
Time Series Forecasting for Dynamic Environments:
the DyFor Genetic Program Model

Neal Wagner, Zbigniew Michalewicz, Moutaz Khouja, and Rob Roy McGregor,

Abstract

Several studies have applied genetic programming (GP) to the task of forecasting with favorable results. However, these
studies, like those applying other techniques, have assumed a static environment, making them unsuitable for many real-world
time series which are generated by varying processes. This study investigates the development of a new “dynamic” GP model
that is specifically tailored for forecasting in non-staticenvironments. This Dynamic Forecasting Genetic Program (DyFor GP)
model incorporates features that allow it to adapt to changing environments automatically as well as retain knowledge learned
from previously encountered environments. The DyFor GP model is tested for forecasting efficacy on both simulated and real
time series including the U.S. Gross Domestic Product and Consumer Price Index Inflation. Results show that the performance
of the DyFor GP model improves upon that of benchmark models for all experiments. These findings highlight the DyFor GP’s
potential as an adaptive, non-linear model for real-world forecasting applications and suggest further investigations.

N. Wagner is with the Department of Mathematics and ComputerScience, Augusta State University, Augusta, GA 30904, USA,(e-mail: nwagner@aug.edu).
Z. Michalewicz is with the School of Computer Science, University of Adelaide, Adelaide, SA 5005, Australia, Instituteof Computer Science, Polish

Academy of Sciences, ul. Ordona 21, 01-237 Warsaw, Poland, and Polish-Japanese Institute of Information Technology, ul. Koszykowa 86, 02-008 Warsaw,
Poland, (e-mail: zbyszek@cs.adelaide.edu.au).

M. Khouja is with the Department of Business Information Systems and Operations Management, University of North Carolina, Charlotte, NC 28223,
USA, (e-mail: mjkhouja@email.uncc.edu).

R. McGregor is with the Department of Economics, University of North Carolina, Charlotte, NC 28223, USA, (e-mail: rrmcgreg@email.uncc.edu).

0000–0000/00$00.00c© 2005 IEEE

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 1

Time Series Forecasting for Dynamic Environments:
the DyFor Genetic Program Model

I. I NTRODUCTION

FORECASTING is an integral part of everyday life. Busi-
nesses, governments, and people alike make, use, and

depend on forecasts for a wide variety of concerns. Current
methods of time series forecasting require some element of
human judgment and are subject to error. When the informa-
tion to be forecast is well-understood, the error may be within
acceptable levels. However, often the forecasting concernis
not well-understood and, thus, methods that require littleor no
human judgment are desired. Additionally, many forecasting
situations are set in environments with continuously shifting
conditions. These situations call for methods that can adjust
and adapt to the changing conditions.

The aim of this study is to investigate the development
of a new adaptive model that is specifically tailored for
forecasting time series produced by non-static environments.
The proposed model is based on genetic programming (GP)
with additional features that seek to capture such dynamically-
changing time series. This Dynamic Forecasting Genetic
Program (DyFor GP) model incorporates methods to adapt
to changing environments automatically as well as retain
knowledge learned from previously encountered environments.
Such past-learned knowledge may prove useful when current
environmental conditions resemble those of a prior setting.
Specifically, this knowledge allows for faster convergenceto
current conditions by giving the model searching process a
“head-start” (i.e., by narrowing the model search space).

The rest of this paper is organized as follows: section II
is a brief review of existing time series forecasting methods,
section III describes the DyFor GP model, section IV details
experiments involving the DyFor GP model, and section V
concludes.

II. REVIEW OF EXISTING TIME SERIESFORECASTING

METHODS

Existing time series forecasting methods generally fall into
two groups: classical methods which are based on statis-
tical/mathematical concepts, and modern heuristic methods
which are based on algorithms from the field of artificial
intelligence.

A. Classical Methods

Classical time series forecasting methods can be subdivided
into the following categories:

1) exponential smoothing methods,
2) regression methods,
3) autoregressive integrated moving average (ARIMA)

methods,

4) threshold methods, and
5) generalized autoregressive conditionally heteroskedastic

(GARCH) methods.

The first three categories listed above can be considered as
linear methods, that is methods that employ a linear functional
form for time series modelling, and the last two as non-linear
methods.1

In exponential smoothing a forecast is given as a weighted
moving average of recent time series observations. The
weights assigned decrease exponentially as the observations
get older. In regression a forecast is given as a linear function
of one or more explanatory variables. ARIMA methods give
a forecast as a linear function of past observations (or the
differences of past observations) and error values of the time
series itself and past observations of zero or more explanatory
variables. See Makridakiset al. [57] for a discussion of
smoothing, regression, and ARIMA methods.

All linear forecasting methods above assume a functional
form which may not be appropriate for many real-world
time series. Linear models cannot capture some features that
commonly occur in actual data such as asymmetric cycles and
occasional outlying observations [57, pg. 433-434]. Regression
methods often deal with non-linear time series by logarithmic
or power transformation of the data, however this technique
does not account for asymmetric cycles and outliers.

Threshold methods assume that extant asymmetric cycles
are caused by distinct underlying phases of the time series
and that there is a transition period (either smooth or abrupt)
between these phases. Commonly the individual phases are
given a linear functional form and the transition period (if
smooth) is modeled as an exponential or logistic function.
GARCH methods are used to deal with time series that display
non-constant variance of residuals (error values). In these
methods the variance of error values is modeled as a quadratic
function of past variance values and past error values. In [57],
[60], [72] various threshold methods are detailed while [1],
[11], [22] describe GARCH methods.

The non-linear methods above, although capable of char-
acterizing features found in actual data such as asymmetric
cycles and non-constant variance of residuals, assume that
the underlying data generating process of the time series is
constant.2 The linear methods described above also make this
assumption. For actual time series data this assumption is
often invalid as shifting environmental conditions may cause
the underlying data generating process to change. For all of

1Regression and ARIMA methods can have a non-linear functional form,
however this is not common.

2Threshold methods do allow for the underlying process to vary between
prescribed phases. However, the process is assumed to be constant within each
phase and, commonly, only 2 or 4 phases are specified [21], [57].

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 2

the classical forecasting methods listed, human judgment is
required to first select an appropriate method and then set
appropriate parameter values for the model’s coefficients (or
to select an appropriate parameter optimization scheme). In
the event that the underlying data generating process changes,
the time series data must be reevaluated and a (possibly new)
method must be selected with appropriate parameter values.
Because the task of repeated data monitoring and model
selection is complex and time consuming, automatic non-linear
forecasting models that can handle non-static environments are
desired. The following section contains a discussion of modern
heuristic methods used for time series forecasting.

B. Modern Heuristic Methods

Most modern heuristic methods for time series forecasting
fall into two major categories:

1) methods based on neural networks (NN), and
2) methods based on evolutionary computation.

We can refine the latter category by dividing it further into
methods based on genetic algorithms (GA), evolutionary pro-
gramming (EP), and genetic programming (GP).

It is interesting to note that NN, EP, and GP techniques were
used to build nonlinear forecasting models, whereas genetic
algorithms were primarily used to tune the parameters of some
(possibly statistical, linear or nonlinear) forecasting model. All
of the methods listed above are motivated by the study of
biological processes.

NN attempt to solve problems by imitating the human brain.
A NN is a graph-like structure that contains an input layer, zero
or more hidden layers, and an output layer. Each layer contains
several “neurons” which have weighted connections to neurons
of the following layer. A neuron from the input layer holds an
input variable. For forecasting models, this input is a previous
time series observation or an explanatory variable. A neuron
from the hidden or output layer consists of an “activation”
function (usually the logistic function:g(u) = 1

1+e−u). A
three-layer feed-forward NN (one hidden layer between an
input and output layer) is commonly used for forecasting
applications due to its ability to approximate virtually any non-
linear model (if given a sufficient number of neurons at the
hidden layer) [88]. Several applications of NN to forecasting
are proffered in [28], [75], [79]. General descriptions of NN
can be found in [30], [88].

For methods based on evolutionary computation, the pro-
cess of biological evolution is mimicked in order to solve
a problem. After an initial population of potential solutions
is created, solutions are ranked based on their “fitness.” New
populations are produced by selecting higher-ranking solutions
and performing genetic operations of “mating” (crossover)
or “mutation” to produce offspring solutions. This process
is repeated over many generations until some termination
condition is reached.

When GA is applied to forecasting, first an appropriate
model (either linear or non-linear) is selected and an initial
population of candidate solutions is created. A candidate
solution is produced by randomly choosing a set of parameter
values for the selected forecasting model. Each solution is

then ranked based on its prediction error over a set of training
data. A new population of solutions is generated by selecting
fitter solutions and applying a crossover or mutation operation.
Crossover is performed by swapping a subset of parameter
values from two parent solutions. Mutation causes one (ran-
dom) parameter from a solution to change. New populations
are created until the fittest solution has a sufficiently small
prediction error or repeated generations produce no reduction
of error.

Consider the following example given by Jeong, Jung, and
Park [36]. They choose a linear explanatory model of the form:

y(k + 1) = b0 + b1x1(k) + b2x2(k) + . . . + bnxn(k), (1)

wherey(k + 1) is the forecast variable at timek + 1, xi(k)
is the value of explanatory variablexi at timek, andbi is the
coefficient of explanatory variablexi. Thus, a candidate solu-
tion will be a vector of real numbers representing coefficients
b0 throughbn. Because each coefficient may have a unique
range, a scaling technique is used to map the coefficients to
the range [0,1]. The process requires that an encoded solution
u is decoded back to the original value scheme. The following
equation is used for this purpose:

bi(u) = bmin
i + ci(u)|bmin

i − bmax
i |, (2)

where bi(u) is the ith coefficient value for solutionu, i =
0, 1, . . . , n, and

bmin
i =

{
(1 − α)bi(s), if bi(s) > 0

(1 + α)bi(s), if bi(s) < 0,

bmax
i =

{
(1 + α)bi(s), if bi(s) > 0

(1 − α)bi(s), if bi(s) < 0.

Here bi(s) is the ith coefficient value for the current best
solution s, ci(u) is the encoded value of theith coefficient
for solution u, and α = 0.5. α serves as a boundary for
the coefficients of all solutions in the population, that is they
are restricted to be within±100α% range of the current best
solution. The fitness function chosen to evaluate solutionsis:

f = |y(k) − ŷ(k)| +
∑k−1

j=1 |y(j) − ŷ(j)|
k − 1

, (3)

wherey(k) is the observed value for the forecast variable at
timek, andŷ(k) is the predicted value for the forecast variable
at timek. The first term of equation 3 gives the deviation of
the predicted value from the observed value at current timek,
and the second gives the average deviation of predicted values
from observed values during the entire training period before
time k. Fitter solutions will have lower values forf (with the
lowest possible value being0).

