
1

Analysis and Modeling of Control Tasks in Dynamic
Systems

Rasmus K. Ursem, Thiemo Krink, Mikkel T. Jensen
Department of Computer Science
Bldg. 540, University of Aarhus
DK-8000 Aarhus C, Denmark

{ursem, krink, mjensen}@daimi.au.dk

Zbigniew Michalewicz
Chief Scientist, NuTech Solutions, Inc.

8401 University Executive Park Dr., Suite 102
Charlotte, NC 28262, USA

zbigniew.michalewicz@nutechsolutions.com

Abstract— Most applications of evolutionary algorithms
(EAs) deal with static optimization problems. However,
in recent years, there has been a growing interest in time-
varying (dynamic) problems, which are typically found in
real-world scenarios. One major challenge in this field is
the design of realistic test-case generators, which requires a
systematic analysis of dynamic optimization tasks. So far,
only a few test-case generators (TCGs) have been suggested.
Our investigation leads to the conclusion that these TCGs
are not capable of generating realistic dynamic benchmark
tests. The result of our research is the design of a new TCG
capable of producing realistic nonstationary landscapes.

Keywords— Adaptive control, dynamic problems, real-
world problems, test case generator.1

I. Introduction

The ultimate goal in the design of optimization tech-
niques is their application to real-world problems. How-
ever, evolutionary algorithms have been applied mainly to
static problems even though most real-world problems con-
sist of components that change over time. Evolutionary
algorithms have particularly great potential to tackle dy-
namic problems compared to other iterative search tech-
niques. The primary advantage is that evolutionary algo-
rithms maintain a population of solutions, rather than just
a single solution. This provides the potential for a diver-
sity of approaches to problem solving. When the problem
changes, to cite a cliché, we don’t have all of our “eggs in
one basket.” If the constraints change and make one solu-
tion infeasible, perhaps another reasonable solution in the
population will still be feasible. We can examine each solu-
tion in the population and determine if any of the currently
available alternatives are of value. Further, each solution
offers a starting point for discovering new solutions given
whatever change has occurred. We don’t have to rely on
only a single starting point, and we certainly don’t have
to recompute a new solution starting from tabula rasa. If
there are any similarities between the old problem and the
new problem, it is possible that these will be reflected in
the solutions that are present in the population.

Most studies on optimization of dynamic problems fall
in one of two categories. They either describe how to han-
dle a specific real-world problem or they introduce novel
methods for optimization of dynamic problems. The test

1IEEE copyright notice: This work has been submitted to the IEEE
for possible publication. Copyright may be transferred without no-
tice, after which this version may no longer be accessible.

problems used in the latter group are often standard prob-
lems like the time-varying knapsack problem, a variant of
the peak-tracking problem, or the dynamic NK-matching
problem.

Recently several authors suggested new test-case genera-
tors (TCGs) for implementing peak-tracking problems ([1],
[2], [3], and [4]). These TCGs are based on deterministic
or stochastic updating of peak characteristics such as posi-
tion, height, and width. Although the introduction of these
TCGs was important, no research has been conducted to
thoroughly evaluate how well they reflect characteristic dy-
namics of real-world problems.

Many dynamic problems can be viewed as either obser-
vation or control problems. The main difference between
these two types of classes is the feedback from the controller
to the system (see figure 1).

System

Environment

Observer

Measurement

Controller

Measurement System control

System

Environment

Fig. 1. Left: Observation problem. The environment influences
the system; the observer does not affect the system. Right: Control
problem. The environment affects the system. The controller and the
system interact; decisions made by the controller affects the system.

The objective in observation problems is either to predict
and report the values of certain system variables (predic-
tion models) or to process sampled data (signal process-
ing). The difference between these two subclasses is that
prediction models use observations from the past to predict
the future, whereas signal processing focuses on the extrac-
tion of information from recorded data. Typical examples
for prediction models are weather forecasting, stock value
prediction, and server failure prediction. Signal process-
ing deals with tasks such as speech recognition and noise
filtering. Evolutionary algorithms have been applied suc-
cessfully to several observation problems (e.g. [5], [6], and
[7]).

In control problems, a controller has to operate a system
and, in many cases, meet a certain output goal. The input

2

for this process is provided by sensors that measure the
state of the system and its environment. In other words,
there is a feedback loop in which the controller changes the
system variables that it uses as its own input. If the EA is
running while the system is being controlled it actually has
the interesting consequence that the search itself changes
the fitness landscape. Evolutionary algorithms have been
used to control several dynamic systems (e.g., [8], [9], [10],
[11], [12], and [13]).

The recently proposed TCGs focus on how the landscape
changes instead of the underlying dynamics. Whether or
not these TCGs can model any real-world problems is still
an open question; however, since no control parameters are
fed back into any of the TCGs, they certainly do not model
control problems.

The focus in this paper is on control problems. Note that
an observation problem can be viewed as a control prob-
lem without controllable parts. The paper is organized as
follows. The next section discusses general characteristics
of control problems. Section III contains a description of
a model for control problems. Section IV presents the new
test-case generator and section V covers its implementa-
tion details. Section VI provides an extended example (the
greenhouse production model) and section VII summarizes
the results from this study. A general discussion of EA-
related control strategies is given in section VIII. Finally,
section IX concludes the paper.

