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Abstract During the last few years, most production-based
businesses have been under enormous pressure to improve
their top-line growth and bottom-line savings. As a result,
many companies are turning to systems and technologies
that can help optimise their supply chain activities. In this
paper, we discuss a real-world application of scheduling
in the mining industry. This is a highly constrained prob-
lem with some of the constraints changing over time. The
objective is to generate a plan that meets the quality and
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tonnage targets by utilising the provided equipment and
machines. The mathematical model is described in detail,
and a three-module complex algorithm based on computa-
tional intelligence is proposed. The main software function-
ality is also described. The developed software is currently
in the production use.

Keywords Open-pit mining · Scheduling ·
Metaheuristics · Real-world application

1 Introduction

Due to the high level of complexity, it becomes virtu-
ally impossible for deterministic systems or human domain
experts to find an optimal solution for many real-world
problems, especially in the mining industry—not to men-
tion that the term “optimal solution” loses its meaning in
multi-objective environment, as often we can talk only about
trade-offs between different solutions. Moreover, the man-
ual iteration and adjustment of scenarios (what-if scenarios
and trade-off analysis), which is needed for strategic plan-
ning, becomes an expensive, if not unaffordable, exercise.
Many texts on advance planning and supply chain manage-
ment (e.g. [1]) describe several commercial software appli-
cations (e.g. AspenTech, aspenONE; i2 Technologies, i2
Six.Two; Oracle, JDEdwards EnterpriseOne Supply Chain
Planning; SAP, SCM; and many others), which emerged
mainly in 1990s. However, it seems that the areas of sup-
ply chain management in general, and advanced planning
in particular, are ready for a new genre of applications
which are based on computational intelligence methods.
Many supply chain-related projects run at large corporations
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worldwide failed miserably (projects that span a few years
and cost many millions). In [1], the authors wrote:

In recent years since the peak of the e-business hype
Supply Chain Management and especially Advanced
Planning Systems were viewed more and more criti-
cally by industry firms, as many SCM projects failed
or did not realise the promised business value.

The authors also identified three main reasons for such
failures:

– the perception that the more you spend on IT (e.g. APS),
the more value you will get from it,

– an inadequate alignment of the SCM concept with the
supply chain strategy, and

– the organisational and managerial culture of industry
firms.

Whilst it is difficult to argue with the above points, it
seems that the fourth (and unlisted) reason is the most
important: maturity of technology. Small improvements and
upgrades of systems created in 1990s do not suffice any
longer for solving companies’ problems of the twenty-first
century. A new approach is necessary which would com-
bine seamlessly the forecasting, simulation and optimisation
components in a new architecture. Further, many exist-
ing applications are not flexible enough in the sense that
they cannot cope with any exceptions, i.e. it is very dif-
ficult, if not impossible, to include some problem-specific
features—and most businesses have some unique features
which need to be included in the underlying model—and are
not adequately captured by off-the-shelf standard applica-
tions. Thus, the results are often not realistic, and the team of
operators return to their spreadsheets and whiteboards rather
than to rely on unrealistic recommendations of the software.

There are two main branches that tackle optimisation of
complex problems: operations research and computational
intelligence. Operations research uses techniques such as
linear programming, branch and bound, dynamic program-
ming, etc. In this paper, our methods, however, will be based
on the methods of computational intelligence.

An interesting question, which is being raised from time
to time, asks for guidance on the types of problems for
which computational intelligence methods are more appro-
priate than, say, standard operation research methods. From
our perspective, the best answer to this question is given in a
single phrase: complexity. Let us explain. Real-world prob-
lems are usually difficult to solve for several reasons and
include the following:

– The number of possible solutions is so large as to forbid
an exhaustive search for the best answer.

– The evaluation function that describes the quality of any
proposed solution is noisy or varies with time, thereby
requiring not just a single solution but an entire series
of solutions.

– The possible solutions are so heavily constrained that
constructing even one feasible answer is difficult, let
alone searching for an optimum solution.

Note that every time we solve a problem, we must realise
that we are, in reality, only finding the solution to a model
of the problem. All models are a simplification of the real
world—otherwise they would be as complex and unwieldy
as the natural setting itself. Thus, the process of problem
solving consists of two separate general steps: (i) creating a
model of the problem and (ii) using that model to generate
a solution [2]:

Problem → Model → Solution.

Note that the “solution” is only a solution in terms of
the model. If our model has a high degree of fidelity, we
can have more confidence that our solution will be mean-
ingful. In contrast, if the model has too many unfulfilled
assumptions and rough approximations, the solution may be
meaningless, or worse. So, in solving real-world problems,
there are at least two ways to proceed [2]:

1. we can try to simplify the model so that traditional
methods might return better answers, or

2. we can keep the model with all its complexities, and
use non-traditional approaches, to find a near-optimum
solution.

The system that is described in this paper shows a real-
world application of computational intelligence in mining
industry. The problem of mine planning has enormous
amount of possible solutions and is very highly constrained
with constraints changing over time. Because of these char-
acteristics, algorithms based on computational intelligence
were employed to find solutions to this problem. Unfor-
tunately, due to the commercial and proprietary nature of
this system, it is not possible to reveal all implementa-
tional details needed to replicate problem. However, enough
details is provided to explain underlying concepts of the
algorithms used. The system is currently in production
use.

The rest of the paper is organised as follows.
Section 2 provides a review of relevant literature. The
following section explains the problem and challenges.
Section 4 describing the mathematical model. An algorith-
mic approach to the problem is presented in Section 5.
The functionality of the developed system is described in
Section 6. The last Section 8 concludes the paper.
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2 Literature review

Mining is the process of extraction for profit of valuable
minerals or other geological materials from the earth. The
following major types of minerals are commonly mined.