GA has been used successfully for a wide variety of difficult
optimization problems including the forecasting of real-world
time series. [5], [61], [62] give detailed descriptions of GA
while [13], [16], [19], [29], [39], [45], [82] provide additional
examples of GA applied to forecasting.

For EP each candidate solution is represented as a finite
state machine (FSM) rather than a numeric vector. FSM
inputs/outputs correspond to appropriate inputs/outputsof the

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 3

forecasting task. An initial population of FSMs is created and
each is ranked according to its prediction error. New popu-
lations are generated by selecting fitter FSMs and randomly
mutating them to produce offspring FSMs. A parent FSM is
mutated by performing one of the following operations:

1) change an output symbol,
2) change a state transition,
3) add a new state,
4) remove a state, or
5) change the start state.

EP was devised by Fogel [24] and has applications in many ar-
eas. Some examples of successful EP forecasting experiments
include [24], [25], [26], [73].

In GP solutions are represented as tree structures instead
of numeric vectors or finite state machines. Internal nodes
of solution trees represent appropriate operators and leaf
nodes represent input variables or constants. For forecasting
applications, the operators are mathematical functions and
the inputs are lagged time series values and/or explanatory
variables. Figure 1 gives an example solution tree for time
series forecasting. Variablesxt1 andxt2 represent time series
values one and two periods in the past, respectively.

+

xt1 sin

×

5.31 xt2

Fig. 1. GP representation of forecasting solutionxt1 + sin(5.31xt2)

GP was developed by Koza [49] as a problem-solving tool
with applications in many areas. He was the first to use GP to
search for model specifications that can replicate patternsof
observed time series.3 Numerous studies have applied GP to
time series forecasting with favorable results. Some examples
of these include [3], [14], [15], [32], [33], [34], [38], [40],
[41], [42], [43], [44], [52], [63], [66], [83]. GP has also been
used to find successful trading rules from time series data in
[27], [59], [67], [68], [80], [86].

Also prevalent in the literature are forecasting studies which
make use of a technique that is either a close variant to
one of the aforementioned methods or a hybrid that employs
multiple methods. One common hybrid method is one that
combines NN and GA. In these applications a GA is used to
optimize several aspects of a NN architecture [2], [6], [53],
[58], [64], [70], [74], [89]. The optimized NN is then used to
produce the desired forecasts. Another hybrid method utilizes
an EP to evolve both the weights and the topology (i.e., the
connectivity) of a NN simultaneously [56], [91]. In [48] and
[55] a variant on GA called evolution strategies (ES) is used
to generate efficient trading rules for financial time series.

Because the heuristic methods described above are non-
linear, they are able to capture many aspects displayed by

3In [49] Koza refers to this as “symbolic regression.”

actual data. NN, GP, and EP have the added advantage that
the forecasting model need not be prescribed, allowing for
automatic discovery of a befitting functional form. However,
like the classical methods discussed in section II-A, these
methods assume a static environment. If the underlying data
generating process shifts, the methods must be reevaluated
in order to accomodate the new process. Additionally, these
methods require that the number of historical time series data
used for analysis be designateda priori. This presents a prob-
lem in non-static environments because different segmentsof
the time series may have different underlying data generating
processes. For example, a time series representing the daily
stock value of a major U.S. airline is likely to have a different
underlying process before September 11, 2001 than it does
afterwards. If analyzed time series data span more than one
underlying process, forecasts based on that analysis may be
skewed.

Consider the subset of time series data shown in figure 2.
Suppose this represents the most recent historical data and

22, 33, 30, 27, 24, 20, 21, 20, 20︸ ︷︷ ︸
segment1

, 23, 26, 29, 30, 28, 29, 32, 30, 31︸ ︷︷ ︸
segment2

| . . .︸︷︷︸
future

Fig. 2. Time series containing segments with differing underlying processes.

has been chosen for analysis. Suppose further that the subset
consists of two segments each with a different underlying
process. The second segment’s underlying process represents
the current environment and is valid for forecasting futuredata.
The first segment’s process represents an older environment
that no longer exists. Because both segments are analyzed,
the forecasting model is distorted unless human judgment is
brought to bear.

Some degree of human judgment is necessary to assign the
number of historical data to be used for analysis. If the time
series is not well-understood, then the assignment may contain
segments with disparate underlying processes. This situation
highlights the need for forecasting methods that can automati-
cally determine the correct analysis “window” (i.e., the correct
number of historical data to be analyzed). This investigation
attempts to develop a dynamic forecasting model based on
GP that can do just that. Furthermore, this study explores
methods that can retain knowledge learned from previously
encountered environments. Such past-learned knowledge may
prove useful when current environmental conditions resemble
those of a prior setting. Specifically, this knowledge allows for
faster convergence to current conditions by giving the model
searching process a “head-start” (i.e., by narrowing the model
search space).

In the following section, the DyFor GP model is presented
and its features discussed.

III. T HE DYFOR GP MODEL

As discussed in the previous section, an adaptive forecasting
model that can handle non-static environments is sought. The
desired model would automatically determine the appropriate
analysis window (i.e., the number of recent historical data

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 4

whose underlying data generating process corresponds to
current environment). Also, the model should be able to adapt
to changing conditions “on-the-fly” (i.e., without the needfor
halting and restarting the analysis). An additional boon would
be the ability to retain useful knowledge from previously
encountered environments so that the current setting can be
more accurately captured. In this section a discussion of the
design of such a model is proffered.

A. Natural Adaptation: A Sliding Window of Time

In biological evolution organisms evolve to suit the occur-
rent conditions of their environment. When conditions shift,
successful organisms adapt to the new surroundings. Over
many generations and several environmental shifts, enduring
organisms represent highly adaptive solutions that can survive
and thrive in a variety of settings. A time series arising from
real-world circumstances can be viewed in a similar light.
Different segments of the time series may be produced by
different underlying data generating processes. Each segment
can be thought of as one set of environmental conditions. A
successful forecasting model might be seen as an adaptive
organism that has evolved through all of the pre-existing en-
vironments and gained valuable adaptations (strengths) along
the way.

To model this natural adaptation through many environ-
mental settings, a sliding window of time is proposed. For
the DyFor GP model, analysis starts at the beginning of the
available historical data. Some initial windowsize (number of
data observations to analyze) is set and several generations of
DyFor GP are run to evolve a population of solutions. Then the
data window slides to include the next time series observation.
Several generations are run with the new data window and
then the window slides again. This process is repeated until
all available data have been analyzed up to and including the
most recent historical data. Figure 3 illustrates this process.
In the figure,| marks the end of available historical data. The

22, 33, 30, 27, 24, 20, 21, 20, 20︸ ︷︷ ︸
window−1

, 23, 26, 29, 30, 28, 29, 32, 30, 31| . . .︸︷︷︸
future

22, 33, 30, 27, 24, 20, 21, 20, 20, 23︸ ︷︷ ︸
window−2

, 26, 29, 30, 28, 29, 32, 30, 31| . . .︸︷︷︸
future

•
•
•

22, 33, 30, 27, 24, 20, 21, 20, 20, 23, 26, 29, 30, 28, 29, 32, 30, 31︸ ︷︷ ︸
window−i

| . . .︸︷︷︸
future

Fig. 3. A sliding data analysis window.

set of several generations run on a single analysis window is
referred to as a “dynamic generation.” Thus, a single run of
the DyFor GP includes several dynamic generations (one for
each window slide) on several different consecutive analysis
windows.

This sliding window feature allows the DyFor GP to analyze
all existing data and take advantage of previously observed
patterns. As the window slides through past data, solutions
glean useful knowledge making it easier for them to adapt to
and predict the current environment.

B. Adapting the Analysis Window

As expounded in section II-B, designating the correct size
for the analysis window is critical to the success of any
forecasting model. Automatic discovery of this windowsize
is indispensable when the forecasting concern is not well-
understood. With each slide of the window, the DyFor GP
adjusts its windowsize dynamically. This is accomplished in
the following way.

1) Select two initial windowsizes, one of sizen and one of
sizen + i wheren and i are positive integers.

2) Run dynamic generations at the beginning of the his-
torical data with windowsizesn and n + i, use the
best solution for each of these two independent runs
to predict a number of future data points, and measure
their predictive accuracy.

3) Select another two windowsizes based on which win-
dowsize had better accuracy. For example if the smaller
of the 2 windowsizes (sizen) predicted more accurately,
then choose 2 new windowsizes, one of sizen and
one of sizen − i. If the larger of the 2 windowsizes
(size n + i) predicted more accurately, then choose
windowsizesn + i andn + 2i.

4) Slide the analysis window to include the next time series
observation. Use the two selected windowsizes to run
another two dynamic generations, predict future data,
and measure their prediction accuracy.

5) Repeat the previous two steps until the analysis window
reaches the end of historical data.

Thus, at each slide of the analysis window, predictive accuracy
is used to determine the direction in which to adjust the
windowsize.

Consider the following example. Suppose the time series
given in figure 4 is to be analyzed and forecast. As depicted
in the figure, this time series consists of two segments each
with a different underlying data generating process. The

22, 33, 30, 27, 24, 20, 21, 20, 20︸ ︷︷ ︸
segment1

, 23, 26, 29, 30, 28, 29, 32, 30, 31︸ ︷︷ ︸
segment2

| . . .︸︷︷︸
future

Fig. 4. Time series containing segments with differing underlying processes.

second segment’s underlying process represents the current
environment and is valid for forecasting future data. The first
segment’s process represents an older environment that no
longer exists but may contain patterns that can be learned and
exploited when forecasting the current environment. If there is
no knowledge available concerning these segments, automatic
techniques are required to discover the correct windowsize
needed to forecast the current setting. The DyFor GP starts
by selecting two initial windowsizes, one larger than the
other. Then, two separate dynamic generations are run at the

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 5

beginning of the historical data, each with its own windowsize.
After each dynamic generation, the best solution is used to
predict some number of future data and the accuracy of this
prediction is measured. Figure 5 illustrates these steps. In the
figurewin1 andwin2 represent data analysis windows of size
3 and 4, respectively, andpred represents the future data
predicted.

win2︷ ︸︸ ︷

22,

win1︷ ︸︸ ︷
33, 30, 27,

pred︷ ︸︸ ︷
24, 20, 21, 20, 20︸ ︷︷ ︸

segment1

, 23, 26, 29, 30, 28, 29, 32, 30, 31︸ ︷︷ ︸
segment2

| . . .︸︷︷︸
future

Fig. 5. Initial steps of window adaptation.