II. Characteristics of Control Problems

A fundamental understanding of typical dynamics in
real-world control problems is essential when designing re-
alistic TCGs. The main motivation for our research was
to propose a framework for analyzing general character-
istics of real-world problems and to suggest a new TCG
capable of modeling realistic dynamic problems. In the
process of developing the framework we studied several ex-
amples from biology, computer science, engineering, and
economics. Based on this study, we suggest to classify con-
trol problems into three categories:
• Demand meeting. The objective in demand meeting is
the efficient management of resources while matching a cer-
tain level of demand from the environment. The focus is
more on meeting the demand than on having an efficient
production. For instance, it is better that the production
at a powerplant is stable at a sufficient level than having
an insufficient production at a lower cost. Another type
of demand meeting problems involve the management of
buffers while meeting a demand. A typical example is the
inventory problem in which a stock has to be managed to
provide a demanded resource such as steel for a car pro-
duction.
• State stabilization. State stabilization is a special case
of demand meeting without buffering. The main task is to
anticipate changes in the state and to act accordingly in
advance. Conclusively, a successful stabilization requires
that the environment is quite predictable and its overall
influence on the system is not too stochastic. The auto-

piloting of an aircraft and the well-known pole balancing
problem are examples of state stabilization problems.
• Interacting agents and competition systems. This class is
characterized by coadaptive processes, where the success of
an agent depends directly on the actions of another agent
and vice versa. The agent control is either direct, such as
in robot control, or indirect by modification of the agent’s
environment. Typical examples are competing companies
and coevolutionary systems in biology, such as the epidemic
control of diseases by vaccination (direct control) and elim-
ination of transmitting hosts, such as mosquitos (indirect
control).

A realistic TCG for control problems must be able to
generate changing landscapes that correspond to problem
characteristics in at least one of these categories.

III. A Model for Control Problems

The traditional engineering approach to control prob-
lems is to view the problem as an interaction between the
controller and the system being controlled (see figure 2).
The control signals at time t are represented by the vector
u(t), the system state is modelled by the vector x(t), and
the system output vector is y(t). There are several issues,
e.g., analog-digital conversion and sample rate, to consider
when dealing with real systems, see [14] for a general in-
troduction to control theory. To fully model a real system
its environment often has to be modelled as well (see figure
3).

y(t)
SystemController

u(t)

State: x(t)

Fig. 2. Controller and the system being controlled. u(t) is the control
signal vector at time t, x(t) is the system state vector, and y(t) is the
system output.

y(t)
SystemController

u(t)

State: x(t)

Environment

State: v(t)

Fig. 3. Controller, the system, and the environment. u(t) is the
control signal vector at time t, v(t) is the environement state vector,
x(t) is the system state vector, and y(t) is the system output.

In summary, the model consists of the following four
components, which we illustrate by a greenhouse control
problem.

First, the environment is the immediate surroundings
that affect the system. The environment state v(t) repre-
sents the variables needed to model the nearby environment
and other external components that influence the system.

3

The greenhouse environment consists of sunlight intensity,
outside temperature, and market prices (crop, oil for heat-
ing, CO2).

Second, the system is the components that are directly
influenced by the controller. Its internal state is modeled
by the system state vector x(t). The system state in the
greenhouse example consists of the internal temperature,
CO2 level, and the amount of grown crops.

Third, the performance of the system is determined by
the quality of the system behavior in response to a certain
objective, e.g., deviation from a reference value. The per-
formance in the greenhouse is defined as the income from
the grown crops minus the expenses used in the production.

Fourth, the controller consists of a decision maker and
a vector of control signals u(t). The decision maker de-
termines the control signals based on information from the
environment, the system, and the recorded performance. In
the greenhouse example the amount of heating, ventilation,
and CO2 injection are controlled directly. The optimal
greenhouse control will maximize the profit by minimizing
the production costs and maximizing the production.

The change in system state is usually modelled by a num-
ber of difference equations of the form:

xi(t + h) = xi(t) + ∆xi(u,x,v, t, h) (1)

where xi is the ith system variable, ∆xi(·) is the update
function, t is the time, h is the length of a time-step, and
u, x, and v are the control signals, the system state, and
the environment state of previous time-steps (sometimes
several steps in the past). Many physical systems can be
described by nonlinear differential equations, which can be
approximated by difference equations using the Euler or,
preferrably, the Runge-Kotta method [15]. In this case the
update function ∆xi(·) of equation (1) is defined according
to the used approximation method.

In general, it is not straightforward to draw the line be-
tween the system environment, the system, and the con-
troller. A bottom-up strategy might be the best way to
describe a control problem. The first step is to identify all
relevant variables related to each part of the problem and
the performance. There are two kinds of relevant variables,
those with direct influence on the system state and those
that are relevant for the decision making process in the con-
troller. The next step is to assign each variable to a part of
the model (control, system, or environment). This decision
should be based on the factors that determine the value
of a variable: (i) control state variables can be fully con-
trolled; (ii) system state variables are directly influenced by
the control, as well as other factors from the environment
or the system itself; (iii) environment variables cannot be
controlled, but might influence the system.

IV. The new TCG

The goal in introducing a new TCG was to allow easy im-
plementation of realistic benchmark problems. To achieve
this we focused on the underlying mechanisms that gener-
ate a time-varying fitness landscape, rather than the “land-
scape oriented” change of peak characteristics as imple-

mented by other TCGs. Furthermore, we emphasized that
the problem analysis should support the implementation of
the problem in the new TCG. The secondary goal was to
propose a flexible test-case generator, that would support
both a set of standard benchmark problems and allow the
implementation of realistic real-world control problems.

A TCG-modeled problem is defined by the control, sys-
tem, and environment variables. Further, the performance
is defined as a fitness function of the variables2. Central to
our new TCG are a number of properties that characterize
the dynamics of the variables in the system and the envi-
ronment state. A property that affects the future value of
a variable is called an effector. Properties associated with
each variable are domain, periodicity, stochasticity, drift,
and dependency ; the last four are effectors. Each system
and environment variable requires the specification of all
these properties, whereas the control variables are only de-
fined by the domain. The properties of the variables are
defined as follows:

Domain
The domain of a variable defines its set of possible values;
it is characterized by the type (categories, discrete values,
continuous values) and the range of values.

Periodicity
This property describes the temporal correlation between
successive values of a variable, i.e., whether the value of
the variable follows a repeating pattern.