– Metallic ores. These include the ferrous metals (iron,
manganese), the base metals (copper, lead, zinc), the
precious metals (gold, silver, platinum) and the radioac-
tive metals (uranium, radium).

– Nonmetaillic minerals. These include phosphate, lime-
stone and sulphur.

– Fossil fuels. These include coal, petroleum and natural
gas. Extraction of petroleum and gas which have differ-
ent physical characteristics requires a different mining
technology.

Mining is amongst the most profitable of industries,
and therefore optimised mine planning and scheduling
can have a great impact for optimal mine exploitation.
There are two main ways to recover materials from the
ground: surface mining and underground mining. In this
paper, we will be focusing on the former. Many problems
arise in open-pit mining: orebody modelling, creation of
the life-of-mine (LOM) schedule, determination of mine
equipment requirements and optimal operating layout, and
the optimal transportation of ore from pit to port. Each
one of these problems is very complex, so the opera-
tion of a large open-pit mine is an enormously difficult
task.

In terms of the time horizon, there can be operational,
short-term, medium-term, long-term planning (LTP), and
LOM planning. The operational and short-term planning
involve a very detailed scheduling of processes and equip-
ment, where it is important to know what each piece of
equipment should be doing during each day and even each
hour. It also operates based on fairly precise data. In con-
trast, LTP involves looking at a global picture, working
with estimated data, various uncertainties, risk analysis and
evolving economic criteria. This research is mostly focused
on the LTP, but future developments may include short-term
planning as well.

Caccetta and Hill [3] discuss some techniques for LOM
optimal production schedule. They describe mixed integer
linear programming (MILP) model and give a survey of sev-
eral methods to address the problem, including parametri-
sation method and a method based on the Lagrangian
relaxation. In their later work, Caccetta and Hill [4] use
the branch and bound method to solve the problem based
on MILP. They use a combination of best-first search and
depth-first search to achieve a “good spread” of possi-
ble pit schedules whilst benefiting from using depth-first

search. Bley et. al [5] use the same model formulation as
that of Caccetta and Hill whilst strengthening the problem
by adding inequalities derived by combining the prece-
dence (knapsack substructure) and production constraints.
The goal is to maximise the net present value (NPV).

Lizotte and Elbrond [6] and Yun and Yegulalp [7] tackle
the mine scheduling problem with techniques based on
the dynamic programming. Smith and Tao [8] address the
multi-objective phosphate mine scheduling problem via
goal programming techniques.

In the current paper, we will mostly focus on the extended
version of the block sequencing problem, i.e what blocks to
dig at what time. Dagdelen and Johnson [9] propose an algo-
rithm based on the Lagrangian relaxation for maximising
NPV with constraints. The extension of this work has been
done by Akaike and Dagdelen [10] by iteratively chang-
ing the values of Lagrangian multipliers, until the solution
satisfies the constraints. Another extension has been done
by Kawahata [11] in his doctoral thesis. He added variable
cutoff grades, stockpiling and wastedump restrictions.

Busnach et al. [12] propose a heuristic algorithm that
addresses a block sequencing problem for a phosphate mine
in Israel. Samanta et. al [13] apply a genetic algorithm to
the problem of grade control planning in a bauxite mine.
The problem that is discussed in this paper has a grade con-
trol planning problem as its part. The goal of the problem is
to minimise quality deviations of two elements: silicon and
aluminium.

Osanloo et al. [14] has a good review of long-term opti-
misation models for open-pit mining. A very good review on
operations research methods in mine planning (both surface
and underground) is provided by Newman et al. [15].

Armstrong and Galli [16] discuss the problem of mine
scheduling and pit optimisation when the mine resources
become better known through time whilst economic param-
eters such as commodity prices and costs evolve over time.
As the number of blocks in the mine can be enormous, the
authors propose to work with larger aggregations of blocks
called macro-blocks. They take advantage of convexity of
block sequences to solve the problem with the two-step
procedure to select the best sequence.

Halatchev [17] describes an important contemporary cri-
teria for long-term production scheduling. These include
technological, economical and probabilistic criteria.

Sattarvand and Niemann-Delius [18] propose a new algo-
rithm based on the ant colony that tackles the problem
of optimisation long-term planning. The produced sched-
ule is 34 % better than the initial generated by the Lerchs
Grossman and parametrisation algorithms.

Chicoisne et al. [19] look at integer programming formu-
lation of mine planning problem C-PIT. The authors propose
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a new decomposition method for the linear programming
model with the single capacity constraint per time period.
After the linear programming step, a heuristic based on local
search is run to find even better solution.

Many problems in the mining industry can be classi-
fied as scheduling problems. The problem that is discussed
in this paper also belongs to this category. Several differ-
ent types of scheduling problems exist, such as job-shop
scheduling, flow-shop, flexible flow-shop and open-shop.
These are described in detail in [20]. Many other algorithms
for different types of scheduling problems were developed,
for example are those in [21–32].

3 Problem description

Since prehistoric times, people have been mining different
ores and minerals to produce various goods for their lives.
Mining goes hand in hand with human history, and so even
major cultural eras are called by various metals mined: the
Bronze Age (4000 to 5000 BC), the Iron Age (1500 BC to
1780 AD), the Steel Age (1780 to 1945) and the Nuclear
Age (1945 to the present). In the modern world, mining
is still one of the most important and advanced fields of
industry. There are several main types of mining, and in
this case study, the open-pit type of mining problem will be
described. In particular, a metal ore mining system will be
discussed.

