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Abstract

Several studies have applied genetic programming (GP) dotabk of forecasting with favorable results. However, ¢hes
studies, like those applying other techniques, have asdangtatic environment, making them unsuitable for many-weald
time series which are generated by varying processes. Tlmly snvestigates the development of a new “dynamic” GP rhode
that is specifically tailored for forecasting in non-stagievironments. This Dynamic Forecasting Genetic ProgragFD GP)
model incorporates features that allow it to adapt to chap@nvironments automatically as well as retain knowledgened
from previously encountered environments. The DyFor GP ehaxltested for forecasting efficacy on both simulated arad re
time series including the U.S. Gross Domestic Product anas@oer Price Index Inflation. Results show that the perfocea
of the DyFor GP model improves upon that of benchmark modmisli experiments. These findings highlight the DyFor GP’s
potential as an adaptive, non-linear model for real-wode€asting applications and suggest further investigatio

N. Wagner is with the Department of Mathematics and Compsibgence, Augusta State University, Augusta, GA 30904, UgAmail: nwagner@aug.edu).

Z. Michalewicz is with the School of Computer Science, Ursity of Adelaide, Adelaide, SA 5005, Australia, Institubé Computer Science, Polish
Academy of Sciences, ul. Ordona 21, 01-237 Warsaw, Polamdi Palish-Japanese Institute of Information TechnologyKaszykowa 86, 02-008 Warsaw,
Poland, (e-mail: zbyszek@cs.adelaide.edu.au).

M. Khouja is with the Department of Business Information t8yss and Operations Management, University of North QaaolCharlotte, NC 28223,
USA, (e-mail: mjkhouja@email.uncc.edu).

R. MCGregor is with the Department of Economics, University ofrfdcCarolina, Charlotte, NC 28223, USA, (e-mail: rrmcgregy@il.uncc.edu).

0000-0000/00$00.0®) 2005 IEEE



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTED JANUARY 2005 1

Time Series Forecasting for Dynamic Environments
the DyFor Genetic Program Model

I. INTRODUCTION 4) threshold methods, and

ORECASTING is an integral part of everyday life. Busi- 5) generalized autoregressive conditionally heterositérla
Fnesses, governments, and people alike make, use, and (GARCH) methods.
depend on forecasts for a wide variety of concerns. CurreHte first three categories listed above can be considered as
methods of time series forecasting require some elementligear methods, that is methods that employ a linear funetio
human judgment and are subject to error. When the infornf@m for time series modelling, and the last two as non-linea
tion to be forecast is well-understood, the error may beiwithmethods'
acceptable levels. However, often the forecasting coniern In exponential smoothing a forecast is given as a weighted
not well-understood and, thus, methods that require littlho Moving average of recent time series observations. The
human judgment are desired. Additionally, many forecastinveights assigned decrease exponentially as the obsersatio
situations are set in environments with continuously sitft get older. In regression a forecast is given as a linear iomct
conditions. These situations call for methods that cansadj@f one or more explanatory variables. ARIMA methods give
and adapt to the changing conditions. a forecast as a linear function of past observations (or the
The aim of this study is to investigate the developmefifferences of past observations) and error values of the ti
of a new adaptive model that is specifically tailored fogeries itself and past observations of zero or more expanat
forecasting time series produced by non-static environtsnervariables. See Makridakist al. [57] for a discussion of
The proposed model is based on genetic programming (Gityoothing, regression, and ARIMA methods.
with additional features that seek to capture such dyndiyica All linear forecasting methods above assume a functional
changing time series. This Dynamic Forecasting Geneferm which may not be appropriate for many real-world
Program (DyFor GP) model incorporates methods to addpfe series. Linear models cannot capture some featurés tha
to changing environments automatically as well as reta@@mmonly occur in actual data such as asymmetric cycles and
knowledge learned from previously encountered envirortmerPccasional outlying observations [57, pg. 433-434]. Regjon
Such past-learned knowledge may prove useful when currétgthods often deal with non-linear time series by logarithm
environmental conditions resemble those of a prior settingf Power transformation of the data, however this technique
Specifically, this knowledge allows for faster convergetme does not account for asymmetric cycles and outliers.
current conditions by giving the model searching process aThreshold methods assume that extant asymmetric cycles
“head-start” (i.e., by narrowing the model search space). are caused by distinct underlying phases of the time series
The rest of this paper is organized as follows: section @nd that there is a transition period (either smooth or abrup
is a brief review of existing time series forecasting methodbetween these phases. Commonly the individual phases are
section Ill describes the DyFor GP model, section IV detai@ven a linear functional form and the transition period (if

experiments involving the DyFor GP model, and section $mooth) is modeled as an exponential or logistic function.
concludes. GARCH methods are used to deal with time series that display

non-constant variance of residuals (error values). Inehes
methods the variance of error values is modeled as a quadrati
function of past variance values and past error values.Th [5
[60], [72] various threshold methods are detailed while, [1]
Existing time series forecasting methods generally fath in[11], [22] describe GARCH methods.

two groups: classical methods which are based on statisThe non-linear methods above, although capable of char-
tical/mathematical concepts, and modern heuristic methogkterizing features found in actual data such as asymmetric
which are based on algorithms from the field of artificiatycles and non-constant variance of residuals, assume that

II. REVIEW OF EXISTING TIME SERIESFORECASTING
METHODS

intelligence. the underlying data generating process of the time series is
constant The linear methods described above also make this
A. Classical Methods assumption. For actual time series data this assumption is

ften invalid as shifting environmental conditions may sau

Classical time series forecasting methods can be subdivi fe underlying data generating process to change. For all of

into the following categories:
1) exponential smoothing methods, !Regression and ARIMA methods can have a non-linear furatiéorm,

2) regression methods, however this is not common.
) g 2Threshold methods do allow for the underlying process ty wmtween

3) aUtoregreSSive integrated moving average (ARIMAt)rescribed phases. However, the process is assumed to $tartonithin each
methods, phase and, commonly, only 2 or 4 phases are specified [21]], [57



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTED JANUARY 2005 2

the classical forecasting methods listed, human judgnenttihen ranked based on its prediction error over a set of trgini
required to first select an appropriate method and then seta. A new population of solutions is generated by selgctin
appropriate parameter values for the model’s coefficients (fitter solutions and applying a crossover or mutation opemat

to select an appropriate parameter optimization scheme).Grossover is performed by swapping a subset of parameter
the event that the underlying data generating process elsangalues from two parent solutions. Mutation causes one (ran-
the time series data must be reevaluated and a (possibly néein) parameter from a solution to change. New populations
method must be selected with appropriate parameter valug® created until the fittest solution has a sufficiently $mal
Because the task of repeated data monitoring and mogeddiction error or repeated generations produce no rexfuct
selection is complex and time consuming, automatic nogalin of error.

forecasting models that can handle non-static environsramet ~ Consider the following example given by Jeong, Jung, and
desired. The following section contains a discussion ofenod Park [36]. They choose a linear explanatory model of the form

heuristic methods used for time series forecasting.
y(k +1) = bo + brz1(k) + bawa(k) + ... + buzn(k), (1)

B. Modern Heuristic Methods wherey(k + 1) is the forecast variable at time+ 1, z;(k)
the value of explanatory variable at timek, andb; is the
efficient of explanatory variable;. Thus, a candidate solu-
tion will be a vector of real numbers representing coeffitsen
1) methods based on neural_ networks (NN),_and by throughb,,. Because each coefficient may have a unique
2) methods based on evolutionary computation. range, a scaling technique is used to map the coefficients to
We can refine the latter category by dividing it further intgne range [0,1]. The process requires that an encoded®oluti
methods based on genetic algorithms (GA), evolutionary prg js decoded back to the original value scheme. The following

Most modern heuristic methods for time series forecastiﬁs%
fall into two major categories: c

gramming (EP), and genetic programming (GP). equation is used for this purpose:

It is interesting to note that NN, EP, and GP techniques were , ,
used to build nonlinear forecasting models, whereas geneti bi(u) = b"" + ci(u)[b]"" — b7"*"|, (2)
algorithms were primarily used to tune the parameters Ofesonv?/here bi(u) is the i coefficient value for solution,i —
(possibly statistical, linear or nonlinear) forecastingdual. All 1. . n. and ’
of the methods listed above are motivated by the study of =~~~
biological processes. min (1 —a)bi(s), if bi(s)>0

NN attempt to solve problems by imitating the human brain. b = (14 a)bi(s), if bi(s) <0,

A NN is a graph-like structure that contains an input layerpz

or more hidden layers, and an output layer. Each layer aostai o (1+ a)bi(s), if bi(s) >0

several “neurons” which have weighted connections to neiro bi* " = (1 — a)bi(s), if bi(s) < 0.

of the following layer. A neuron from the input layer holds an ’ ’

input variable. For forecasting models, this input is a fmes Here b;(s) is the i" coefficient value for the current best

time series observation or an explanatory variable. A neureolution s, ¢;(u) is the encoded value of thd coefficient

from the hidden or output layer consists of an “activationfor solution v, and o = 0.5. « serves as a boundary for

function (usually the logistic functiong(u) = H%). A the coefficients of all solutions in the population, thathsyt

three-layer feed-forward NN (one hidden layer between ame restricted to be withia=100a% range of the current best

input and output layer) is commonly used for forecastingplution. The fitness function chosen to evaluate solutisns

applications due to its ability to approximate virtuallyyamon- Zkfl () — 50)]

linear model (if given a sufficient number of neurons at the f=lylk) —7(k)| + j=1 1Y) 7 YU , (3)

hidden layer) [88]. Several applications of NN to forecagti k—1

are proffered in [28], [75], [79]. General descriptions oNN wherey(k) is the observed value for the forecast variable at

can be found in [30], [88]. time k, andy(k) is the predicted value for the forecast variable
For methods based on evolutionary computation, the prattime k. The first term of equation 3 gives the deviation of

cess of biological evolution is mimicked in order to solveéhe predicted value from the observed value at current ime

a problem. After an initial population of potential solut® and the second gives the average deviation of predicte@valu

is created, solutions are ranked based on their “fitness¥ Nérom observed values during the entire training period teefo

populations are produced by selecting higher-rankingtewla time &. Fitter solutions will have lower values fgf (with the

and performing genetic operations of “mating” (crossovelpwest possible value being.

or “mutation” to produce offspring solutions. This process GA has been used successfully for a wide variety of difficult

is repeated over many generations until some terminatioptimization problems including the forecasting of rearid

condition is reached. time series. [5], [61], [62] give detailed descriptions oAG
When GA is applied to forecasting, first an appropriatehile [13], [16], [19], [29], [39], [45], [82] provide addibnal

model (either linear or non-linear) is selected and anahitiexamples of GA applied to forecasting.

