt : Rn → Rn is a function6 (stochastic or non-stochastic) which applies

perturbations on its inputs. Also, r i
kt ∈ R is a random scalar (rather than a random diagonal

matrix) in the interval [0, 1]. Note that, for each particle i in the swarm we consider i ∈ T i
t .

The idea behind this new velocity update rule is that the application of the function f i
kt

should allow LcRiPSO algorithm to overcome the issues discussed in Sect. 3. In the rest of
this section, several conditions for designing this function are provided such that the primary
issues (and consequently all secondary issues) are addressed. This function is investigated
independently of the iteration number (t), the particle index (i), and the neighbor set (T i

t).
Thus, for the sake of simplicity, the notation f (.) is used in the rest of this section to refer to
f (.) = { f i

kt (.) : ∀i∀t∀k ∈ T i
t

}
.

The application of function f should allow particles to escape from the stagnation situa-
tion. This can be accomplished in various ways. One possibility includes defining a family
of functions f i,1, . . . , f i,m (different from each other) for each particle i and making a ran-
dom choice of a function f i,m when the velocity update rule is invoked. Another possibility
could be based on the function f itself—a stochastic function f would provide the desired
characteristic for the velocity update rule (Eq. 10), thus preventing stagnation. Hence, the
general condition that should be satisfied by f to overcome the stagnation in the proposed
method is

∀t∃i∃k ∈ T i
t P
(
�xi

t �= f
(

�pk
t

))
> 0. (13)

Indeed, if the function f in Eq. 12b is designed in a way that Eq. 13 is satisfied then LcRiPSO
algorithm would not have the stagnation issue.7

Another issue that should be addressed in SPSO is the local convergence issue. In Appen-
dix 1, it is proven that if f satisfies the condition given by Eq. 14, LcRiPSO guarantees the
convergence condition.

∀�y ∈ S∃Ay ⊆ S∀�z ∈ Ay ∀δ > 0 P (| f (�y)− �z| < δ) > 0, (14)

where A is an open set and S is the search space. In fact, if the function f is designed in such
a way that for any input vector �y in the search space, there exists a region A which contains
�y and f (�y) can be any location within A with non-zero probability, the algorithm addresses
the local convergence issue. This condition is called local convergence condition throughout
the paper.

The rotation variance is also addressed by the proposed method if the function f is
designed in a proper way. In Appendix 2, it is proven that the proposed velocity update rule
addresses the rotation variance issue if f (�y) satisfies the condition

∀s ∈ R∀Orth(Q)∀�b, �y ∈ Rds Q f (�y)+ �b = f̂ (s Q �y + �b), (15)

6 Note that we represent this function by a lowercase f . This should not be confused with the uppercase F
which represents the objective function.
7 Note that, in continuous space, it is impossible to hit a point (�xi

t �= f
(

�pk
t

)
is always true). However, in the

computer simulation, because of the limited floating point precision, it is possible that �xi
t = f

(
�pk

t

)
.

123

Swarm Intell

where Orth(Q) indicates that the matrix Q is an orthogonal matrix (see Appendix 2 for the
proof). In the rest of this paper, hatted (̂) variables, vectors, and operators are the ones in
the transformed space.

Based on the local convergence condition (Eq. 14), f (�pk
t) can be any location in a definable

region A. Thus, it has non-zero probability to be different from �xi
t , i.e., P

(�xi
t �= f

(�pk
t

))
> 0.

Hence, if the local convergence condition is satisfied (Eq. 14) by the function f , stagnation
overcoming condition (Eq. 13) is satisfied automatically.

To summarize, in order to address all primary issues (and consequently all six issues
discussed in Sect. 3), f (�y) needs to satisfy the following conditions:

Condition 1. ∀�y ∈ S ∃Ay ⊆ S ∀�z ∈ Ay ∀δ > 0 P (| f (�y)− �z| < δ) > 0

Condition 2. ∀s ∈ R ∀ Orth (Q) ∀�b, �y ∈ Rd s Q f (�y)+ �b = f̂ (s Q �y + �b)
Condition 1 addresses stagnation, and consequently the swarm size and the dimensional
stagnation issues, as well as local convergence, and consequently the problem scale issue,
while the condition 2 addresses the rotation variance issue.

In the next subsection, a particular model of the function f is designed and its ability to
address all six issues is examined.

4.2 Proposed velocity update rule—specific model

Any function f which satisfies the two conditions given in Sect. 4.1 guarantees to address
stagnation, dimensional stagnation, swarm size, local convergence, problem scale, and rota-
tion variance. There are numerous ways to design such function; in this paper we consider
fkt (�y) = N (�y, σ 2

kt I), where I is the identity matrix8 and σkt is a scalar. The function
N (�y, σ 2

kt I) satisfies both mentioned conditions if σkt > 0 for all k and t :

1) if σkt > 0 for all k and t , N (�y, σ 2
kt I) satisfies condition 1 because it can sample an

arbitrarily location within a hyper-sphere with center y and non-zero radius (open set
A). Thus, for any y at any t , a region A (that contains y) exists whereby N (�y, σ 2

kt I) can
sample any location in that region with non-zero probability.

2) if σkt > 0 for all k and t , N (�y, σ 2
kt I) satisfies condition 2 (see Appendix 3 for a proof).

For this specific model, we consider the global best topology for the swarm, as it is simple
and frequently used in other PSO research papers (Clerc and Kennedy 2002) (note that it
does not mean that the global best topology is the best topology to be used for this algorithm).
Also, the parameters ω, ϕ1, and ϕ2 are fixed to 0.7298, 1.4962, and 1.4962, as these values
were defined in Clerc and Kennedy (2002) and they are widely used in many PSO variants.
Note that setting the parameters of the algorithm is not the aim of this study as the paper
focuses on the ability of the algorithm to address the issues introduced in Sect. 3. However,
the parameters of the proposed algorithm are set in Sect. 5.2 through a simple procedure.
Also, one can consider advanced parameter setting tools (e.g., Hutter et al. 2010).

Equation 16 shows the velocity update rule for the proposed specific model

�V i
t+1 = ω �V i

t + ϕ1r i
1t

⎛
⎜⎜⎜⎝N
(

�pi
t , σ

2
1t I
)

︸ ︷︷ ︸
f1t
(�pi

t
)

−�xi
t

⎞
⎟⎟⎟⎠+ ϕ2r i

2t

⎛
⎜⎝N
(�gt , σ

2
2t I
)

︸ ︷︷ ︸
f2t (�gt)

−�xi
t

⎞
⎟⎠ , (16)

8 Note that the function f is the same for all particles; however, it is different for different neighbors (variance
is different for different neighbors). Thus, we refer to these functions as fkt (y) because they are independent
of i .

123

Swarm Intell

xi
t

pi
t

gt

Vi
t

f1(p
i
t)

f2(gt)

σ1t

σ2t

f2(gt)-x
i
t

f1(p
i
t)-x

i
t

Fig. 3 The function N (y, σ 2
kt I) generates two new locations around g and p, f (g) = N (g, σ 2

1t I), f (p) =
N (p, σ 2

2t I) The average of the distance between new locations (f (p) and f (g)) and the original locations
(p and g) is related to the variance of the normal distribution. Note that the figure is not completely accurate
since a Normal distribution does not have a compact support

whereσ 2
1t andσ 2

2t are the variances of the normal distributions (N
(�pi

t , σ
2
1t I
)

and N
(�gt , σ

2
2t I
)
.

The value of the variance plays a key role in this formulation and it is investigated in the rest
of this subsection. Figure 3 shows how this algorithm works.

The value of variance σ 2
kt affects the area in which f1t

(�pi
t

)
and f2t (�gt) might be in. In

fact, a big value for the variance results in a higher probability of generating f1t
(�pi

t

)
far from

�pi
t or f2t (�gt) far from �gt . Also, a small value for the variance results in a higher probability

for generating f1t
(�pi

t

)
close to �pi

t or f2t (�gt) close to �gt . Note that there are some similarities
between this operator and the parent-centric crossover (PCX) (Deb et al. 2002).

Exploring the search space in the earlier stage of the optimization process and exploiting
solutions around quality known solutions in the later stages of the optimization process is
normally preferable in an optimization algorithm. On the other hand, according to Eq. 16,
in each iteration t new random locations around �pi

t and �gt (i.e., f1t
(�pi

t

)
and f2t (�gt) are

generated by a normal distribution N with variance σ 2
kt . In fact, the average distance between

�pi
t and f1t

(�pi
t

)
and �gt and f2t (�gt) is controlled by the variance of the distribution (Fig.

3). Hence, in order to perform exploration in the earlier stages and exploitation in the later
stages, larger values of variance at the beginning of the optimization and smaller values at the
later stages are preferable. Note that the explorative and exploitative behavior of the particles
depends also on the values of ω, φ1, and φ2. However, these values are considered constant
in our model so that their influence on the behavior of the particles is not changed during the
run. To determine the value of the variance, we can consider that it is a function of some other
variables, i.e., σkt = hkt (.) for k = 1, 2, where hkt is a function of some variables. In this
case, N (y, h2

kt (.)I) satisfies conditions 1 and 2 if hkt > 0 for all k and t and hkt : Rd → R,

123

Swarm Intell

i.e., hkt returns a scalar (see Appendix 3 for a proof). Thus, two main characteristics of the
function hkt to determine σkt are summarized as:

(1) hkt > 0 and hkt : Rd → R to satisfy conditions 1 and 2, respectively, and
(2) larger values in the exploration phase (earlier stage of the optimization) and smaller

values in the exploitation phase (later stage of the optimization) are preferable.

There might be many different ways to design the function hkt , and each may have a
different impact on the performance of the algorithm. In this paper, we propose to use a
function based on the Euclidean distance between �xi

t and �pi
t or �xi

t and �gt for h1t and h2t .
Indeed, the function hkt is defined as (h1t = h2t = ht):

Dt = ht (�y, �z) =

⎧⎪⎨
⎪⎩

l Dt−1 if yi = zi for all i

l

√
d∑

i=1
(yi − zi)2 otherwise,

(17)

where y and z are two input vectors and l>0 is a constant. Note that whenever the two inputs
of the function ht (�y, �z) are equal, the previously calculated distance is used instead. This
guarantees hkt > 0 for all t. Also, the value of l has an important impact on the performance
of the algorithm and it is set by experiments in Sect. 5. The velocity update rule in Eq. 16 is
revised to the following form:

�V i
t+1 = ω �V i

t + ϕ1r i
t

(
N
(

�pi
t , h2

t

(
�xi

t , �pi
t

)
I
)

− �xi
t

)
+ ϕ2r i

t

(
N
(
�gt , h2

t

(
�xi

t , �gt

)
I
)

− �xi
t

)
.

(18)

In all of the further tests in this section, LcRiPSO (σ = ∗) refers to the formulation in Eq.
16 (where * is the value for σ that is specified in each test) and LcRiPSO (l = ∗)9 refers to
the formulation in Eq. 18 (where * is the value for l that is specified in each test).

4.3 Experimental validation

In all of the following tests, the number of function evaluations is set to 5000d/n (n is the
number of particles) and all results are the averages over 50 independent runs. Also, the value
of l in the next experiments in this subsection have been selected by some trials (see Sect. 5.2
for a more comprehensive discussion about setting these parameters). However, the value of
σ has remained unchanged in all test functions in this subsection to show the ability of the
method to address the issues in Sect. 3.

In each test, the goal is to assess the ability of the proposed method to maintain its
performance in different situations (rotating search space, reducing the swarm size, and
increasing the number of dimensions). It is not our goal to compare the performance of
different methods. Also, note that the ability of the method for addressing these issues has
been proven and it is not dependent on the parameters l andσ . However, its performance might
be different when these parameters change. As an example, the algorithm might perform
poorly with a specific value of l or σ and perform better using another value, but in both
cases, its performance is not changed by rotating the search space.