A typical mine has a hierarchical structure. At the top
level, the mine is divided into several sub-mines called mod-
els. Typically, each model is an island separated by non-ore
material. Each model consists of one or several pits. Each
pit in turn is sliced into horizontal layers called benches.
Each bench contains multiple blocks (which is the last level
of hierarchy). Each block has specific information about its
coordinates, tonnage, characteristics, percentage of different
metals and nonmetals (e.g. iron, aluminium, phosphorus)
and waste. A block can fully consist of waste, or it can
contain certain metals of high or low grade.

There are two main types of plants on the mining site:
crushers and washplants (sometimes referred to as a bene-
ficiation plant). Depending on the nature of the mine, there
can be other types of plants; however, in this chapter, only
these two are considered.

A crusher is a plant designed to reduce large block
chunks into smaller rocks for further processing. Different
crushers have different crushing speeds measured in tonnes
crushed per hour. Two main types of crushers considered in
this chapter are high-grade crushers and low-grade crush-
ers that are designed to operate with high- and low-grade
materials, respectively.

In order to improve low-grade ore, it needs to be pro-
cessed by the washplant. The process of washing removes

contaminations, impurities and other things that lower the
quality of the ore. Several methods are known to achieve
this task: magnetic separation, advanced gravity separation,
jigging, washing and others.

There are two types of mobile equipment available for
mining: diggers and trucks. Trucks are used to transport
material from one place to another. One or several fleets of
trucks can be available. Each fleet has a number of trucks of
the same type with same speed and load capacity. Diggers
are used to excavate material and load it to trucks. Each dig-
ger has its own digging rate measured in tonnes of material
per hour. They normally have a very low speed (2 km/h).

Mine models, pits, benches, crushers, washplants, stock-
piles and wastedumps are connected by the road network.
Materials are transported by a means of trucks through this
network. Each pit has one or several pit exits through which
trucks enter the pit. Each bench has one or several start-
ing blocks, called toe blocks, with the road connected to
them.

The mining process is as follows. First, a block is blasted
by explosives, and then a digger enters the blast area and
excavates the blasted material. It loads the material onto
trucks which drive it to the next destination. The destina-
tion can be different depending on the type and quality of
material. All high-grade materials from the excavated block
are transported to high-grade crushers, and then the crushed
product is shipped to customers. The low-grade material is
transported first to the washplant to purify it and then to
the low-grade crusher and only after that shipped to cus-
tomers. All excavated waste is taken to wastedumps which
are basically piles of waste material. Along with the desti-
nations mentioned above, the excavated material can also go
to stockpiles which can be thought of as temporary places to
put material that can be used in the future.

The current problem is a long-term planning and schedul-
ing problem. Decisions have to be made the order in which
blocks of the mine should be excavated and how to utilise
the equipment, crushers, washplants, stockpiles and truck
fleets. In order to understand the objectives of the problem,
a mining time period concept needs to be discussed. As a
long-term scheduling problem, operation decisions should
be made in a time horizon which is a few times smaller
than the life of the mine term (which is the long-term plan-
ning horizon). The whole decision time horizon is divided
into smaller time periods. The number of diggers and dig-
ging rates, and the crusher and washplant operating rates,
and capacities of wastedumps and stockpiles can be differ-
ent across time periods. In addition, each time period has
its targets which can be understood as a milestone to be
reached at the end of the period.

– Tonnage target. As has been described earlier, each
block contains a certain tonnage of desired metal. A
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block can also consist of total waste, which will not be
accounted for in reaching the targets.

– Quality target. All mining blocks have metal ore of a
different quality. However, clients want ore of a prede-
fined quality. This means that during a time period, a
set of blocks should be excavated such that, after the
blending of all the excavated blocks during the time
period, the blended quality should be close to reaching
the desired quality. It is very hard to match the qual-
ity target exactly; this is a reason a quality tolerance is
introduced, measured in percentage from the target. All
qualities within this tolerance level are considered to be
acceptable.

The objective is to generate a plan that meets these tar-
gets by utilising the provided equipment and machines.
However, this problem is even more complicated than is
described so far, due to additional time-varying constraints
and time-varying objectives.

4 The model

This section presents the mathematical model of the prob-
lem proposed above.

4.1 General notations

The following basic sets are defined for the mine Mine:

– Blocks B = {B1, . . . , B|B|} in the orebody. Each
block is determined by the following characteris-
tics: geometrical coordinates of the block are given;
tonnage(Bi, el, gr) is a tonnage of material el of grade
gr .

– Benches Ben = {Ben1, . . . ,Ben|Ben|}. A bench is rep-
resented as a set of blocks Beni = {x : x ∈ B}. Each
bench has a toe block defined as b0(Beni).

– Pits P = {P1, . . . , P|P |}. A pit consists of set of
benches Pi = {x : x ∈ Ben}.

– Model M = {M1, . . . ,M|M|}. A model contains a set
of pits Mi = {x : x ∈ P }. The top level hierarchy is the
mine which contains a set of models Mine = {x : x ∈
M}.

– Areas A = {A1, . . . , A|A|}. An area is a set of blocks
Ai = {x : x ∈ B}. Additionally, an area may have an
earliest start date esd(Ai) and latest end date led(Ai).
Each area has a set of dependent areas defined as
Dep(Ai) = {x : x ∈ A}. If area Aj is dependent on
area Ai , then

∀Bk, Bl : (α(Bk) = Ai, α(Bl) = Aj)

⇒ te(Bk) < ts(Bl) (1)

where ts(Bi) is a start time of digging block, Bi , te(Bi)

is an end time of digging block Bi and α(Bi) is an area
to which the block belongs. This dependency relation is
expressed as Ai ≺ Aj .

– Time periods T = {T1, . . . , T|T |}. Each time period
is determined by its start date and end date. Each
period has information about various aspects such as the
capacities of diggers, crushers, targets and limits.