This property can be modelled by a Fourier function (see
equation (2)).

f(t′,a,A,b,B) =
|A|∑

i=1

ai cos(2πAit
′) +

|B|∑

i=1

bi sin(2πBit
′),

(2)

where a,A,b, and B are parameter vectors for the gen-
erated periodic function. To model fluctuations in the
period length we replaced the normal, linearly increasing
time t with an artificial, non-linearly increasing time t′. In
each time-step the artificial time t′ is increased by a small
positive value, which is calculated by a “time advance-
ment function” g(t). The new artificial time is defined as
t′new = t′ + g(t). The phase of the periodic function (equa-
tion (2)) can be shifted by setting the initial value t′0 of
the artificial time t′. Figure 4 illustrates a simple periodic
function with and without phase-shift.

A periodic function with fixed period length can be
modeled by defining g(t) as a constant function such as
g(t) = 0.5, g(t) = 1, or g(t) = 3. A decreasing period
length can be modeled with an increasing g(t) function.
Figures 5, 6, and 7 illustrate three periodicity effectors with
the corresponding time advancement functions.

2A multiobjective control problem can be implemented by specify-
ing multiple fitness functions.

4

0

5

10

15

20

0 200 400 600 800 1000

time t’

f(t’,a,A,b,B)

0

5

10

15

20

0 200 400 600 800 1000

time t’

f(t’,a,A,b,B)

Fig. 4. a=[10,5], A=[0,0.01], b=[], B=[], g(t) = 1. Left graph, no
phaseshift (t′0 = 0). Right graph, phaseshift (t′0 = 30).

Since the TCG variables might require different time ad-
vancement function each TCG variable has its own artificial
time and time advancement function.

0

5

10

15

20

0 200 400 600 800 1000

time t’

f(t’,a,A,b,B)

0

0.5

1

1.5

2

0 200 400 600 800 1000

time t

g(t)

Fig. 5. A periodic function with constant period length (left) a =
[10, 4],A = [0, 0.01],b = [],B = [], t′0 = 0, and g(t) = 1 (right).

0

5

10

15

20

0 200 400 600 800 1000

time t’

f(t’,a,A,b,B)

0

1

2

3

4

5

6

0 200 400 600 800 1000

time t

g(t)

Fig. 6. A periodic function with linearly decreasing period length
(left) a = [10, 4],A = [0, 0.01],b = [],B = [], t′0 = 0, and an increas-
ing time-advancement function g(t) = 0.005t (right).

0

5

10

15

20

0 200 400 600 800 1000

time t’

f(t’,a,A,b,B)

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 200 400 600 800 1000

time t

g(t)

Fig. 7. A periodic function with sinusoidal changing period length
(left) a = [10, 4],A = [0, 0.01],b = [],B = [], t′0 = 0, and a periodic
time-advancement function g(t) = 0.5 + 0.25sin(0.02t) (right).

A periodicity effector is thus defined by six parameters,
the four vectors a,A,b, B, which contain the constants
for the function, the initial artificial time t′0, and finally

the time advancement function g(t). A combination of a
multiple periodic functions can be modeled by specifying
more values in the parameter vectors.

Stochasticity
The stochasticity effector models the inherent randomness
in a variable. The effector generates random numbers ac-
cording to a stochastic distribution, e.g., the normal distri-
bution, the uniform distribution, or the binomial distribu-
tion. The stochasticity effector is an expression consisting
of an arbitrary combination of distribution functions and
plain arithmetics. For instance, N(0, U(0.5, 1.5)) generates
a normal distributed number based on mean 0 and a uni-
form distributed variance between 0.5 and 1.5.

In some cases a slowly changing stochastic effector (that
is an effector in which the value at time t + h is correlated
to the value at time t) is needed. To model stochastics,
such as random walk, a number of effectors implementing
this idea are available in the TCG.

Drift
Drift is present in a variable if the value of the variable
has a tendency to change towards one direction only. An
illustrative example for drift is the wear out of machinery.
A special case of this is buffer drift, where a variable rep-
resents a stock of some sort, which is gradually emptied.
From time to time the stock may be refilled, which tem-
porarily increases its value.

The drift effector consists of a drift function D(t′). The
drift function can be any expression that defines how the
variable is affected by drift. In the drift function, t′

measures the time since the beginning of a drift period.
Buffered drift is modeled by resetting t′ when a drift period
is completed. The length of a drift period is determined by
an additional function Dpl(t), which can be any expression
based on plain arithmetics and stochastic functions. Figure
8 illustrates two drift functions.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 200 400 600 800 1000

time t

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 200 400 600 800 1000

time t

Fig. 8. Two examples of drift functions. Left is D(t′) = 1/
√

t′ + 1
with constant period length Dpl(t) = 100 and right D(t′) = 1/

√
t′ + 1

with variable period length Dpl(t) = N(100, 20).

Dependency
The relation between variables is modeled by a network
that describes the dependencies in the modeled system.
Figure 9 illustrates an example of a network of variables (u1

to ul are the control variables, x1 to xn denote the system
variables, and v1 to vm are the environment variables).

5

.

.

.

.

.

.

...

nm

2

1 1

2

1 ru

x

xv

v

u

xv

Fig. 9. A problem modeled as a network of variables.

The arcs represent relationships between variables. For
instance, the arc from v1 to x1 indicates that v1 affects x1.

An important aspect of the dependency representation is
to distinguish between external and internal effectors. The
external effectors represent the influence from external non-
modeled events and cover the criteria stochasticity, drift,
and periodicity. The internal effectors model the interplay
between identified variables and cover the dependency cri-
terion. The interplay between a variable and its neighbors
is illustrated in figure 10. The value of each variable is
modified by a number of inputs from external and internal
effectors. Furthermore, the variable affects other variables
by its output effectors.

Periodicity

Drift

Stochasticity

w 1 ...

Dependencies
Other vars

...w k u 1 u

x i

r

Dependency

Fig. 10. A variable connected to internal and external effectors.
(w1...wk are the system or environment variables affecting the vari-
able.)