In order to show the ability of the proposed method in dealing with the swarm size issue,
the method is applied to the first function in the CEC08 benchmark (Tang et al. 2007) (that
is a shifted sphere function), with n ∈ {2, 3, 4, 5, 6, . . . , 20} and d = 10. The average of the
performance ratio, defined as performance ratio = objective value of the final solution

objective value of the initial solution , is reported

9 A Matlab source code for this variant is available as online supplementary material.

123

Swarm Intell

0 2 4 6 8 10 12 14 16 18 20 22
10

−40

10
−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

Number of particles (n)

A
ve

ra
ge

 o
f p

er
fo

rm
an

ce
 r

at
io

LcRiPSO(σ=0.01)
LcRiPSO(l=0.085)
COPSO
GCPSO
RPSO
pPSA
FIPS
UGPSO

Fig. 4 The horizontal axis is n and the vertical axis is the average of the performance ratio over 50 runs. Note
that for the cases where the average of performance ratio is zero, the value has not been shown in the graph as
the vertical axis is in the logarithmic scale (Color figure online)

for each case. The value of this ratio is one if no improvement takes place during the run.
Results are shown in Fig. 4.

In this test, the value of l is equal to 0.085 and the value of σ is 0.01. Figure 4 demonstrates
that the performance of COPSO, pPSA, FIPS, and RPSO is dramatically impaired when the
swarm size (n) is small. Also, results show that the performance ratio is around 1 for COPSO,
FIPS, UGPSO, and RPSO when n = 2. This means that for small n, these algorithms could
not even improve the initial solution and that they stop improving at the very early stage of
the optimization process. Thus, this test serves as a counter example to show that COPSO,
FIPS, UGPSO, and RPSO cannot address the swarm size issue in the general case (see also
Sect. 5.5 for a more comprehensive experiment on this issue). On the other hand, it is obvious
that the performance ratio of GCPSO and LcRiPSO (l = 0.085) is much smaller than the
other variants when n is small. Hence, we can say that these two methods have effectively
addressed the swarm size issue. Note that this test only shows that the proposed method is not
stagnated even with a small number of particles. However, it is obvious that the performance
of the method depends on the values of the parameters l and σ , which is also the case for
other methods.

In order to study the performance of LcRiPSO in terms of addressing the problem scale
issue, the method is applied to the first function in the CEC08 benchmark (CEC081, the first
function in the benchmark CEC08 that is a shifted sphere function) with different number of
dimensions (d = {10, 60, . . . , 510}). In Fig. 5, the performance ratio is reported.

In this test, the value of n was set equal to d (number of dimensions) for all algorithms
and each algorithm was applied to the CEC081 test function 50 times. The performance
ratio was used, rather than the original performance measure, to show the ability of the
methods to improve initial solutions (note that it is expected that the algorithms improve the
initial solutions even if the number of dimensions is very large). Figure 5 indicates that the
performance ratio for GCPSO, COPSO, RPSO, and FIPS deteriorates with the growth of the
number of dimensions. The average of the performance ratio is very close to 1 (larger than
0.999) on average (over 50 runs) for these algorithms when d is larger than 110, 260, 260,

123

Swarm Intell

0 50 100 150 200 250 300 350 400 450 500
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

Number of dimensions (d)

A
ve

ra
ge

 o
f p

er
fo

rm
an

ce
 r

at
io

LcRiPSO(σ=0.01)
LcRiPSO(l=0.01)
COPSO
GCPSO
RPSO
pPSA
FIPS
UGPSO

Fig. 5 The horizontal axis is the number of dimensions and the vertical axis is the average performance ratio
over 50 runs. The horizontal line indicates different values of the performance ratio, starting from 1.0. Note
that for the cases where the average of performance ratio is zero, the value has not been shown in the graph as
the vertical axis is in the logarithmic scale (Color figure online)

and 310, respectively. For the UGPSO, the impairment happened later, but the performance
ratio of this algorithm is close to one when d > 360. Thus, it is obvious that there is no
guarantee that these methods improve the initial solutions when the number of dimensions
grows. For pPSA, the performance ratio becomes larger than 0.95 when d = 510. The
proposed algorithm (LcRiPSO (σ = 0.01) and LcRiPSO (l = 0.01)) could improve the
initial solution in all scales of the problem. This test shows that LcRiPSO is able to improve
the initial solution even when the number of dimensions grows. Note that it does not mean
that there is no other choice for the algorithm’s parameter (l and σ)which works better when
the number of dimensions grows. In addition, the performance of LcRiPSO becomes slightly
worse when the number of dimensions increases; however, it still offers improvement. One
potential reason behind this drop in the performance is that the number of function evaluations
is not large enough for higher dimensional test functions to achieve the same performance.
Also, another potential reason is that the setting of the parameters of the method was not
optimal (our simulation with σ = 0.007 for LcRiPSO gives the average of 1.82E−24 for
510 dimensional functions). In fact, different choices for l or σ affect the performance of
the method and more robust behavior (in terms of performance in higher dimensions) might
appear by choosing different values for these parameters in different situations (e.g., number
of dimensions, number of particles). Note that dependency among parameters might exist in
any other optimization method.

In order to examine the rotation variance issue, LcRiPSO is applied to a test function
called the Ellipse function (Spears et al. 2010). This test function was specifically designed
to test the ability of optimization methods in dealing with the rotation of the search space.
Each algorithm was applied to this test function 50 times and was run for 500 function
evaluations. Then function was rotated by 5◦ and the algorithms were applied to the rotated
function. This process was repeated until the rotation achieved 180◦. Figure 6 shows the
average performance (the quality of the found solutions) over 50 runs for each algorithm
with different rotations of the search space.

123

Swarm Intell

0 20 40 60 80 100 120 140 160 180
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Rotation angle

A
ve

ra
ge

 o
f p

er
fo

rm
an

ce

LcRiPSO(σ=0.01) LcRiPSO(l=0.03) COPSO GCPSO RPSO pPSA FIPS UGPSO

Fig. 6 The horizontal axis is the rotation angle and the vertical axis is the average performance of the
algorithm (over 50 runs) (Color figure online)

Table 1 Addressing various issues by different variants of pso algorithm

Stagnation Dimensional
stagnation

Swarm
size

Rotation
variance

Problem
scale

Local
convergence

COPSO

RPSO Addressed Addressed

GCPSO Addressed Addressed Addressed Addressed

UGPSO Addressed

FIPS

pPSA Addressed Addressed Addressed Addressed Addressed

LcRiPSO Addressed Addressed Addressed Addressed Addressed Addressed

In this experiment, the number of dimensions was set to 2 and the number of particles for
all algorithms was set to 20.

In this experiment, LcRiPSO (σ = 0.01) (Eq. 16), and LcRiPSO (l = 0.03) (Eq. 18) were
used. This figure indicates that pPSA, FIPS, GCPSO, COPSO, and UGPSO are sensitive
to the rotation of the search space (their performance is changed by rotating the search
space). Thus, this example shows that these methods are rotationally variant. However, the
performance of RPSO, LcRiPSO (σ = 0.01), and LcRiPSO (l = 0.03) is not changed when
the search space is rotated.

Table 1 summarizes the abilities of the investigated methods in addressing all issues
introduced in Sect. 3.

Table 1 indicates that the only algorithm which has addressed all issues at the same time
is the proposed algorithm (LcRiPSO).

123

Swarm Intell

10 20 30 40 50
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Number of particles (n)

(a) (b)

B
es

t v
al

ue
 fo

r l

CEC05
4

CEC05
12

5 10 15 20 25 30
0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

Number of dimensions (d)

B
es

t v
al

ue
 fo

r l

CEC05
4

CEC05
12

Fig. 7 Parameter setting of the proposed algorithm when n and d are changed. Best value of l versus number
of particles (a) and versus number of dimensions (b). The number of dimensions was set to 10 in (a) and the
number of particles was set to 10 in (b) (Color figure online)

5 Experiments and comparisons

In this section, we define the test bed and we analyze the parameter l of the proposed method.
Then, we apply several PSO variants to some benchmark test functions and compare their
results. In all further comparisons, we use LcRiPSO with Eq. 18 as velocity update rule.

5.1 Experimental setup

All codes were implemented under the MatlabR2011a environment. Due to the stochastic
nature of the methods, the reported results for each algorithm represent the averages over
50 runs. The maximum number of function evaluations (FE) is fixed to 5000d/n in all tests.
In order to evaluate the algorithm performance, the methods are applied to the benchmark
functions CEC05 (the first 14 test functions) (Suganthan et al. 2005) and CEC08 (Tang et al.
2007). The tests are done for different number of dimensions (varied from 2 to 1000) and
swarm sizes (varied from 2 to 1000). Wilcoxon test has been used to compare the difference
between the results of LcRiPSO and other methods (all p’s < 0.05).

5.2 Parameter setting

The only parameter that was added to SPSO velocity update rule was l which is the coefficient
of the distance function. Although an adaptive approach for controlling this parameter might
be preferable, in this paper we set the parameter manually. The experiment is done for one
unimodal and one multimodal function from CEC05 (Suganthan et al. 2005) benchmark
(CEC054 and CEC0512). The method is applied to these functions with various values of n
and d .

Figure 7 shows that the best value for l is dependent on both n and d . The pattern of
this dependency is very similar for all other CEC benchmarks, but the baseline for different
functions was slightly different. Our experiments showed that the following formulation
well-matches with this pattern:

l = a1

na2

a3

da4
.

123

Swarm Intell

The values for a1, a2, a3, and a4 were explored by experiments. Results showed that in
most cases the following values work better than other values over all tested functions and
parameters values: (a1, a2, a3, a4) = (0.91, 0.21, 0.51, 0.58). Hence, these values are used
throughout the paper for identification of l. Note that this is not a comprehensive study on the
introduced parameter and obviously an adaptive parameter is more reliable when different
optimization problems are at hand. However, this is not investigated in this paper and it is
left for future study.

5.3 Comparison

In order to evaluate the performance of the LcRiPSO, the results of four tests are reported
and analyzed.

1. In the first test, several algorithms are applied to CEC05 benchmark when d is set to 2,
10, 30, and 50 and d = n. This test is performed to show the overall ability of LcRiPSO in
optimizing benchmark functions in comparison to other variants. In this test, COPSO and
FIPS (with ring topology) are used for comparison purposes. These have been selected
because they are among the most-studied PSO-based methods and can be counted as
baseline methods for comparison. The results of RPSO, pPSA, UGPSO, and GCPSO are
also reported and compared with the results of LcRiPSO.

2. In the second test, the algorithms are applied to the same benchmark functions (CEC05),
but the number of particles n for all methods is fixed to 2. This test is responsible for
measuring the performance of the methods when the number of particles is small in
comparison to the number of dimensions (d is set to 10 and 30 for this test). In this test,
LcRiPSO is compared with COPSO in order to demonstrate the ability of the proposed
method with small swarm size in comparison to a well-studied PSO variant (i.e., COPSO).
Also, LcRiPSO is compared with pPSA and GCPSO in this situation because, as outlined
in Sect. 3, these methods have addressed the swarm size issue as well.

3. In the third test, LcRiPSO, FIPS, COPSO, RPSO, and UGPSO are compared with each
other in 100 dimensional spaces when CEC05 is used as the benchmark. Also, LcRiPSO,
COPSO, and UGPSO are applied to higher dimensional benchmark functions (CEC08)
with d = {500, 1000}. The aim of this test is to show that the proposed algorithm can
converge to better solutions even in large scale test functions, while this is not the case
for the other listed methods.

4. In the fourth test, LcRiPSO, RPSO, and COPSO are applied to some standard test func-
tions and their rotated versions. The aim of this test is to evaluate if the performance of
LcRiPSO is changed by rotating the search space.