population of candidate solutions is created. A candidateFor EP each candidate solution is represented as a finite

solution is produced by randomly choosing a set of paramestate machine (FSM) rather than a numeric vector. FSM

values for the selected forecasting model. Each solutionifgputs/outputs correspond to appropriate inputs/outpfithe
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forecasting task. An initial population of FSMs is createdia actual data. NN, GP, and EP have the added advantage that
each is ranked according to its prediction error. New popthe forecasting model need not be prescribed, allowing for
lations are generated by selecting fitter FSMs and randonaytomatic discovery of a befitting functional form. However
mutating them to produce offspring FSMs. A parent FSM igke the classical methods discussed in section IlI-A, these
mutated by performing one of the following operations: methods assume a static environment. If the underlying data

1) change an output symbol, generating process shifts, the methods must be reevaluated
2) change a state transition, in order to accomodate the new process. Additionally, these
3) add a new state, methods require that the number of historical time seri¢a da
4) remove a state, or used for analysis be designategbriori. This presents a prob-

5) change the start state. lem in non-static environments because different segnants

EP was devised by Fogel [24] and has applications in many #te time series may have different underlying data genegati
eas. Some examples of successful EP forecasting expesmé@fi@cesses. For example, a time series representing the dail
include [24], [25], [26], [73]. stock value of a major U.S. airline is likely to have a diffietre

In GP solutions are represented as tree structures instéaderlying process before September 11, 2001 than it does
of numeric vectors or finite state machines. Internal nodaferwards. If analyzed time series data span more than one
of solution trees represent appropriate operators and lg@iderlying process, forecasts based on that analysis may be
nodes represent input variables or constants. For foiagastskewed.
applications, the operators are mathematical functiords an Consider the subset of time series data shown in figure 2.
the inputs are lagged time series values and/or explanat&typpose this represents the most recent historical data and
variables. Figure 1 gives an example solution tree for time
series forecasting. Variablas; andxz;s represent time series

values one and two periods in the past, respectively. 22,33, 30,27, 24, 20,21, 20, 20, 23, 26, 29, 30, 28,29, 32,30, 31]| ...

segment1 segment2 future

° Fig. 2. Time series containing segments with differing utyileg processes.

G @ has been chosen for analysis. Suppose further that thetsubse
consists of two segments each with a different underlying
° process. The second segment’s underlying process refgesen
the current environment and is valid for forecasting futlaés.
@ D, The first segment’s process represents an older environment
that no longer exists. Because both segments are analyzed,
Fig. 1. GP representation of forecasting solutien + sin(5.31z¢2) the forecasting model is distorted unless human judgment is
brought to bear.

GP was developed by Koza [49] as a problem-solving tool Some degree of human judgment is necessary to assign the
with applications in many areas. He was the first to use GPriamber of historical data to be used for analysis. If the time
search for model specifications that can replicate pattefnsseries is not well-understood, then the assignment mayont
observed time seriesNumerous studies have applied GP tsegments with disparate underlying processes. This ituat
time series forecasting with favorable results. Some e¥@snphighlights the need for forecasting methods that can auiema
of these include [3], [14], [15], [32], [33], [34], [38], [40 cally determine the correct analysis “window” (i.e., thereat
[41], [42], [43], [44], [52], [63], [66], [83]. GP has also ke number of historical data to be analyzed). This investigati
used to find successful trading rules from time series dataattempts to develop a dynamic forecasting model based on
[27], [59], [67], [68], [80], [86]. GP that can do just that. Furthermore, this study explores

Also prevalent in the literature are forecasting studiegctvh methods that can retain knowledge learned from previously
make use of a technique that is either a close variant éacountered environments. Such past-learned knowledge ma
one of the aforementioned methods or a hybrid that employsove useful when current environmental conditions resemb
multiple methods. One common hybrid method is one thtiose of a prior setting. Specifically, this knowledge alidar
combines NN and GA. In these applications a GA is used faster convergence to current conditions by giving the rhode
optimize several aspects of a NN architecture [2], [6], [53%earching process a “head-start” (i.e., by narrowing theeho
[58], [64], [70Q], [74], [89]. The optimized NN is then used tosearch space).
produce the desired forecasts. Another hybrid methodzesili  In the following section, the DyFor GP model is presented
an EP to evolve both the weights and the topology (i.e., th@d its features discussed.
connectivity) of a NN simultaneously [56], [91]. In [48] and
[55] a variant on GA called evolution strategies (ES) is used I1l. THE DYFOR GP MODEL
to generate efficient trading rules for financial time series As discussed in the previous section, an adaptive foregst

Because the heuristic methods described above are non- '

linear, they are able to capture many aspects displayed odel that can handle non-static environments is souglg. Th
' y y y dsired model would automatically determine the apprégria

3In [49] Koza refers to this as “symbolic regression.” analysis window (i.e., the number of recent historical data
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whose underlying data generating process corresponds tdhis sliding window feature allows the DyFor GP to analyze

current environment). Also, the model should be able to adagll existing data and take advantage of previously observed
to changing conditions “on-the-fly” (i.e., without the nefedl  patterns. As the window slides through past data, solutions
halting and restarting the analysis). An additional boomldo glean useful knowledge making it easier for them to adapt to
be the ability to retain useful knowledge from previoushand predict the current environment.

encountered environments so that the current setting can be

more accurately captured. In this section a discussion ®f tB. Adapting the Analysis Window

design of such a model is proffered. As expounded in section 1I-B, designating the correct size

] o ] for the analysis window is critical to the success of any

A. Natural Adaptation: A Sliding Window of Time forecasting model. Automatic discovery of this windowsize

In biological evolution organisms evolve to suit the occuiis indispensable when the forecasting concern is not well-
rent conditions of their environment. When conditions sshifunderstood. With each slide of the window, the DyFor GP
successful organisms adapt to the new surroundings. Oweéljusts its windowsize dynamically. This is accomplished i
many generations and several environmental shifts, emglurthe following way.
organisms represent highly adaptive solutions that caviv@ir 1) Select two initial windowsizes, one of sizeand one of
and thrive in a variety of settings. A time series arisingiro sizen + i wheren andi are positive integers.
real-world circumstances can be viewed in a similar light. 2) Run dynamic generations at the beginning of the his-
Different segments of the time series may be produced by torical data with windowsizes: and n + i, use the
different underlying data generating processes. Each segm best solution for each of these two independent runs
can be thought of as one set of environmental conditions. A to predict a number of future data points, and measure
successful forecasting model might be seen as an adaptive their predictive accuracy.
organism that has evolved through all of the pre-existing en 3) Select another two windowsizes based on which win-
vironments and gained valuable adaptations (strengtbspal dowsize had better accuracy. For example if the smaller
the way. of the 2 windowsizes (size) predicted more accurately,

To model this natural adaptation through many environ-
mental settings, a sliding window of time is proposed. For
the DyFor GP model, analysis starts at the beginning of the
available historical data. Some initial windowsize (numbg
data observations to analyze) is set and several genesatfon 4)
DyFor GP are run to evolve a population of solutions. Then the

then choose 2 new windowsizes, one of sizeand
one of sizen — 4. If the larger of the 2 windowsizes
(size n + i) predicted more accurately, then choose
windowsizesn + i andn + 2i.

Slide the analysis window to include the next time series
observation. Use the two selected windowsizes to run

data window slides to include the next time series obsermati
Several generations are run with the new data window and

then the window slides again. This process is repeated untils) Repeat the previous two steps until the analysis window
all available data have been analyzed up to and including the reaches the end of historical data.

most recent historical data. Figure 3 illustrates this pssc Thus, at each slide of the analysis window, predictive aaoyr
In the figure,| marks the end of available historical data. Thg, sed to determine the direction in which to adjust the
windowsize.

Consider the following example. Suppose the time series
given in figure 4 is to be analyzed and forecast. As depicted
in the figure, this time series consists of two segments each
with a different underlying data generating process. The

another two dynamic generations, predict future data,
and measure their prediction accuracy.

22,33, 30,27, 24, 20, 21, 20, 20, 23, 26, 29, 30, 28, 29, 32,30, 31| ...
~

window —1 future

22,33,30,27, 24, 20,21, 20, 20, 23, 26, 29, 30, 28,29, 32, 30, 31| ...
-~

future

window—2
22,33,30,27, 24, 20, 21, 20, 20, 23, 26, 29, 30, 28,29, 32, 30, 31| ...
~—

future

segment1 segment2

Fig. 4. Time series containing segments with differing utyileg processes.

22,33, 30,27, 24, 20,21, 20, 20, 23, 26, 29, 30, 28, 29, 32, 30, 31| ...
~

future

window —i

Fig. 3. A sliding data analysis window.

second segment’s underlying process represents the turren
environment and is valid for forecasting future data. Thst fir
segment’s process represents an older environment that no
longer exists but may contain patterns that can be learngd an
exploited when forecasting the current environment. Iféhs

set of several generations run on a single analysis windownis knowledge available concerning these segments, automat
referred to as a “dynamic generation.” Thus, a single run tdchniques are required to discover the correct windowsize
the DyFor GP includes several dynamic generations (one fogeded to forecast the current setting. The DyFor GP starts
each window slide) on several different consecutive afglydy selecting two initial windowsizes, one larger than the
windows. other. Then, two separate dynamic generations are run at the
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win2

beginning of the historical data, each with its own windaesi . winl pred
After. each dynamic generation, the best solution is used @7 33,30, 27, 24, 20, 21, 20, 20, 23, 26, 29, 30, 28, 29, 32,30, 31| ...
predict some number of future data and the accuracy of this I o2 o~

prediction is measured. Figure 5 illustrates these stepthd

figurewinl andwin2 represent data analysis windows of siz€ig. 8. Window adaptation when analysis spans both segmiote: winl
3 and 4, respectively, angred represents the future data@ndwin2 have contracted to include less inappropriate data.
predicted.

dynamic generation involving analysis windevinl has better
prediction accuracy than that involvingin2 becausewinl

win2

P ,_pﬁL includes less data produced by a process that is no longer in
22,33, 30,27, 24, 20, 21, 20, 20, 23, 26, 29, 30, 28, 29, 32,30, 31| ... effect. If this is so, the two new windowsizes selectedvianl
segment1 segment2 mtre  @andwin2 are sizes 3 and 4, respectively. Thus, as the analysis

window slides to incorporate the next time series valuesi a
contracts to include a smaller number of inappropriate .data

The dat dicted in th initial st lies insid ﬂ%n figure 8 this contraction is shown.
_'he data Pre icted In these inftial Steps 1es nSIde e aqer the data analysis window slides past the end of the
first segment’s process and, because the dynamic gener

aHw segment, it is likely to expand again to encompass a

involving analysis windowwin2 makes use of a greater ; ; ;
. P reater number of appropriate data. Figures 9 and 10 depict
number of appropriate data than thatwaihl, it is likely that ?his expagsion ppropri 'gu P!

win2's prediction accuracy is better. If this is true, two new
windowsizes forwinl andwin2 are selected with sizes of 4

Fig. 5. Initial steps of window adaptation.

and 5, respectively. The analysis window then slides talhel /_WLL

the next time series vglue, two new dynamic genera’;ions are , wint ‘”Fdr

run, and the best solutions for each are used to predictefutup2, 33, 30,27, 24, 20, 21, 20, 20, 23,26, 29, 30, 28,29,32,30,31 | ...
data. Figure 6 depicts these steps. In the figure, data amalys scgmentl segment2 future

windows winl and win2 now include the next time series

value. 24 an(bred has shifted one value to the right Fig. 9. Window adaptation when analysis lies entirely iasttie second
! ! ’ segment. Note: the larger analysis windomin2, is likely to have better

prediction accuracy because it includes a greater numbapmiopriate data.