The new value of the variable is calculated by a function
of the internal and external input effectors. The variables
are updated in parallel, i.e., the values of all variables at
time t + h are calculated on the basis of the values at time
t.

V. Implementation and use of the TCG

The TCG consists of a simulation shell that contains the
current simulation step s, the step length h, the global
time t, an array for the performance measures, and three
arrays for the control, system, and environment variables.
The global time is defined as t = h · s. Any TCG variable
is modeled by a data structure that contains its current
value, a record of past values, the domain of the variable,
and the parameters for drift, stochasticity, and periodicity.
Moreover, the data structure contains a number of inter-
nal variables that are used for management of the TCG
variables (calculation of new state, resetting, etc.).

The procedures for updating the TCG variables:

• Update, FinalizeUpdate
Update calculates the values from the periodicity, stochas-
ticity, and drift functions. These values are used to cal-
culate the new value of the TCG variable, which is stored
internally until all variables have been calculated for the
next time-step. The TCG then performs the parallel up-
date by calling FinalizeUpdate for each of the system and
environment variables. FinalizeUpdate then copies the new
value to the internal variable holding the current value.
• BackupValue, RestoreValue
These methods are used to backup and restore the value of
the TCG variable and all its internal variables. Since the
TCG must evaluate the controllers from the same starting
state the complete state of the TCG must be stored and
restored between each evaluation.
• SetValue, GetValue, ResetValue
Set and get the value of the variable. ResetValue sets the
variable to the value of the initial state of the TCG (t = 0).

The procedures for operating the TCG are:
• UpdateTCG
This procedure updates the state of the TCG for a given
number of time-steps. The update is based on control val-
ues from the controller passed to the procedure. The pseu-
docode for the procedure is listed in figure 11. First, the
TCG advances the simulation step by one and the global
time by h. Then it acquires the control values from the
given controller, and sets the corresponding control vari-
ables. Afterwards, the TCG calculates the new values for
the system and environment variables. Finally, the TCG
updates the states by calling the FinalizeUpdate for each
of the TCG variables.

UpdateTCG(controller, time-steps)
for (i=0; i<time-steps; i++) {

s++
t := h*s
controlvalues = controller.GetControl()
for (i=0; i<|controlvariables|; i++)

controlvariables[i].setValue(controlvalues[i])

for each system and environment variable
variable.Update()

for each system and environment variable
variable.FinalizeUpdate()

}

Fig. 11. The pseudocode for the UpdateTCG procedure.

• BackupTCGState, RestoreTCGState
These procedures backup and restore the state of all vari-
ables in the TCG. They are used by GetFitness to ensure
that the controllers are evaluated from the same starting
position.
• ResetTCG
Resets the TCG to the initial state (t = 0) by calling Re-
setValue on all variables.
• GetFitness and CalcFitness
In order to calculate the fitness of a controller the TCG

6

simulates the system for a given number of time-steps. In
this process GetFitness measures the performance in each
time-step, which is combined finally to a single fitness value
by the CalcFitness procedure. The mapping from perfor-
mance measurements to the fitness value has to be defined
as a part of the input to the TCG, because it varies from
system to system. The pseudocode for GetFitness is listed
in figure 12.

GetFitness(controller, time-steps)
BackupTCGState()
for (i=0; i<time-steps; i++) {

performancevalues[i] =
GetCurrentSystemPerformance()

UpdateTCG(controller,1)
}
RestoreTCGState()
return CalcFitness(performancevalues)

Fig. 12. The pseudocode for the GetFitness procedure.

Figure 13 illustrates an example of how the TCG can
be used in connection with an EA. In this example the EA
evaluates the evolved controllers for three time-steps. Then
the EA selects the best controller and uses it to control
the system for one time-step. Finally, the evolutionary
operators generate the next generation of controllers.

EA main
TCG.Reset()
initialize population of controllers
while (not(termination condition)) {

for each controller in the population{
controller.fitness =

TCG.GetFitness(controller, 3)
}
UpdateTCG(best controller, 1)
Apply EA operators to the population

}

Fig. 13. An example of an EA using the TCG.

Figures 14 illustrates the exploration that an EA carries
out through the first three time-steps. In each time-step
the controllers are evaluated from the same starting state,
which is the state determined by the best controller of the
previous iteration.

VI. The Greenhouse Production Model

This section demonstrates the potential of the new TCG
by an implementation of a greenhouse model. Although the
model is a simplification, it is sufficient to demonstrate the
capability of the new TCG, and produce dynamic land-
scapes which cannot be achieved with existing TCGs for
dynamic problems.

The greenhouse is modeled as follows:
(i) Control variables
• heating uheat

• ventilation uvent

0

System
State
Space

1h 2h 3h 4h 5h TCG Time

Initial state

best controller

0

System
State
Space

1h 2h 3h 4h 5h TCG Time

Initial state

best controller

0

System
State
Space

1h 2h 3h 4h 5h TCG Time

Initial state

best controller

Fig. 14. Example of state space exploration at TCG-time t = 0,
t = h, and t = 2h. Thin lines represent controller exploration of
the current time-step, thin dotted lines are previous explored control
strategies, and thick lines are actual control as it was performed by
the selected controller.

• addition of carbon-dioxide uCO2

(ii) System variables
• temperature inside the greenhouse xtemp

• carbon-dioxide level inside the greenhouse xCO2

• amount of grown crop xcrop

(iii) Environment variables
• temperature of the greenhouse environment vtemp

• sunlight intensity vsun

• market prices of:
– the crop vpcrop

– the oil for the heating vpheat

– the CO2 gas vpCO2

(iv) Performance
• profit p

In the model each day corresponds to 100 TCG-time-
steps and one “year” corresponds to 10 days. This short
year was chosen to have a quick variation from summer to
winter, meaning shorter simulation runs. The short year in
the model is acceptable because the day-to-day correlation
is not important.

Domain
All variables are real-valued. Their domains are specified
in table I.