5.4 Test 1, overall performance

The performance of the proposed LcRiPSO method is compared with COPSO, FIPS, and
RPSO. Tables 2 and 3 show the results.

For each test, if a result of LcRiPSO in a test is significantly better than some other methods,
then that result has been superscripted by the initials of the names of the other algorithms.
For example, superscripting a value by CF in the LcRiPSO column, e.g., ####C F , means
that LcRiPSO performs significantly (according to the Wilcoxon test, p < 0.05) better than
COPSO and FIPS in that test. Also, if any other method performs significantly better than
LcRiPSO on a test function, its result has been superscripted by L. Note that we only compare
LcRiPSO with other methods; comparing other methods with each other was not the aim
of this test. Results show that LcRiPSO has significantly better performance than COPSO

123

Swarm Intell

Table 2 Comparison of the overall performance of LcRiPSO when it is applied to CEC05 (number of
dimensions was d = 2 and d = 10 and number of particles was set equal to number of dimensions, i.e.,
d = n)

Function d =2 d =10

COPSO FIPS RPSO LcRiPSO COPSO FIPS RPSO LcRiPSO

CEC051 3.39E+01 1.24E+02 8.01E+01 0.00E+00CFR 3.40E−28 2.44E−02 1.35E−28 0.00E+00CR

CEC052 7.95E+01 2.51E+02 1.12E+03 0.00E+00CFR 7.72E−27 1.15E+02 3.48E−28 1.63E−28CFR

CEC053 4.86E+03 4.93E+03 3.37E+08 2.50E+03CFR 8.07E+04 5.30E+05 1.32E+04L 5.17E+04F

CEC054 2.15E+02 2.26E+02 9.94E+02 0.00E+00CFR 4.76E+02 1.42E+03 2.51E−15 1.62E−28CFR

CEC055 1.12E+03 9.15E+02 1.97E+03 1.16E+02CFR 1.77E+02 1.10E+03 1.03E+00 1.93E+01CFR

CEC056 5.00E+01 3.70E+07 7.92E+01 2.46E+01CFR 6.28E+00L 6.00E+02 4.56E+01L 2.97E+02F

CEC057 3.65E+00 9.94E−01 2.10E+00 2.60E−02CFR 7.71E−01 7.11E−01 9.37E−01 3.38E−01CR

CEC058 1.94E+01 1.97E+01 1.83E+01 1.19E+01CF 2.03E+01 2.01E+01 2.04E+01 2.03E+01F

CEC059 3.92E+00 2.36E+00 4.83E+00 8.95E−01CFR 1.63E+01L 4.32E+00L 3.79E+01 2.39E+01R

CEC0510 3.43E+00 4.25E+00 9.18E+00 1.02E+00CFR 2.72E+01 1.65E+01L 4.25E+01 2.67E+01CR

CEC0511 4.90E−01 3.77E−01 9.82E−01 5.49E−02CFR 6.18E+00 4.34E+00 7.81E+00 4.76E+00CR

CEC0512 1.39E+02 9.71E+02 1.03E+03 1.55E+01CFR 4.11E+03 7.98E+02 5.40E+03 4.43E+03

CEC0513 5.45E+00 1.04E−01 5.67E+01 1.64E−02CFR 1.43E+00 1.40E+00L 3.45E+00 1.44E+00R

CEC0514 5.79E−01 5.70E−01 6.66E−01 4.71E−02CFR 3.41E+00 3.38E+00 3.57E+00 3.20E+00CR

The best results have been bolded in each instance

and FIPS in all 14 cases when d = 2. Compared to RPSO, in 13 cases (of 14) the proposed
method performs significantly better, while only in one case (CEC058) these two methods
perform statistically the same. For d = 10, LcRiPSO has significantly better performance
in 8, 6, and 10 functions when compared to COPSO, FIPS, and RPSO, respectively. On the
other hand, these methods perform significantly better than LcRiPSO in 2, 3, and 2 cases,
respectively.

In the 30 dimensional cases (Table 3), LcRiPSO performs significantly better than COPSO,
FIPS, and RPSO in 6, 4, and 3 functions while it performs significantly worse than these
methods in 4, 3, and 0 functions, respectively. Finally, when d = 50, in 5, 4, and 3 functions
the method reached significantly better solutions than COPSO, FIPS, and RPSO, respectively.
However, these methods perform significantly better than LcRiPSO in 4, 4, and 0 functions,
respectively. These comparisons show that the algorithm offers significant improvement (with
reference to well-studied PSO methods) when a small size test function is at hand (d = 2,
d = 10). However, in the middle size test functions (d = 30, d = 50), the proposed method
performs better than the previous methods in only a limited number of test functions and
performs the same in most cases.

Table 4 shows the results of comparisons among LcRiPSO, pPSA, GCPSO, and UGPSO.
Results show that LcRiPSO performs significantly better than pPSA, GCPSO, and UGPSO
in 7, 6, and 10 cases, respectively, over all 14 cases for 10 dimensional functions. LcRiPSO
performs better than those methods in 6, 6, and 7 cases in the 30 dimensional functions.

5.5 Test 2, small swarm size

In this test, the performance of the proposed method is tested when the swarm size is small
(n = 2). Table 5 shows the results.

123

Swarm Intell

Table 3 Comparison of the overall performance of LcRiPSO when it is applied to CEC05 (number of
dimensions was d = 30 and d = 50 and number of particles was set equal to number of dimensions, i.e.,
d = n)

Function d =30 d =50

COPSO FIPS RPSO LcRiPSO COPSO FIPS RPSO LcRiPSO

CEC051 2.59E−27 0.00E+00 1.01E−29 1.97E−28C 4.55E−26 0.00E+00 0.00E+00 7.49E−28

CEC052 1.14E−08 9.38E−01 4.69E−18 1.09E−24CFR 8.51E−01 5.27E+02 2.17E−04 8.05E−15CFR

CEC053 9.45E+05 4.12E+06 2.47E+05 2.43E+05CF 2.95E+06 9.97E+06 1.16E+06 2.60E+05CF

CEC054 2.52E+03 6.57E+03 9.72E+00 6.33E+00CFR 1.79E+04 2.15E+04 7.55E+03 2.94E+03CFR

CEC055 5.64E+03 4.30E+03 4.27E+03 4.63E+03C 1.23E+04 8.64E+03 8.80E+03 8.51E+03C

CEC056 3.38E+01L 1.16E+02 2.92E+02 5.25E+02 7.92E+01L 1.59E+02 4.19E+02 6.41E+02

CEC057 1.75E−02 1.94E−01 1.81E−02 1.79E−02 1.24E−02 8.83E−03 1.27E−02 1.09E−02R

CEC058 2.09E+01 2.07E+01 2.09E+01 2.09E+01CFR 2.11E+01 2.12E+01 2.11E+01 2.10E+01CF

CEC059 9.86E+01L 4.93E+01L 1.72E+02 1.65E+02 2.01E+02L 1.47E+02L 3.34E+02 3.56E+02

CEC0510 1.33E+02L 1.73E+02L 2.20E+02 2.20E+02 2.99E+02L 4.32E+02L 4.91E+02 5.58E+02

CEC0511 2.84E+01 2.77E+01 2.85E+01 2.82E+01 5.52E+01 5.95E+01 5.54E+01 5.72E+01

CEC0512 1.40E+04 1.39E+04 2.42E+04 3.10E+04 6.28E+04 7.33E+04 1.40E+05 1.15E+05

CEC0513 6.99E+00L 1.06E+01L 1.29E+01 1.36E+01 1.58E+01L 2.47E+01L 2.55E+01 3.55E+01

CEC0514 1.27E+01 1.27E+01 1.28E+01 1.29E+01 2.22E+01 2.25E+01L 2.22E+01 2.23E+01

The best results have been bolded in each instance

Table 4 Comparison of the overall performance of LcRiPSO when it is applied to CEC05 (number of
dimensions was d = 10 and d = 30 and number of particles was set equal to number of dimensions, i.e.,
d = n)

Function d =10 d =30

pPSA GCPSO UGPSO LcRiPSO pPSA GCPSO UGPSO LcRiPSO

CEC051 8.68E−30 7.57E−30 8.12E−27 0.00E+00pGU 5.26E−29 6.35E−29 1.16E−27 1.97E−28U

CEC052 8.36E−28 1.20E−26 2.23E−13 1.63E−28pGU 5.68E−08 2.32E−07 2.09E+02 1.09E−24pGU

CEC053 6.77E+04 5.56E+04 1.27E+05 5.17E+04pU 8.26E+05 1.02E+06 3.55E+06 2.43E+05pGU

CEC054 5.06E+02 4.29E+02 1.42E−02 1.62E−28pGU 4.24E+03 3.32E+03 1.30E+04 6.33E+00pGU

CEC055 1.11E+00L 2.03E+01 7.06E+02 1.93E+01U 6.54E+03 6.58E+03 6.98E+03 4.63E+03pGU

CEC056 9.31E+00 3.95E+00L 9.93E+01 2.97E+02U 2.91E+01L 3.57E+01L 1.34E+02 5.25E+02

CEC057 6.60E−01 6.86E−01 8.19E−01 3.38E−01pGU 1.64E−02 2.04E−02 1.34E−02 1.79E−02

CEC058 2.04E+01 2.04E+01 2.04E+01 2.03E+01pGU 2.10E+01 2.10E+01 2.10E+01 2.09E+01pGU

CEC059 1.70E+01 1.73E+01 9.37E+00 2.39E+01U 1.02E+02L 1.05E+02 4.81E+01L 1.65E+02

CEC0510 2.66E+01 2.39E+01 2.14E+01 2.67E+01 1.99E+02 2.40E+02 1.05E+02L 2.20E+02

CEC0511 6.57E+00 6.74E+00 6.91E+00 4.76E+00pGU 3.21E+01 3.10E+01 3.14E+01 2.82E+01pGU

CEC0512 3.13E+03 2.36E+03 6.17E+02L 4.43E+03 1.62E+04 2.53E+04 1.28E+04L 3.10E+04

CEC0513 1.10E+00L 1.25E+00 1.01E+00L 1.44E+00 9.61E+00 8.35E+00 7.60E+00L 1.36E+01

CEC0514 3.01E+00 3.50E+00 3.20E+00 3.20E+00 1.29E+01 1.29E+01 1.28E+01 1.29E+01

The best solution found by the methods has been shown in bold

123

Swarm Intell

Table 5 Comparison of the performance of LcRiPSO when it is applied to CEC05 (number of dimensions
was d = 10 and d = 30 and number of particles was set to 2, i.e., n = 2)

Function d =10 d =30

COPSO GCPSO pPSA LcRiPSO COPSO GCPSO pPSA LcRiPSO

CEC051 1.02E+04 4.37E−25 4.44E−07 3.75E−29CGp 8.72E+04 2.51E+03 6.38E−06 1.32E−27CGp

CEC052 2.01E+04 2.40E−24 5.20E−07 8.08E−28CGp 1.57E+05 2.00E+04 1.77E−05 1.81E−17CGp

CEC053 2.04E+08 2.20E+06 1.32E+05 1.82E+05C 2.09E+09 4.39E+08 6.80E+05 5.42E+05C

CEC054 2.32E+04 2.79E+04 2.54E+04 1.25E−13CGp 2.33E+05 4.04E+05 1.83E+05 1.20E+03CGp

CEC055 1.64E+04 1.32E+04 3.04E+03 6.65E+02CGp 4.55E+04 3.74E+04 1.06E+04P 1.25E+04CG

CEC056 9.33E+09 3.06E+02 7.68E+02 2.22E+02CG 7.99E+10 7.26E+09 7.16E+02 7.13E+02C

CEC057 4.89E+02 3.28E+00 4.53E+01 5.53E−01CGp 3.77E+03 5.89E+02 1.75E−02 2.28E−02CG

CEC058 2.03E+01 2.04E+01 2.01E+01L 2.04E+01 2.09E+01 2.08E+01 2.02E+01L 2.10E+01

CEC059 8.14E+01 6.69E+01 6.06E+01 3.01E+01CGp 4.51E+02 3.41E+02 3.51E+02 2.18E+02CGp

CEC0510 1.40E+02 1.23E+02 1.10E+02 3.48E+01CGp 8.56E+02 7.52E+02 6.67E+02 2.87E+02CGp

CEC0511 1.03E+01 1.09E+01 5.57E+00 5.69E+00CG 4.08E+01 4.32E+01 3.24E+01 2.99E+01CGp

CEC0512 1.08E+05 1.98E+04 9.93E+03 8.26E+03C 1.49E+06 3.75E+05 7.71E+04 8.88E+04CG

CEC0513 2.61E+04 1.53E+01 1.07E+00L 2.42E+00CG 1.01E+06 1.01E+05 5.12E+00L 1.95E+01CG

CEC0514 4.29E+00 4.36E+00 4.38E+00 3.50E+00CGp 1.40E+01 1.40E+01 1.41E+01 1.32E+01CGp

The best solution found by the methods has been shown in bold

In 13 out of 14 cases, LcRiPSO has significantly better performance in comparison to
COPSO when the number of dimensions is either 10 or 30. In CEC058, these two methods
have no significant difference. In comparison to GCPSO (Van den Bergh and Engelbrecht
2010), LcRiPSO has better performance in all cases except in CEC058 in both d = 10 and
d = 30 cases. Finally, for d = 10, pPSA performed significantly better than LcRiPSO in
only 2 cases. On the other hand, LcRiPSO was significantly better than pPSA in 8.