– Diggers D = {D1, . . . , D|D|}. Each digger has own
specific characteristics. cost(Di) is a cost of operat-
ing a digger. speed(Di) is a digger tramming speed.
location(Di) ∈ B is an initial block of the digger.
rate(Di, Tj ) denotes how many tonnes of ore a dig-
ger can excavate per hour. utilisation(Di, Tj ) means
effective utilisation, which determines the percentage
of the maximum rate the digger can operate in the real
world due to day/night shifts, maintenance and other
factors. Speed and cost remain fixed during the whole
process, but utilisation and rate change across time
periods.

– Crushers C = {C1, . . . , C|C|}. Each crusher has its
own characteristics. Its location is given by geomet-
rical coordinates. capacity(Ci, Tj ) is a feed capacity,
i.e. the number of tonnes it can process per hour.
utilisation(Ci, Tj ) means effective utilisation, which
determines what percent of the maximum rate the
crusher can operate in the real world.

Qk(Ti) is a k-th quality target for time period Ti with
the tolerance qi . For each time period Ti , there are total of
K(Ti) targets. �(Ti) is a tonnage target for time period Ti .

4.2 Objectives of the optimiser

Taking into account all the dependency, capacity and other
constraints described above, the problem becomes a highly
complex combinatorial optimisation problem. The system
that addresses the described mining problem has been
implemented with an optimisation component based on a
population-based metaheuristic. This system was built for
a large mining company, and it is currently in the process
of being integrated into the existing IT structure. The key
features of the system are as follows:

– Meeting targets. The system is taking into account all
constraints, configuration and targets and on that basis
produces a 5-year plan for the way to utilise diggers,
plants and other equipment, and for the block at which
each digger should operate at a given time.

– Trade-off analysis. There are some configurations
where it is not possible to satisfy both tonnage and
quality targets. Then, the system produces a set of solu-
tions which show different trade-offs in tonnage and
quality.
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– Manual changes and what-if scenarios. Numerous busi-
ness rules are a predominant feature of many real-world
systems. It is not always possible to incorporate all busi-
ness rules into the software. That is why for any given
solution produced by the system, the operator can man-
ually override decisions made by the system and see the
impact of the changes instantly. Apart from the flexibil-
ity of manual changes, this also reveals another inter-
esting feature of the application: the ability to analyse
various what-if scenarios. In a matter of minutes, the
user can see the result of adding or removing a digger or
building another crusher on the mining site. Mathemat-
ically, the goal is to find a vector X = {X1, . . . , X|B|}
that minimises

min�T =
∑

Ti∈T
|�T (Ti)−�(Ti)| (2)

and

min�Q =
∑

Ti∈T

∑

1≤k≤K(Ti)

× ρ(k)χ(|QT (Ti)−Qk(Ti)| − qi) (3)

Here, each element of X is a tuple Xi =
(st, digger, block) corresponding to digging start time,
digger and block to be dug, respectively. The end time
can be calculated in the following way:

endT (Xi) = startT + weight(block)/rate(digger, Tk)

(4)

where weight(block) corresponds to the physical weight
of the block, and rate(digger, Tk) defines the rate (in
tonnes per hour) in time period Tk during which the
digging of the block occurs.

�T (Tk) is a total tonnage of ore excavated during
time period Tk and defined as follows: for each time
period Tk ,

�T (Tk) =
∑

Xi∈Tk
tonnage(Xi .block, el, grade) (5)

Thus, the first objective is to minimise total deviation
from the desired tonnage. The second objective defined
by Eq. 3 is to minimise total deviation from the desired
quality across all time periods. In Eq. 3, χ(x) is a pos-
itive indicator function which returns 0 if x is negative
and the actual argument x otherwise. Since there are
several quality targets, each target has its own priority
which is determined by the coefficient ρ(k).

4.3 Constraints

This subsection describes different types of problem-
specific dependencies and business rules. Most of them
fall into one of two categories: dependency constraints and

capacity constraints. The current formulation of the prob-
lem recognises two types of dependency constraints: block
dependencies and area dependencies. Block dependency is
the basic constraint of the problem. There are three types of
block dependencies:

– Clear above dependencies. Due to the physical nature
of the mine, a block cannot be excavated before the
block on top of it is cleared. It can be thought of as a
vertical dependency.

– Clear ahead dependencies. This is a horizontal type of
dependency. When digging the bench, all side blocks
should be excavated first before getting to the inner
ones.

– User-defined dependencies. Sometimes, due to certain
business rules or specific circumstances, there is a need
to define custom dependencies between blocks.

Another type of dependency constraint is area depen-
dency. An area is basically an arbitrary collection of user-
defined blocks. It can be an arbitrary collection of blocks,
but usually, it involves a few adjacent pits that share a cer-
tain characteristic. The concept of an area gives a flexibility
to the define custom dependencies. To indicate that one part
of the mine should be excavated before another one, these
two parts should be marked as different areas and connected
by the dependency.

Capacity constraints, on the other hand, are the type of
constraints that deal with the physical workload of machines
and equipment. All of them are hard constraints, meaning
that violation of any of them will render a solution infeasi-
ble. A number of these hard constraints are as follows:

– Digger capacity constraint. Each digger can excavate
only a certain tonnage per time period.

– Truck constraints. There are speed and capacity con-
straints for each type of truck. Furthermore, the speed
of the truck depends on whether it is loaded with ore,
waste or unloaded and also on the slope of the road.

– Crusher constraints. As mentioned before, crushers
can operate with a limited speed and have processing
capacity limits.

– Stockpile constraints. Each stockpile has a limited
capacity.