Periodicity
The variables vtemp, vsun, and vpcrop are periodic. vtemp

and vsun reflects the daily and seasonal changes of sunlight

7

and temperature, while vpcrop follows the seasonal change
in vegetable prices. This was modeled by a periodic effec-
tor of two overlaid cosine functions with different angular
velocities. The parameters are listed in table I. For vtemp

the values are: A = [0.01, 0.001], a = [7, 9], t′0 = −10, and
g(t) = 1, which corresponds the periodic function in equa-
tion (3). The phase for vtemp is shifted slightly compared
to vsun, which is to model the time it takes the sun to heat
the environment. This is achieved by letting the artificial
time t′ of vtemp start at the value t′0 = −10, and advancing
it by 1 in every time-step of the TCG.

vtemp,period(t′) =7 cos(2π · 0.01t′) +
9 cos(2π · 0.001t′)

(3)

Stochasticity
All the environment variables are influenced by some degree
of stochasticity. However, values only change marginally
between two time-steps. For instance, the outside temper-
ature vtemp does not change much from minute to minute.

The stochastic component of the environment variables
is modeled by adding a small random value to the value
from the previous time-step. The stochasticity effector for
vtemp is displayed in equation (4).

vtemp,stoch(t) = min(max(vtemp,stoch(t− 1) +
U(−0.5, 0.5),−4.0), 4.0),

(4)

where U(−0.5, 0.5) generates a uniformly distributed num-
ber between −0.5 and 0.5. Table I contains the functions
for the stochasticity effectors. The max and min func-
tions ensure that the stochastic values stay in fixed inter-
vals. The first stochastic values are calculated by setting
vtemp,stoch(0) = 0, vsun,stoch(0) = 0, vpcrop,stoch(0) = 0,
vpheat,stoch(0) = 0, and vpCO2,stoch(0) = 0.

Drift
Drift is not present in any of the variables.

Dependency
The relationship between the variables is illustrated in fig-
ure 15.

CO2

2CO

Control:

Environment:

Performance:

System:

2

CO price:2

Crop price:

Heat price:

2

Sunshine:

Temperature:

Crop amount:

CO −level:2Temperature:

heatHeating: ventVentilation: CO −inject.:

v

uuu

x

x

x

v

v

v

v

pcrop

pheat

pCO

sun

temp

pProfit:

temp

crop

Fig. 15. The dependencies in the greenhouse model.

The environment variables are updated according to
equation (5) to (9).

TABLE I

Values and functions for the domain, periodicity, and

stochasticity. A ’*’ in the Init column indicates that the

initial value is calculated from the update rule of the

variable.

D
om

ai
n

P
er

io
d
ic

it
y

S
to

ch
as

ti
ci

ty

V
ar

ia
bl

e
In

it
M

in
M

ax
a

A
t′ 0

g
(t

)
In

it
st

oc
ha

st
ic

fu
nc

ti
on

u
h

e
a
t

0
0

5
u

v
e
n

t
0

0
1

u
C

O
2

1
0

4

x
te

m
p

18
-2

0
50

x
C

O
2

4
0

10
x

c
r
o
p

1
0

∞
v t

e
m

p
*

-2
0

40
[7

,
9]

[0
.0

1,
0.

00
1]

-1
0

1
0

m
in

(m
ax

(v
te

m
p
,s

to
c
h
(t
−

1)
+

U
(−

0.
5,

0.
5)

,−
4.

0)
,4

.0
)

v s
u

n
*

0
8

[4
,
2]

[0
.0

1,
0.

00
1]

0
1

0
m

in
(m

ax
(v

s
u

n
,s

to
c
h
(t
−

1)
+

U
(−

0.
25

,0
.2

5)
,−

1.
0)

,1
.0

)
v p

c
r
o
p

*
0

30
[0

,
-3

]
[0

.0
1,

0.
00

1]
0

1
0

m
in

(m
ax

(v
p
c
r
o
p
,s

to
c
h
(t
−

1)
+

U
(−

0.
01

,0
.0

1)
,−

5.
0)

,5
.0

)
v p

h
e
a
t

*
0

3
0

m
in

(m
ax

(v
p
h

e
a
t,

s
to

c
h
(t
−

1)
+

U
(−

0.
00

1,
0.

00
1)

,−
0.

5)
,0

.5
)

v p
C

O
2

*
0

3
0

m
in

(m
ax

(v
p
C

O
2
,s

to
c
h
(t
−

1)
+

U
(−

0.
00

1,
0.

00
1)

,−
0.

5)
,0

.5
)

8

vtemp(t) = 10.0 + vtemp,period(t) + (5)
vtemp,stoch(t)

vsun(t) = 1.0 + vsun,period(t) + (6)
vsun,stoch(t)

vpcrop(t) = 22.0 + vpcrop,period(t) + (7)
vpcrop,stoch(t)

vpheat(t) = 2.5 + vpheat,stoch(t) (8)

vpCO2(t) = 2.5 + vpCO2,stoch(t) (9)

The functions vtemp,period(t) and vtemp,stoch(t) refers to
the periodic and stochastic values for the calculation of
vtemp at time-step t (see table I).

Figure 16 illustrates the values of vtemp, vsun, and vpcrop.
Each time-step represents a period of 10 days. The crop
price shows a clear seasonal variation, while sunshine and
temperatures show a daily and seasonal variation with
small stochastic variation.

−10

−5

0

5

10

15

20

25

30

0 200 400 600 800 1000
time t

Sunshine
Outside temp

Crop price

Fig. 16. Three of the environment variables of the greenhouse system.

The system variables depend on each other, on the en-
vironment variables, and on the control variables. They
are updated incrementally using difference equations of the
form:

x(t + h) = x(t) + ∆x(u,x,v, t, h)

where x is either xcrop, xtemp, or xCO2 .
Equation (10) displays the ∆-function for the tempera-

ture in the greenhouse (xtemp). xtemp is controlled by the
heating uheat and the ventilation uvent. The ventilation
can be used to control the heat exchange with the environ-
ment. The minimal heat exchange rate is the constant k1,
which models the insulation value of the glass in the green-
house. The greenhouse is also heated by the sun vsun. The
temperature increase caused by the sun is scaled by the
constant k2, which models how dependent the greenhouse
temperature is on the sunlight intensity. The constants for
all dependency functions are listed in table II.