In the 30 dimensional functions, LcRiPSO shows a significantly better performance in
comparison to pPSA in 7 functions and a significantly worse performance in 3 functions.
The result of FIPS has not been reported here because its performance is almost the same
as COPSO when n is small. These results indicate that the proposed method addresses the
swarm size issue.

5.6 Test 3, large scale problems

In order to show the performance of the proposed algorithm in higher number of dimensions,
it is applied to 100, 500, and 1000 dimensional test functions. In the first test, LcRiPSO is
compared with four PSO variants when they are applied to 100 dimensional test functions
taken from CEC05 benchmark. COPSO and FISP were selected for comparison because
these are well-studied methods. UGPSO has been selected because it has addressed the same
issue (i.e., problem scale).

According to Table 6, LcRiPSO has significantly better performance in comparison to
COPSO, FIPS, RPSO, and UGPSO in 8, 9, 10, and 9 functions, respectively. These methods
have significantly better performance in only 3, 3, 4, and 3 functions, respectively. In the
remaining functions all methods performed statistically the same.

123

Swarm Intell

Table 6 Comparison of different methods when d = 100 (Cec05 Benchmark)

Function d =100

COPSO FIPS RPSO UGPSO LcRiPSO

CEC051 7.06E−12 6.79E−27 1.40E−05 8.39E−02 3.33E−27CFUR

CEC052 6.86E+03 3.16E+04 1.96E+04 1.03E+05 2.23E−05CFUR

CEC053 4.42E+09 5.71E+07 4.16E+07 9.59E+07 1.71E+06CFUR

CEC054 1.16E+05 1.12E+05 1.65E+05 3.08E+05 5.52E+04CFUR

CEC055 3.34E+04 2.34E+04 3.81E+04 4.33E+04 2.10E+04CFUR

CEC056 1.64E+02 1.90E+02 1.69E+02 1.53E+04 1.13E+02CFUR

CEC057 8.03E+02 1.92E−01 7.85E−01 5.65E+00 5.05E−03CFUR

CEC058 2.13E+01 2.13E+01 2.13E+01 2.14E+01 2.08E+01CFUR

CEC059 5.57E+02L 4.71E+02L 7.09E+02L 2.00E+02L 7.62E+02

CEC0510 9.20E+02L 1.12E+03L 1.04E+03L 6.95E+02L 1.32E+03

CEC0511 1.34E+02 1.40E+02 1.31E+02L 1.34E+02 1.36E+02

CEC0512 5.01E+05 5.87E+05 1.86E+06 6.54E+05 7.07E+05R

CEC0513 6.12E+01L 6.81E+01L 9.61E+01L 8.32E+01L 1.35E+02

CEC0514 4.65E+01 4.71E+01 4.70E+01 4.69E+01 4.66E+01FUR

The best solution found by the methods has been shown in bold

Table 7 Comparison of the methods when d = 500 and 1000 (CEC08 was used as the benchmark)

Function d =500 d =1000

COPSO UGPSO LcRiPSO COPSO UGPSO LcRiPSO

CEC081 2.94E+06 1.31E+06 7.19E−07CU 6.00E+06 5.93E+06 1.30E+01CU

CEC082 1.77E+02 1.62E+02 8.41E+01CU 1.84E+02 1.86E+02 9.41E+01CU

CEC083 3.22E+12 3.48E+11 1.17E+03CU 6.94E+12 7.04E+12 6.28E+04CU

CEC084 1.20E+04 1.29E+04 4.51E+03CU 2.46E+04 2.39E+04 8.92E+03CU

CEC085 2.46E+04 2.19E+04 1.10E−03CU 5.34E+04 5.25E+04 5.99E−01CU

CEC086 2.14E+01 2.14E+01 1.93E+01CU 2.15E+01 2.15E+01 1.94E+01CU

The best solution found by the methods has been shown in bold

Finally, LcRiPSO is compared with UGPSO and COPSO when they are applied to CEC08
benchmark functions with 500 and 1000 dimensions.

Table 7 indicates that for both 500 and 1000 dimensions, in all cases the performance of
LcRiPSO is significantly better than the others. In fact, these methods could not improve the
initial solutions at all, while the proposed method could still suggest improvements in the
initial solutions.

5.7 Test 4, Rotation

In order to test the ability of the proposed method in finding solutions when the search space
is rotated, we applied LcRiPSO, COPSO, and RPSO to CEC052,4,5,6,9 functions (selected
randomly) when they are rotated randomly (the rotation matrix was the same for all methods

123

Swarm Intell

Table 8 Effect of rotation on the performance of the algorithms

Function COPSO RPSO LcRiPSO

Original Rotated Original Rotated Original Rotated

CEC052 9.66E−27 6.37E−27 1.21E−27 1.21E−26 1.03E−28 1.37E−28

CEC054 1.49E+03* 5.49E+03 4.41E+01 1.42E+03 2.61E−28 3.82E−28

CEC055 4.04E+03 2.34E+03* 1.41E+03 9.23E+02 1.50E+03 1.74E+03

CEC056 2.27E+01* 3.39E+03 3.49E+03 3.34E+03 2.60E+03 3.99E+03

CEC059 1.51E+01* 3.18E+01 8.14E+01 7.17E+01 2.69E+01 2.68E+01

In the cases where the performance of the algorithms in optimizing the rotated function is significantly different
from optimizing the original function, the better solution has been indicated by a star
The best solution found by the methods has been shown in bold

and all runs). Also, because the rotation of the coordinate could potentially move the optimal
solutions out of the boundaries, the boundaries were extended in our experiments by 5 times.
The number of dimensions was set to 10, the swarm size was set to 10, and the number of
FE was set to 5000.

In Table 8, it is clear that the performance of COPSO is significantly affected (indicated by
a star, *) in 4 functions out of 5 when the search space is rotated. However, the performance
of LcRiPSO and RPSO is not significantly affected when the search space is rotated. This
suggests that COPSO is sensitive to rotation of the search space while LcRiPSO and RPSO
are not.

6 Conclusion and future work

Six well-known issues in the standard particle swarm optimizer were analyzed in this paper.
These issues were: stagnation (when all particles collapse on the same location, the algorithm
does not improve anymore), dimensional stagnation (when particles and personal best vectors
share one dimension, particles oscillate in that dimension), swarm size (performance of the
algorithm radically impaired when the swarm size is small), local convergence (the algorithm
cannot converge to better solutions), problem scale (when the scale of the problem grows, the
algorithm cannot improve the initial solutions and stops in the initial solution), and rotation
invariance (the algorithm is sensitive to rotation of the space). Some existing PSO variants
that address these issues were summarized from the experimental and theoretical points of
view. It was observed that none of the listed PSO variants can address all of these issues at
the same time. A new general form of the velocity update rule in PSO was proposed (Eq.
12b) in which a new component was added. This new component is a function that is applied
to the personal best of each particle in each iteration. The characteristics of the introduced
function were analyzed in order to guarantee to address all six mentioned issues. It was proven
that the proposed method can address all of these issues if the introduced function satisfies
two conditions. To show that such a function exists, one specific designation was proposed
(Eq. 18). The proposed method (with the specific function) was applied to some standard
benchmark functions to test its abilities in addressing six mentioned issues. These experiments
showed that the proposed method is the only one (amongst other tested PSO variants) that
can address all six issues at the same time. Also, the parameters of the method were set
by some experiments. In order to test the overall performance of the proposed method, it

123

Swarm Intell

was applied to 20 standard benchmark functions (CEC05 and CEC08) with different number
of dimensions (from 2 to 1000 dimensions). Results showed that the proposed method has
better overall performance in comparison to other tested PSO variants. However, there are
some open questions that can be considered for future studies. The general idea behind the
proposed method was to address some issues in the algorithmic level. It would be valuable to
compare other methods that address the same issues in meta-algorithmic level, e.g., restarting
the particles to address stagnation, with the proposed method (Garcia-Nieto and Alba 2011).
The proposed specific model for the function f can be revised and other, possibly better,
functions can be considered in the algorithm instead. For example, one can design a function
with adaptive parameters to adapt the behavior of the algorithm according to some features
(e.g., ruggedness, neutrality) of the landscape. Also, the global convergence properties of
the algorithm can be investigated. For example, the analysis conducted in Van den Bergh
and Engelbrecht (2010) for the global convergence properties of a PSO variant can be also
performed for the method proposed in this paper. Moreover, parameters presented in the
proposed model originated from other types of PSO. Effects of changing these parameters
on the performance of the proposed method can be studied in details in future. The additional
parameter introduced to the specific model was set manually and it would be worthwhile to
experiment with an adaptive approach. Effects of changing the topology of the swarm on the
performance of the proposed method is another topic for further studies (e.g., see Montes de
Oca and Stutzle 2008 for an analysis of FIPS). Finally, consideration of the runtime (Witt
2009) and first hitting time (Lehre and Witt 2013) constitute another possibility of analysis
of the proposed approach.

Acknowledgments The authors would like to extend their great appreciation to Maris Ozols, Luigi Barone,
Frank Neumann, and Markus Wagner for constructive comments and discussions that have helped us to
improve the quality of the paper. This work was partially funded by the ARC Discovery Grant DP130104395
and by Grant N N519 5788038 from the Polish Ministry of Science and Higher Education (MNiSW).

Appendix 1

A PSO method is locally convergent if

∀i limt→∞ P
(

�pi
t ∈ Rε

)
= 1, (19)

i.e., the probability that the personal best of each particle i , �pi
t , is in the optimality region Rε

approaches 1 when the iteration number t approaches infinity.
In this appendix we prove the following

Theorem If the function f in the velocity update rule of the LcRiPSO (Eq. 12b) satisfies the
condition:

∀�y ∈ S∃Ay ⊆ S ∀�z ∈ Ay ∀δ > 0 P (| f (�y)− �z| < δ) > 0, (20)

then the LcRiPSO algorithm is locally convergent. In the condition 20, �y is an arbitrary point
in the search space S, Ay is an open set which contains �y, �z is an arbitrary point in Ay, δ is
a positive value.