The data predicted in these initial steps lies inside the
first segment’s process and, because the dynamic generation
involving analysis windowwin2 makes use of a greater
number of appropriate data than that ofwin1, it is likely that
win2’s prediction accuracy is better. If this is true, two new
windowsizes forwin1 and win2 are selected with sizes of 4
and 5, respectively. The analysis window then slides to include
the next time series value, two new dynamic generations are
run, and the best solutions for each are used to predict future
data. Figure 6 depicts these steps. In the figure, data analysis
windows win1 and win2 now include the next time series
value, 24, andpred has shifted one value to the right.

win2︷ ︸︸ ︷

22,

win1︷ ︸︸ ︷
33, 30, 27, 24,

pred︷ ︸︸ ︷
20, 21, 20, 20︸ ︷︷ ︸

segment1

, 23, 26, 29, 30, 28, 29, 32, 30, 31︸ ︷︷ ︸
segment2

| . . .︸︷︷︸
future

Fig. 6. Window adaptation after the first window slide. Note:win1 andwin2
have size 4 and 5, respectively.

This process of selecting two new windowsizes, sliding the
analysis window, running two new dynamic generations, and
predicting future data is repeated until the analysis window
reaches the end of historical data. It may be noted that while
the prediction data,pred, lies entirely inside the first segment,
the data analysis windows,win1 andwin2, are likely to expand
to encompass a greater number of appropriate data. However,
after several window slides, when the data analysis window
spans data from both the first and second segments, it is
likely that the window adjustment reverses direction. Figures
7 and 8 show this phenomenon. In figure 7win1 and win2

22, 33, 30, 27, 24, 20, 21, 20, 20︸ ︷︷ ︸
segment1

,

        

win1              

win2

23, 26,

pred︷ ︸︸ ︷
29, 30, 28, 29, 32, 30, 31︸ ︷︷ ︸

segment2

| . . .︸︷︷︸
future

Fig. 7. Window adaptation when analysis spans both segments. Note: the
smaller analysis window,win1, is likely to have better prediction accuracy
because it includes less inappropriate data.

have sizes of 4 and 5, respectively. As the prediction data,
pred, lies inside the second segment, it is likely that the

22, 33, 30, 27, 24, 20, 21, 20, 20︸ ︷︷ ︸
segment1

,

win1︷ ︸︸ ︷
23

        

win2

, 26, 29,

pred︷ ︸︸ ︷
30, 28, 29, 32, 30, 31︸ ︷︷ ︸
segment2

| . . .︸︷︷︸
future

Fig. 8. Window adaptation when analysis spans both segments. Note: win1
and win2 have contracted to include less inappropriate data.

dynamic generation involving analysis windowwin1 has better
prediction accuracy than that involvingwin2 becausewin1
includes less data produced by a process that is no longer in
effect. If this is so, the two new windowsizes selected forwin1
andwin2 are sizes 3 and 4, respectively. Thus, as the analysis
window slides to incorporate the next time series value, it also
contracts to include a smaller number of inappropriate data.
In figure 8 this contraction is shown.

After the data analysis window slides past the end of the
first segment, it is likely to expand again to encompass a
greater number of appropriate data. Figures 9 and 10 depict
this expansion.

22, 33, 30, 27, 24, 20, 21, 20, 20︸ ︷︷ ︸
segment1

, 23,

win2︷ ︸︸ ︷

26,

win1︷ ︸︸ ︷
29, 30, 28,

pred︷ ︸︸ ︷
29, 32, 30, 31︸ ︷︷ ︸

segment2

| . . .︸︷︷︸
future

Fig. 9. Window adaptation when analysis lies entirely inside the second
segment. Note: the larger analysis window,win2, is likely to have better
prediction accuracy because it includes a greater number ofappropriate data.

22, 33, 30, 27, 24, 20, 21, 20, 20︸ ︷︷ ︸
segment1

, 23,

win2︷ ︸︸ ︷

26,

win1︷ ︸︸ ︷
29, 30, 28, 29,

pred︷ ︸︸ ︷
32, 30, 31︸ ︷︷ ︸

segment2

| . . .︸︷︷︸
future

Fig. 10. Window adaptation when analysis lies entirely inside the second
segment. Note:win1 andwin2 have expanded to include a greater number of
appropriate data.

As illustrated in the above example, the DyFor GP uses
predictive accuracy to adapt the size of its analysis window
automatically. When the underlying process is stable (i.e., the
analysis window is contained inside a single segment), the
windowsize is likely to expand. When the underlying process
shifts (i.e., the analysis window spans more than one segment),
the windowsize is likely to contract. The following section
discusses how the DyFor GP model can retain and exploit
knowledge of previously-encountered environments.

C. Retaining and Exploiting Knowledge from Past Environ-
ments

A primary objective of time series forecasting is to find
a model that accurately represents the current environment
and use that model to forecast the future. As discussed in
section II-B, existing forecasting methods rely, to some degree,
on human judgment to designate an appropriate analysis
window, that is the window of historical data whose underlying

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 6

process corresponds to the current environment and is valid
for forecasting future data. If a time series is produced in a
non-static environment, frequently only the recent historical
data that correspond to the current environment are analyzed
and historical data that come from previous environments are
ignored.

What if the current environmental conditions resemble those
of a prior environment? In such a case, knowledge of this
prior environment might be used to capture the current en-
vironment with greater speed and/or accuracy than a search
that ignores this knowledge. Existing forecasting methods,
assuming that the analysis window has been correctly set, do
not benefit from knowledge of past environments and, thus,
must search for a model of the current environment “from
scratch.” The sliding window feature (described in section
III-A) allows the DyFor GP to analyze all historical data
and take advantage of knowledge gleaned from previously
encountered environments, giving the model search a “head-
start.” This knowledge comes in the form of adaptations (i.e.,
solution subtrees) gained by evolution through these previous
environments. Past-evolved subtrees are used by the DyFor
GP as promising exploration points from which to search for
a model that is appropriate for the current environment. These
subtrees are retained and exploited in two ways:

1) implicitly by the evolutionary process when it is coupled
with the sliding window feature of the DyFor GP and

2) explicitly through the use of “dormant” solutions.

The following two sections discuss how past-evolved subtrees
are maintained and utilized. For the remainder of this paper
we will refer to such subtrees as “adaptations.”

D. Implicit Adaptation: the Role of Introns

In biology unexpressed genotypic regions are commonly
called introns. For GP, this term has been adopted to refer to
inactive regions in the solution representation, that is subtrees
of a solution which do not affect its fitness [4], [12]. Consider
the solution tree depicted in figure 11. This solution tree
represents the expression

2.53(xt−2)
2 +

(
2.53xt−3

xt−2

)
(xt−1 − xt−1)

which after simplification becomes

2.53(xt−2)
2.

The % sign in the figure represents a protected division
operator that does not allow division by zero. In the figure the
intron subtree (enclosed by dashed lines) does not affect the
fitness of the solution as its output simplifies to zero regardless
of the values given for variablesxt−1, xt−2, andxt−3.

A well-known characteristic of the GP process is the ten-
dency for evolved solution trees to have introns make up
a significant percentage of the tree structure. This was first
recognized by Koza [49, pg. 7]. Several studies have suggested
that introns are a beneficial component in the evolutionary
search for optimal solutions [35], [54], [69]. Introns are seen as
particularly valuable when the environment is non-static [54].
To understand how introns are utilized to retain and exploit

+

×

xt−2 ×

2.53 xt−2

×

%

×

2.53 xt−3

xt−2

−

xt−1 xt−1

Fig. 11. A GP solution tree containing an intron. Dashed lines enclose the
intron subtree.

previously learned adaptations in a non-static environment,
consider the following example.

As discussed in section II-B, time series arising from real-
world circumstances may contain segments with differing un-
derlying data generating processes. For example, a time series
representing the monthly value of a U.S. treasury bond might
be produced by one underlying process when interest rates
are “high” and a different underlying process when interest
rates are “medium” or “low.” Furthermore, many time series
are produced in cyclical environments in which conditions
currently in effect are similar to conditions encountered in
the past. For example, the current underlying process for a
treasury bond time series if interest rates are “high” might
be similar to a past underlying process that occurred when
interest rates were also “high.” Suppose the time series given
in figure 12 is such a time series. As depicted in the figure,
this time series consists of three segments each with a different
underlying data generating process. The third segment’s under-

22, 33, 30, 27, 24, 20︸ ︷︷ ︸
segment1

, 23, 26, 29, 30, 28, 29︸ ︷︷ ︸
segment2

, 31, 32, 30, 30, 31, 28︸ ︷︷ ︸
segment3

| . . .︸︷︷︸
future

Fig. 12. Time series containing segments with differing underlying processes.

lying process represents the current environment and is valid
for forecasting future data. The first and second segments’
processes represent older environments that no longer exist but
may contain information that can be used to more accurately
capture the current environment. Suppose further that similar
environmental conditions produce segments 1 and 3 (e.g.,
interest rates in the “high” category) while differing conditions
produce segment 2 (e.g., interest rates in the “medium” cate-
gory). The aim is to retain adaptations learned from segment
1 and utilize these adaptations to find an appropriate model
for segment 3. The DyFor GP sets its analysis window at
the beginning of segment 1’s data and starts the evolutionary
process in search of an applicable model. Perhaps, after several
dynamic generations inside segment 1, the solution tree of
figure 13 is evolved as a befitting model. This solution tree
represents the expression

12.33 +

(
2.53xt−3

xt−2

)
(cos(xt−1 − xt−1))

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 7

+

12.33 ×

%

×

2.53 xt−3

xt−2

cos

−

xt−1 xt−1

Fig. 13. An evolved solution tree for segment 1.

which simplifies to

12.33 +

(
2.53xt−3

xt−2

)
. (4)

In the figure, suppose the subtree rooted by the protected
division operator (%) is an adaptation that fits the environ-
mental conditions of segment 1. This subtree is equivalent to
the second term of the equation 4.