∆xtemp = uheat + (k1 + uvent)(vtemp − xtemp) +
k2vsun

(10)

The change of CO2 is modeled by the formula in equation
(11). The CO2 level decreases when the plants grow. It
can be increased by injecting CO2 (uCO2) or by ventilation
(uvent), whenever the inside CO2 level is lower than the
environmental level. In the latter case this also affects the
indoor temperature (xtemp). k3 models the rate of CO2

consumption by the plants. k4 is the environmental CO2

level.

∆xCO2 = k3 max(∆xcrop, 0) + uCO2 +
uvent(k4 − xCO2)

(11)

The growth of the plants is limited by the amount of
available resources. Necessary resources are carbon-dioxide
(xCO2), sunlight (vsun), and temperature (xtemp), which
may not be too cold or hot. The first three lines of equa-
tion (12) yield a positive value if the necessary resources
are available and the temperature allows the crops to grow.
The fourth line is negative if the temperature is either too
high or too low. The interpretation of the constants in
equation (12) is as follows: k5 is the maximal growth al-
lowed by the temperature, k6 is the optimal temperature
for growth, k7 is the maximal amount of CO2 that can
be consumed by the plants, k8 is the maximal sunlight in-
tensity that can be used by the plants, and k9 is the rate
of decrease in plant-biomass when the temperature is too
extreme.

∆xcrop = min(max(k5 − |xtemp − k6|, 0),
min(xCO2 , k7),
min(vsun, k8))−

k9 min(k5 − |xtemp − k6|, 0)

(12)

The profit in a time-step is defined by:

p = vpcrop∆xcrop − vpheatuheat − vpCO2uCO2

TABLE II

Constants for the dependency functions.

k1 = 0.1 k2 = 0.2 k3 = 1
k4 = 4 k5 = 8 k6 = 26
k7 = 8 k8 = 7 k9 = 0.1

The initial values of the variables at time-step t = 0 are
shown in table I. The initial values of the environment vari-
ables need not to be specified explicitly, because they are
calculated directly from the periodicity and stochasticity
of the variable.

In the investigations of the greenhouse example we used
a standard GA to search the space of possible control-
settings. The TCG was connected with the standard GA as

9

described in the previous section (see figure 13). For each
individual, a control setting was simulated for six time-
steps. The best of these settings was then used to control
the greenhouse for one time-step.

Figures 17 and 18 show the control and system vari-
ables over 200 time-steps. At night (TCG time-step 150)
the heating is turned on to avoid freezing damage to the
crop. At dawn (TCG time-step 170) the CO2 supply is
turned on to support plant growth, while the heating is
kept on to rapidly increase the temperature so the optimal
growth conditions are reached as fast as possible. When
the temperature is high enough (time-step 185) the heat-
ing is turned off and ventilation is turned on to keep the
temperature down, as the greenhouse is heated by the sun.
Late afternoon (time-step 220), when the sunshine inten-
sity decreases, the CO2 supply is turned off and ventilation
is increased. This is a cheaper way of supplying CO2 when
the temperature outside is not too low and a moderate
quantity of CO2 is needed. After sunset (time-step 240)
the temperature in the greenhouse decreases towards the
damaging level of the crops. The heating is then turned on
and the cycle is repeated.

NightAfternoon Morning NightAfternoon Morning

100 150 200 250 300
time t

0

0.5

1

1.5

2

2.5
CO2 supply
Ventilation

Heating

Fig. 17. The controls found by the GA over a period of 200 time-steps
(representing 2 days). The controls follow a pattern of cool nights
with the heating turned on and warm sunny days with ventilation
and CO2 supply.

Sample plots of the optimization landscape are shown in
figure 19 and 20. The figures show the expected profit for
the next six time-steps (not the long term profit). Since
the greenhouse is a 3-dimensional control problem (uheat,
uCO2 , and uvent) one of the variables had to be fixed to
produce the plots. The fixed variable was set to the best
value suggested by the GA.

Figure 19 illustrates the profit as a function of CO2 in-
jection (uCO2) and amount of heating (uheat); the amount
of ventilation (uvent) was fixed.

In connection with the design of the greenhouse exam-
ple we developed a simple rule-based controller that im-
plemented three simple rules; (i) turn up the heat if it is
too cold inside, (ii) ventilate if it is too hot, and (iii) inject
CO2 if the level inside is too low. This simple controller

NightAfternoon Morning NightAfternoon Morning

100 150 200 250 300

−5

0

5

10

15

20

25

30
CO2 level

Inside temp
Profit

time t

Fig. 18. Some of the system variables and the performance (profit)
over a period of 200 time-steps. The greenhouse temperature is much
warmer at day than at night. The CO2-level follows this pattern,
since it is raised by the controller to allow maximal growth. There
is a profit in the daytime, while at night money is lost by paying for
heating.

0
1

2
3

4

CO2 injection

0
1

2
3

4
5

heating

-12

-8

-4

0

4

Fig. 19. Expected profit in the next six timesteps. The ventilation
was fixed at the value determined by the controller.

0
1

2
3

4

CO2 injection

0
0.2

0.4
0.6

0.8
1

Ventilation

4
8

12
16
20
24

Fig. 20. A fitness landscape from the greenhouse example. The
heating was fixed at the value determined by the controller.

performed poorly in the sense that the profit was low and
the crops had a tendency to die. Interestingly, the corre-
sponding fitness landscapes were mainly plane-like surfaces
tilted towards one of the corners. Hence, the best possible
control was to set heating, ventilation, and CO2 injection to
either zero or maximum. These results indicate that poor

10

control leads to simple fitness landscapes, where the opti-
mal control strategy is a corner point in the search space
spanned by the control variables.