Equation 20 can be explained as follows: for all �y in the search space, there exist an open
set Ay in the search space that contains �y such that for every point �z in this open set, for every
real value δ > 0, the point f (�y) is closer than δ to �z with non-zero probability. Informally,

123

Swarm Intell

20 states that the value of f (�y) can map the point �y to any point in the open set Ay with
non-zero probability.

If the function f satisfies condition 20, the personal best of at least one of the particles
converges to the optimality region of the objective function with probability one.

Before we proceed, let us define a general form for a stochastic algorithm (GSA) (Solis
and Wets 1981):

Algorithm GSA:

1) initialize p0 from the search space S and set t = 1
2) generate a random sample xt from S
3) generate the candidate solution pt = D(pt−1, xt), set t = t + 1 , and go to 2

where D(a, b) is an operator which selects one of a or b. There are three important com-
ponents in GSA: (1) a random sample xt , (2) a candidate solution pt , and (3) an update
procedure of pt (the operator D). We investigate the local convergence condition (condition
19) for GSA. We introduce two conditions C1 and C2, and we prove that if GSA satisfies C1
and C2, then GSA is locally convergent. We then show that each particle i in the LcRiPSO is
a specific model of GSA. Hence, if C1 and C2 are satisfied for each particle in the LcRiPSO
then the algorithm is locally convergent. Finally, we prove that all particles in the LcRiPSO
satisfy C1 and C2. This would complete the proof of local convergence for the LcRiPSO.

Let us start with defining conditions C1 and C2.
Condition C1: GSA satisfies condition C1 if:

pt = D(pt−1, xt) =
{

xt if F(xt) < F(pt−1)− ε0

pt−1 otherwise,

where ε0 is a positive value that is smaller than or equal to ε (ε in the definition of Rεi).
This means that the new solution xt should be better than pt−1 at least by the constant ε0 to
update pt . In computer simulations, we can set ε0 to the smallest possible float/double value
(Matyas 1965).

Condition C2: GSA satisfies the condition C2 if:

∃ε > 0∃η > 0∃δ ∈ (0, 1] ∀t ≥ 0∃t ′ > 0P(F(pt+t ′) ≤ F(pt)− η) > δ or ptεRε,

i.e., pt+t ′ is better than pt at least by η in terms of the objective value F(.). In other words,
the probability that the pt+t ′ is better than pt (in terms of objective value F) at least by the
value η is larger than δ unless pt is already in the optimality region. We will prove (lemma
1) that if both C1 and C2 are satisfied, GSA is locally convergent.

Lemma 1 If GSA satisfies conditions C1 and C2, GSA is locally convergent.

Proof Let us define

A(t, t ′) =
{

true F(pt+t ′) ≤ F(pt)− η

false otherwise.

Then, the negation of A(t, t ′), not A(t, t ′), is:

Ā
(
t, t ′
) =
{

true F
(

pt+t ′
)
> F (pt)− η

false otherwise.
(21)

So, according to the C2, we can say that for any t , there exist t ′ such that the probability
of pt+t ′ being not better than pt is smaller than (or equal to) 1 − δ (the complement of the
probability in the condition C2):

P
(

Ā
(
t, t ′
)) ≤ 1 − δ.

123

Swarm Intell

Let us consider now a sequence of k successive occurrences of Ā
(
t, t ′
)
: Ā
(
t + t ′0, t ′1

)
,

Ā
(
t + t ′0 + t ′1, t ′2

)
, . . . , Ā

(
t + t ′0 + t ′1 . . .+ t ′k−1, t

′
k

)
, i.e., pt+t ′0+t ′1...+t ′k−1+t ′k being

not better than pt . Note that (based on C1) pt+1 is not worse than pt , so, if pt+t ′0+t ′1...+t ′k−1+t ′k
is not better than pt , then none of pl is better than pt for all l ∈ [t, t + t ′0 + t ′1 . . .+ t ′k−1 + t ′k

]
.

Hence, for any t and for any number of steps k, the probability of pt+t ′0+t ′1...+t ′k−1+t ′k being
not better than pt is calculated by:

P
(

Ā
(
t + t ′0, t ′1

)) ∗P
(

Ā
(
t + t ′0 + t ′1, t ′2

)) ∗ . . . ∗P
(

Ā
(
t + t ′0 + t ′1 . . .+ t ′k−1, t ′k

))

=
k∏

l=1

P

⎛
⎝ Ā

⎛
⎝t +

l−1∑
j=0

t ′ j , t ′l

⎞
⎠
⎞
⎠ ≤ (1 − δ)k ,

where t ′0 is 0. Therefore, the probability that at least one of {pt+1, pt+2, . . . , pt+t ′0+t ′1...+t ′k−1+t ′k }
is better than pt is given by:

1 −
k∏

l=1

P

⎛
⎝ Ā

⎛
⎝t +

l−1∑
j=0

t ′ j , t ′l

⎞
⎠
⎞
⎠ > 1 − (1 − δ)k .

As k grows, the right hand side of the inequality approaches 1. Thus, the probability that at
least one of {pt+1, pt+2, . . . , pt+t ′0+t ′1...+t ′k−1+t ′k } is better than pt by at least η, grows to 1.

Let us denote the event of pt becoming better by at least η in the next t ′0 + t ′1 . . .+ t ′k−1 + t ′k
iterations by A∗(t, t ′k). The probability of this event approaches 1 as the number of steps k
grows.

Now, with further iterations of the GSA algorithm (i.e., as t grows), a sequence of occur-
rences of A∗(t, t ′k) takes place—every occurrence of A∗(t, t ′k) results in improvement by at
least η of the personal best vector with probability 1. As the number of such occurrences
A∗(t, t ′k) grows, pt will arrive at the optimality region with probability 1. This completes the
proof for the lemma 1. ��

Clearly, each particle i in the LcRiPSO is a specific model of the GSA. In fact, the personal
best of the particle i (�pi

t) corresponds to a candidate solution pt in GSA. Further, the personal
best of the particle i is updated by:

�pi
t =
{ �xi

t if F
(�xi

t

)
< F
(�pi

t−1

)− ε0

�pi
t−1 otherwise,

(22)

where ε0 is the desired precision of the optimality region (see the condition C1) that can be
set to the smallest possible value in computer simulations. Thus, the updating procedure 22 in
LcRiPSO for the particle i corresponds to the operator D in GSA. Also, the current position
of the particle i (�xi

t) corresponds to the random sample xt in GSA. As particle i contains
all three components in GSA, i.e., the current position in a particle is corresponding to the
random sample, and the personal best of a particle is corresponding to candidate solution,
and, finally, Eq. 23 of a particle is corresponding to operator D, we conclude that each particle
i in LcRiPSO is a specific model of GSA. Because each particle i in LcRiPSO is a specific
model of GSA, if we prove that each particle i satisfies C1 and C2, we would prove also that
LcRiPSO is locally convergent (recall that, based on Eq. 19, if all particles converge to the
optimality region, the PSO method is locally convergent).

Before we start the proof of the theorem, let us analyze how the position of the particle i
is updated. The position and velocity update rule in LcRiPSO for the ith particle at the time
t is written as:

123

Swarm Intell

Fig. 8 A particular example for
the convex hull Mi

t where the
size T i

t is 4. Five points that the
convex hull has been defined by
have been shown in the figure by
black circles. The gray areas
show the area A �ptk for each �pk

t .

Note that f (�pk
t) can be anywhere

in A �pk
t xi

t

p3
t

f3(p
3

t)

f4(p
4

t)

Convex hull
Mt

i

p1
t

f(p1
t)

x j
t+ 4(f4(p

4
t)-x

j
t)

x j
t+ 1(f1(p

1
t)-x

j
t)

x j
t + 3(f3(p

3
t)-x

j
t)

f2(p
2

t)

p2
t

x j
t+ 2(f2(p

2
t)-x

j
t)

p4
t

�xi
t+1 = �xi

t + �V i
t+1, (23)

�V i
t+1 = ω �V i

t + �vi
t , (24)

�vi
t =
∑

k∈T i
t

ϕkr i
kt

(
fk(�pk

t)− �xi
t

)
, (25)

where T i
t is the set of indexes of the particles which contribute to the velocity update rule

of the particle i , �pk
t is the personal best of the kth particle, and ϕk and ω are constants. Note

that based on the definition of T i
t , we always assume that i ∈ T i

t (i.e., the particle i always
contributes to its own velocity update rule). �pi

t is updated using Eq. 22. By combining Eqs.
23 and 24, we get

�xi
t+1 = �xi

t + ω �V i
t + �vi

t . (26)

Also, according to Eq. 23,

�V i
t = �xi

t − �xi
t−1. (27)

By combining Eqs. 26 and 27 we get

�xi
t+1 = �xi

t + �vi
t + ω(�xi

t − �xi
t−1). (28)

Let us pay attention to the first two components of this formula, �xi
t and �vi

t . Since calculation
of �vi

t (see 25) involves random values r i
kt , then �xi

t + �vi
t is a random point. Now we introduce a

new construct that plays an important role in our proof. For the particle i , we define a convex
hull Mi

t that is defined by card(T i
t)+1 vertices: �xi

t , �xi
t +ϕk

(
fk(�pk

t)− �xi
t

)
for all k ∈ {T i

t

}
.

Figure 8 shows an example of this convex hull for the particle i .
We are now going to introduce another lemma (lemma 2) that is essential for proving the

satisfaction of C2 by LcRiPSO.

Lemma 2 For every convex hull M which is defined by the points {Y1, Y1+Y2,…, Y1+Yn},
there exist {r2, . . . , rn} , rk ∈ [0, 1] fork = 2, . . . , n, such that any point m inside M can be

represented by: m = Y1 +
n∑

k=2
rkYk .

123

Swarm Intell

Fig. 9 f (�y) can be any point in
the light gray area. The dark area
shows the open set Ay

y

Ay

Proof Let us define Z1 = Y1 and Zk = Y1 +Yk for k = 2, . . ., n. If we translate the origin of
the coordinate system to Y1, then the vertices for M ′ (the convex hull M in the new coordinate
system) are {Z1 − Y1, Z2 − Y1, . . ., Zn − Y1} that is {Z ′

1, Z ′
2, . . ., Z ′

n} where Z ′
1 is in the

origin of the new coordinate system. Any arbitrary point m′ inside M ′ (note that m′ = m −Y1

where m is a point inside M) can be represented by a convex combination of all vertices in
M ′ (Rockafellar 1996). In other words:

∃ {r1, r2, . . . , rn} , rk ∈ [0, 1] for all k = 1, 2, . . . , n,m′ =
n∑

k=1

rk Z ′
k .

Note that, according to the definition of convex combination, {r1, r2, . . . , rn} have the prop-

erty
n∑

k=1
rk = 1. As Z ′

1 is the origin, it is clear that Z ′
1 = r1 Z ′

1 for anyr1. Thus, we get

∃ {r2, . . . , rn} , rk ∈ [0, 1] for all k = 2, . . . , n,m′ = Z ′
1 +

n∑
k=2

rk Z ′
k .

By substituting m′ = m − Y1 and Z ′
k = Zk − Y1, any point m inside M can be represented

by m − Y1 = Z1 − Y1 +
n∑

k=2
rk(Zk − Y1) =

n∑
k=2

rkYk . Hence, there exist {r2, . . . , rn} , rk ∈

[0, 1] f ork = 2, . . . , n such that m = Y1 +
n∑

k=2
rkYk . ��

According to the lemma 2, for any point �mi
t in the convex hull Mi

t , there exist r i
kt (for all

k ∈ T i
t) that �mi

t = �xi
t + �vi

t (see Eq. 25). Thus, we can write 28 as

�xi
t+1 = �mi

t + ω(�xi
t − �xi

t−1), (29)

where �mi
t is a random point in Mi

t . Therefore, the point �xi
t+1 is a random point from the

subspace (Mi
t + ω(�xi

t − �xi
t−1).