When the DyFor GP’s analysis window moves into segment
2, this adaptation is no longer suitable as the environmental
conditions have changed. Nevertheless, through crossoverthis
adaptation can be retained by becoming a part of an intron
subtree in a fit solution for segment 2. Figures 14 and 15
illustrate this phenomenon. In figure 14, the adaptation

+

12.33 ×

%

×

2.53 xt−3

xt−2

cos

−

xt−1 xt−1

p1
+

×

xt−2 ×

2.53 xt−2

×

−

×

7.77 xt−1

×

xt−3 xt−1

−

xt−1 xt−1

p2

Fig. 14. Retention of a no longer suitable adaptation via crossover.p1 andp2
are parent solution trees to undergo crossover. Dashed lines enclose subtrees
to be exchanged.

+

12.33 ×

−

×

7.77 xt−1

×

xt−3 xt−1

cos

−

xt−1 xt−1

o1
+

×

xt−2 ×

2.53 xt−2

×

%

×

2.53 xt−3

xt−2

−

xt−1 xt−1

o2

Fig. 15. Retention of a no longer suitable adaptation via crossover.o1 and
o2 are offspring solutions produced after crossover is performed onp1 and
p2 from figure 14.

equivalent to the second term of equation 4 is part of tree
p1 and is to be exchanged with a subtree of treep2. Figure
15 gives the offspring solution trees produced. In the figure,
the adaptation is now a part of offspring solution treeo2.
Furthermore, the adaptation is contained in an intron subtree

of this offspring (the same intron subtree as depicted in figure
11).

Thus, the adaptation evolved during analysis of segment
1 can be retained as the DyFor GP analyzes segment 2
even though this adaptation is not relevant for segment 2’s
environment. While this retention of a previously learned
adaptation may be possible, one may ask if it is likely.
Given that the adaptation in question suits the environment
of segment 1, the evolutionary process is likely to produce
many solutions containing the adaptation when the DyFor GP
analyzes segment 1’s data. When the analysis window switches
to segment 2’s data to start analysis of this new environment,
natural selection will tend to favor these fitter solutions from
segment 1 and, thus, solutions with this adaptation will be
chosen for crossover many times. Therefore, it is likely that a
number of those crossovers will result in the adaptation being
moved to an intron subtree as described in the above example
especially given the fact that a large percentage of GP solution
trees are made up of introns. Hence retention of past-evolved
adaptations into intron subtrees is likely.

When the analysis window slides to segment 3’s data, it
is likely that some solution trees in the population contain
the adaptation evolved from segment 1 as a part of an intron
subtree. Since segment 3’s environment resembles that of
segment 1, solutions that contain the adaptation in an active
subtree will survive and thrive. Just as crossover can move
an adaptation from an active subtree to an intron subtree,
it can also move an adaptation from an intron subtree back
to an active one. If even one crossover results in such an
exchange, natural selection will favor the resulting solution
and that solution will multiply.

The above example illustrates how evolved adaptations from
previously encountered environments can be retained in non-
applicable environments by becoming part of intron subtrees
and can then be reactivated in applicable environments by
moving back to active subtrees. This takes place implicitlyvia
the evolutionary process when it is coupled with the sliding
window feature of the DyFor GP. The following section dis-
cusses an explicit method of maintaining and exploiting past-
evolved adaptations through the use of “dormant” solutions.

E. Explicit Adaptation: Dormant Solutions

The DyFor GP also contains a feature that explicitly saves
evolved adaptations from past environments and then injects
them back into the evolutionary process when conditions are
suitable. This feature involves the use of “dormant” solutions,
that is solutions that remain inactive during environmentswith
inapplicable conditions becoming active only when applicable
conditions arise. Section III-B explains how the DyFor GP
adapts the size of its analysis window dynamically. It is
noted that when the analysis window lies entirely inside a
segment of historical data generated by a single underlying
process, the window is likely to expand to encompass a greater
number of appropriate data. Conversely, it is shown that when
the analysis window spans data generated by more than one
underlying process, the window is likely to contract to include
a smaller number of inappropriate data. A fortunate side effect

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 8

of this windowsize adjustment is that the boundaries of each
underlying process can be deduced. Consecutive expansions
of the analysis window describe a segment of data with a
stable underlying process. Consecutive contractions of the
analysis window signal that a shift in environmental conditions
has occurred and that a new underlying process is currently
coming into effect.

The idea is to save fit solutions evolved during segments
when the underlying process is stable to be used later for
quicker capture of new environmental conditions when the un-
derlying process shifts. This is accomplished by the following
steps.

1) As the analysis window of the DyFor GP slides, note
the direction of window adjustment.

a) N consecutive window expansions are likely to
signal the beginning of a stable process. HereN

is a pre-specified control parameter of the DyFor
GP.

b) N consecutive window contractions are likely to
signal the beginning of a process shift.

2) If a stable process is signaled, save a few fit solutions
as potential dormant solutions.

3) For each further windowslide in which expansion is
observed, replace the potential dormant solutions pre-
viously saved with new ones (i.e., fit solutions for the
current dynamic generation).

4) When a process shift is signaled, the most recently saved
potential dormant solutions become actual dormant so-
lutions and are saved permanently.

5) Now, because a process shift is in effect, inject all
dormant solutions saved from previous environments
(with the exception of those saved from the most re-
cent previous environment) into the GP population to
compete with current solutions. Injected dormant solu-
tions that contain adaptations applicable to the current
environment will survive and thrive, while those that do
not will die off.

6) Keep injecting these dormant solutions at each win-
dowslide until a stable process is again signaled. Once
a stable process has been signaled, go back to step #2.

Thus, fit solutions evolved from segments where a stable
process exists are saved permanently as dormant solutions
representative of the environments from which they evolved.
These dormants are the end product of multiple dynamic
generations and, therefore, contain adaptations appropriate for
their environment. Later in the analysis, when the DyFor GP
moves to newer environments, these dormants prove useful if
the new environmental conditions resemble those of a previous
environment. As described in the above steps, when a new
environment is encountered, all dormants are injected intothe
GP population to compete with current solutions. If the new
environment is similar to a past environment, the dormants
representing that past environment will contain adaptations
suitable for the new environment and, thus, will endure and
prosper. In this way knowledge of past environments can be
used to capture the current environment with greater speed
and/or accuracy.

The above sections have described several features of the
DyFor GP which are designed to allow for the forecasting of
time series produced in non-static environments. The features
discussed include a sliding window of analysis, automatic
windowsize adjustment, and the utilization of knowledge (in
the form of evolved adaptations) from previously encountered
environments as an aid to forecasting the current environment.
These features combine to afford the DyFor GP the following
advantages for real-world forecasting concerns which tendto
be non-linear, non-static, and not well-understood.

1) As the DyFor GP is based on the GP paradigm, it is
not necessary to designate the functional form of the
forecasting model in advance and, thus, a befitting (and
often non-linear) model can be automatically discovered.

2) In a non-static environment with varying underlying
data generating processes, an appropriate data analysis
window for the currently existing environment may be
found automatically.

3) All available historical data are analyzed, allowing the
DyFor GP to learn from past environments and exploit
this knowledge when forecasting the current setting.

4) Because the features of the DyFor GP are dynamic in na-
ture and can adjust themselves automatically depending
on the environment encountered, the DyFor GP has the
potential to forecast time series produced by non-static
environments with varying data generating processes.

F. The Problem of Bloat

Bloat in GP is the tendency for solution trees to grow large
as they approach the optimal [50], [51]. Solutions may become
so large that they exhaust computer resources. Additionally,
bloat hinders a GP model’s adaptability as solutions become
too specialized to adjust to changing conditions. Bloat is a
problem for any GP model regardless of the application [7].
In the case of the DyFor GP, bloat can be even more severe
as generations are run on several consecutive data analysis
windows making the total number of generations large. Pre-
liminary experiments employing the DyFor GP confirm this
sentiment. In order to allow the DyFor GP to search efficiently
for an appropriate forecasting model, bloat must be minimized
without sacrificing the quality of solutions. Two methods are
proposed to overcome this obstacle:

1) natural non-static population control and
2) dynamic increase of diversity.

As described in section II-B, GP models evolve a population
of solutions for a given problem. Thus, a GP model must con-
tain some method to control the number and size of solutions
in any population. The standard method of GP population
control is due to Koza [49] and uses a static population
cardinality and a maximum tree depth for solutions.4 However,
this method does not protect a GP model from bloat. If
numerous solutions in a population have full or nearly full
trees of depth close to the maximum, available resources may
be exhausted. Additionally, the artificial limit for tree depth

4Koza [49] used population sizes of 500, 1000, and 2000 and maximum
solution tree depth of 17 in his early GP experiments.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 9

prohibits the search process from exploring solutions of greater
complexity, which, especially for many real-world problems,
may be solutions of higher quality.

An alternative method for GP population control is pre-
sented to allow natural growth of complex solutions in a setting
that more closely emulates the one found in nature. In nature
the number of organisms in a population is not static. Instead,
the population cardinality varies as fitter organisms occupy
more available resources and weaker organisms make do
with less. Thus, from generation to generation, the population
cardinality changes depending on the quality and type of
individual organisms present. The proposed natural non-static
population control (NNPC) is based on a variable population
cardinality with a limit on the total number of tree nodes
present in a population and no limit for solution tree depth.
This method addresses the following issues:

1) allowing natural growth of complex solutions of greater
quality,

2) keeping resource consumption within some specified
limit, and

3) allowing the population cardinality to vary naturally
based on the make-up of individual solutions present.

By not limiting the tree depth of individual solutions, natural
evolution of complex solutions is permitted. By restricting the
total number of tree nodes in a population, available resources
are conserved. Thus, for a GP model that employs NNPC, the
number of solutions in a population grows or declines naturally
as the individual solutions in the population vary. This method
is described in more detail below.

NNPC works in the following way. Two node limits for a
population are specified as parameters: the soft node limit and
the hard node limit. The soft node limit is defined as the limit
for adding new solutions to a population. This means that if
adding a new solution to a population causes the total nodes
present to exceed the soft node limit, then that solution is the
last one added. The hard node limit is defined as the absolute
limit for total nodes in a population. This means that if adding
a new solution to a population causes the total nodes presentto
exceed the hard node limit, then that solution may be added
only after it is repaired (the tree has been trimmed) so that
the total nodes present no longer exceeds this limit. During
the selection process of the DyFor GP, a count of the total
nodes present in a population is maintained. Before adding a
new solution to a population, a check is made to determine
if adding the solution will increase the total nodes present
beyond either of the specified limits.