– Wastedump constraints. Each wastedump has a limited
capacity.

There are also some other constraints defined in this
application, for example:

• Pit tonnage limits. There is a limit on how much maxi-
mum tonnage can be excavated from each pit. Some pits
may not have any limits.

• Digger proximity constraint. Due to safety reasons, two
diggers cannot operate too close to each other.
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Mathematically, these constraints are the following:
λAH (Bi, Bj )—clear ahead dependency, 1 if dependency
violated, 0 otherwise
λAB(Bi, Bj )—clear above dependency, 1 if dependency
violated, 0 otherwise

The solution made with the vector X should comply with
the clear ahead and clear above constraints, so
∑

i,j

λAH (Bi, Bj )+
∑

i,j

λAB(Bi, Bj) = 0

Also, no two blocks could be executed simultaneously on
the same digger:

∀i, j |Xi.digger = Xj .diggerXi ∩Xj = ∅
Here, Xi ∩ Xj operation returns the intersection between
time intervals Xi and Xj .

All the constraints described above are hard dependen-
cies.

5 Approach

This section describes a proposed algorithm for the
described problem. Firstly, the representation of the solution
is described, then the evaluation quality score is explained
and, lastly, the three stages of the proposed optimiser are
shown.

5.1 Structure of a solution

The structure of a solution for the optimiser is as follows.
For each time period, a table stores a set of benches that
are scheduled to be dug in this time period. If only a part
of the bench is scheduled during the selected time period,
then the fraction of the bench is recorded. Table 1 illustrates
this concept. The first column in this table lists all available
benches. The other columns represent time periods when
a particular bench is scheduled. For example, bench B3 is
scheduled for digging in the third time period, and bench B4
is scheduled as follows: 60 % during the fourth and 40 %
during the fifth time periods. We refer to this data struc-
ture as a tonnage schedule (TS). During the execution of the
optimiser, the tonnage schedule is initialised and later modi-
fied at every iteration of the process; special operators make
sure that clear above and area dependencies are not violated
(i.e. that the solution is feasible from the perspective of these
dependencies).

The size of the search space is quite significant; for exam-
ple, for 20 time periods (this would correspond to 5 years,
assuming quarterly time periods), with 500 benches avail-
able in total and 150 benches available per time period (due
to various dependencies) and at least 10 benches fully allo-
cated for a time period, the number of possible solutions

Table 1 Solution representation

Bench TP1 TP2 TP3 TP4 TP5 TP6 TP7

B1 1

B2 1

B3 1

B4 0.6 0.4

B5 1

B6 0.5 0.5

B7 1

is in the order of 10240. Note that if the number of allo-
cated benches is higher (say, 25), the size of the search space
grows dramatically much further. Note also that, to compare
the number of solutions in the search space, the current cal-
culations of the number of atoms in the observable universe
is close to 1080.

5.2 The quality score of the solution

The quality score of a solution is based on a combination of
various penalty functions:

– Quality violation penalty. This penalty is calculated as
a sum of deviations from the desired qualities of each
quality target.

– Tonnage violation penalty. This penalty is calculated as
a deviation of actual tonnage from the desired tonnage.

– Digger workload violation penalty. This penalty rep-
resents how much total digger workload exceeds the
maximum digger workload. If total digger workload
does not exceed the maximum workload, the penalty is
0.

– Haulage workload violation penalty. This penalty rep-
resents how much total haulage workload exceeds the
maximum haulage workload. If total haulage workload
does not exceed, the maximum workload the penalty is
0.

5.3 The optimiser

The optimiser used in the system consists of three modules:

– Module 1: initialisation
– Module 2: problem-specific evolutionary algorithm
– Module 3: decoder

which are executed sequentially. These three modules are
discussed in turn.

5.3.1 Module 1: initialisation

As the size of the search space for the planning problem is
prohibitive, module 1 is responsible for creating the initial
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set of candidate solutions. The main parameters that control
the execution of this algorithm are n, population size; m,
the number of offspring produced by a parent; k, the elitism
factor (the number of the best individuals to maintain);
and g, the diversity factor (to generate a pool of diverse
solutions).

This module initialises the pool of candidate solutions in
a few stages. It starts with a pre-distribution that considers
the frozen time period, where all parts of the solution that
fall into the frozen time period are copied from a previously
generated solution (if it exists) into the new one. Then, a pre-
distribution of dependency chains is performed by analysing
the pits’ dependency chains for possible bottlenecks. A cer-
tain number of pits are selected and pre-distributed over
several time periods to release bottleneck dependencies
early. Many different arrangements (e.g. a different number
of selected pits, different distributions over time periods)
are possible. At this stage, we have a population of size n,
which consists of n (incomplete) solutions created during
the first two stages. During the third stage of initialisation,
the module allocates benches to all considered time periods
taking into account (a) all available benches from all pits
that are not held by any dependencies (area dependencies
and clear above dependencies), (b) pit limits (if specified),
(c) the target tonnage and (d) the target quality. Such allo-
cation is run in a loop whilst at least one of the following
conditions holds:

1. Actual tonnage is greater than that desired.
2. Haulage workload capacity is exceeded for the benches

scheduled for the current time period.
3. Digger workload capacity is exceeded for the benches

scheduled for the current time period.

By eliminating these violations, the algorithm makes sure
that, after exiting the loop, none of the hard constraints are
violated, i.e. the solutions are feasible. Further, spare digger
capacity is assigned to dig waste benches by rescheduling
some waste benches—during such rescheduling, the algo-
rithm checks that no haulage workload and digger workload
limits are violated.