We introduce two simple observations that are used in the main proof.
Observation (a) For any point �y in the search space S, there exists a hyper-sphere with the
center �y and the radius ρ (we use the notation nρ (�y) for the set of all points in a hyper-
sphere with the center �y and radius ρ) that f (�y)) can be arbitrarily close to any point in that
hyper-sphere with non-zero probability. In other words, ∀�y ∈ S ∃ρ > 0 ∀�z ∈ nρ (�y) ∀ε >
0 P (| f (�y)− �z| < ε) > 0 where nρ (�y) is the hyper-sphere with the radius ρ centered at �y
(Fig. 9).

This is because Ay (in 20) is an open set which contains �y, and as nρ (�y) is a sphere-
neighborhood of �y, all points in nρ (�y) are in Ay . Thus, nρ (�y) is a subset of Ay . According
to the condition 20, f (�y) can be arbitrarily close to any point in Ay with non-zero proba-
bility. Hence, f (�y) has non-zero probability to be arbitrarily close to any point in nρ (�y).

123

Swarm Intell

Fig. 10 The intersection

between nψ
(
�xi
t

)
and Mi

t is

non-empty. The dark area shows
the intersection. Note that the
shape of Mi

t depends on fk (�pk
t)

and �xi
t , while it is always convex

Observation (b) For every particle i at every iteration t , for every ψ > 0, the convex hull
Mi

t has non-empty intersection with nψ
(�xi

t

)
. In fact,

∀i ∀t ∀ψ > 0 Mi
t ∩ nψ

(
�xi

t

)
�= ∅.

This is because �xi
t ∈ Mi

t (note that based on the definition of Mi
t , �xi

t is always a point in Mi
t),

hence Mi
t ∩ nψ

(�xi
t

) �= ∅. Also, note that this intersection reduces to only one point �xi
t when

Mi
t = {�xi

t

}
where

{�xi
t

} = { fk
(�pk

t

)}
forallk ∈ {T i

t

}
. Also, this intersection is a sub-space of

nψ
(�xi

t

)
when Mi

t − {�xi
t

} �= ∅. Figure 10 shows this intersection when Mi
t − {�xi

t

} �= ∅.
This observation implies also that for all ψ > 0 there exist a vector �a which its length is

shorter than ψ and the vector �xi
t + �α is a member of Mi

t (note that nψ
(�xi

t

)
has non-empty

intersection with Mi
t). Also, according to the lemma 2, �mi

t (a random point in Mi
t) can be

any point in Mi
t ∩ nψ

(�xi
t

)
with non-zero probability for all ψ . Note that, in this case, �mi

t can
be represented by �xi

t + �α where �α is a random vector in Mi
t ∩ nψ

(�xi
t

)
and its length is less

than ψ .

Lemma 3 In the LcRiPSO algorithm, if the function f satisfies the condition 20, then

∀ω ∈ (0, 1) ∃β > 0∀i∀t∃h >
β

1 − ω
∀�z ∈ nh

(
�pi

t

)
P
(
�z ∈ Mi

t

)
> 0.

In other words, for every value ofω in the interval [0, 1], there exists β > 0 that for every
particle i at every iteration t, every point in nh

(�pi
t

)
has non-zero probability to be in the

convex hull Mi
t .

Proof According to the Observation (a), for all �y in the search space, there exists a ρ where
f (�y) can be arbitrarily close to any point in nρ (�y) with non-zero probability. Based on
the definition of Mi

t , f (�pi
t) is in Mi

t . This implies that any point in nρ
(�pi

t

)
has non-zero

probability to be in Mi
t . Also, for any ρ > 0, for all ω, there exist a β in a way that β

1−ω = ρ.

Thus, by considering h = ρ, any point in nh
(�pi

t

)
has non-zero probability to be in Mi

t . This
completes the proof for the lemma 3. ��

Now, we are ready to prove the main theorem.

Theorem If the function f in the velocity update rule of LcRiPSO (Eq. 12b) satisfies condi-
tion:

∀�y ∈ S∃Ay ⊆ S∀�z ∈ Ay∀δ > 0P (| f (�y)− �z| < δ) > 0, (30)

then the algorithm LcRiPSO (the proposed PSO algorithm which uses Eq. 12b for velocity
update rule and the standard position update rule) is locally convergent.

123

Swarm Intell

Proof We will show that any particle i in LcRiPSO satisfies conditions C1 and C2. As the
personal best of each particle is updated by Eq. 23, the condition C1 is satisfied for each
particle. Now, for any iteration t , let us consider t ′ > 0 additional iterations. There are two
cases to consider:

case (1) F
(

�pi
t+t ′
)
< F
(

�pi
t

)

case (2) F
(

�pi
t+t ′
)

= F
(

�pi
t

)

Case (1) implies that there exist 0 < τ ≤ t ′ that F
(�pi

t+τ
)
< F
(�pi

t

)
. According to 23, if

F
(�pi

t+τ
)

is better than F
(�pi

t

)
, it is better by at least ε0. By setting ε0 = η in the condition C2,

this condition is satisfied for τ = t ′. This completes the proof for this case. Let us continue
with the case (2).

Case (2) implies that �pi
t = �pi

t+τ for all 0 < τ ≤ t ′. We will show that in this case, for all
0 < ω < 1 for all ψ > 0 there exist h>0 for each particle iat all iteration t , there exist t ′>0
that �xi

t+t ′ can be any point10 in nh
(�pi

t

)
with non-zero probability. Hence, if there exists a

point in nh
(�pi

t

)
that is better than �pi

t by at least η, there is a non-zero probability that �xi
t+t ′

is that point, and hence, �pi
t+t ′ is updated to �xi

t+t ′ . As �pi
t+t ′ is better than �pi

t by at least η with

non-zero probability, C2 is satisfied. We also show that if such a point does not exist then �pi
t

is already in the optimality region. This would complete the proof for the case (2).
According to the Observation (b), for all ψ , �mi

t = �xi
t + �α0 with non-zero probability,

where |�α0| < ψ . From the updating equation for �xi
t+1 (Eq. 29), we get:

�xi
t+1 = �xi

t + �α0 + ω
(
�xi

t − �xi
t−1

)
, (31)

with non-zero probability. Similarly, for �xi
t+2:

�xi
t+2 = �mi

t+1 + ω
(
�xi

t+1 − �xi
t

)
= �xi

t+1 + �α1 + ω
(
�xi

t + ω
(
�xi

t − �xi
t−1

)
+ �α0 − �xi

t

)

= �xi
t+1 + �α1 + ω

(
ω
(
�xi

t − �xi
t−1

)
+ �α0

)
= �xi

t+1 + �α1 + ω�α0 + ω2
(
�xi

t − �xi
t−1

)
,

(32)

with non-zero probability. In general,

�xi
t+t ′ = �mi

t+t ′−1 + ωt ′
(
�xi

t − �xi
t−1

)
+

t ′−1∑
l=0

ωt ′−1−l �αl , (33)

with non-zero probability, where |�αl | < ψ for all l. For simplicity, we re-write the last
equation as:

�xi
t+t ′ = �mi

t+t ′−1 + �λt ′,ω + �ζt ′,ψ , (34)

where �ζt ’,ψ =
t
′−1∑
l=0

ωl �αl , |�αl | < ψ and �λt ′ ,ω = ωt
′ (�xi

t − �xi
t−1

)
.11 At the iteration t + t ′, the

random sample �mi
t+t ’−1

is transformed by the vector �λt ’,ω + �ζt ’,ψ .

10 Note that, as all of the discussions in this paper are around continuous space, hitting a point is impossible.
Hence, whenever we are using “a point” we refer to “arbitrarily close to a point.”
11 Note that both �λt ′,ω and �ζt ′,ψ are dependent on t and i as well, however, for simplicity, these two indexes

are not mentioned in the usage of �λt ′,ω and �ζt ′,ψ .

123

Swarm Intell

Fig. 11 The blue vectors show �ζt ′,ψ . The gray areas are Mti ∩ nψ
(−→x i

t

)
. The length of the blue vectors

is always smaller than ψ . Also, the red vectors show the term �λt′,ω . It is clear that the red vectors become
smaller in each iteration.

Let us analyze all three components of Eq. 34 (i.e., �mi
t+t ′−1, �λt ′,ω, and �ζt ′,ψ).

Analysis of �λt ′,ω: Clearly, ωt ′ becomes smaller as t ′ grows (recall that 0 ≤ ω < 1 is

essential for PSO to be locally convergent), thus
∣∣∣�λt ′,ω
∣∣∣ becomes closer to zero as t ′ grows

(note that the length of �xi
t − �xi

t−1 is constant).

Analysis of �ζt ′,ψ : The longest possible vector that can be generated by this term is achieved
if for all l, �αl are in the same direction and their lengths are ψ (according to the Observation
(b) the lengths of �αl is at most ψ). Thus,

∣∣∣�ζt ′,ψ
∣∣∣ =
∣∣∣∣∣∣
t ′−1∑
l=0

ωl �αl

∣∣∣∣∣∣
<

t ′−1∑
l=0

ωlψ = ψ

t ′−1∑
l=0

ωt ′−1−l ,

that is always smaller than ψ ω
1−ω . Hence,

∀ω ∈ (0, 1)∀ψ > 0∀i∀t∀t ′ > 0
∣∣∣�ζt ′,ψ
∣∣∣ < ψ

ω

1 − ω
.

Figure 11 shows the updating steps for �xi
t in three iterations (it shows the changes of �ζt ′,ψ and

�λt ′,ω. It is clear that the length of �λt ′,ω shrinks (red vectors). Also, the length of �ζt ′,ψ (blue
vectors) in each iteration is the sum of all previous �αl multiplied by ωt ′−1−l (0 < l < t ′ −1).

Based on the Analysis of �ζt ′,ψ , it is clear that
∣∣∣�ζt ′,ψ + �λt ′,ω

∣∣∣ ≤
∣∣∣�ζt ′,ψ
∣∣∣+
∣∣∣�λt ′ ,ω

∣∣∣ < ψ ω
1−ω +∣∣∣�λt ′,ω

∣∣∣. Because �λt ′,ω shrinks as t′ grows (Analysis of �λt ′,ω), we can say that

∀ω ∈ (0, 1) ∀ψ > 0∀i∀t∃t ′ > 0
∣∣∣�ζt ′,ψ + �λt ′,ω

∣∣∣ < ψ
ω

1 − ω
.

Also, as this statement is true for all ψ , the statement is still true if the value of ψ is smaller

than the value of β in the lemma 3, i.e., there exists t ′ that
∣∣∣�ζt ′,β + �λt ′,ω

∣∣∣ < β ω
1−ω , and,

based on Observation (b), that �mi
t can be any point in the intersection Mi

t ∩n
ψ

(
xi

t

) �= ∅
for all ψ . According to the lemma 3, there exists h >

β
1−ω = β + β ω

1−ω , obviously

123

Swarm Intell

Fig. 12 The relation between∣∣∣�ζt ′,ψ + �λt′,ω
∣∣∣, h, and β. The

black dot in the middle is �pti , the

largest circle is nh

(
�pi

t

)
, the

dash-dotted circle is a circle with
the radius

∣∣∣�ζt′,ψ + �λt′,ω
∣∣∣, the

dashed circle is a circle with the
radius β. Note that

h >
∣∣∣�ζt′,β + �λt’,ω

∣∣∣+ β

h > β + β ω
1−ω > β ω

1−ω >
∣∣∣�ζt ′,β + �λt ′,ω

∣∣∣. Hence, for all h > β + β ω
1−ω , it is also true that

h >
∣∣∣�ζt ′,β + �λt ′,ω

∣∣∣+ β. See Fig. 12 for the relation between
∣∣∣�ζt ′,β + �λt ′,ω

∣∣∣ , β, and h.