win2

—_——
winl pred
—N———
22,33, 30,27, 24,20, 21, 20, 20, 23, 26, 29, 30, 28,29, 32, 30, 31| ... win
~~ -
segment1 segment2 future winl pred
——N—
22,33, 30,27, 24, 20,21, 20, 20, 23, 26, 29, 30, 28,29, 32, 30,31 ...
Fig. 6. Window adaptation after the first window slide. Notén1 andwin2 ~—~
have size 4 and 5Y respectively. segment1 segment2 future

. . . . . Fig. 10. Window adaptation when analysis lies entirely desthe second
This process of selecting two new windowsizes, sliding th@gment. Notewin1 andwin2 have expanded to include a greater number of

analysis window, running two new dynamic generations, ardpropriate data.

predicting future data is repeated until the analysis wimdo

reaches the end of historical data. It may be noted that whileAs illustrated in the above example, the DyFor GP uses
the prediction datapred, lies entirely inside the first segment predictive accuracy to adapt the size of its analysis window
the data analysis windowsjn1 andwin2, are likely to expand automatically. When the underlying process is stable, (.

to encompass a greater number of appropriate data. Howeaglysis window is contained inside a single segment), the
after several window slides, when the data analysis windowindowsize is likely to expand. When the underlying process
spans data from both the first and second segments, itsisfts (i.e., the analysis window spans more than one segmen
likely that the window adjustment reverses direction. Fegu the windowsize is likely to contract. The following section
7 and 8 show this phenomenon. In figuravihl andwin2 discusses how the DyFor GP model can retain and exploit
knowledge of previously-encountered environments.

win2

inl red
22,33, 30, 27, 24, 20, 21, 20, 20, 23, 26,29, 30, 28,29,32,30,31| ... C. Retaining and Exploiting Knowledge from Past Environ-
segment1 segment?2 future ments

. , . _ A primary objective of time series forecasting is to find
Fig. 7. Window adaptation when analysis spans both segmBiate: the del th | h .
smaller analysis windowwinl, is likely to have better prediction accuracya model that accurately represents the current environment

because it includes less inappropriate data. and use that model to forecast the future. As discussed in
section II-B, existing forecasting methods rely, to somgrde,

have sizes of 4 and 5, respectively. As the prediction daty; human judgment to designate an appropriate analysis

pred, lies inside the second segment, it is likely that theindow, that is the window of historical data whose undeyi
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process corresponds to the current environment and is valid
for forecasting future data. If a time series is produced in a
non-static environment, frequently only the recent histdr
data that correspond to the current environment are ardlyze
and historical data that come from previous environmergs ar
ignored.

What if the current environmental conditions resemble¢hos
of a prior environment? In such a case, knowledge of this
prior environment might be used to capture the current en-
vironment with greater speed and/or accuracy than a search
that ignores this knowledge. Existing forecasting methods
assuming that the analysis window has been correctly set, /@ 11. A GP solution tree containing an intron. Dashedslieaclose the
not benefit from knowledge of past environments and, thuigfon subtree.
must search for a model of the current environment “from
scratch.” The sliding window feature (described in section ) ) ) )

lI-A) allows the DyFor GP to analyze all historical dataorew_ously Iearned_adaptatlons in a non-static envirorimen
and take advantage of knowledge gleaned from previouggnsider the following example. _ o

encountered environments, giving the model search a “head?S discussed in section II-B, time series arising from real-
start” This knowledge comes in the form of adaptations,(i.&Vorld circumstances may contain segments with differing un
solution subtrees) gained by evolution through these prei derlying data generating processes. For example, a tinesser
environments. Past-evolved subtrees are used by the DyfgRresenting the monthly value of a U.S. treasury bond might
GP as promising exploration points from which to search f&€ Produced by one underlying process when interest rates

a model that is appropriate for the current environmentsghe2'® “high” and a different underlying process when interest
subtrees are retained and exploited in two ways: rates are “medium” or “low.” Furthermore, many time series

1) implicitly by the evolutionary process when it is coupleé‘re produ_ced n cycllca! environments in which cond|t|0|js
with the sliding window feature of the DyFor GP and currently in effect are similar to conditions encountered i

2) explicitly through the use of “dormant” solutions. the past. For e>.(ample,_the. c_urrent underlying erqce"ss f_or a
. ) ) treasury bond time series if interest rates are “high” might
The following two sections discuss how past-evolved s@stre, o similar to a past underlying process that occurred when

are rr_1aintained and utilized. For the rema}inder of this pap@tarest rates were also “high.” Suppose the time seriesngiv

we will refer to such subtrees as "adaptations.” in figure 12 is such a time series. As depicted in the figure,
this time series consists of three segments each with aetiffe

D. Implicit Adaptation: the Role of Introns underlying data generating process. The third segmentferdn

In biology unexpressed genotypic regions are commonly
called introns. For GP, this term has been adopted to refer to
inactive regions in the solution representation, that lstraes 22,33, 30,27, 24, 20,23, 26, 29, 30, 28, 29, 31, 32, 30, 30, 31, 28 N
of a solution which do not affect its fitness [4], [12]. Coresid segment1 segment2 segment3 future

the solution tree dep|<_:ted In flgure 11. This solution trelgg. 12. Time series containing segments with differingerydng processes.
represents the expression

2.53x:—3 lying process represents the current environment and id val
Ti—2 ) (@1 = @) for forecasting future data. The first and second segments’
processes represent older environments that no longerexis
may contain information that can be used to more accurately
2.53(2¢_2)°. capture the current environment. Suppose further thataimi

environmental conditions produce segments 1 and 3 (e.g.,

The % sign in the figure re.p.re.sents a prOtECted_diViSi%lterest rates in the “high” category) while differing cainohs
operator that does not allow division by zero. In the figue th{)

2.53(x4_2)2 + (

which after simplification becomes

, b losed by dashed I q o oduce segment 2 (e.g., interest rates in the “medium™ cate
intron subtree (enclosed by dashed lines) does not affect ).y The aim is to retain adaptations learned from segment

fr;niss oflthe so_lutm? as |ts_ obultput simplifies tg zero relgessd 1 and utilize these adaptations to find an appropriate model
0 ;\e Vﬁlll;es glverr: or variat eB;qh xg; and—s. " for segment 3. The DyFor GP sets its analysis window at
well-known characteristic of the process Is the teggq beginning of segment 1's data and starts the evolutjonar

dency for evolved solution trees to have introns make ocess in search of an applicable model. Perhaps, afteradev
a significant percentage of the tree structure. This was fitgt - mic generations inside segment 1, the solljtion tree of
recogmzed by Koza [49, Pg. 7]. Several stu_d|es have sug_gesﬁ ure 13 is evolved as a befitting model. This solution tree
that introns are a beneficial component in the EVOIUt'Onafgpresents the expression

search for optimal solutions [35], [54], [69]. Introns aeen as
particularly valuable when the environment is non-stéii¢] |

To understand how introns are utilized to retain and exploit

2.53x1—3

Tt—2

12.33 + ( ) (cos(z¢—1 —w4-1))
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o of this offspring (the same intron subtree as depicted inréigu
11).
@ ° Thus, the adaptation evolved during analysis of segment
1 can be retained as the DyFor GP analyzes segment 2
@ Ceood even though this adaptation is not relevant for segment 2's
environment. While this retention of a previously learned
° @ ° adaptation may be possible, one may ask if it is likely.
Given that the adaptation in question suits the environment
@ @ @ @ of segmenf[ 1, the e\_/o_lutionary process is likely to produce
many solutions containing the adaptation when the DyFor GP
analyzes segment 1's data. When the analysis window swgitche
Fig. 13. An evolved solution tree for segment 1. to segment 2’s data to start analysis of this new environment

natural selection will tend to favor these fitter solutionsnfi
segment 1 and, thus, solutions with this adaptation will be

which simplifies to chosen for crossover many times. Therefore, it is likelyt tha
number of those crossovers will result in the adaptationgei
2.537;_3 : L
12.33 4+ [ =222 ) (4) moved to an intron subtree as described in the above example
Tt—2 especially given the fact that a large percentage of GPisalut

In the figure, suppose the subtree rooted by the protect&@es are made up of introns. Hence retention of past-egolve
division operator %) is an adaptation that fits the environ2daptations into intron subtrees is likely. .
mental conditions of segment 1. This subtree is equivaent t When the analysis window slides to segment 3's data, it
the second term of the equation 4. is likely that some solution trees in the population contain
When the DyFor GP’s analysis window moves into segmefité adaptation evolved from segment 1 as a part of an intron
2, this adaptation is no longer suitable as the environnhengibtree. Since segment 3's environment resembles that of
conditions have Changed_ Neverthe|essi through crostoger Segment 1, solutions that contain the adaptatlon In ana&ctiv
adaptation can be retained by becoming a part of an intréHbtree W|" survive and thl:lve. Just as CFOSSQVGF can move
subtree in a fit solution for segment 2. Figures 14 and B adaptation from an active subtree to an intron subtree,

ilustrate this phenomenon. In figure 14, the adaptatidhcan also move an adaptation from an intron subtree back
to an active one. If even one crossover results in such an

exchange, natural selection will favor the resulting solut
and that solution will multiply.

The above example illustrates how evolved adaptations from
previously encountered environments can be retained in non
applicable environments by becoming part of intron sulstree
and can then be reactivated in applicable environments by
moving back to active subtrees. This takes place impliwitdy
the evolutionary process when it is coupled with the sliding
Fig. 14. Retention of a no longer suitable adaptation vissweerp1 andp2 ~ window feature of the DyFor GP. The following section dis-
are parent solution trees to undergo crossover. Dashesl dinelose subtrees ,5ses an explicit method of maintaining and exploiting-pas
to be exchanged. . - . .

evolved adaptations through the use of “dormant” solutions

E. Explicit Adaptation: Dormant Solutions

The DyFor GP also contains a feature that explicitly saves
evolved adaptations from past environments and then gject
them back into the evolutionary process when conditions are
suitable. This feature involves the use of “dormant” solus,
that is solutions that remain inactive during environmevita
inapplicable conditions becoming active only when apjbliea
Fig. 15. Retention of a no longer suitable adaptation visswuer.ol and conditions an_se' Segtlon -8 .eXplamS how the .DyFor G.P
02 are offspring solutions produced after crossover is peréat onpl and adapts the size of its analysis window dynamically. It is
p2 from figure 14. noted that when the analysis window lies entirely inside a

segment of historical data generated by a single underlying
equivalent to the second term of equation 4 is part of trg@ocess, the window is likely to expand to encompass a greate
pl and is to be exchanged with a subtree of tp@e Figure number of appropriate data. Conversely, it is shown thatnwhe
15 gives the offspring solution trees produced. In the figurthe analysis window spans data generated by more than one
the adaptation is now a part of offspring solution tre2 underlying process, the window is likely to contract to ird#
Furthermore, the adaptation is contained in an intron sebtra smaller number of inappropriate data. A fortunate sideceff
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of this windowsize adjustment is that the boundaries of eachThe above sections have described several features of the
underlying process can be deduced. Consecutive expansibg§or GP which are designed to allow for the forecasting of
of the analysis window describe a segment of data withti@ne series produced in non-static environments. The featu
stable underlying process. Consecutive contractions ef ttliscussed include a sliding window of analysis, automatic
analysis window signal that a shift in environmental coiodis windowsize adjustment, and the utilization of knowledge (i
has occurred and that a new underlying process is currertthg form of evolved adaptations) from previously encousder
coming into effect. environments as an aid to forecasting the current envirohme

The idea is to save fit solutions evolved during segmenffiese features combine to afford the DyFor GP the following
when the underlying process is stable to be used later fadvantages for real-world forecasting concerns which tend
quicker capture of new environmental conditions when the ubhe non-linear, non-static, and not well-understood.

derlying process shifts. This is accomplished by the folfl@v 1) As the DyFor GP is based on the GP paradigm, it is

steps. not necessary to designate the functional form of the
1) As the analysis window of the DyFor GP slides, note  forecasting model in advance and, thus, a befitting (and
the direction of window adjustment. often non-linear) model can be automatically discovered.