The above steps are performed m times for each indi-
vidual in the current population to produce an array of
solutions. Elitist selection is then performed on this array
with the elitism factor of k, i.e. k individuals with the best
fitness are then selected from this array as a population for
the next time period. This means that for all time periods
except for the first, k solutions are selected from m× k can-
didate solutions for further processing. The quality measure
of an individual solution is based on penalties (as discussed
earlier). The selection algorithm maintains the diversity of
the population by eliminating solutions that are too sim-
ilar to other solutions—this is controlled by the diversity
factor g.

At the final stages of the initialisation, reclaiming from
stockpiles is performed in order to bring the quality closer to
the desired levels. If the actual quality is within the desired
quality tolerance range, this stage is skipped. The tonnage
to be reclaimed is calculated in such a way that digger
workload and haulage workload are not violated.

5.3.2 Module 2: problem-specific evolutionary algorithm

The main parameters that control the execution of this
algorithm are the following: nea , population size; mea , the
number of offspring per parent; kea , the elitism factor (the
number of the best individuals to maintain); and gea , diver-
sity factor. A population of solutions generated during the
initialisation phase is fed into the evolutionary algorithm
that improves the population during the iterative process by
applying variation operators to existing candidate solutions
thus generating new offsprings. Sample variation operators
include the following:

– Move right operator. This operator reschedules a
selected bench to the next time period. The operator
is performed in such a way that no clear above rule is
violated.

– Move left operator. This operator does the same job as
the previous one except that it reschedules benches to
the previous time period instead.

– Repair operators. These operators restore the feasibility
of the solution after modification.

The evolutionary algorithm uses steady-state tournament
selection with operators that have the adaptive probabilities
of being applied. The diversity of population is preserved by
ignoring solutions that lie within a certain distance of each
other.

5.3.3 Module 3: decoder

The decoding phase consists of two parts:

– converting from tonnage schedule into bench schedule
– converting from bench schedule into block schedule

The module uses solutions generated by the previous mod-
ule for making decisions on digger assignments and further
material movements. During this stage, only determinis-
tic decisions are made. For example, the module decides
to which crusher, stockpile or wastedump the excavated
material (low grade, high grade, and waste) should be sent.

6 Functionality

This section describes the main software functionality of
the system. It has been developed in Java. The developed
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Fig. 1 Screenshot presents the hierarchy tab with coordinates and tonnages of a selected block and its dependencies

software has several main tabs: Hierarchy, Map, Configura-
tion, Optimisation and Dashboard. These will be described
in the following subsections.

6.1 Hierarchy tab

The hierarchy tab presents the mine in the hierarchical view:
mine-model-pit-bench-block. As has been described in the
previous sections, the basic unit of the mine is a block.
Each block is specified by its geometrical coordinates and
tonnages of certain material type and grade (for example,
high-grade iron ore), which are exported from file. From
the geometrical coordinates, clear above and clear ahead
dependencies are calculated.

The road network of the whole mine can be exported
from the file as well. Each road consists of road segments
which are represented by the geometrical coordinates. All
parts of mine, plants, crushers, stockpiles and wastedumps
are connected by road network, therefore it is possible to
calculate the shortest distances between each block and
destinations. The user of the software can manually over-
ride the shortest path destination. These kind of business
rules of overriding decision of the system are very com-
mon for the real-world problems, and they are normally
not considered in the classical research problems. Figure 1
shows the screenshot of the hierarchy tab with one block
selected. On the right side of the screen, the user is pre-
sented with all characteristics of the block including its
dependencies.

6.2 Map tab

The map tab presents the user with the interactive 3D map
of the mine, road network and ore destinations fully con-
structed from the raw geometrical coordinates. The software
gives the ability to “fly” over the mine, zoom in and out, and
explore the structure. It gives a user-friendly way of assign-
ing toe blocks, setting destinations and visually exploring
contents of the block. Different colour schemes visualise
the mine by concentration of iron in the blocks (the higher
concentration, the more intense is the colour), by pit, by
model, by time period it is planned to be mined in, and
depending if the block is going to the crusher of stockpile.
Figure 2 shows the screenshot of the map tab. The main part
of the screen is a described 3D interactive map, and the right
panel allows the user to hide or show various elements of
the map, change colour scheme, filter specific parts of the
mine, etc.

6.3 Configuration tab

This is one of the most important tabs in the software as
the configuration of all different parts of the mine and opti-
miser is taken place here (Fig. 3). Configuration is split into
several categories: Dependencies, Plants, Mobile Equip-
ment, Wastedumps, Stockpiles, Scenario and Time Period
Configuration. This part of the system contains most of
the constraints and business rules. The Time Period Con-
figuration category defines dynamic constraints, i.e. they
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Fig. 2 Screenshot presents the 3D view of the mine and map controls

change over the time periods. These two types of constraints
configuration described below.

6.3.1 Static configuration

The Dependencies in the system are Area dependences,
Clear Above and Clear Ahead dependencies which are
introduced in Section 3. The first step in configuring an
area is to create a master record in the area configuration

screen. Once the area has been defined, the planner can then
configure the area within the map screen by adding a set
of blocks, a bench, a pit or even a model. The next step
is to configure the area dependencies based on the defined
areas. The Dependencies category allows also to change set-
tings on values of clear above and clear ahead dependencies
(for example, how many blocks should be cleared before
a certain block can be mined in clear ahead dependencies
screen). Additionally, each area can be set to be mined after

Fig. 3 Screenshot presents the configuration tab
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a certain time period, before the certain time period or in
between two time periods due to a certain business rule.
The dependencies concept in mining is very essential and
lets schedulers to restrict excavation of one part of the mine
before the other one is excavated or excavate it before or
during certain time periods. From the optimisation point of
view, it significantly constraints the search space and, in
many cases, makes finding even one feasible solution a very
challenging problem.