VII. Discussion of the Greenhouse Model

Our studies of real-world problems was partly motivated
by the desire to get a general understanding of the shape
and dynamics of their fitness landscapes. Observations
from the greenhouse example provided a number of pre-
liminary results. The shape of the landscape is obviously
related to the number of optimal control settings at a given
time-step. However, even though two good alternative set-
tings are available they might not result in a fitness land-
scape with two peaks. An example from the greenhouse is
the following. Assume that the indoor and outdoor tem-
perature are both near the optimal temperature for crop
growth. The crops consume CO2 when they grow, which
lowers the internal CO2 level. To compensate for the con-
sumed CO2 the controller can either inject expensive CO2

or increase the ventilation, which will provide free CO2 at a
lower pace. This seems like two alternative strategies; how-
ever, because the CO2 injection and amount of ventilation
are continuous variables, an infinite number of intermedi-
ate strategies exists. In the current implementation of the
greenhouse, these mixed strategies correspond to a ridge
in the fitness landscape with the two extreme strategies
at each end of the ridge. Two local optima might appear
if a nonlinear relationship between the CO2 price and the
amount of injected CO2 is present. In this case, it might
be optimal to use either a large amount of CO2 or to avoid
a CO2 injection completely. Nonlinear relations are com-
mon in real-world problems. An example is a bulk discount
agreement for the unit price of a resource. Another feature
that will result in a multimodal control problem is discrete
decision making where intermediate solutions are infeasi-
ble. For instance, if a robot has to pass an obstacle the
controller can either decide to go left or right.

VIII. Discussion of Evaluation and Control
Strategies

The evaluation of individuals in real-world problems in-
troduces some technical difficulties. It could be dangerous,
expensive, or too time consuming to evaluate all individual
in the real system. For instance, it is clearly not an option
to let a low-fit individual control a nuclear power plant.
Instead, a sufficiently accurate model3 has to be used for
the evaluation process.

The use of models to simulate real-world systems intro-
duces several design issues that play an important role in
the choice of algorithm, population size, representation,
etc. The most important issue is the maximal allowed re-
sponse time, which defines how fast the controller must re-
act to ensure proper and safe system control. For instance,
driving a car requires rapid responses, which need not be
as important in other problems such as the greenhouse.

3EAs offer an interesting way to improve a system model by online
modifications, e.g., see [16].

The main problem is that the calculation time for the re-
sponse might be so long that the system state has changed
substantially, thereby making the difference between the
model and the real system too big.

There are several ways to use an EA for control prob-
lems. The simplest possible is to evolve the control signals
directly. This approach is not used widely, mainly because
it requires a quite long response time, because of the time-
consuming evolution of the control signals. However, the
strategy has been used to control a multiple-burner boiler
system [11], a sugar beet press [12], and a greenhouse [10].
In more advanced applications the EA acts as the tuning
algorithm for another control strategy. There are several
techniques such as fuzzy control, neural net control, ge-
netic programming control, and rule-based control (see [8],
[17]). Evolutionary algorithms have also been used to tune
traditional engineering controllers such as the well-known
PID controller (e.g., [18]).

Another interesting aspect of EA-related control strate-
gies is the possibility of evolving controllers while the sys-
tem is being controlled. If a better controller is evolved it
takes over the control of the real system. This technique
allows the controller to adapt better to the system and
thereby compensate for long-term effects such as wear out
of machinery.

IX. Conclusions and Future Work

In this paper we investigated the internal structure and
mechanisms of dynamic real-world problems. The main
motivation was the need for realistic test problems for opti-
mization of dynamic systems, which are essential for proper
evaluation and comparison of EAs. In this context, we sug-
gested a novel TCG for control problems that model the
system, its controller, and its environment. We demon-
strated the potential of our new test-case generator in a
simple modeling example of a crop-producing greenhouse.
The resulting fitness landscapes looked surprisingly differ-
ent from landscapes that can be generated with traditional
test-case generators. The landscapes had ridge-like, asym-
metric peaks with concave or convex faces, plateaus, and
sharp edges (see figures 19 and 20). When the control pro-
cess was far off from the optimum, the fitness landscapes
turned into simple tilted planes. In close vicinity of the
optimum, the shape of the landscape changed into more
complicated structures.

It seems that the TCGs introduced in [1], [2], [3], and [4]
are of little value for modeling realistic dynamic problems.
This conclusion is based on the four following observations.

First, the recently introduced TCGs do not model the
interactions between the system components. Instead, the
TCGs create artificial dynamic problems where the shape
and dynamics of the fitness landscape are introduced with-
out any justifying relation to any real problem.

Second, even if the old TCGs could approximate the
underlying dynamics by imitating the corresponding land-
scape one has to analyze the landscape of the real system
to imitate it properly. To get an idea of the shape of the
fitness landscape a model often has to be developed and

11

implemented, which will make the later imitation of the
landscape rather pointless.

Third, the current technical capabilities of the previous
TCGs are too limited to produce even simple landscapes
like the ones found in the greenhouse example.

Fourth, the previously introduced TCGs do not allow
the optimization algorithm to affect the shape of the fitness
landscape. This has the consequence that control problems
cannot be modeled.

These limitations are not present in our TCG, mainly
because the landscapes is a result of a dynamic system
model that mimics the behavior of a real system.

In our future work, we plan to concentrate on a few is-
sues; these include: (i) development of several test prob-
lems for each of the three general classes mentioned in the
introduction4, (ii) investigation of discrete dynamic prob-
lems such as scheduling and permutation-based problems,
and (iii) revision and extension of the modeling framework
and the TCG.

Acknowledgements

The authors would like to express their sincere thanks
to Bogdan Filipič (Dept. of Intelligent Systems, Jožef
Stefan Institute, Ljubljana, Slovenia) and Pierré Vadstrup
(Grundfos A/S, Denmark) for many valuable comments to
earlier versions of this manuscript.