2) In a non-static environment with varying underlying

signal the beginning of a stable process. Hafe data generating processes, an appropriate data analysis

is a pre-specified control parameter of the DyFor window for the currently existing environment may be
GP. found automatically.

All available historical data are analyzed, allowing the
DyFor GP to learn from past environments and exploit
this knowledge when forecasting the current setting.

4) Because the features of the DyFor GP are dynamic in ha-
ture and can adjust themselves automatically depending
on the environment encountered, the DyFor GP has the
potential to forecast time series produced by non-static
environments with varying data generating processes.

a) N consecutive window expansions are likely to

b) N consecutive window contractions are likely to 3)
signal the beginning of a process shift.

2) If a stable process is signaled, save a few fit solutions
as potential dormant solutions.

3) For each further windowslide in which expansion is
observed, replace the potential dormant solutions pre-
viously saved with new ones (i.e., fit solutions for the
current dynamic generation).

4) When a process shift is signaled, the most recently saved
potential dormant solutions become actual dormant sb- The Problem of Bloat

lutions and are saved permanently. o Bloat in GP is the tendency for solution trees to grow large
5) Now, because a process shift is in effect, inject alls they approach the optimal [50], [51]. Solutions may bezom
dormant solutions saved from previous environmeng}, |arge that they exhaust computer resources. Additignall
(with the exception of those saved from the most r5inat hinders a GP model's adaptability as solutions become
cent previous environment) into the GP population tpy, specialized to adjust to changing conditions. Bloat is a
compete with current solutions. Injected dormant solysyoplem for any GP model regardless of the application [7].
tions that contain adaptations applicable to the currepf ihe case of the DyFor GP, bloat can be even more severe
environment will survive and thrive, while those that dg,s generations are run on several consecutive data analysis
not will die off. _ ‘windows making the total number of generations large. Pre-
6) Keep injecting these dormant solutions at each Wifjminary experiments employing the DyFor GP confirm this
dowslide until a stable process is again signaled. Onggniiment. In order to allow the DyFor GP to search efficient|
a stable process has been signaled, go back to step fz.an appropriate forecasting model, bloat must be mingahiz
Thus, fit solutions evolved from segments where a stabMithout sacrificing the quality of solutions. Two methode ar
process exists are saved permanently as dormant solutipnsposed to overcome this obstacle:
representative of the environments from which they evalved 1) npatural non-static population control and
These dormants are the end product of multiple dynamicp)y gynamic increase of diversity.
generations and, therefore, contain adaptations apptefor As described in section 1I-B, GP models evolve a population
their environment. Lgter in the analysis, when the DyFor G f.fsolutions for a given proble,m. Thus, a GP model must con-
moves to newer envwonmer_n;, these dormants prove useﬂ{alm some method to control the number and size of solutions
the new environmental conditions resemble those ofapmswoIn any population. The standard method of GP population
environment. As described in the above steps, when a new '

environment is encountered, all dormants are injectedtheo ontrol is due to Koza [49] and uses a static population
. i, ) cardinality and a maximum tree depth for solutiérisowever,
GP population to compete with current solutions. If the ne

. L : is method does not protect a GP model from bloat. If
environment is similar to a past environment, the dormants

representing that past environment will contain adagtatio umerous solutions in a population have full or nearly full
P Y P . : s trdaes of depth close to the maximum, available resources may
suitable for the new environment and, thus, will endure al

prosper. In this way knowledge of past environments can %g exhausted. Additionally, the artificial limit for tree pih

used to capture the current environment with greater speee,, [49] used population sizes of 500, 1000, and 2000 andimuam
and/or accuracy. solution tree depth of 17 in his early GP experiments.
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prohibits the search process from exploring solutions e&ter is concentrated in a small area of the search space. The
complexity, which, especially for many real-world problem significance of this concern is recognized in [8], [37], [8&%
may be solutions of higher quality. described above, NNPC can be utilized by a GP forecasting
An alternative method for GP population control is premodel to conserve computer resources. However, although
sented to allow natural growth of complex solutions in ailsgtt resource usage is controlled, after several generaticeis su
that more closely emulates the one found in nature. In naturedel tends to have populations that are dominated by a small
the number of organisms in a population is not static. Irsteanumber of bloated solutions. This lack of population diitgrs
the population cardinality varies as fitter organisms ogcupffects a model’s ability to adapt to changing environments
more available resources and weaker organisms make Elen in models that do not employ NNPC (instead opting for
with less. Thus, from generation to generation, the pomrat SPC), populations tend to have bloated solutions (in thss ea
cardinality changes depending on the quality and type lafrge rather than small number of them). Additionally, ah
individual organisms present. The proposed natural natiest solution trees tend to hurt a GP model’'s generality [46],
population control (NNPC) is based on a variable populatig69], [71], [78]. Generality refers to a solution’s applihty
cardinality with a limit on the total number of tree nodeso a wider set of cases than the set presented to the GP
present in a population and no limit for solution tree deptimodel for analysis. For forecasting tasks as well as mosroth
This method addresses the following issues: applications, a GP model is presented with some number of
1) allowing natural growth of complex solutions of greateinput data to analyze in the hopes that solutions evolvengusi
quality, this data will be relevant (i.e., to generalize) to otheradabt
2) keeping resource consumption within some specifieged as input. For these reasons it is important for a GP model
limit, and to both reduce bloat and maintain population diversity.
3) allowing the population cardinality to vary naturally A method that dynamically increases the diversity of a Dy-
based on the make-up of individual solutions presentFor GP population is proposed to accomplish these objective
By not limiting the tree depth of individual solutions, negli  The dynamic increase of diversity (DIOD) method increases
evolution of complex solutions is permitted. By restrigtithe  diversity by building a new population before each dynamic
total number of tree nodes in a population, available resEsur generation using evolved components from the previous dy-
are conserved. Thus, for a GP model that employs NNPC, thamic generation. The following steps outline this procedu
number of solutions in a population grows or declines ndijura 1) An initial population is constructed (using randomly
as the individual solutions in the population vary. This host generated trees in the usual way) for the first dynamic
is described in more detail below. generation.
NNPC works in the following way. Two node limits for a 2) After the dynamic generation is completed, a new initial

population are specified as parameters: the soft node limlit a population is constructed for the next dynamic genera-
the hard node limit. The soft node limit is defined as the limit tion that consists of two types of solution trees:

for adding new soIL_Jtions to a popu_lation. This means that if a) randomly generated solution trees and
adding a new solution to a population causes the total nodes
present to exceed the soft node limit, then that solutiohés t
last one added. The hard node limit is defined as the absolute
limit for total nodes in a population. This means that if audgli . . .
a new solution to a population causes the total nodes prasent 3) ;’he previous stgp is repeated after each successive
exceed the hard node limit, then that solution may be added yhamic generauo_n. ) _ ]
only after it is repaired (the tree has been trimmed) so thfuS, each new dynamic generation after the first starts with
the total nodes present no longer exceeds this limit. Durifg "eW initial population whose solution trees are smaller
the selection process of the DyFor GP, a count of the toffan those of the last population of the previous dynamic
nodes present in a population is maintained. Before adding@@neration but have not lost the adaptations gained from
new solution to a population, a check is made to determiR@St dynamic generations. In this way, solution tree bleat i
if adding the solution will increase the total nodes presefgduced without harming the quality of solutions. Additay,
beyond either of the specified limits. because ran_domly genergte_d trees make up a portion of the
Wagner and Michalewicz [83] provide a study comparin§€W population, diversity is increased.
a GP forecasting model with NNPC to one with the standard Section IlI-E describes an explicit technique for utiligin
population control (SPC) method introduced by Koza [491a_daptations learned from previously encountered enviemts
Observed results indicate that the model with NNPC wad order to better forecast the current environment. This
significantly more efficient in its consumption of computefechnique employs dormant solutions saved from past envi-
resources than the model with SPC while the quality éPnments. When this technique is incorporated as a part of
forecasts produced by both models remained equivalent. the DyFor GP, the steps of DIOD above must be modified
An important issue in GP is that of how diversity of Gpslightly to allow for the injection of dormant solutions int
populations can be achieved and maintained. Diversityrseféhe GP population at opportune times. The modified steps are
to non-homogeneity of solutions in a population [54]. As follows.
population that is spread out over the search space has &) An initial population is constructed (using randomly
greater chance of finding an optimal solution than one that generated trees in the usual way) for the first dynamic

b) solution trees that are subtrees of fitter solutions
from the last population of the previous dynamic
generation.
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generation. This space is quite large and, in general, intractable fostmo
2) After the dynamic generation is completed, a new initimonventional deterministic algorithms. The size of thedea
population is constructed for the next dynamic generapace coupled with the stochastic nature of the evolutionar
tion that consists of two types of solution trees: process cause the results of a GP-based forecasting examerim
a) randomly generated solution trees and to vary from run to run. Thus, a common practice is to execute

b) solution trees that are subtrees of fitter solutior&sSet of GP runs (usually 20 to 100) and designate the foecast

from the last population of the previous dynami®f the best run as the result (see, for example, [40], [41]). |
generation. the real world this practice is not useful since one cannotkn

3) After each successive dynamic generation in which"éhiCh run produu_as the best forecas_t for a given time period
stable process (as described in section III-E) is in eﬁewthout first knowing the corresponding actual value of that

a new initial population for the next dynamic generatioime period. . .
is constructed in the same way as given in the previousThe DyFor GP model is based on the GP algorithm and,
step. thus, it is necessary to execute a set of DyFor GP runs for
4) After each successive dynamic generation in whicly forecasting task. Therefore, at any given time period,
a process shift (as described in section III-E) is ifhere is a set of multiple forecasts to choose from. Here,
effect, a new initial population is constructed for thél becomes necessary to apply some forecast combination
solution trees: useful in a real-world setting, the forecast must be geedrat
a) the two types of solution trees listed in step #2 arH]sing an out-of-sample methodology where no data beyond the

b) solution trees that are subtrees of dormant solutioR9'N of forecast is utilized for analysis, model constror}

saved from previously encountered stable envirofY forecast combination. o )
ments that are further in the past than the most The study of forecast combination has a long history. Math-

recent stable environment ematicians, economists, and researchers from the datagnini

As seen from the above steps, when a process shift occﬁl%mmun'ty’ among others, have developed many_c_omblr_nng
. . . methods. Combining methods can generally be divided into
dormant solutions are used to contribute adaptations esolv, . : .
: to two groups, variance-covariance methods and regression
from past environments. If any of these dormants contain

adaptations relevant to the current environment, thertisolsi methods [21]. In variance-covariance methods, the combina

L ) . : tion model is
receiving these adaptations (via crossover) will prosper.
The following section discusses two complementary con-

_ . . F=a1fitasfo+...+anfn, 5
cerns that have a potentially important impact on the perfor 1h 22 nfn ©)
mance of the DyFor GP model. whereF is the combined forecast,, f», . .., f. are the single

forecasts to be combined, and, s, . . ., «,, are correspond-
G. Forecast Combination and Fitness Measures ing weights subject to the condition that their sum is one.