Wagner and Michalewicz [83] provide a study comparing
a GP forecasting model with NNPC to one with the standard
population control (SPC) method introduced by Koza [49].
Observed results indicate that the model with NNPC was
significantly more efficient in its consumption of computer
resources than the model with SPC while the quality of
forecasts produced by both models remained equivalent.

An important issue in GP is that of how diversity of GP
populations can be achieved and maintained. Diversity refers
to non-homogeneity of solutions in a population [54]. A
population that is spread out over the search space has a
greater chance of finding an optimal solution than one that

is concentrated in a small area of the search space. The
significance of this concern is recognized in [8], [37], [87]. As
described above, NNPC can be utilized by a GP forecasting
model to conserve computer resources. However, although
resource usage is controlled, after several generations such a
model tends to have populations that are dominated by a small
number of bloated solutions. This lack of population diversity
affects a model’s ability to adapt to changing environments.
Even in models that do not employ NNPC (instead opting for
SPC), populations tend to have bloated solutions (in this case a
large rather than small number of them). Additionally, bloated
solution trees tend to hurt a GP model’s generality [46],
[69], [71], [78]. Generality refers to a solution’s applicability
to a wider set of cases than the set presented to the GP
model for analysis. For forecasting tasks as well as most other
applications, a GP model is presented with some number of
input data to analyze in the hopes that solutions evolved using
this data will be relevant (i.e., to generalize) to other data not
used as input. For these reasons it is important for a GP model
to both reduce bloat and maintain population diversity.

A method that dynamically increases the diversity of a Dy-
For GP population is proposed to accomplish these objectives.
The dynamic increase of diversity (DIOD) method increases
diversity by building a new population before each dynamic
generation using evolved components from the previous dy-
namic generation. The following steps outline this procedure.

1) An initial population is constructed (using randomly
generated trees in the usual way) for the first dynamic
generation.

2) After the dynamic generation is completed, a new initial
population is constructed for the next dynamic genera-
tion that consists of two types of solution trees:

a) randomly generated solution trees and
b) solution trees that are subtrees of fitter solutions

from the last population of the previous dynamic
generation.

3) The previous step is repeated after each successive
dynamic generation.

Thus, each new dynamic generation after the first starts with
a new initial population whose solution trees are smaller
than those of the last population of the previous dynamic
generation but have not lost the adaptations gained from
past dynamic generations. In this way, solution tree bloat is
reduced without harming the quality of solutions. Additionally,
because randomly generated trees make up a portion of the
new population, diversity is increased.

Section III-E describes an explicit technique for utilizing
adaptations learned from previously encountered environments
in order to better forecast the current environment. This
technique employs dormant solutions saved from past envi-
ronments. When this technique is incorporated as a part of
the DyFor GP, the steps of DIOD above must be modified
slightly to allow for the injection of dormant solutions into
the GP population at opportune times. The modified steps are
as follows.

1) An initial population is constructed (using randomly
generated trees in the usual way) for the first dynamic

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 10

generation.
2) After the dynamic generation is completed, a new initial

population is constructed for the next dynamic genera-
tion that consists of two types of solution trees:

a) randomly generated solution trees and
b) solution trees that are subtrees of fitter solutions

from the last population of the previous dynamic
generation.

3) After each successive dynamic generation in which a
stable process (as described in section III-E) is in effect,
a new initial population for the next dynamic generation
is constructed in the same way as given in the previous
step.

4) After each successive dynamic generation in which
a process shift (as described in section III-E) is in
effect, a new initial population is constructed for the
next dynamic generation that consists of three types of
solution trees:

a) the two types of solution trees listed in step #2 and
b) solution trees that are subtrees of dormant solutions

saved from previously encountered stable environ-
ments that are further in the past than the most
recent stable environment.

As seen from the above steps, when a process shift occurs,
dormant solutions are used to contribute adaptations evolved
from past environments. If any of these dormants contain
adaptations relevant to the current environment, then solutions
receiving these adaptations (via crossover) will prosper.

The following section discusses two complementary con-
cerns that have a potentially important impact on the perfor-
mance of the DyFor GP model.

G. Forecast Combination and Fitness Measures

In many forecasting situations, the “best” forecasting model
is not known and, thus, several “good” forecasting models
are developed. A forecaster is then faced with the problem of
choosing a single forecast from a set of several candidate fore-
casts produced by each of the forecasting models employed.
Many times it is better not to choose just one forecast from
the set, but, instead, use some procedure to combine multiple
forecasts into one. This issue is called forecast combination
and its relationship to the DyFor GP model is discussed below.

Evolution-based techniques such as the DyFor GP use
Darwin’s principle of “survival of the fittest” and sexual re-
combination to solve complex, real-world problems. For these
kinds of methods, some fitness measure or fitness function is
used to measure the quality of candidate solutions. However,
it may not be clear how to select such a measure for a
particular problem. It may be that a single measure performs
well under certain conditions but badly in others. The question
of selecting a good fitness measure for the DyFor GP model
is addressed in this section as well.

The GP algorithm is essentially a fitness-driven random
search. When GP is applied to forecasting complex, non-
linear time series, the search-space is the set of all possible
mathematical equations that can be constructed using specified
operands (explanatory variables) and mathematical operators.

This space is quite large and, in general, intractable for most
conventional deterministic algorithms. The size of the search-
space coupled with the stochastic nature of the evolutionary
process cause the results of a GP-based forecasting experiment
to vary from run to run. Thus, a common practice is to execute
a set of GP runs (usually 20 to 100) and designate the forecasts
of the best run as the result (see, for example, [40], [41]). In
the real world this practice is not useful since one cannot know
which run produces the best forecast for a given time period
without first knowing the corresponding actual value of that
time period.

The DyFor GP model is based on the GP algorithm and,
thus, it is necessary to execute a set of DyFor GP runs for
any forecasting task. Therefore, at any given time period,
there is a set of multiple forecasts to choose from. Here,
it becomes necessary to apply some forecast combination
method to produce a single useful forecast from the set. To be
useful in a real-world setting, the forecast must be generated
using an out-of-sample methodology where no data beyond the
point of forecast is utilized for analysis, model construction,
or forecast combination.

The study of forecast combination has a long history. Math-
ematicians, economists, and researchers from the data mining
community, among others, have developed many combining
methods. Combining methods can generally be divided into
to two groups, variance-covariance methods and regression
methods [21]. In variance-covariance methods, the combina-
tion model is

F = α1f1 + α2f2 + . . . + αnfn, (5)

whereF is the combined forecast,f1, f2, . . . , fn are the single
forecasts to be combined, andα1, α2, . . . , αn are correspond-
ing weights subject to the condition that their sum is one.
Optimal weights for this equation are estimated by minimizing
the variance of past forecast errors.

For regression methods, the following combination model
is used:

F = β0 + β1f1 + β2f2 + . . . + βnfn + e, (6)

whereF andf1, f2, . . . , fn have the same meaning as they do
in equation 5,β0 is a constant,β1, β2, . . . , βn are regression
coefficients, ande is an error term. Here, the coefficients
are estimated by regressing actual time series values on past
forecasts for those values.

Variations on these combining methods are numerous and
a discussion of these variations can be found in Diebold [21,
pg. 347-365]. Some examples of recent studies which focus
on forecast combination include [10], [20], [23], [31], [90].

Since forecast combination is not the focus of this study,
we restrict our attention to simple, well-known combining
techniques. Thus, the following procedure is selected for
combining multiple DyFor GP forecasts produced by a set of
multiple DyFor GP runs into a single, out-of-sample forecast.

1) For the first forecast, designate the median forecast of
the set as the single forecast to be used.

2) For all remaining forecasts, repeat the following:

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 11

a) Compare the previous forecast of all runs to the
actual data for that (already past) time period and
rank each run based on its accuracy.

b) Select the current forecast of the top 3 runs from
this ranking, compute the average of these 3 fore-
casts, and designate this average as the single
forecast to be used.

This combining procedure is a form of the variance-covariance
method described above in which only the most recent past
forecast of each run is considered when estimating the com-
bining weights and the weight assigned to forecasts of the 3
top-ranked runs =1

3
.

As mentioned earlier in this section, choosing the fitness
measure to be employed by the DyFor GP model is of great
importance. Most GP forecasting applications use a mean
squared error (MSE) fitness measure for model evolution.
To date, there have been no significant studies investigating
alternative fitness measures for GP forecasting applications.
One alternative fitness measure that might be considered is
the mean absolute deviation (MAD). Comparing the MSE and
MAD measures, it can be seen that the error value of MSE
grows quicker than that of MAD when outlier data are present.
Thus, outliers tend to influence analyses based on MSE more
than they do analyses based on MAD. An outlier datum can
represent one of two possibilities: noise (which should be
ignored or have reduced impact on model construction) or
new information representing a shift in the underlying process.
For series in which outlier data represent noise, MAD might
be the more effective measure. For series in which outlier
data represent a process shift, MSE might be preferable. The
question of which fitness measure to employ would depend
upon the characteristics of the time series to be forecast.

Another interesting possibility is to develop a new “com-
bined” fitness (CF) measure that incorporates aspects of both
the MSE and MAD measures. The purpose behind the CF
measure is to minimize the effect of noise while still being
reactive to shifts in a time series. It tries to accomplish this by
making a compromise between MSE (which is preferable for
shifts) and MAD (which is preferable for minimizing noise).
This CF measure requires a user-specified parameter,Ω, as a
threshold between noisy data and non-noisy data. Figure 16
gives a graphical depiction of the CF measure as a function
of the relative error. From the figure, when the relative error
is within the threshold given byΩ, CF measure values follow
those of the squared error. However, when the relative error
falls outside of theΩ threshold, CF measure values follow
those of the absolute deviation.5

The DyFor GP model could potentially use any one of the
above fitness measures for a given forecasting experiment.
Therefore, in order to be applicable over a diverse range of
forecasting tasks, the DyFor GP model includes a parameter
specifying which of these 3 fitness measures should be em-
ployed during a run.

The following two sections present experiments conducted
using the DyFor GP model.

5The specified value ofΩ shown in the figure is for purposes of illustration.

−Ω Ω

Fig. 16. The CF measure as a function of the relative error.

IV. DYFOR GP EXPERIMENTS

In order to test the DyFor GP model, a number of forecast-
ing experiments using both simulated and actual time series
data were undertaken. The purpose of these experiments is
twofold:

1) to compare the performance of the DyFor GP model
(both the “full” version with dormants and a “partial”
version without dormants) to that of a conventional GP
model and

2) to compare the performance of the DyFor GP model to
that of other leading models from benchmark studies.