References

[1] Jürgen Branke, “Memory enhanced evolutionary algorithms
for changing optimization problems,” in Proceedings of the
Congress of Evolutionary Computation, Peter J. Angeline,
Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, and Ali Za-
lzala, Eds., Mayflower Hotel, Washington D.C., USA, 6-9 July
1999, vol. 3, pp. 1875–1882, IEEE Press.

[2] Ronald W. Morrison and Kenneth A. De Jong, “A test problem
generator for non-stationary environments,” in Proceedings of
the Congress of Evolutionary Computation, Peter J. Angeline,
Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, and Ali Za-
lzala, Eds., Mayflower Hotel, Washington D.C., USA, 6-9 July
1999, vol. 3, pp. 2047–2053, IEEE Press.

[3] Krzysztof Trojanowski and Zbigniew Michalewicz, “Searching
for optima in non-stationary environments,” in Proceedings of
the Congress of Evolutionary Computation, Peter J. Angeline,
Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, and Ali Za-
lzala, Eds., Mayflower Hotel, Washington D.C., USA, 6-9 July
1999, vol. 3, pp. 1843–1850, IEEE Press.

[4] John J. Grefenstette, “Evolvability in dynamic fitness land-
scapes: A genetic algorithm approach,” in Proceedings of
the Congress of Evolutionary Computation, Peter J. Angeline,
Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, and Ali Za-
lzala, Eds., Mayflower Hotel, Washington D.C., USA, 6-9 July
1999, vol. 3, pp. 2031–2038, IEEE Press.

[5] S.C. Ng, C.Y. Chung, S.H. Leung, and A. Luk, “A variable step
size algorithm using evolution strategies for adaptive filtering,”
in Proceedings of the Congress of Evolutionary Computation,
Peter J. Angeline, Zbyszek Michalewicz, Marc Schoenauer, Xin
Yao, and Ali Zalzala, Eds., Mayflower Hotel, Washington D.C.,
USA, 6-9 July 1999, vol. 1, pp. 542–545, IEEE Press.

[6] Harald H. Soleng, “Oil reservoir production forecasting with un-
certainty estimation using genetic algorithms,” in Proceedings of
the Congress of Evolutionary Computation, Peter J. Angeline,
Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, and Ali Za-
lzala, Eds., Mayflower Hotel, Washington D.C., USA, 6-9 July
1999, vol. 2, pp. 1217–1223, IEEE Press.

[7] Shu-Heng Chen and Woh-Chiang Lee, “Option pricing with
genetic algorithms,” in Proceedings of the Seventh International

4The problems will be available at our website www.evalife.dk.

Conference on Genetic Algorithms (ICGA97), Thomas Bäck,
Ed., San Francisco, CA, 1997, Morgan Kaufmann.

[8] Michael Lee and Hideyuki Takagi, “Dynamic control of ge-
netic algorithms using fuzzy logic techniques,” in Proceedings
of the Fifth International Conference on Genetic Algorithms,
Stephanie Forrest, Ed., San Mateo, CA, 1993, pp. 76–83, Mor-
gan Kaufman.

[9] Sofiane Oussedik, Daniel Delahaye, and Marc Schoenauer, “Dy-
namic air traffic planning by genetic algorithms,” in Proceedings
of the Congress of Evolutionary Computation, Peter J. Ange-
line, Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, and Ali
Zalzala, Eds., Mayflower Hotel, Washington D.C., USA, 6-9 July
1999, vol. 2, pp. 1110–1117, IEEE Press.

[10] Hartmut Pohlheim and Adolf Heissner, “Optimal control of
greenhouse climate using real-world weather data and evolu-
tionary algorithms,” in Proceedings of the Genetic and Evo-
lutionary Computation Conference, Wolfgang Banzhaf, Jason
Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar,
Mark Jakiela, and Robert E. Smith, Eds., Orlando, Florida,
USA, 13-17 July 1999, vol. 2, pp. 1672–1677, Morgan Kaufmann.

[11] F. Vavak, K. Jukes, and T. C. Fogarty, “Adaptive combus-
tion balancing in multiple burner boiling using a genetic al-
gorithm with variable range of local search,” in Proceedings
of the Seventh International Conference on Genetic Algorithms
(ICGA97), Thomas Bäck, Ed., San Francisco, CA, 1997, Mor-
gan Kaufmann.

[12] Terence C. Fogarty, Frank Vavak, and Philip Cheng, “Use of
the genetic algorithm for load balancing of sugar beet presses,”
in Proceedings of the Sixth International Conference on Genetic
Algorithms, Larry Eshelman, Ed., San Francisco, CA, 1995, pp.
617–624, Morgan Kaufmann.

[13] Bogdan Filipič, Tanja Urbančič, and Viljem Križman, “A com-
bined machine learning and genetic algorithm approach to con-
troller design,” Engineering Applications of Artificial Intelli-
gence, vol. 12, no. 4, pp. 401–409, 1999.

[14] Benjamin C. Kuo, Automatic Control Systems, Prentice Hall,
7th edition, 1995.

[15] Robert Adams, Calculus – a complete course, Addison-Wesley
publishers, 3rd edition, 1995.

[16] F. Vavak, T. C. Fogarty, and P. Cheng, “Load balancing appli-
cation of the genetic algorithm in a nonstationary environment,”
Lecture Notes in Computer Science, vol. 993, pp. 224–233, 1995.

[17] T. Urbančič, D. Juričić, B. Filipič, and I. Bratko, “Auto-
mated synthesis of control for nonlinear dynamic systems,” in
IFAC/IFIP/IMACS International Symposium on Artificial In-
telligence in Real-Time Control, Delft, Netherlands, 1992, pp.
605–610.

[18] Chia-Ju Wu, “Genetic tuning of pid controllers using a nural
network model: A seesaw example,” Journal of Intelligent and
Robotic Systems, , no. 25, pp. 43–59, 1999.