In many forecasting situations, the “best” forecasting elodOptimal weights for this equation are estimated by miningzi
is not known and, thus, several “good” forecasting modelge variance of past forecast errors.
are developed. A forecaster is then faced with the problem ofFor regression methods, the following combination model
choosing a single forecast from a set of several candidage fois used:
casts produced by each of the forecasting models employed.
Many times it is better not to choose just one forecast from F=po+bifi +Pafot ...+ Bnfn te, (6)
the set, but, instead, use some procedure to combine naultip .
forecasts into one. This issue is called forecast comlninatiwlhereF _andfl,f?, -+ fn have the same meaning as ‘h‘?y do
and its relationship to the DyFor GP model is discussed helow equation 5,5 Is a constantfs;, 5, ..., 5, are regression
Evolution-based techniques such as the DyFor GP u%%eﬁ'c'.ents’ ande is an error term._Here, Fhe coefficients
Darwin's principle of “survival of the fittest’ and sexual-re are estimated by regressing actual time series values dn pas
combination to solve complex, real-world problems. Forstheforec"’,ISt,S for those values. .
kinds of methods, some fitness measure or fitness function is gnatlo_ns on these compmmg methods aré numerous and
used to measure the quality of candidate solutions. Hov,ve\/@rdISCUSSIon of these variations can be found_m D'e_bOId [21,
it may not be clear how to select such a measure forPg- 347-365]. Some _exa_mples of recent studies which focus
particular problem. It may be that a single measure perforfi8 forecast combination include [10], [20], [23], [31], [90
well under certain conditions but badly in others. The goest ~ Since forecast combination is not the focus of this study,

of selecting a good fitness measure for the DyFor GP mod¥f restrict our attention to simple, well-known combining
is addressed in this section as well. techniques. Thus, the following procedure is selected for

The GP algorithm is essentially a fitness-driven randof?MPining multiple DyFor GP forecasts produced by a set of

search. When GP is applied to forecasting complex, nofwltiple DyFor GP runs into a single, out-of-sample forécas

linear time series, the search-space is the set of all dessib 1) For the first forecast, designate the median forecast of
mathematical equations that can be constructed usingfigueci the set as the single forecast to be used.
operands (explanatory variables) and mathematical apsrat 2) For all remaining forecasts, repeat the following:
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a) Compare the previous forecast of all runs to the
actual data for that (already past) time period and
rank each run based on its accuracy.

b) Select the current forecast of the top 3 runs from
this ranking, compute the average of these 3 fore-
casts, and designate this average as the single
forecast to be used.

This combining procedure is a form of the variance-covaran
method described above in which only the most recent past
forecast of each run is considered when estimating the com
bining weights and the weight assigned to forecasts of the 3
top-ranked runs 3.
As mentioned earlier in this section, choosing the fithe§¥- 16-
measure to be employed by the DyFor GP model is of great
importance. Most GP forecasting applications use a mean
squared error (MSE) fithess measure for model evolution.
To date, there have been no significant studies investigatin [N order to test the DyFor GP model, a number of forecast-
alternative fithness measures for GP forecasting applicatiolnd €xperiments using both simulated and actual time series
One alternative fitness measure that might be considered®@ were undertaken. The purpose of these experiments is
the mean absolute deviation (MAD). Comparing the MSE arf#yofold:
MAD measures, it can be seen that the error value of MSE1) to compare the performance of the DyFor GP model
grows quicker than that of MAD when outlier data are present.  (both the “full” version with dormants and a “partial”
Thus, outliers tend to influence analyses based on MSE more version without dormants) to that of a conventional GP
than they do analyses based on MAD. An outlier datum can  model and
represent one of two possibilities: noise (which should be2) to compare the performance of the DyFor GP model to
ignored or have reduced impact on model construction) or that of other leading models from benchmark studies.
new information representing a shift in the underlying @ The experiments are, thus, grouped into two subsets acgprdi
For series in which outlier data represent noise, MAD mighd these objectives and are discussed in the following twe se
be the more effective measure. For series in which outligons. The experiments described below represent an éatens
data represent a process shift, MSE might be preferable. Tdfeseveral preliminary experiments made on early versidns o
question of which fitness measure to employ would depetite DyFor GP model that were reported in [84], [85].
upon the characteristics of the time series to be forecast.

Another interesting possibility is to develop a new “coma. Comparing DyFor GP to conventional GP

bined” fitness (CF) measure that incorporates aspects of botO ; ; ; :
) ne subset of experiments is concerned with comparing the
the MSE and MAD measures. The purpose behind the EF N Xper! ! M parng
n

+ + + +
-Q Q

The CF measure as a function of the relative error.

IV. DYFOR GP EXPERIMENTS

. o : . ) . performance of the DyFor GP model to that of a conventional
measure is to minimize the effect of noise while still bei

tive to shifts in a i ias. It tries lish P model. It is also desirable to examine how the inclusion
realt(:. \ve o shiftsin a |rEetser|es.MSIrE|es k?' a;}cgomp;s tt?ll fof dormant solutions affects the DyFor GP model’s efficiency
maxing a compromise between (w ICh IS preferable 0 time series were chosen for these experiments, one of
shifts) and MAD (which is preferable for minimizing noise).

This CE : fiod o simulated data and one of real data.
IS measure requires a user-specified parame{®s a = o gimylated time series is constructed by concatenating

?ee segments, each segment being a small time series gen-

-8Pated by a known process. The first and third segments are
of the relative error. From the figure, when the relative err y P g

R ) %enerated by similar (but not equivalent) processes whie t
is within the threshold given b§2, CF measure values lfollow‘tsloegond segment is generated by a different process. Equatio
. ives the underlying process used to generate the emtiee ti
falls outside of thef2 threg.hpld, CF measure values fOllowseries. Note that this process is a step function defining eac
those of the absolute deviatién.

) of the three segments.
The DyFor GP model could potentially use any one of the

above fitness measures for a given forecasting experiment. sin(x) + vz for 1 <z <20 (segment 1),
Therefore, in order to be applicable over a diverse range of (z) = { e” +2 for 21 <& <40 (segment 2), (7)
forecasting tasks, the DyFor GP model includes a parameter sin(z) — v/ +22 for 41 <z < 60 (segment 3).

specifying which of these 3 fitness measures should be efjjq time series is constructed using 60 total values, 20 for
ployed during a run. _ each segment. Thus, the first 20 values correspond to segment
The following two sections present experiments conductg@dang are generated by evaluating this function for integer
using the DyFor GP model. values ofx = 1...20, the next 20 values correspond to
segment 2 and are generated by evaluating this function for
5The specified value af shown in the figure is for purposes of illustration.z = 21 ...40, and the final 20 values correspond to segment
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3 and are generated by evaluating this function for= input® by all models and the outputs are one-step-ahead,
41...60. This artificial time series is designed to mimic ajuarterly forecasts for the current quarter when only one
series whose underlying process varies over time. Additipn month of historical data for that quarter is available. biigtal

the similarity of segments 1 and 3 is intended to mirrdBDP data dating back to 1951Q3 is used for initial training
cyclical behavior that may occur in time series produced and one-step-ahead forecasts for 1995Q1 through 2003Q1 are
dynamically changing conditions. produced.

The real time series chosen for experimentation is theThe GP process employs the elements of a terminal set
U.S. Gross Domestic Product (GDP). According to the U.&nd a function set as building blocks from which to construct
Department of Commerce [81], the GDP is defined as “tHferecasting models. For both experiments the terminal set
market value of goods and services produced by labor amshsists of the inputs listed above for the simulated data
property in the United States.” The GDP is a metric frequentexperiment and the 29 indicators for the GDP experiment) and
employed as a measure of the nation’s economy. The GRRandom constant while the function set consists of opevato
series was selected because it is a widely-studied, neasdin+, —, x, =, sin, cos, square rootexp, andln.”
time series with a well-known set of explanatory variables. In both experiments DyFor GP forecasts are generated in
Figure 17 gives a graphical depiction of the quarterly GDR “real-time” fashion, that is, after the DyFor GP model
(growth) time series. In the figure real GDP growth is calcyroduces the first forecast, the analysis window is slid to
lated as a quarter-over-quarter annualized percent cha@ngeincorporate the actual data for that time period, analysis ¢

tinues, and then the DyFor GP produces the second forecast.
20.0% This procedure is continued for each forecast until all nesgl
15.0% | forecasts have been generated. It should be emphasized that
for both experiments all forecasts are generated using &n ou

o
10.0% ' ‘ f- | thodol h data beyond the point of
5.0% ’”K \AW’\ /\Wm NMWV‘“ j\ "ﬂuﬂ ﬂ JWWWW%W ?orzztj:‘;ns? ies rl?tieliz::‘)d ?oiggn\;vlygirse or;omo?:isl cce)z(s)trrluctioen.pOIn °
M.

—

0.0% n yu l 'M “( ‘v | \ The DyFor GP model requires that a number of parameters

—5.0% - H be specified before a run. Some of these are general GP
—10.0% parameters commonly found in any GP application. Some of

I I I I I I these are special parameters only used by the DyFor GP model.