The Plant category lets adding or removing plants and
crushers available in the system. At the static stage of
the configuration, plants and crushers are defined by their
coordinates on the plane.

The Mobile equipment configuration category lets the
scheduler set the number of diggers, their type, speed and
operating cost. Each digger may have different settings, so
the configuration is not homogeneous. Additional constraint
for diggers is their starting position on a certain block. As
the travelling speed of each digger is very limited (typically
around 2 kph), each digger is limited to excavate only a
certain part of the mine because it is normally not optimal
to spend most of time in time period for transporting the
digger.

Transportation of the ore from the mine to crushers,
plants and stockpiles is done via trucks over the road
network. This is represented in the system as fleets of homo-
geneous trucks. Each fleet defines parameters for each of
the trucks in the fleet. Some of the parameters include
capacity of truck loaded with ore and capacity loaded with
waste (as ore and waste have different densities). The speed
of each truck depends on the slope of the road and type
of material loaded on the truck. The calculation of speed
is based on rimpull curves—a mathematical curve used
to lookup the speed based on the slope and load of the
truck. As road segments have geometrical coordinates, the
slope can be easily calculated. The time it takes to travel
a certain route of the network can be calculated sum-
ming travel times for road segments of that route. Note
that the speed of the truck over a road segment is differ-
ent if the truck is loaded with ore or waste, or it drives
empty.

The Wastedumps and Stockpiles category lets defining
wastedumps and stockpiles that exist in the mine. Apart
from their geographical coordinates, the total capacity and
opening balance of the structure are given.

The Scenario category lets defining various optimiser
configurations. If the Continue Equipment Utilisation after
targets achieved flag is blank, then the optimiser will not
attempt to plan any unused capacity that is available once
the specified targets have been achieved. If this flag is
selected, then it will attempt to utilise diggers and trucks
on waste blocks which will not affect the tonnage targets.
If the Allow stockpile reclamation flag is not selected, then

the system will not reclaim any tonnage from the stockpile
to the crusher in generating a plan. If the Constrain opti-
misation by haulage capacity is blank, then the optimiser
will not attempt to constrain the optimiser by exceeding
specified truck capacity. If this flag is selected, then the opti-
miser will not exceed truck capacity for each time period. If
the Use top ranked quality target is selected, the optimiser
will only focus on achieving the top weighted quality tar-
get for each time period. If this flag is not selected, then
it will attempt to reach all quality targets in priority wet
by the weighting settings in time period configuration. If
the Enforce Area Dates is selected, then the optimiser will
respect the area dates set in the configuration screen. If this
flag is not selected, then it will ignore the area dates in the
optimisation process. If the Enforce Pit Tonnage Limits is
selected, then the optimiser will respect the specified lim-
its set in the time period configuration screen. If this flag is
not selected, then it will ignore the limits in the optimisation
process.

There is the capability of setting a time where the opti-
miser will not optimise prior to this date. Therefore, the
mine sequence that exists in the plan will remain unchanged
up until the date specified. Note that there is an option of
No Freeze where the optimiser will reschedule from the cur-
rent date and not apply any freeze during the optimisation
process.

There is the capability of setting a time where the opti-
miser will not optimise prior to this date. Therefore the
mine sequence that exists in the plan will remain unchanged
up until the date specified. Note, there is an option of No
Freeze where the optimiser will reschedule from the cur-
rent date and not apply any freeze during the optimisation
process.

6.3.2 Dynamic constraints configuration

The Dynamic Constraints configuration can be done by
configuring each time period with its own parameters
(Fig. 4).

The following parameters can be changed over the time
periods: rate and utilisation of diggers, feed capacity (in
tonnes per hour) and utilisation of crushers, input capac-
ity (in tonnes per hour) and effective utilisation of plants,
capacity of wastedump (it is limited per time period and dif-
ferent from the total capacity of the wastedump), maximum
and minimum capacity of stockpiles, number of trucks in the
fleet and their effective utilisation. Additionally, each pit has
a minimum and maximum tonnage that should be excavated
from it.

The main part of the time period configuration is
the configuration of targets. As has been described in
Section 3, two types of targets exist: tonnage targets and
quality targets. Each time period has its own setting for both.
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Fig. 4 Screenshot presents the dynamic configuration by time period tab

6.4 Optimisation tab

The Optimisation tab presents optimisation results. It has
two main graphs that show actual and desired tonnage and
quality targets. The quality graph has also two tolerance

lines, so it is very obvious if the solution is within the tol-
erance range or not. Figure 5 shows the screenshot of this
tab. The top part shows detailed breakdown of parts of the
mine to be dug during each quarter, while the bottom part
displays desired and actual graphs on tonnage and quality.

Fig. 5 Screenshot of the optimisation tab with the performance graphs and detailed schedule
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Fig. 6 Screenshot of the dashboard tab

Fig. 7 Result of the optimiser

Fig. 8 Result of the optimiser.
Quality of the first objective
with the limited truck capacity
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Fig. 9 Result of the optimiser.
Tonnage graph with the limited
truck capacity

6.5 Dashboard tab

The last tab, Dashboard, presents to the user with the
various kinds of reports, showing different KPIs, error
and diagnostic information, for example, equipment utilisa-
tion, haulage report, various aggregated and material flow
reports, coordinate, dependency and other violations and
data exceptions (Fig. 6).