The experiments are, thus, grouped into two subsets according
to these objectives and are discussed in the following two sec-
tions. The experiments described below represent an extension
of several preliminary experiments made on early versions of
the DyFor GP model that were reported in [84], [85].

A. Comparing DyFor GP to conventional GP

One subset of experiments is concerned with comparing the
performance of the DyFor GP model to that of a conventional
GP model. It is also desirable to examine how the inclusion
of dormant solutions affects the DyFor GP model’s efficiency.
Two time series were chosen for these experiments, one of
simulated data and one of real data.

The simulated time series is constructed by concatenating
three segments, each segment being a small time series gen-
erated by a known process. The first and third segments are
generated by similar (but not equivalent) processes while the
second segment is generated by a different process. Equation
7 gives the underlying process used to generate the entire time
series. Note that this process is a step function defining each
of the three segments.

f(x) =






sin(x) +
√

x for 1 ≤ x ≤ 20 (segment 1),

ex + 2 for 21 ≤ x ≤ 40 (segment 2),

sin(x) −√
x + 22 for 41 ≤ x ≤ 60 (segment 3).

(7)

The time series is constructed using 60 total values, 20 for
each segment. Thus, the first 20 values correspond to segment
1 and are generated by evaluating this function for integer
values of x = 1 . . . 20, the next 20 values correspond to
segment 2 and are generated by evaluating this function for
x = 21 . . . 40, and the final 20 values correspond to segment

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 12

3 and are generated by evaluating this function forx =
41 . . . 60. This artificial time series is designed to mimic a
series whose underlying process varies over time. Additionally,
the similarity of segments 1 and 3 is intended to mirror
cyclical behavior that may occur in time series produced by
dynamically changing conditions.

The real time series chosen for experimentation is the
U.S. Gross Domestic Product (GDP). According to the U.S.
Department of Commerce [81], the GDP is defined as “the
market value of goods and services produced by labor and
property in the United States.” The GDP is a metric frequently
employed as a measure of the nation’s economy. The GDP
series was selected because it is a widely-studied, non-linear
time series with a well-known set of explanatory variables.
Figure 17 gives a graphical depiction of the quarterly GDP
(growth) time series. In the figure real GDP growth is calcu-
lated as a quarter-over-quarter annualized percent change. A

1950 1960 1970 1980 1990 2000

−10.0%

−5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

Fig. 17. Gross Domestic Product (growth): 1947-2003.

contemporary study conducted by Kitchen and Monaco [47]
forecasts the GDP, a time series with quarterly frequency,
using multiple economic indicators that are measured monthly.
Thirty indicators are utilized in all and can be subdivided into
the following categories: employment (6), financial (4), survey
(6), production and sales (12), and other (2). The results of
their study show that forecasting models constructed using
these indicators provided efficient forecasting performance for
the period of 1995Q1 through 2003Q1.

The following two sections describe the setup of both
experiments and give observed results.

1) Test Setup:For this subset of experiments, three fore-
casting models are compared: full-version DyFor GP (i.e. with
dormants), partial-version DyFor GP (without dormants), and
conventional GP. As discussed in section III-G, the GP process
is a stochastic one and, thus, it is necessary to execute a set
of GP runs rather than just a single run. Setsize = 20 is used
for all GP experiments executed here.

For the simulated time series experiment, values forx in
equation 7 are utilized by all models as inputs and the outputs
generated are one-step-ahead forecasts forf(x). The first 14
time series data are used for initial training and then 46 one-
step-ahead forecasts are generated that correspond to actual
time series values beginning at value #15 and ending at value
#60.

For the GDP experiment, 29 of the 30 economic indicators
listed in the Kitchen and Monaco study [47] are utilized as

inputs6 by all models and the outputs are one-step-ahead,
quarterly forecasts for the current quarter when only one
month of historical data for that quarter is available. Historical
GDP data dating back to 1951Q3 is used for initial training
and one-step-ahead forecasts for 1995Q1 through 2003Q1 are
produced.

The GP process employs the elements of a terminal set
and a function set as building blocks from which to construct
forecasting models. For both experiments the terminal set
consists of the inputs listed above (x for the simulated data
experiment and the 29 indicators for the GDP experiment) and
a random constant while the function set consists of operators
+, −, ×, ÷, sin, cos, square root,exp, and ln.7

In both experiments DyFor GP forecasts are generated in
a “real-time” fashion, that is, after the DyFor GP model
produces the first forecast, the analysis window is slid to
incorporate the actual data for that time period, analysis con-
tinues, and then the DyFor GP produces the second forecast.
This procedure is continued for each forecast until all required
forecasts have been generated. It should be emphasized that
for both experiments all forecasts are generated using an out-
of-sample methodology where no data beyond the point of
forecast is utilized for analysis or model construction.

The DyFor GP model requires that a number of parameters
be specified before a run. Some of these are general GP
parameters commonly found in any GP application. Some of
these are special parameters only used by the DyFor GP model.
Table I gives the general GP parameter values used by all
competing models while table II lists parameters values that
are used only by the full and partial version DyFor GP models.

TABLE I

GENERAL GPPARAMETER SETTINGS.

Parameter Value

crossover rate 0.9
reproduction rate 0.0

mutation rate 0.1
max. no. of generations 41

termination max. gens. reached
elitism used? yes

fitness measure MSE

All parameter values listed in table I were selected to match
those used by Koza [49] for his experiments in symbolic
regression8 with the following exceptions.

1) The “max. no. of generations” parameter has a slightly
different meaning when applied to the DyFor GP model.
For DyFor GP it means the maximum number of gener-
ations used for one dynamic generation, that is a set of
generations run on a single analysis window. Since the

6One of the indicators, “Business Week Production Index,” could not be
obtained at the time of the experiments.

7Operators÷, square root,exp, and ln are protected from undefined or
unbounded behavior as is done in experiments conducted by Koza [49].

8“Symbolic regression” is the term Koza uses to describe the search for
a mathematical expression that closely fits a given finite sample of data. In
many cases this is equivalent to the task of time series forecasting.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 13

DyFor GP model executes many dynamic generations
over the course of a single run, this parameter is reduced
from 51 to 41 generations to decrease computation time.

2) Elitism (reproduction of the best solution of the popu-
lation) is used.

3) Parameter values for “reproduction rate” and “mutation
rate” were exchanged. This was done for two reasons:
1) increasing the mutation rate allows for greater search-
space exploration [61] and 2) decreasing the reproduc-
tion rate to zero was not thought to harm the effective-
ness of the evolutionary process since elitism is used.

TABLE II

SPECIFICDYFOR GPPARAMETER SETTINGS.

Parameter Value Value
(Sim. Data Experiment) (GDP Experiment)

population size variable variable
max. solution tree depth none none

soft node limit 20000 35000
hard node limit 25000 38000

no. training dyn. gens. 1 121
windowslide increment 1 1

max windowsize 14 80
min windowsize 2 40
start windowsize 4 54

window difference 6 12
window adj. stepsize 1 1

N 2 3

Since the DyFor GP employs a non-static population control
method,9 there are no specifications for population size or
maximum solution tree depth in table II. Instead specifications
for the soft and hard node limits are used and shown in the
table. As discussed in section III-F, conventional GP usually
employs a static population size and a limit for solution
tree depth. For these experiments, however, conventional GP
is executed using variable population size with the same
parameters values as shown in table II. This is done for two
reasons: 1) to prevent runs from being prematurely aborted
due to the presence of numerous bloated solutions and 2) to
reduce computation time by placing a limit on the total number
of nodes allowed in a population.

In table II parameter “no. training dyn. gens.” means the
number of dynamic generations executed before producing
the first forecast and parameter “window slide increment”
means the number of newer (more recent) historical data to
incorporate at each slide of the analysis window. For the
GDP experiment, 121 training dynamic generations means the
analysis window slides through 30 years of historical data (4
slides per year, 1 dynamic generation per slide+ 1 initial
dynamic generation).

The “max windowsize” and “min windowsize” parameters
in the table specify the maximum and minimum analysis
windowsizes, respectively. For the GDP experiment values of
80 and 40 correspond to max/min analysis windowsizes of
20 and 10 years, respectively. As described in section III, the
adjustable windowsize feature of the DyFor GP model calls

9This population control method is described in section III-F.

for using two analysis windows of differing sizes. Parameter
“start windowsize” refers to the initial windowsize setting
of the smaller of the two windows and parameter “window
difference” refers to the size difference between the larger
and the smaller window. For the simulated data experiment
this means that initial windowsizes of 4 and 10 are used
while in the GDP experiment initial windowsizes of 54 and
66 are used which correspond to 13.5 and 16.5 years of GDP
data, respectively. Parameter “window adj. stepsize” gives the
adjustment amount to use when adjusting the size of the
windows. Parameter “N ” gives the number of consecutive
window expansions or contractions that signal a stable process
or a process shift, respectively.

2) Results:As mentioned in the previous section, a set of
runs is executed (setsize = 20) for each competing model. Fora
single run, forecasting performance is measured by calculating
the MSE of all forecasts. For a set of runs, forecasting
performance is measured by calculating the mean and standard
deviation of MSE values over all (20) runs. Tables III and
IV give the observed results for the simulated data and GDP
experiments, respectively.

TABLE III

SIMULATED DATA FORECASTING RESULTS.

Forecasting Model mean MSE std. dev.

conventional GP 40.04 0.25
DyFor GP (w/o dormants) 2.96 3.49
DyFor GP (w dormants) 1.88 2.31

The tables reveal some interesting results. First, in both
experiments the DyFor GP models outperform conventional
GP, significantly so in the case of the simulated data ex-
periment. Secondly, DyFor GP with dormants provides some
performance improvement over DyFor GP without dormants
for both experiments.

TABLE IV

GDPFORECASTING RESULTS.

Forecasting Model mean MSE std. dev.

conventional GP 4.96 1.62
DyFor GP (w/o dormants) 4.28 0.77
DyFor GP (w dormants) 4.01 0.57

The DyFor GP models’ superior performance over con-
ventional GP may be due to its adjustable analysis window
which can allow the model to better “hone in” on currently
relevant data in a dynamic environment. For the simulated
data experiment the advantage is marked because the shifts
in the underlying process occur abruptly while for the GDP
experiment the advantage is less noticeable probably because
process shifts occur in a smoother manner. The inclusion
of dormants in the DyFor GP model provides some gain in
forecasting efficacy, albeit small.