1950 1960 1970 1980 1990 2000 Table | gives the general GP parameter values used by all
competing models while table Il lists parameters values$ tha
Fig. 17. Gross Domestic Product (growth): 1947-2003. are used only by the full and partial version DyFor GP models.

contemporary study conducted by Kitchen and Monaco [47]
forecasts the GDP, a time series with quarterly frequency,
using multiple economic indicators that are measured niypnth
Thirty indicators are utilized in all and can be subdividatbi

TABLE |
GENERAL GPPARAMETER SETTINGS

the following categories: employment (6), financial (4)yyvay | Parameter | Value
(6), production and sales (12), and other (2). The results of crossover rate 0.9
. . . reproduction rate 0.0
their s_tuo_ly show tha_lt forec_agtlng models_ constructed using mutation rate 01
these indicators provided efficient forecasting perforosgior max. no. of generafiong 41
the period of 1995Q1 through 2003Q1. tﬁfm'”aﬂogo max. gens. reacheg
. . . eliusm usea- yes
The following two sections describe the setup of both eSS Measure NSE

experiments and give observed results.
1) Test Setup:For this subset of experiments, three fore-

casting models are compared: full-version DyFor GP (i.éhwi  a|| parameter values listed in table | were selected to match

dormants), partial-version DyFor GP (without dormantsid @ those used by Koza [49] for his experiments in symbolic
conventional GP. As discussed in section Ill-G, the GP B8Cgegressiof with the following exceptions.

is a stochastic one and, thus, it is necessary to execute a s

of GP runs rather than just a single run. Setsize = 20 is useg‘15 T_he max. no._of generatlon-s parameter has a slightly
; different meaning when applied to the DyFor GP model.
for all GP experiments executed here.

For the simulated time series experiment, valuesafdn For DyFor GP it means the maximum number of gener-

. . : ations used for one dynamic generation, that is a set of
equation 7 are utilized by all models as inputs and the ostput generations run on a single analysis window. Since the
generated are one-step-ahead forecasty foj. The first 14 ’
time series data are used for initial training and then 46 ON€6one of the indicators, “Business Week Production Indexgildaot be
step-ahead forecasts are generated that correspond &l aciiained at the time of the experiments.

time series values beginning at value #15 and ending at valu&Operators+, square rootexp, andIn are protected from undefined or
#60 unbounded behavior as is done in experiments conducted by K9].

. L 8“Symbolic regression” is the term Koza uses to describe tarch for
For the GDP experiment, 29 of the 30 economic II"d'Catoésmathematical expression that closely fits a given finitepdarof data. In

listed in the Kitchen and Monaco study [47] are utilized asany cases this is equivalent to the task of time series dstiag.
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DyFor GP model executes many dynamic generatiof@ using two analysis windows of differing sizes. Paramete
over the course of a single run, this parameter is reductiart windowsize” refers to the initial windowsize segin
from 51 to 41 generations to decrease computation tinef. the smaller of the two windows and parameter “window
2) Elitism (reproduction of the best solution of the popudifference” refers to the size difference between the large
lation) is used. and the smaller window. For the simulated data experiment
3) Parameter values for “reproduction rate” and “mutatiotihis means that initial windowsizes of 4 and 10 are used
rate” were exchanged. This was done for two reasonshile in the GDP experiment initial windowsizes of 54 and
1) increasing the mutation rate allows for greater searcé are used which correspond to 13.5 and 16.5 years of GDP
space exploration [61] and 2) decreasing the reproduiata, respectively. Parameter “window adj. stepsize” gthe
tion rate to zero was not thought to harm the effectivexdjustment amount to use when adjusting the size of the
ness of the evolutionary process since elitism is usedwindows. Parameter N” gives the number of consecutive
window expansions or contractions that signal a stablega®c
TABLE Il or a process shift, respectively.
SPECIFICDYFOR GPPARAMETER SETTINGS 2) Results: As mentioned in the previous section, a set of
runs is executed (setsize = 20) for each competing modeh For
single run, forecasting performance is measured by cdingla

Parameter Value Value .
(Sim. Data Experiment) (GDP Experiment)| the MSE of all forecasts. For a set of runs, forecasting
population size Variable Variable performance is measured by calculating the mean and standar
max. solution tree deptf] none none deviation of MSE values over all (20) runs. Tables Il and
EOf;”Odde “I,m'Ft 3(5)888 ggggg IV give the observed results for the simulated data and GDP
ard node limi . .
Fo. fraining dyn. gens. T o1 experiments, respectively.
windowslide increment 1 1
max windowsize 14 80 TABLE Il
min windowsize 2 40 SIMULATED DATA FORECASTING RESULTS
start windowsize 4 54
window difference 6 12 .
window adj. stepsize 1 1 | Forecasting Model [ mean MSE] std. dev. |
N 2 3 conventional GP 40.04 0.25
DyFor GP (w/o dormants) 2.96 3.49
DyFor GP (w dormants) 1.88 2.31

Since the DyFor GP employs a non-static population control
method® there are no specifications for population size or h bl | ) _ | _ in both
maximum solution tree depth in table I1. Instead specifizati | € tables reveal some interesting results. First, in bot
for the soft and hard node limits are used and shown in tf&PErMents the DyFor GP models outperform conventional

table. As discussed in section IlI-F, conventional GP Ugual®" S|gn|f|cantlyd|so in the case Efdthe S|mulated_ddata ex-
employs a static population size and a limit for solutiof€"iment. Secondly, DyFor GP with dormants provides some

tree depth. For these experiments, however, conventioRal &erformance improvement over DyFor GP without dormants

is executed using variable population size with the sarﬁ%r both experiments.

parameters values as shown in table Il. This is done for two TABLE IV
reasons: 1) to prevent runs from being prematurely aborted
due to the presence of numerous bloated solutions and 2) to

GDPFORECASTING RESULTS

reduce computaﬂo_n time by plz_;\cmg a limit on the total numbe | Forecasting Model | mean MSE] s, dev.]
of nodes allowed in a populatlor_w._ ~orvertonal GP 796 T2

In table Il parameter “no. training dyn. gens.” means the DyFor GP (wio dormants)  4.28 0.77
number of dynamic generations executed before producing DyFor GP (w dormants) 4.01 0.57

the first forecast and parameter “window slide increment”
means the number of newer (more recent) historical data to , .
incorporate at each slide of the analysis window. For theThe DyFor GP models superior performance over con-
GDP experiment, 121 training dynamic generations means { _tlonal GP may be due to its adJu?tabIe _aTaIyS|s window
analysis window slides through 30 years of historical dAtagv ich can aIIo_vv the mode_l to b_etter hone in” on CL_JrrentIy
slides per year, 1 dynamic generation per slidel initial elevant dqta in a dynamic enw_ronment. For the S|mulateq
dynamic generation). Qata experlme_nt the advantage is marked pecause the shifts
The “max windowsize” and “min windowsize” parameterén the_ underlying process occur abru_ptly while for the GDP
in the table specify the maximum and minimum analys@xpe”mem the advantage is less noticeable probably becau

windowsizes, respectively. For the GDP experiment valdes %roc;:ess Sh'ft_s ot::culg '2 aGs;nootr(;erl man_r;er. The 'nCIl.JS'.On
80 and 40 correspond to max/min analysis windowsizes ?ff ormgntsllc? the }I/b or Irlno € provides some gain in
20 and 10 years, respectively. As described in sectionHé, t orecasting efficacy, albeit small.

adjustable windowsize feature of the DyFor GP model calls To further compare the_ two DyFor GP models we can
narrow the focus to examine only forecasts that correspond

9This population control method is described in sectionFlIl- to segment 3 of the simulated data experiment. Recall that
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segment 3's underlying process is similar to that of segmentThe following three sections describe the GDP and CPI
1 but different from segment 2's process. Thus, if dormanksflation benchmark models, detail the setup of both exper-
are effective, then a DyFor GP model that uses them shoirdents, and give observed results.

have better segment 3 forecasts than a DyFor GP model that) GDP and CPI Inflation BenchmarksAs discussed in
does not use them. Table V shows the performance of thection IV-A, the model designed by Kitchen and Monaco
two DyFor GP models for segment 3 of the simulated datd7] forecasts the quarterly GDP series using several nipnth
experiment. The table reports the mean MSE of segmenir@licators. The idea is to produce a single, one-step-ahead
forecasts over all 20 runs. It also reports the mean MSE (owgsarterly GDP forecast by incorporating the latest monthly
all 20 runs) of forecasts that correspond only to the begipniindicator values and aggregating their effects. For exaripl

of segment 3 (the first 5 values) rather than the entire segmehe national unemployment rate and unemployment insurance
claims are selected as (monthly) economic indicators agid th
latest announced values are for the month of January, then
the forecasting model incorporates these latest values and
aggregates them to produce a forecast for the current quarte
(quarter 1 or Q1). When indicator values for February are

TABLE V
SIMULATED DATA FORECASTING RESULTS(SEGMENT3 ONLY)

Forecasting Model (aﬂqiggm'ﬁfg) (ﬁrms‘t*‘snp'\gai) announced, the model incorporates them to produce an update
DyFor GP (W/o dormants =89 5170 forecast for Q1. Thus, a “real-time” GDP forecast for the
DyFor GP (w dormants) 2.07 2.80 current quarter can be constructed and updated as soon as

new data become available.
The real-time forecasting system (RTFS) of Kitchen and
The second column of the table shows that the use @bnaco [47] makes use of 30 monthly economic indicators
dormants provides more accurate forecasts over the engikeexplanatory variables. As mentioned in section IV-Asthe
segment 3. The third column shows that when DyFor GRgicators are derived from various economic sectors afioly
analysis enters segment 3 (i.e., the underlying proces$ts shimployment, financial, survey, and production and sales. A

from segment 2's process to that of segment 3), the use|ipkar regression model is used to relate an indicator to GDP
dormants provides for quicker capture of this new process.growth:

The following section describes experiments that compare g = o+ B(L)xy + er, (8)
the DyFor GP model to leading models from benchmark ] )
studies. wherey;, is the real GDP growth for quartérat an annualized

rate,z; is an indicator3(L) is a set of coefficients for current
B. Comparing DyFor GP to Benchmark Models and_ Iagged_values of th_e indicato_r, andis an error _term.
) . While equation 8 theoretically may include numerous inttica
Two real-d_ata forecasting tlasks were selected for this nggs, Kitchen and Monaco choose zero or four lags and use
set of experiments, forecasting the U.S. GDP and the URa schwarz criteriold to determine which results the RTFS
Consumer Price Index (CPI) Inflation rate. Figure 18 giveg,q,id utilize. Each indicator has three separate regressi
a g_raphical depiction_ of the m_on_thly CPI Inflation rate t@m‘?nodels relating it to GDP growth, one for each (monthly)
series (a GDP graph is shown in figure 17 above). In the figyi@ iqg of a quarter. When a new month's data for an indicator
CPl Inflation is calculated as a year-over-year percent@®anyecomes available, the appropriate regression modekistsell
and used to produce a forecast for GDP growth that is based
only on that indicator. This is repeated for all indicatarken,

15.0% all of these single-indicator GDP forecasts are aggregated
10.0% A into one to yield a GDP forecast. RTFS generates 1-step-
n ‘\ /\[/ \ ahead forecasts in a “real-time” fashion, that is each time n
5.0% I o data becomes available, the model incorporates this data an
\ “\M v W produces a new forecast. All RTFS forecasts are made using
0.0% W an out-of-sample methodology where no data beyond the point
V of forecast is used for model fitting.
—5.0% The RTFS is used to generate quarterly GDP forecasts when

\ ! \ \ ! ! indi
1950 1960 1970 1980 1990 2000 one month, two months, and three months of indicator data

are available, respectively. These results are compared se
produced by a linear autoregressive (AR) forecasting model
with four lags. Historical data dating back to 1982Q1 is used
for analysis and one-step-ahead GDP forecasts are getherate
an 8-year range starting with 1995Q1 and ending with
03Q1. The results of the Kitchen and Monaco study show

Fig. 18. CPI Inflation: 1948-2003.