Analysis of �mi
t+t ′−1: Based on the lemma 3, for every value ofω in the interval [0, 1], there

exist β > 0 for every particle i at every iteration t there exist h > β
1−ω such that nh

(�pi
t

)
is

in the convex hull Mi
t . As �mi

t+t ′−1 can be any point in Mi
t with non-zero probability (lemma

2), it can be any point in nh
(�pi

t

)
as well with non-zero probability.

Based on Eq. 34, �mi
t+t ′−1 is transformed by the vector �ζt ′,β + �λt ′,ω to generate �xi

t+t ′ .

As �mi
t+t ′−1 is selected from nh

(�pi
t

)
with non-zero probability (Analysis of �mi

t+t ′−1, and

because h >
∣∣∣�ζt ′,β + �λt ′,ω

∣∣∣ + β, the point �xi
t+t ′ = �mi

t+t ′−1 + �ζt ′,β + �λt ′,ω can be any point

in nh
(�pi

t

)
with non-zero probability as well.

There are two possible cases for the points in nh
(�pi

t

)
:

• there exists a point �p in nh
(�pi

t

)
that is better than �pti by at least ε0

• there is no point in nh
(�pt i
)

that is better than �pti by at least ε0

In the first case, �xi
t+t ′ has non-zero probability to be �p, which satisfies C2 as F(�p) <

F(�pi
t)−ε0. In the second case, �pi

t is already in the optimality region as the objective value of
�pi

t is better than all points in nh
(�pi

t

)
by ε0. Thus, the particle i satisfies C2, which implies that

the particle i converges to the optimality region. As this particle was an arbitrary particle,
all particles converge to the optimality region. This implies that the algorithm is locally
convergent. ��

Appendix 2

Theorem it is proven that LcRiPSO is rotation, scale, and translation invariant if

∀s ∈ R∀Orth (Q)∀�b, �y ∈ Rds Q f (�y)+ �b = f̂ (s Q �y + �b).
Proof It is well-known that an algorithm is rotation, scalar, and translation invariant (RST
invariant) if for all t > 0 x̂ i

t+1 = s Q �xi
t+1 + �b for any scalar s, orthogonal matrix Q, and

vector �b (This is called general RST invariant condition), and x̂ i
t+1is the position vector in

the rotated, scaled, and translated space (Wilke et al. 2007b; Spiegel 1959) at iteration t + 1.

123

Swarm Intell

Let us re-write the position and velocity update rules of the proposed method as follows:

�xi
t+1 = �xi

t + �V i
t+1, (35)

�V i
t+1 = ω �V i

t + �vi
t , (36)

�vi
t =
∑

k∈T i
t

ϕkr i
kt

(
fk(�pk

t)− �xi
t

)
. (37)

Note that, this notation is algebraically the same as the original notation. By calculating the
left hand side (x̂ i

t+1) and right hand side (s Q �xi
t+1 + �b) of the general RST invariant condition

for the position update rule of the proposed method (Eq. 35), Eqs. 22 and 23 respectively
emerge:

x̂ i
t+1 = x̂ i

t + V̂ i
t+1 = s Q �xi

t + �b + V̂ i
t+1, (38)

s Q �xi
t+1 + �b = s Q

(
�xi

t + �V i
t+1

)
+ �b = s Q �xi

t + �b + s Q �V i
t+1. (39)

By comparing Eqs. 38 and 39, it is obvious that the general RST invariant condition is satisfied
if V̂ i

t+1 = s Q �V i
t+1. The left hand side and right hand side of this equation for the proposed

velocity update rule (Eq. 36) are calculated as Eqs. 40 and 41, respectively.

V̂ i
t+1 = ωV̂ i

t + v̂i
t = s Qω �V i

t + v̂i
t , (40)

s Q �V i
t+1 = s Qω �V i

t + s Q�vi
t . (41)

Note that, if V̂ i
t+1 = s Q �V i

t+1 then V̂ i
t = s Q �V i

t . By comparing Eqs. 40 and 41, it is obvious

that V̂ i
t+1 = s Q �V i

t+1 is satisfied iff v̂i
t = s Q�vi

t . Thus, the general RST invariant condition
is satisfied in the proposed method iff v̂i

t = s Q�vi
t for all Q and s, where v̂i

t is the stochastic
velocity that has been transformed (rotated, scaled, and translated). This condition is called
RST invariant condition. The left hand side and right hand side of the RST invariant condition
for Eq. 37 is written as

v̂i
t =
∑

k∈T i
t

ϕkr i
kt

(
f̂k(p̂

k
t)− x̂ i

t

)
=
∑

k∈T i
t

ϕkr i
kt

(
f̂k(Q �pi

t + �b)− s Q �xi
t − �b
)
, (42)

s Q�vi
t = s Q

⎛
⎝∑

k∈T i
t

ϕkr i
kt

(
fk(�pk

t)− �xi
t

)
⎞
⎠ =
∑

k∈T i
t

ϕkr i
kt

(
s Q fk(�pk

t)+ �b − s Q �xi
t − �b
)
.

(43)

Equation 43 has been written according to this principle that, because r is a random scalar,
we can say Qr=rQ where Q is an orthogonal matrix. By comparing Eqs. 42 and 43, the
condition v̂i

t = s Q�vi
t is satisfied if s Q f (�y)+ �b = f̂ (s Q �y + �b). ��

Appendix 3

According to Gut (2009), if N (μ, V) (V is the covariance matrix and μ is the mean vec-
tor of the distribution) is rotated by Q, translated by b, and scaled by s, the mean of
the new distribution is b + s Qμ and its covariance matrix is s2 QV QT , i.e., N̂ (μ̂, V) =
N (s Qμ+ b, s2 QV QT). Also, N (μ, V) = μ+ N (0, V)

123

Swarm Intell

To study the condition f̂ (x̂) = s Q f (x) + b for f (μ) = N (μ, V), for the left hand side
of the condition we have:

f̂ (x̂) = N̂ (μ̂, V) = N (s Qμ+ b, s2 QV QT) = s Qμ+ b + N (0, s2 QV QT I). (44)

For the right hand side of the condition:

s Q f (x)+ b = s QN (μ, V)+ b = s Qμ+ b + s QN (0, V)

= s Qμ+ b + N (0, s2 Q QT V I). (45)

By comparing Eqs. 45 and 44, in order to have the condition satisfied, we need to have
QT V = V QT . This equation is satisfied if V = aI where a is scalar and I is the identity
matrix.

References

Bonyadi, M. R., Li, X., & Michalewicz, Z. (2013). A hybrid particle swarm with velocity mutation for constraint
optimization problems. In Genetic and evolutionary computation conference (pp. 1–8). New York; ACM.
doi:10.1145/2463372.2463378.

Bonyadi, M. R., & Michalewicz, Z. (2014). SPSO2011—analysis of stability, local convergence, and rotation
sensitivity. In Genetic and evolutionary computation conference (pp. 9–15). Vancouver, Canada. ACM.
doi:10.1145/2576768.2598263.

Bonyadi, M. R., Michalewicz, Z., & Li, X. (2014). An analysis of the velocity updating rule of the particle
swarm optimization algorithm. Journal of Heuristics. doi:10.1007/s10732-014-9245-2.

Chen, D. B., & Zhao, C. X. (2009). Particle swarm optimization with adaptive population size and its appli-
cation. Applied Soft Computing, 9(1), 39–48. doi:10.1016/j.asoc.2008.03.001.

Cheng, M.-Y., Huang, K.-Y., & Chen, H.-M. (2011). Dynamic guiding particle swarm optimization with
embedded chaotic search for solving multidimensional problems. Optimization Letters, 6(6), 719–729.
doi:10.1007/s11590-011-0297-z.

Clerc, M. (2006). Particle swarm optimization. Chichester: Wiley-ISTE.
Clerc, M., & Kennedy, J. (2002). The particle swarm—explosion, stability, and convergence in a multidimen-

sional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73. doi:10.1109/4235.
985692.

Deb, K., Joshi, D., & Anand, A. (2002). Real-coded evolutionary algorithms with parent-centric recombination.
In Congress on evolutionary computation (pp. 61–66). Honolulu: IEEE. doi:10.1109/CEC.2002.1006210.

Engelbrecht, A. (2005). Fundamentals of computational swarm intelligence. Hoboken, NJ: Wiley.
Engelbrecht, A. (2011). Scalability of a heterogeneous particle swarm optimizer. In Symposium on swarm

intelligence (pp. 1–8). Paris: IEEE. doi:10.1109/SIS.2011.5952563.
Engelbrecht, A. (2012). Particle swarm optimization: Velocity initialization. In Congress on evolutionary

computation (pp. 1–8). Brisbane: IEEE.
García-Nieto, J., & Alba, E. (2011). Restart particle swarm optimization with velocity modulation: A scalability

test. Soft Computing, 15(13), 2221–2232. doi:10.1007/s00500-010-0648-1.
Ghosh, S., Das, S., Kundu, D., Suresh, K., Panigrahi, B. K., & Cui, Z. (2010). An inertia-adaptive particle

swarm system with particle mobility factor for improved global optimization. Neural Computing and
Applications, 21(4), 237–250. doi:10.1007/s00521-010-0356-x.

Gut, A. (2009). An intermediate course in probability. New York: Springer.
Hansen, N., Ros, R., Mauny, N., Schoenauer, M., & Auger, A. (2011). Impacts of invariance in search: When

CMA-ES and PSO face ill-conditioned and non-separable problems. Applied Soft Computing, 11(10),
5755–5769. doi:10.1016/j.asoc.2011.03.001.

Hao, G., & Wenbo, X. (2011). A new particle swarm algorithm and its globally convergent modifications.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 41(7), 1334–1351. doi:10.
1109/tsmcb.2011.2144582.

Helwig, S., & Wanka, R. (2007). Particle swarm optimization in high-dimensional bounded search spaces. In
Swarm intelligence symposium (pp. 198–205). Honolulu: IEEE. doi:10.1109/SIS.2007.368046.

Helwig, S., & Wanka, R. (2008). Theoretical analysis of initial particle swarm behavior. In Interna-
tional conference on parallel problem solving from nature (pp. 889–898). Berlin: Springer. doi:10.1007/
978-3-540-87700-4_88.

123

http://dx.doi.org/10.1145/2463372.2463378
http://dx.doi.org/10.1145/2576768.2598263
http://dx.doi.org/10.1007/s10732-014-9245-2
http://dx.doi.org/10.1016/j.asoc.2008.03.001
http://dx.doi.org/10.1007/s11590-011-0297-z
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1109/CEC.2002.1006210
http://dx.doi.org/10.1109/SIS.2011.5952563
http://dx.doi.org/10.1007/s00500-010-0648-1
http://dx.doi.org/10.1007/s00521-010-0356-x
http://dx.doi.org/10.1016/j.asoc.2011.03.001
http://dx.doi.org/10.1109/tsmcb.2011.2144582
http://dx.doi.org/10.1109/tsmcb.2011.2144582
http://dx.doi.org/10.1109/SIS.2007.368046
http://dx.doi.org/10.1007/978-3-540-87700-4_88
http://dx.doi.org/10.1007/978-3-540-87700-4_88

Swarm Intell

Hsieh, S. T., Sun, T. Y., Liu, C. C., & Tsai, S. J. (2009). Efficient population utilization strategy for particle
swarm optimizer. IEEE Transactions on Systems Man and Cybernetics Part B: Cybernetics, 39(4), 444–456.
doi:10.1109/Tsmcb.2008.2006628.

Huang, H., Qin, H., Hao, Z., & Lim, A. (2010). Example-based learning particle swarm optimization for
continuous optimization. Information Sciences. doi:10.1016/j.ins.2010.10.018.

Hutter, F., Hoos, H. H., Leyton-Brown, K., & Murphy, K. (2010). Time-bounded sequential parameter opti-
mization. In Learning and intelligent optimization (pp. 281–298). Berlin: Springer.