To further compare the two DyFor GP models we can
narrow the focus to examine only forecasts that correspond
to segment 3 of the simulated data experiment. Recall that

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 14

segment 3’s underlying process is similar to that of segment
1 but different from segment 2’s process. Thus, if dormants
are effective, then a DyFor GP model that uses them should
have better segment 3 forecasts than a DyFor GP model that
does not use them. Table V shows the performance of the
two DyFor GP models for segment 3 of the simulated data
experiment. The table reports the mean MSE of segment 3
forecasts over all 20 runs. It also reports the mean MSE (over
all 20 runs) of forecasts that correspond only to the beginning
of segment 3 (the first 5 values) rather than the entire segment.

TABLE V

SIMULATED DATA FORECASTING RESULTS(SEGMENT3 ONLY)

Forecasting Model mean MSE mean MSE
(all segment 3) (first 5 points)

DyFor GP (w/o dormants) 5.89 21.70
DyFor GP (w dormants) 2.07 2.80

The second column of the table shows that the use of
dormants provides more accurate forecasts over the entire
segment 3. The third column shows that when DyFor GP
analysis enters segment 3 (i.e., the underlying process shifts
from segment 2’s process to that of segment 3), the use of
dormants provides for quicker capture of this new process.

The following section describes experiments that compare
the DyFor GP model to leading models from benchmark
studies.

B. Comparing DyFor GP to Benchmark Models

Two real-data forecasting tasks were selected for this sub-
set of experiments, forecasting the U.S. GDP and the U.S.
Consumer Price Index (CPI) Inflation rate. Figure 18 gives
a graphical depiction of the monthly CPI Inflation rate time
series (a GDP graph is shown in figure 17 above). In the figure
CPI Inflation is calculated as a year-over-year percent change.

1950 1960 1970 1980 1990 2000

−5.0%

0.0%

5.0%

10.0%

15.0%

Fig. 18. CPI Inflation: 1948-2003.

These two forecasting experiments were chosen because
both the U.S. GDP and CPI Inflation series are widely-studied,
non-linear time series with well-known sets of explanatory
variables. Such characteristics are conducive to preparing a
DyFor GP experiment and comparing DyFor GP results to
those of leading studies.

The following three sections describe the GDP and CPI
Inflation benchmark models, detail the setup of both exper-
iments, and give observed results.

1) GDP and CPI Inflation Benchmarks:As discussed in
section IV-A, the model designed by Kitchen and Monaco
[47] forecasts the quarterly GDP series using several monthly
indicators. The idea is to produce a single, one-step-ahead,
quarterly GDP forecast by incorporating the latest monthly
indicator values and aggregating their effects. For example, if
the national unemployment rate and unemployment insurance
claims are selected as (monthly) economic indicators and their
latest announced values are for the month of January, then
the forecasting model incorporates these latest values and
aggregates them to produce a forecast for the current quarter
(quarter 1 or Q1). When indicator values for February are
announced, the model incorporates them to produce an updated
forecast for Q1. Thus, a “real-time” GDP forecast for the
current quarter can be constructed and updated as soon as
new data become available.

The real-time forecasting system (RTFS) of Kitchen and
Monaco [47] makes use of 30 monthly economic indicators
as explanatory variables. As mentioned in section IV-A, these
indicators are derived from various economic sectors including
employment, financial, survey, and production and sales. A
linear regression model is used to relate an indicator to GDP
growth:

yt = α + β(L)xt + et, (8)

whereyt is the real GDP growth for quartert at an annualized
rate,xt is an indicator,β(L) is a set of coefficients for current
and lagged values of the indicator, andet is an error term.
While equation 8 theoretically may include numerous indicator
lags, Kitchen and Monaco choose zero or four lags and use
the Schwarz criterion10 to determine which results the RTFS
should utilize. Each indicator has three separate regression
models relating it to GDP growth, one for each (monthly)
period of a quarter. When a new month’s data for an indicator
becomes available, the appropriate regression model is selected
and used to produce a forecast for GDP growth that is based
only on that indicator. This is repeated for all indicators.Then,
all of these single-indicator GDP forecasts are aggregated
into one to yield a GDP forecast. RTFS generates 1-step-
ahead forecasts in a “real-time” fashion, that is each time new
data becomes available, the model incorporates this data and
produces a new forecast. All RTFS forecasts are made using
an out-of-sample methodology where no data beyond the point
of forecast is used for model fitting.

The RTFS is used to generate quarterly GDP forecasts when
one month, two months, and three months of indicator data
are available, respectively. These results are compared tothose
produced by a linear autoregressive (AR) forecasting model
with four lags. Historical data dating back to 1982Q1 is used
for analysis and one-step-ahead GDP forecasts are generated
for an 8-year range starting with 1995Q1 and ending with
2003Q1. The results of the Kitchen and Monaco study show
that the RTFS model outperforms the AR model by a large
margin.

10The Schwarz criterion is defined in [21, pg. 26].

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 15

The U.S. CPI Inflation rate is a highly-scrutinized economic
concern with considerable national impact. The inflation time
series has monthly frequency and available historical dataex-
ists dating back to 1947. The Phillips Curve is a bivariate linear
forecasting model that is widely considered as a consistent
and accurate predictor of U.S. inflation. Stock and Watson
[76] provide a recent study that re-investigates the efficacy
of this model, both in its conventional form and in several
alternate forms that include various macroeconomic variables.
The conventional Phillips Curve specification used in their
study is meant to forecast inflation over a 12-month period
and is given by the following regression model:

πh
t+h − πt = φ + β(L)ut + γ(L)∆πt + et+h, (9)

where πh
t =

(
1200

h

)
∗ ln

(
Pt

Pt−h

)
is the h-period inflation

rate (h = 12), πt = (1200) ∗ ln
(

Pt

Pt−1

)
is the monthly

inflation rate,ut is the unemployment rate, andβ(L) andγ(L)
are lag operators specifying 0 to 11 lags. Alternate Phillips
Curve specifications are constructed by substituting the unem-
ployment rate,ut, of equation 9 with other macroeconomic
variables or indices.

Historical CPI Inflation data dating back to January 1959
are used for analysis and 12-month horizon forecasts are
generated for the period of January 1970 through September
1996. Forecasting results are presented for two sub-periods,
1970-1983 and 1984-1996. As in Kitchen and Monaco’s GDP
models, Stock and Watson use an out-of-sample methodology.

The results of the Stock and Watson study show that the
Phillips Curve in its conventional form outperforms univariate
autoregressive models as well as most alternative Phillips
Curve specifications in which the unemployment rate is re-
placed by a different economic variable. The alternate spec-
ifications that do surpass the conventional one are those that
replace unemployment with a measure of aggregate economic
activity such as real manufacturing and trade sales or capacity
utilization. Stock and Watson also develop a new composite
index of 168 economic activity measures using principal
component analysis and construct another alternative Phillips
Curve specification with this index. This composite-index
specification proves to be the best CPI Inflation forecasting
model overall.

In a recent survey of the literature on output and inflation
forecasting, Stock and Watson [77] note that an effective
nonlinear model has not yet been found.11 For this reason we
restricted our focus to linear benchmark models of real GDP
growth and CPI inflation.

2) Test Setup:The DyFor GP model was applied to the
GDP and CPI Inflation forecasting experiments detailed above.
For the GDP experiment, the same setup described in section
IV-A.1 was used. For the CPI Inflation forecasting experiment,
the goal is to compare the performance of the conventional
Phillips Curve specification with that of the DyFor GP model.
Therefore, inputs to the DyFor GP model are the same inputs

11In [9] Bidarkota uses a nonlinear regime switching model to forecast
inflation but the results offer no significant improvement over the conventional
Phillips Curve.

employed by this conventional specification, namely the un-
employment rate and past values of the monthly inflation rate.
Historical CPI Inflation data dating back to 1950:01 is used
for analysis and forecasts for 1970:01 through 1983:12 are
produced. The terminal set used consists of the conventional
Phillips Curve inputs mentioned above and a random constant
while the function set is the same as the one used for the GDP
experiment.

In both experiments single run DyFor GP forecasts are
generated in a “real-time” fashion in the same way as detailed
in section IV-A.1. As discussed in section III-G, it is necessary
to execute a set of DyFor GP runs. Additionally if a single
forecast is to be generated at each time period, it is necessary
to use some forecast combination technique to combine the
multiple forecasts produced by the multiple runs into one out-
of-sample forecast. The forecast combining method used for
these experiments is the one described in section III-G and
the number of DyFor GP runs comprising a set is 20. As in
the experiments described in section IV-A.1, all forecastsare
generated using an out-of-sample methodology.

Tables VI and VII give general GP parameter values and
specific DyFor GP parameter values, respectively. All param-
eter values listed in table VI are the same as those used for the
experiments of section IV-A (displayed in table I) except that
two additional fitness measures, MAD and the CF measure
detailed in section III-G, have been added.

TABLE VI

GENERAL GPPARAMETER SETTINGS.

Parameter Value

crossover rate 0.9
reproduction rate 0.0

mutation rate 0.1
max. no. of generations 41

termination max. gens. reached
elitism used? yes

fitness measure MSE/MAD/CF

Each experiment includes 3 separate DyFor GP runsets, one
using each fitness measure listed. It should be noted that the
fitness measures given in table VI are only used for evolution
and are not used to measure the quality of forecasts produced
by the DyFor GP model. The CF measure requires a user-
specified parameter,Ω, to determine which data are outliers
and which are not. For these experimentsΩ is set to a value
that is 7.5% of the median level of the time series to be
forecast. An optimal value forΩ is not known and, thus,
intuition was used to specify this parameter.

The DyFor GP parameter values used in the GDP experi-
ment (shown in column 2 of table VII) are the same as used for
the GDP experiment of section IV-A. Column 3 of table VII
gives the parameter values used in the inflation experiment.
For the monthly CPI Inflation series, parameter “no. training
dyn. gens.” means the analysis window slides through 10 years
of historical data (12 slides per year, 1 dynamic generation
per slide+ 1 initial dynamic generation) before producing
the first forecast. Parameter values for max/min windowsize
in the inflation experiment are 240 and 12 which correspond

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 16

TABLE VII

SPECIFICDYFOR GPPARAMETER SETTINGS.