These two forecasting experiments were chosen beca
both the U.S. GDP and CPI Inflation series are widely-studi
non-linear time series with well-known sets of explanatony ; 1o RTFS model outperforms the AR model by a large
variables. Such characteristics are conducive to pregain argin.

DyFor GP experiment and comparing DyFor GP results to
those of leading studies. 10The Schwarz criterion is defined in [21, pg. 26].
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The U.S. CPI Inflation rate is a highly-scrutinized economiemployed by this conventional specification, namely the un-
concern with considerable national impact. The inflationeti employment rate and past values of the monthly inflation rate
series has monthly frequency and available historical data Historical CPI Inflation data dating back to 1950:01 is used
ists dating back to 1947. The Phillips Curve is a bivariatedir for analysis and forecasts for 1970:01 through 1983:12 are
forecasting model that is widely considered as a consistgmrbduced. The terminal set used consists of the convemtiona
and accurate predictor of U.S. inflation. Stock and Watsdthillips Curve inputs mentioned above and a random constant
[76] provide a recent study that re-investigates the efficawnhile the function set is the same as the one used for the GDP
of this model, both in its conventional form and in severaxperiment.
alternate forms that include various macroeconomic véegab In both experiments single run DyFor GP forecasts are
The conventional Phillips Curve specification used in thegrenerated in a “real-time” fashion in the same way as detaile
study is meant to forecast inflation over a 12-month periad section IV-A.1. As discussed in section IlI-G, it is nesay

and is given by the following regression model: to execute a set of DyFor GP runs. Additionally if a single
) forecast is to be generated at each time period, it is negessa
Tipn — T = ¢ + B(L)us + y(L)Ame + eeqn, (9 to use some forecast combination technique to combine the
multiple forecasts produced by the multiple runs into one ou
where ' = (1299) x in (L) is the h-period inflation ini
t h Prn of-sample forecast. The forecast combining method used for

rate @ = 12), m = (1200) = In (£ ) is the monthly these experiments is the one described in section Ill-G and

fi th ber of DyFor GP isi tis 20. As i
inflation rate,u, is the unemployment rate, amZ) and~(L) € number of LyFor \oF runs comprising a set 1S 2U. As in
- -ﬁhe experiments described in section IV-A.1, all forecasts

Curve specifications are constructed by substituting theamin genetr)?ted usm% an ou-t-of-sampIT (n;ethodology. | q
ployment rate,u;, of equation 9 with other macroeconomic 1a0les VI and Vil give general GP parameter values an
variables or indices. specific DyFor GP parameter values, respectively. All param

Historical CPI Inflation data dating back to January 1958 vglues listed in _table Vi are the same as those useddor th
are used for analysis and 12-month horizon forecasts eriments of section IV-A (displayed in table 1) excepdtth

generated for the period of January 1970 through Septem%’é? Td(;h.tlonal tlf|tne|s“sGmiasuris, MA(Ideagd the CF measure
1996. Forecasting results are presented for two sub-pgrio alied in section [ii-&, have been added.

1970-1983 and 1984-1996. As in Kitchen and Monaco’s GDP TABLE VI
models, Stock and Watson use an out-of-sample methodology. GENERAL GP PARAMETER SETTINGS
The results of the Stock and Watson study show that the
Phillips Curve in its conventional form outperforms unizae | Parameter | Value
autoregressive models as well as most alternative Phillips Crossover raie 0.9
Curve specifications in which the unemployment rate is re- reproduction rate 0.0
placed by a different economic variable. The alternate -spec mutation rate 0.1
ifications that do surpass the conventional one are thoge tha max. no. of generations 2
mcat P i ° termination max. gens. reacheg
replace unemployment with a measure of aggregate economic elitism used? yes
activity such as real manufacturing and trade sales or @gpac fitness measure MSE/MAD/CF

utilization. Stock and Watson also develop a hew composite
index of 168 economic activity measures using principal
component analysis and construct another alternativéigzhil
Curve specification with this index. This composite-inde

Each experiment includes 3 separate DyFor GP runsets, one

;J(sing each fitness measure listed. It should be noted that the

specification proves to be the best CPI Inflation forecastiric:;?ess measures given in table VI are_only used for evolution
d are not used to measure the quality of forecasts produced

model overall. . . . by the DyFor GP model. The CF measure requires a user-
In a recent survey of the literature on output and mflatlog ecified parametef), to determine which data are outliers
forecasting, Stock and Watson [77] note that an effectivg P '

. . and which are not. For these experimefitss set to a value
nonlinear model has not yet been fourtd=or this reason we b

. . tlgat is 7.5% of the median level of the time series to be
restricted our focus to linear benchmark models of real GI%orecast An optimal value fof) is not known and. thus
growth and CPI inflation. ' P ' '

%) Test S The DvFor GP del lied h intuition was used to specify this parameter.
) Test Setup: 'e DyFor GP model was applied to the 1y, DyFor GP parameter values used in the GDP experi-
GDP and CPI Inflation forecasting experiments detailed abOYnent (shown in column 2 of table VII) are the same as used for

For the GDP experiment, the same setup degcribed in_sectﬂ'ﬁg GDP experiment of section IV-A. Column 3 of table VII
IV-A.1 was used. For the CPI Inflation forecasting experite ives the parameter values used in the inflation experiment.

the goal is to compare the performance of the conventio ; ; “ .
- . X r the monthly CPI Inflation series, parameter “no. tragnin
Phillips Curve specification with that of the DyFor GP mode n. gens.” means the analysis window slides through 10syear

Therefore, inputs to the DyFor GP model are the same inplé historical data (12 slides per year, 1 dynamic generation

1 . . . - per slide+ 1 initial dynamic generation) before producing
In [9] Bidarkota uses a nonlinear regime switching model doe¢ast he fi i ) | i Imi ind h
inflation but the results offer no significant improvemenenthe conventional € TIrst forecast. Parameter values tor max/min windowsize

Phillips Curve. in the inflation experiment are 240 and 12 which correspond
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TABLE VI
SPECIFICDYFOR GPPARAMETER SETTINGS - SBE forecasts
10.0%
Parameter Value Value
(GDP Experiment)| (Inflation Experiment) A /\ /\
0, /N
population size variable variable 5.0% R ,,\W’ A S\ L0 ,
max. solution tree depth none none N /’\/ 7 N VL - /)
soft node limit 35000 35000 N\\ AN
hard node limit 38000 38000 0.0% VA
no. training dyn. gens. 121 121 N/
windowslide increment 1 1
max windowsize 80 240 .
min windowsize 40 12 —5.0%
start windowsize 54 120 I ‘ ‘ ‘ ‘
Window difference 5 o 1995 1997 1999 2001 2003
window adj. stepsize 1 1
N 3 3 Fig. 19. GDP growth and forecasts produced by the DyFor GPeinod

to windowsizes of 20 and 1 years, respectively and values fift captured by the competing linear models. In the GDP
the initial smaller and larger windowsizes (specified byatst eXPeriment, historical data starting in 1951Q3 is analyaed
windowsize” and “window difference”) correspond to 10 andprecasts for the 1995Q1-2003Q1 period are produced. In the
12 years of inflation data, respectively. CPI inflation experiment, historical data starting in 1950 i

3) Results: Tables VIl and IX compare DyFor GP resultsdnalyzed and forecasts for the 1970:01-1983:12 period are
to those of the benchmark models for the GDP and cpyoduced. The behavior of real GDP growth over its forecast
Inflation experiments, respectively. In the tables, resoft3 horizon is reasonably stable compared to its precedingvseha
DyFor GP models are shown, one for each of the 3 fitne§§ (mean and standard deviation of 3.26 and 4.06 over the
measures and the root mean squared error (RMSE) of forecasta1Q3-1994Q4 period versus mean and standard deviation of

is reported. Figures 19 and 20 plot GDP growth and cP195 and 2.13 over the 1995Q1-2003Q1 period). Thus, DyFor
GP is able to capture and successfully extrapolate real GDP

TABLE VI growth. By contrast, the behavior of CPI inflation over its
GDPFORECASTING RESULTS forecast horizon was drastically different from its preogd
behavior (mean and standard deviation of 2.16 and 1.95
| Forecasting Model [ RMSE | over the 1950:01-1969:12 period versus mean and standard
RTFS 1.85 deviation of 7.13 and 2.97 over the 1970:01-1983:12 period)
AR 2.46 ;
DyFor GP (MISE fiiness measurd) T Thus, DyFor GP_ is _Iess at_)le to capture and successfully
DyFor GP (CF fithess measure) 1.80 extrapolate CPI inflation. This could be the reason why the
DyFor GP (MAD fitness measure| 1.57 DyFor GP’s margin of advantage over competitors is smaller

for the inflation experiment as opposed to the GDP experiment

Inflation forecasts produced by the best DyFor GP mod IConS|der|ng the 3 fitness measures utilized by the DyFor

with the corresponding actual values of GDP growth and C IP model, the performance raqk|ng order of Mmeasures 15 in
. : reverse order for the two experiments. The GDP experiment
Inflation, respectively.

gives a ranking order, first to last, of MAD, CF, MSE.

TABLE IX The inflation experiment gives a ranking order of MSE, CF,

CP| INFLATION FORECASTING RESULTS MAD.'? This may also be explained by the difference in
forecast horizon stability between the GDP and inflatioreser

| Forecasting Model | RVISE | As discussed in section IlI-G, analyses based on MSE are more

CPC 54 heavily influenced by the existence of outliers than analyse

DyFor GP (MSE fitness measure) 2.3 based on MAD. An outlier datum can represent one of two
DyFor GP (CF fitness measure) 2.6 possibilities: noise or new information representing acpss

DyFor GP (MAD fitness measure| 2.6

shift. The GDP series is less volatile than the inflationeseri
which may mean that outliers represent noise and should not

Tables VIII and IX show that the performance of the DyFodramatically affect model construction. Thus, for the GDP
GP model improves upon that of the benchmark models foase, the MAD measure is the better measure. The inflation
both experiments. In the CPI Inflation experiment the margseries is more volatile and outliers may frequently repreae
is small, but for the GDP experiment the margin proves largshift in the underlying process. Therefore, the MSE measure
Also, the fithess measure employed by the DyFor GP modelthe most useful because it can more easily track the sapidl
appears to have an important influence on its performance.