Jiang, M., Luo, Y., & Yang, S. (2007a). Particle swarm optimization-stochastic trajectory analysis and parame-
ter selection. Swarm intelligence focus on ant and particle swarm optimization. Wien: I-TECH Education
and Publishing.

Jiang, M., Luo, Y. P., & Yang, S. Y. (2007b). Stochastic convergence analysis and parameter selection of
the standard particle swarm optimization algorithm. Information Processing Letters, 102(1), 8–16. doi:10.
1016/j.ipl.2006.10.005.

Kennedy, J. (2003). Bare bones particle swarms. In Swarm intelligence symposium (pp. 80–87). doi:10.1109/
SIS.2003.1202251.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In International conference on neural net-
works (Vol. 4, pp. 1942–1948). Piscataway: IEEE.

Lehre, P. K., & Witt, C. (2013). Finite first hitting time versus stochastic convergence in particle swarm
optimisation. In L. Di Gaspero, A. Schaerf, & T. Stützle (Eds.), Advances in metaheuristics. New York:
Springer.

Li, X., & Yao, X. (2011). Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans-
actions on Evolutionary Computation, 16(4), 210–224.

Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer
for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10(5),
281–295. doi:10.1109/Tevc.2005.857610.

Malan, K., & Engelbrecht, A. P. (2008). Algorithm comparisons and the significance of population size. In
IEEE World Congress on computational intelligence (pp. 914–920). Hong Kong: IEEE. doi:10.1109/CEC.
2008.4630905.

Matyas, J. (1965). Random optimization. Automation and Remote Control, 26(4), 246–253.
Mendes, R., Kennedy, J., & Neves, J. (2004). The fully informed particle swarm: Simpler, maybe better. IEEE

Transactions on Evolutionary Computation, 8(5), 204–210. doi:10.1109/TEVC.2004.826074.
Montes de Oca, M. A., Aydın, D., & Stützle, T. (2011). An incremental particle swarm for large-scale con-

tinuous optimization problems: An example of tuning-in-the-loop (re) design of optimization algorithms.
Soft Computing, 15(13), 2233–2255. doi:10.1007/s00500-010-0649-0.

Montes de Oca, M. A., & Stützle, T. (2008). Convergence behavior of the fully informed particle swarm
optimization algorithm. In Genetic and evolutionary computation conference (pp. 71–78). New York:
ACM. doi:10.1145/1389095.1389106.

Montes de Oca, M. A., Stützle, T., Birattari, M., & Dorigo, M. (2009). Frankenstein’s PSO: A composite
particle swarm optimization algorithm. IEEE Transactions on Evolutionary Computation, 13(7), 1120–
1132. doi:10.1109/Tevc.2009.2021465.

Poli, R. (2008). Analysis of the publications on the applications of particle swarm optimisation. Journal of
Artificial Evolution and Application, 2008(5), 1–10. doi:10.1155/2008/685175.

Poli, R. (2009). Mean and variance of the sampling distribution of particle swarm optimizers during stagnation.
IEEE Transactions on Evolutionary Computation, 13(6), 712–721. doi:10.1109/Tevc.2008.2011744.

Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization: An overview. Swarm Intelligence,
1(1), 33–57. doi:10.1007/s11721-007-0002-0.

Potter, M., & De Jong, K. (1994). A cooperative coevolutionary approach to function optimization. Parallel
problem solving from nature (pp. 249–257). Berlin: Springer. doi:10.1007/3-540-58484-6_269.

Ratnaweera, A., Halgamuge, S. K., & Watson, H. C. (2004). Self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation,
8(5), 240–255. doi:10.1109/tvec.2004.826071.

Rockafellar, R. T. (1996). Convex analysis (Vol. 28). Princeton: Princeton University Press.
Schmitt, M., & Wanka, R. (2013). Particle swarm optimization almost surely finds local optima. In Genetic and

evolutionary computation conference, Amsterdam, The Netherlands (pp. 1629–1636). New York: ACM.
doi:10.1145/2463372.2463563.

Shi, Y., & Eberhart, R. (1998a). A modified particle swarm optimizer. In World Congress on computational
intelligence (pp. 69–73). Los Alamitos: IEEE. doi:10.1109/icec.1998.699146.

Shi, Y., & Eberhart, R. (1998b). Parameter selection in particle swarm optimization. In Evolutionary program-
ming VII (pp. 591–600). Berlin: Springer. doi:10.1007/BFb0040810.

123

http://dx.doi.org/10.1109/Tsmcb.2008.2006628
http://dx.doi.org/10.1016/j.ins.2010.10.018
http://dx.doi.org/10.1016/j.ipl.2006.10.005
http://dx.doi.org/10.1016/j.ipl.2006.10.005
http://dx.doi.org/10.1109/SIS.2003.1202251
http://dx.doi.org/10.1109/SIS.2003.1202251
http://dx.doi.org/10.1109/Tevc.2005.857610
http://dx.doi.org/10.1109/CEC.2008.4630905
http://dx.doi.org/10.1109/CEC.2008.4630905
http://dx.doi.org/10.1109/TEVC.2004.826074
http://dx.doi.org/10.1007/s00500-010-0649-0
http://dx.doi.org/10.1145/1389095.1389106
http://dx.doi.org/10.1109/Tevc.2009.2021465
http://dx.doi.org/10.1155/2008/685175
http://dx.doi.org/10.1109/Tevc.2008.2011744
http://dx.doi.org/10.1007/s11721-007-0002-0
http://dx.doi.org/10.1007/3-540-58484-6_269
http://dx.doi.org/10.1109/tvec.2004.826071
http://dx.doi.org/10.1145/2463372.2463563
http://dx.doi.org/10.1109/icec.1998.699146
http://dx.doi.org/10.1007/BFb0040810

Swarm Intell

Solis, F. J., & Wets, R. J.-B. (1981). Minimization by random search techniques. Mathematics of Operations
Research, 6(1), 19–30.

Spears, W. M., Green, D. T., & Spears, D. F. (2010). Biases in particle swarm optimization. International
Journal of Swarm Intelligence Research, 1(4), 34–57. doi:10.4018/jsir.2010040103.

Spiegel, M. R. (1959). Theory and problems of vector analysis: Schaum’s outline series. New York: McGraw-
Hill.

Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y., Auger, A., et al. (2005). Problem definitions
and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Report
2005005, Technical Report.

Tang, K., Yao, X., Suganthan, P. N., MacNish, C., Chen, Y. P., Chen, C. M., et al. (2007). Benchmark functions
for the CEC’2008 special session and competition on large scale global optimization. Nature Inspired
Computation and Applications Laboratory, USTC, China, Technical Report.

Trelea, I. C. (2003). The particle swarm optimization algorithm: Convergence analysis and parameter selection.
Information Processing Letters, 85(8), 317–325. doi:10.1016/S0020-0190(02)00447-7.

Tu, Z., & Lu, Y. (2004). A robust stochastic genetic algorithm (StGA) for global numerical optimization. IEEE
Transactions on Evolutionary Computation, 8(7), 456–470. doi:10.1109/TEVC.2004.831258.

Van den Bergh, F., & Engelbrecht, A. (2002). A new locally convergent particle swarm optimiser. In Systems,
man and cybernetics, Hammamet, Tunisia (Vol. 3, pp. 96–101): Los Alamitos: IEEE.

Van den Bergh, F., & Engelbrecht, A. P. (2001). Effects of swarm size on cooperative particle swarm optimisers.
In Genetic and evolutionary computation conference, San Fransisco, USA.

Van den Bergh, F., & Engelbrecht, A. P. (2004). A cooperative approach to particle swarm optimization. IEEE
Transactions on Evolutionary Computation, 8(5), 225–239. doi:10.1109/TEVC.2004.826069.

Van den Bergh, F., & Engelbrecht, A. P. (2006). A study of particle swarm optimization particle trajectories.
Information Sciences, 176(10), 937–971. doi:10.1016/j.ins.2005.02.003.

Van den Bergh, F., & Engelbrecht, A. P. (2010). A convergence proof for the particle swarm optimiser.
Fundamenta Informaticae, 105(6), 341–374. doi:10.3233/FI-2010-370.

Vesterstrom, J., & Thomsen, R. (2004). A comparative study of differential evolution, particle swarm opti-
mization, and evolutionary algorithms on numerical benchmark problems. In Congress on evolutionary
computation (Vol. 2, Vol. 1982, pp. 1980–1987): Los Alamitos: IEEE. doi:10.1109/CEC.2004.1331139.

Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., & Tian, Q. (2011). Self-adaptive learning based particle swarm
optimization. Information Sciences, 181(20), 4515–4538. doi:10.1016/j.ins.2010.07.013.

Wilke, D. (2005). Analysis of the particle swarm optimization algorithm. Pretoria: University of Pretoria.
Wilke, D. N., Kok, S., & Groenwold, A. A. (2007a). Comparison of linear and classical velocity update

rules in particle swarm optimization: Notes on diversity. International Journal for Numerical Methods in
Engineering, 70(10), 962–984. doi:10.1002/nme.1867.

Wilke, D. N., Kok, S., & Groenwold, A. A. (2007b). Comparison of linear and classical velocity update rules
in particle swarm optimization: Notes on scale and frame invariance. International Journal for Numerical
Methods in Engineering, 70(10), 985–1008. doi:10.1002/nme.1914.

Witt, C. (2009). Why standard particle swarm optimisers elude a theoretical runtime analysis. In Foundations
of genetic algorithms, New York, NY, USA (pp. 13–20). New York: ACM. doi:10.1145/1527125.1527128.

Xinchao, Z. (2010). A perturbed particle swarm algorithm for numerical optimization. Applied Soft Computing,
10(1), 119–124. doi:10.1016/j.asoc.2009.06.010.

Zhao, S., Liang, J., Suganthan, P., & Tasgetiren, M. (2008). Dynamic multi-swarm particle swarm optimizer
with local search for large scale global optimization. In IEEE World Congress on computational intelligence
(pp. 3845–3852). Los Alamitos: IEEE. doi:10.1109/CEC.2008.4631320.

123

http://dx.doi.org/10.4018/jsir.2010040103
http://dx.doi.org/10.1016/S0020-0190(02)00447-7
http://dx.doi.org/10.1109/TEVC.2004.831258
http://dx.doi.org/10.1109/TEVC.2004.826069
http://dx.doi.org/10.1016/j.ins.2005.02.003
http://dx.doi.org/10.3233/FI-2010-370
http://dx.doi.org/10.1109/CEC.2004.1331139
http://dx.doi.org/10.1016/j.ins.2010.07.013
http://dx.doi.org/10.1002/nme.1867
http://dx.doi.org/10.1002/nme.1914
http://dx.doi.org/10.1145/1527125.1527128
http://dx.doi.org/10.1016/j.asoc.2009.06.010
http://dx.doi.org/10.1109/CEC.2008.4631320

	A locally convergent rotationally invariant particle swarm optimization algorithm
	Abstract
	1 Introduction
	2 Background
	2.1 Basics of PSO
	2.2 Role of the random matrices in SPSO
	2.3 Some PSO variants

	3 Some issues in PSO and their significance
	3.1 Stagnation
	3.2 Dimensional stagnation
	3.3 Swarm size
	3.4 Local convergence
	3.5 Problem scale
	3.6 Rotation variance
	3.7 Relations between the issues

	4 Proposed method
	4.1 Proposed velocity update rule---general form
	4.2 Proposed velocity update rule---specific model
	4.3 Experimental validation

	5 Experiments and comparisons
	5.1 Experimental setup
	5.2 Parameter setting
	5.3 Comparison
	5.4 Test 1, overall performance
	5.5 Test 2, small swarm size
	5.6 Test 3, large scale problems
	5.7 Test 4, Rotation

	6 Conclusion and future work
	Acknowledgments
	Appendix 1
	Appendix 2
	Appendix 3
	References