6.6 What-if functionality

The Software is allowing the user to configure hypothetical
mine and equipment configurations and then run sequenc-
ing optimisations and view KPI reports, thereby enabling
an evaluation of what would happen if those scenarios were
actually implemented. The factors that the user would be
able to experiment with under what-if scenarios will be as
follows:

– change the location of a stock pile or dump
– change equipment capacity and/or availability
– change quality and tonnage targets
– reaction to events such as slope failure or flooding

7 Results

The implemented optimiser can be run in different modes,
with certain optimiser options chosen to be used or not:

1. Continue equipment utilisation after targets achieved,
i.e. use all spare digger capacity to dig more blocks and
send to stockpiles.

2. Allow or deny stockpile reclamation.
3. Use total truck capacity as a hard constraint.
4. Use top ranked quality target only.
5. Enforce area dates.
6. Enforce or ignore pit tonnage limits.

Each one of these points can be selected or deselected
independently of others. This gives a flexibility in varying
different types of limitations during the run (total number of
choices 26 = 64).

Each of the optimiser executions has been run on the live
mine data provided by the mining company. The produc-
tion schedule developed by the company’s expert schedulers
team has been analysed as well. However, a much more nar-
row quality tolerance boundaries of 0.4 % has been enforced
to our system in contrast with the expert quality tolerance

Fig. 10 Result of the optimiser.
Tonnage graph
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Fig. 11 Result of the optimiser.
Graph of quality of iron

of 1.5 %. The software produced a valid schedule within
approximately 5 min and has been evaluated as fully work-
ing by the expert team. The expert team used their own
software suite based on the XPAC mining system that has
various scripts which help to find a solution. To build a
solution with their system, it takes effort of several systems
from the suite to produce even one solution. An approxi-
mate time to build one solution can be around 1 day which
is significantly slower than the software based on our meta-
heuristics. Any variation in the schedule, change of business
rules or testing what-if scenarios would incur a full schedule
creation process.

Figure 7 shows the quality results of the first quality tar-
get with optimiser options 1, 2 and 4 selected. Tonnage
targets were matched with zero total deviation from the
desired tonnage. This configuration produced best results
on both tonnage and quality objectives. The blue line on the
graph represents the desired quality, the red line shows the
actual quality of the schedule, and green and yellow lines
show higher and lower tolerance levels (of 0.4 %).

The addition of optimiser option 3 (enforce truck capac-
ity) has an impact on the solution quality. Tonnage and
quality graphs are shown on Figs. 8 and 9. This was
achieved with the setting of 31 standard trucks working fully
per time period. This result shows that it is very hard (if

possible) to produce good enough schedule with this amount
of trucks and the current configuration. Previous result
of good schedule without constraining truck capacity and
the current result should tell schedulers to change certain
values, most likely increase number of trucks in the prob-
lematic time periods and then rerun the optimiser again to
see the result. This experiment shows the strengths of the
software of quickly analysing various what-if scenarios.

The next experimental run of the optimiser allows util-
ising the stockpiles, i.e. options 1 and 2 enabled. This
optimiser configuration uses all quality targets prioritis-
ing them by rank. Here, we set priority to high quality
and low quality of iron ore over other materials. This
will assign the highest coefficient to iron ore quality devi-
ation whilst evaluating the solution. In the real world,
schedulers are interested in both optimisations: the opti-
misation that considers only the first quality target and
the optimisation that considers all quality targets with
priorities.

Results presented in Figs. 10, 11 and 12 show that consid-
ering all quality objectives makes the first objective worse
whilst improving on other objectives. This converts the
current problem from a two-objective problem into a nine-
objective problem as the default configuration consists of
eight quality targets per quarter.

Fig. 12 Result of the optimiser.
Graph of quality of silicon
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As with the previous optimiser run, the results give
schedulers knowledge of what happens with the current con-
figuration. By changing certain values and rerunning the
optimiser, they were able to see the impact of the change
within 5–10 min. Previously, it was taking at least 1 day
to see the results of the change. Additionally, client utilised
several systems to produce the result and had to feed the out-
put of one system manually into another as well as manually
configure each system for current settings. This, certainly,
would increase the chance of making an error.

A very powerful tool for the guiding optimisation in the
desired direction is an ability to set minimum and maximum
pit limits. However, outcome of some unthoughtful settings
can be very dangerous as slowing down certain parts of the
mine can cause other parts of the mine to be blocked due to
dependencies. A feature of using area dates is another one
that lets an experienced scheduler to force the system for the
certain result, but again, each of these configurations may
cause complications of not meeting the targets.

The described results show two main strengths of the
system that most of other systems do not have:

– quick optimisation
– powerful what-if analysis

The next section describes the main functionality and
configuration settings of the system.

8 Conclusion and future works

In this paper, we considered a highly constrained min-
ing problem. Firstly, the description of the problem has
been presented, the approach based on metaheuristics fol-
lowed that, and then description of functionality of the
software along with its configuration and constraints has
been described.

Each of the configuration categories presented in
Section 6 present additional constraint to the problem which
makes it extremely hard to find even a feasible solution.
The complexity of the problem can be thought of from
the several perspectives. If we take, for example, such
NP-hard problems as travelling salesman problem, vehi-
cle routing problem, various scheduling problems and other
classical optimisation problems, these problems present
very hard combinatorial complexity. However, normally,
they are not very constrained which makes them hard to
apply in practical applications. Real-world problems usu-
ally have an additional layer of complexity—complexity by
constraints. In addition to the enormous number of con-
straints, they are also non-linear and very often change
over time. The acceptance usage of the presented applica-
tion by a technologically highly advanced top-tier enterprise
shows that the methods of computational intelligence are

appropriate to solve highly constrained problems such as
mining.

This work concentrated on optimal scheduling within a
single mine. However, the concepts described here can be
extended to multiple mines. This problem is known as inte-
grated planning in the mining industry. Our future work
will focus on the extension of the current approach and
investigate alternative methods of addressing the described
problem.
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