The DyFor GP model’s efficient performance in both ex- 12The results reported by Stock and Watson carry a precisiomeftecimal

. . - . ... place and, thus, DyFor GP results in table I1X are reportedh Wie same

periments may be due to its ability to capture non-linessiti

) ’ ) 8 precision. This precision obscures the difference betwesults produced by
present in the GDP and CPI Inflation time series that abgFor GP models with the CF and MAD fitness measures, resgécti
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occuring shifts of the inflation series. Following this liogé It is worthwhile to discuss computation time and how the
reasoning, the CF measure should have median utility fbyFor GP model compares to the benchmark models in this
both experiments as it is a combination of MSE and MADegard. Both real-data experiments (GDP and CPI Inflation)

measures. require the analysis of several decades of historical data a
generate forecasts over approximately a 10-year range. As

— CPI Inflation detailed in section lll, the DyFor GP model runs numerous

15.00%| - CP1Inflation forecasts - dynamic generations with each dynamic generation being

ok /ﬂ‘\' comprised of numerous (regular) generations run on a single
10.0% YA\ hon window of training data. Thus the total number of generation
. o\ W B qf I \ over the entire experiment can be quite large3@,000 for

5.0% m i > Wiital ! the inflation experiment anet15,000 for the GDP experiment

' W’ e ) \f\/ for a single run) which, in turn, makes the computation time

0.0% s "«'ﬁl required quite large. Moreover, as described in section IlI
! G, it is necessary to execute not a single DyFor GP run but
_5.0% l a set of DyFor GP runs for each experiment. These factors

: : exacerbate the problem of achieving acceptable foregpstin
1970 1973 1976 1980 1983 accuracy with a reasonable amount of computation time. Some
balance must be struck between computation time and the
Fig. 20. Annual CPI Inflation and forecasts produced by th&@yGP extent of the search. Taking into account the computational
model 12 months earlier. resources availabté and the complexity of the forecasting

tasks at hand, the balance arrived at calls for single run

Other experimental results concerning retention of pasgecution time of~72 hours and set (setsize = 20 runs)
adaptations and window behavior proved interesting as. Welkacution time of~216 hours. All in all, the total amount

Forecasting models evolved by the DyFor GP contained ad@g-time required to perform experiments was approximately
tations learned from the past. The following describes twgy_12 weeks.

examples of this retention. This is significantly more computation time than is required
1) In the GDP experiment the adaptatia;® (prod = for the benchmark models. However, even though DyFor
industrial production index), was evolved as early asp computation time for these experiments was extensive,
1995 and is retained over the next 8 years, showing uppiisinesses might employ the DyFor GP model to conduct
evolved models for 1997, 1998, 1999, 2001, and 2008imilar experiments with considerably less computatiometi
2) In the Inflation experiment the adaptatiein(u:—11 — The reasons for this are the following:
ut) (ue = current unemployment ratey;—11 = UN€M- 1y The computing environment used to execute these ex-
ployment rate 11 months ago), was evolved as early as * ,qiments was modest. Larger companies would likely
1976 and is retained over the next 7 years, SNOwing up  paye access to a computing environment with greater
in evolved models for several years up to 1983. power and speed.
Window adjustment also appeared to have an important effectz) For true real-world experiments (as opposed to the
In the GDP experiment, the windowsize was initially set at simulated real-world experiments presented here), the
16.5 years and the best performing runs generally adjusted DyFor GP model could be set up so that the analysis of
their windowsize to approximately 14 years. In the Inflation large amounts of historical data takes place only once

the best performing runs generally adjusted to approxilpate be realized in the following way.

12.5 years. ; P
. . a) Set the DyFor GP model’s analysis window to the
The DyFor GP model generates forecasts in a real-time beginning of the historical data and let DyFor GP

fa_sh|on, Fhat S, afte_r the first forecast is produced, trual)ms_ analysis continue until it has analyzed all data up
window is slid to incorporate the actual data for that time . :
iod vsi e d then th qf Ci to the current time period.
per:;) ’ 3“?%55 t?]onflnues, t(?m (ejnl he secon (I)recas IS b) Once this preliminary analysis has finished (and
Fhro uced. fusf, € otr.ecas Ing mo ? 6 anﬁe?h(_evo ves) ?V a forecast for the next time period is produced),
© coufrse 0 at' orecaz 'Tg expentme? d fsua y h :CS m & Th save the current state of the model and wait for
?new ?recas |ggI mo eI |sdccl;nst:1ucg I:or %91; fct>rec:a T t new, incoming data to arrive.
(;recas mlg hmodezevo vet y g yror d 'I(')hen conslls d c) When new data arrives, restart the DyFor GP’s
0 ze\llera ;m rle opteraborsd_anl o%er_anths.. ese 3\\'/?].\"6 analysis. Because the most recent state of the
mo els are do? argeh 0 tﬁ ISP ayde 'r& b ISDpi_lper(.;P Ied model is saved, it is not necessary for the DyFor
éopmp ex rr:lo es,hsu<(:j tas dosetprc:j uce yI ﬁ' or. (?? GP to re-analyze all historical data again, and it can
kas V\fet.) ar(ra]_ ar | 0 ubn tetrs zfin ' outr goT: . ere(;s not to incorporate the new data, continue analysis, and
make relationsnips ciear but o forecast well in a dynamic produce a forecast for the next time period with
environment. Atheoretical forecasting models whose main
purpose is predicting future values are known to be userh3Experiments were conducted on a shared IBM p690 cluster 3@th.3
([27D. Ghz processors. See [65] for complete details.
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much less computation time than was required tgpecification that replaces the unemployment rate exganat

complete the preliminary analysié. variable with a new composite index of 168 economic vari-
Thus, the DyFor GP model can potentially be used to produggles that they developed yields better forecasting pedoce
forecasts for real-world concerns that arrive early enotegh than the conventional Phillips Curve specification. Thass t

be useful. composite index could be utilized by the DyFor GP model to
The following section draws conclusions from these expeapotentially produce further performance advances.
iments and discusses future avenues of exploration. Results of this study indicate that the choice of fitness
measure plays an important part in the forecasting perfocea
V. CONCLUSIONS AND FUTURE WORK of the DyFor GP model. In some cases a DyFor GP model

In this study the DyFor GP model is developed and testg\ath MSE measure proved the most effective while for other

for forecasting efficacy on both simulated and real timeeseri cases a DyFor GP model with MAD was best. A novel fitness

Results show that the DyFor GP model improves upon tha-asure, CF, which combines aspects of MSE and MAD was

performance of benchmark models for all experiments. Th déveloped and tested. The CF measure relies on a parameter,

e . ) . . )
findings highlight the DyFor GP’s potential as an adaptive@,’ to determine which data are considered outliers and which

non-linear model for real-world forecasting applicati | are not. Since an optimal specification farwas not known,

suggest further investigations. The DyFor GP model preser'ﬁtu'tl(.)n was used to s_et this pargmeter. Further studighii
. . . . examine different settings for this parameter and/or dgvel
an attractive forecasting alternative for the followingsens.

) ) i some algorithm to automatically adjust this parameter tdwa

1) It'is not necessary to specify the functional form Ofg o timal setting. They may also investigate the condio
the forecasting model in advance and, thus, a befitting,yer which the CF measure gives better performance than the
n_on-llnear model, albeit complex, can be automaticalljse and MAD measures and, perhaps, investigate alternative
discovered. i , o measures such as the Akaike Information Criterion (AIC) or

2) The DyFor GP is an automatically self-adjusting model,o schwarz Information Criterion (SIE)
Thgs’ mda_l changing (aInV|rprr]1me|”r|]t, it may be ablelto adaptThe observations on window behavior and retention of past
and predict accurately without human |nter\_/ent|_on, adaptations discussed in the previous section were made by

3) ltcan tal_<e advantage_ofalarge amour_ltofhlstorlcal da@(amining output files produced by the DyFor GP model
Cfot:l_vent_lonla(;forecaztlng mlodeljsk:equwe tha_t thel numb\%h the naked eye. Because these files are quite large, this
0 |sto;:f:a ata tohe an?yze € ZEt afp::pn. n TZ% not an efficient way to analyze such behavior. DyFor GP
cases t IS means that a large number of historica €T\Iﬁblementation could be enhanced to produce more detailed
IS cons@ered to be too O.ld to represent the curre_nt d@brmaﬂon about both of these aspects at every step of
generatmg process and IS, thufs, dlsr_egarded. This ol & training and forecast period. This would allow for bette

ata, however, may C(_)ntam n o_rmatlon (e.g., pattern ?sualization and analysis. Window behavior could be ferth

that can be used during analysis to better capture t

died by applying the DyFor GP model to several artificial

current process. The DyFor GP model is designed [fne series (similar to the one described in section IV-Ahea

analyze all h|stor|(_:al Qata, save knowledge of past pr jith different characteristics such as shorter/longemssy
cesses, and exploit this learned knowledge to capture §

ﬁgths and smooth/abrupt transitions between segmexrts. E
current process.

4) With . v b Eeriments of this kind may provide greater understanding of
) With greater computing power comes potentially bely,, \ingowsize adjustment is affected by a changing process

ter forecasting performance. The DyFor GP model is Also affecting window behavior is parametéy (from

essentially a heuristic, fitness-driven random search. As )\ .« || and VII) which specifies the number of expan-
with any random search, when a larger percentage of { Bps/contractions that signal a stable process or a @oces

search-space is covered, better results can be expec ?ﬂ respectively. Like parameterof the CF fitness measure,

Greater computational power allows for greater searc h optimal value for parametéY was not known and, thus,

flition was used to specify its value. Future studies migh
Kvestigate optimal settings for paramef€rfor a variety of
e series.

) ) Another direction for DyFor GP development is in the area
Continued development and testing of the DyFor GP modg{ forecast combination. As detailed in section 1II-G, it is

is planned. One way of possibly .improving. the forecas“”ﬁecessary to make multiple DyFor GP runs and use some
results of the GDP and CPI Inflation experiments would B&ethod to combine the multiple forecasts produced into a
to increase the computing power employed. The above resulisgle, out-of-sample forecast. The method utilized irs thi

were achieved in a modest cluster computing environmeat (%Efudy is a simple one that ranks each DyFor GP run based
[65] for details) so there is much room for increasing the €0my he accuracy of its most recent past forecast, selects the

puting power. Concerning the CPI Inflation experiment, 8toGoy 3 runs, averages their current forecasts, and designate
and Watson [76] report that using an alternative Phillipsv€u g average forecast as the single, out-of-sample foreoas

be used. It is reasonable to expect that a more sophisticated

manner.

14For these experiments, the amount of computation time fargiesDyFor
GP run to incorporate and analyze newly-arriving data spwading to a
single time period is approximately 3-5 minutes. 15A definition and description of AIC and SIC can be found in [21]
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forecast combining method would result in performance ins]
provements. One interesting method is the following. Ssppo
the combination model of equation 5 (redisplayed here) [ls]
considered.

[20]
F=afitafot+...tayfn
In this model, F' is the combined forecasf, f2,..., fa
are the single forecasts to be combined, andas, ..., ay, (21]

are corresponding weights subject to the condition thait the)
sum is one. Using all past forecasts produced by a set of
DyFor GP runs as training data, a GA could be employed E&]
evolve optimal weights for this model.

Future experiments are also planned in which the DyFor
GP is applied to other well-known economic time seri
as well as time series important to other fields such gs
weather-related series, seismic activity, and seriemgrisom
biological/medical processes.

All in all, the DyFor GP model is a viable alternative for[zg)
real-world forecasting applications and may prove to skateu

new advances in the area of time series forecasting. 27]
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