Parameter Value Value
(GDP Experiment) (Inflation Experiment)

population size variable variable
max. solution tree depth none none

soft node limit 35000 35000
hard node limit 38000 38000

no. training dyn. gens. 121 121
windowslide increment 1 1

max windowsize 80 240
min windowsize 40 12
start windowsize 54 120

window difference 12 24
window adj. stepsize 1 1

N 3 3

to windowsizes of 20 and 1 years, respectively and values for
the initial smaller and larger windowsizes (specified by “start
windowsize” and “window difference”) correspond to 10 and
12 years of inflation data, respectively.

3) Results:Tables VIII and IX compare DyFor GP results
to those of the benchmark models for the GDP and CPI
Inflation experiments, respectively. In the tables, results of 3
DyFor GP models are shown, one for each of the 3 fitness
measures and the root mean squared error (RMSE) of forecasts
is reported. Figures 19 and 20 plot GDP growth and CPI

TABLE VIII

GDPFORECASTING RESULTS.

Forecasting Model RMSE

RTFS 1.85
AR 2.46

DyFor GP (MSE fitness measure) 1.87
DyFor GP (CF fitness measure) 1.80

DyFor GP (MAD fitness measure) 1.57

Inflation forecasts produced by the best DyFor GP model
with the corresponding actual values of GDP growth and CPI
Inflation, respectively.

TABLE IX

CPI INFLATION FORECASTING RESULTS.

Forecasting Model RMSE

CPC 2.4
DyFor GP (MSE fitness measure) 2.3
DyFor GP (CF fitness measure) 2.6

DyFor GP (MAD fitness measure) 2.6

Tables VIII and IX show that the performance of the DyFor
GP model improves upon that of the benchmark models for
both experiments. In the CPI Inflation experiment the margin
is small, but for the GDP experiment the margin proves larger.
Also, the fitness measure employed by the DyFor GP model
appears to have an important influence on its performance.

The DyFor GP model’s efficient performance in both ex-
periments may be due to its ability to capture non-linearities
present in the GDP and CPI Inflation time series that are

— GDP
- - GDP forecasts

1995 1997 1999 2001 2003

−5.0%

0.0%

5.0%

10.0%

Fig. 19. GDP growth and forecasts produced by the DyFor GP model.

not captured by the competing linear models. In the GDP
experiment, historical data starting in 1951Q3 is analyzedand
forecasts for the 1995Q1-2003Q1 period are produced. In the
CPI inflation experiment, historical data starting in 1950 is
analyzed and forecasts for the 1970:01-1983:12 period are
produced. The behavior of real GDP growth over its forecast
horizon is reasonably stable compared to its preceding behav-
ior (mean and standard deviation of 3.26 and 4.06 over the
1951Q3-1994Q4 period versus mean and standard deviation of
2.95 and 2.13 over the 1995Q1-2003Q1 period). Thus, DyFor
GP is able to capture and successfully extrapolate real GDP
growth. By contrast, the behavior of CPI inflation over its
forecast horizon was drastically different from its preceding
behavior (mean and standard deviation of 2.16 and 1.95
over the 1950:01-1969:12 period versus mean and standard
deviation of 7.13 and 2.97 over the 1970:01-1983:12 period).
Thus, DyFor GP is less able to capture and successfully
extrapolate CPI inflation. This could be the reason why the
DyFor GP’s margin of advantage over competitors is smaller
for the inflation experiment as opposed to the GDP experiment.

Considering the 3 fitness measures utilized by the DyFor
GP model, the performance ranking order of measures is in
reverse order for the two experiments. The GDP experiment
gives a ranking order, first to last, of MAD, CF, MSE.
The inflation experiment gives a ranking order of MSE, CF,
MAD.12 This may also be explained by the difference in
forecast horizon stability between the GDP and inflation series.
As discussed in section III-G, analyses based on MSE are more
heavily influenced by the existence of outliers than analyses
based on MAD. An outlier datum can represent one of two
possibilities: noise or new information representing a process
shift. The GDP series is less volatile than the inflation series
which may mean that outliers represent noise and should not
dramatically affect model construction. Thus, for the GDP
case, the MAD measure is the better measure. The inflation
series is more volatile and outliers may frequently represent a
shift in the underlying process. Therefore, the MSE measure
is the most useful because it can more easily track the rapidly

12The results reported by Stock and Watson carry a precision ofone decimal
place and, thus, DyFor GP results in table IX are reported with the same
precision. This precision obscures the difference betweenresults produced by
DyFor GP models with the CF and MAD fitness measures, respectively.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 17

occuring shifts of the inflation series. Following this lineof
reasoning, the CF measure should have median utility for
both experiments as it is a combination of MSE and MAD
measures.

— CPI Inflation
- - CPI Inflation forecasts

1970 1973 1976 1980 1983

−5.0%

0.0%

5.0%

10.0%

15.0%

Fig. 20. Annual CPI Inflation and forecasts produced by the DyFor GP
model 12 months earlier.

Other experimental results concerning retention of past
adaptations and window behavior proved interesting as well.
Forecasting models evolved by the DyFor GP contained adap-
tations learned from the past. The following describes two
examples of this retention.

1) In the GDP experiment the adaptation,eprod (prod =
industrial production index), was evolved as early as
1995 and is retained over the next 8 years, showing up in
evolved models for 1997, 1998, 1999, 2001, and 2003.

2) In the Inflation experiment the adaptation,sin(ut−11 −
ut) (ut = current unemployment rate,ut−11 = unem-
ployment rate 11 months ago), was evolved as early as
1976 and is retained over the next 7 years, showing up
in evolved models for several years up to 1983.

Window adjustment also appeared to have an important effect.
In the GDP experiment, the windowsize was initially set at
16.5 years and the best performing runs generally adjusted
their windowsize to approximately 14 years. In the Inflation
experiment, the windowsize was initially set at 10 years and
the best performing runs generally adjusted to approximately
12.5 years.

The DyFor GP model generates forecasts in a real-time
fashion, that is, after the first forecast is produced, the analysis
window is slid to incorporate the actual data for that time
period, analysis continues, and then the second forecast is
produced. Thus, the forecasting model changes (evolves) over
the course of a forecasting experiment. Usually this means that
a new forecasting model is constructed for each forecast. The
forecasting models evolved by the DyFor GP often consist
of several hundred operators and operands. These evolved
models are too large to be displayed in this paper. While
complex models, such as those produced by DyFor GP (and
GP as well) are hard to understand, our goal here is not to
make relationships clear but to forecast well in a dynamic
environment. Atheoretical forecasting models whose main
purpose is predicting future values are known to be useful
([17]).

It is worthwhile to discuss computation time and how the
DyFor GP model compares to the benchmark models in this
regard. Both real-data experiments (GDP and CPI Inflation)
require the analysis of several decades of historical data and
generate forecasts over approximately a 10-year range. As
detailed in section III, the DyFor GP model runs numerous
dynamic generations with each dynamic generation being
comprised of numerous (regular) generations run on a single
window of training data. Thus the total number of generations
over the entire experiment can be quite large (∼30,000 for
the inflation experiment and∼15,000 for the GDP experiment
for a single run) which, in turn, makes the computation time
required quite large. Moreover, as described in section III-
G, it is necessary to execute not a single DyFor GP run but
a set of DyFor GP runs for each experiment. These factors
exacerbate the problem of achieving acceptable forecasting
accuracy with a reasonable amount of computation time. Some
balance must be struck between computation time and the
extent of the search. Taking into account the computational
resources available13 and the complexity of the forecasting
tasks at hand, the balance arrived at calls for single run
execution time of∼72 hours and set (setsize = 20 runs)
execution time of∼216 hours. All in all, the total amount
of time required to perform experiments was approximately
10-12 weeks.

This is significantly more computation time than is required
for the benchmark models. However, even though DyFor
GP computation time for these experiments was extensive,
businesses might employ the DyFor GP model to conduct
similar experiments with considerably less computation time.
The reasons for this are the following:

1) The computing environment used to execute these ex-
periments was modest. Larger companies would likely
have access to a computing environment with greater
power and speed.

2) For true real-world experiments (as opposed to the
simulated real-world experiments presented here), the
DyFor GP model could be set up so that the analysis of
large amounts of historical data takes place only once
during some designated preliminary period. This could
be realized in the following way.

a) Set the DyFor GP model’s analysis window to the
beginning of the historical data and let DyFor GP
analysis continue until it has analyzed all data up
to the current time period.

b) Once this preliminary analysis has finished (and
a forecast for the next time period is produced),
save the current state of the model and wait for
new, incoming data to arrive.

c) When new data arrives, restart the DyFor GP’s
analysis. Because the most recent state of the
model is saved, it is not necessary for the DyFor
GP to re-analyze all historical data again, and it can
incorporate the new data, continue analysis, and
produce a forecast for the next time period with

13Experiments were conducted on a shared IBM p690 cluster with32 1.3
Ghz processors. See [65] for complete details.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 18

much less computation time than was required to
complete the preliminary analysis.14

Thus, the DyFor GP model can potentially be used to produce
forecasts for real-world concerns that arrive early enoughto
be useful.

The following section draws conclusions from these exper-
iments and discusses future avenues of exploration.

V. CONCLUSIONS ANDFUTURE WORK

In this study the DyFor GP model is developed and tested
for forecasting efficacy on both simulated and real time series.
Results show that the DyFor GP model improves upon the
performance of benchmark models for all experiments. These
findings highlight the DyFor GP’s potential as an adaptive,
non-linear model for real-world forecasting applicationsand
suggest further investigations. The DyFor GP model presents
an attractive forecasting alternative for the following reasons.

1) It is not necessary to specify the functional form of
the forecasting model in advance and, thus, a befitting
non-linear model, albeit complex, can be automatically
discovered.

2) The DyFor GP is an automatically self-adjusting model.
Thus, in a changing environment, it may be able to adapt
and predict accurately without human intervention.

3) It can take advantage of a large amount of historical data.
Conventional forecasting models require that the number
of historical data to be analyzed be set a priori. In many
cases this means that a large number of historical data
is considered to be too old to represent the current data
generating process and is, thus, disregarded. This older
data, however, may contain information (e.g., patterns)
that can be used during analysis to better capture the
current process. The DyFor GP model is designed to
analyze all historical data, save knowledge of past pro-
cesses, and exploit this learned knowledge to capture the
current process.

4) With greater computing power comes potentially bet-
ter forecasting performance. The DyFor GP model is
essentially a heuristic, fitness-driven random search. As
with any random search, when a larger percentage of the
search-space is covered, better results can be expected.
Greater computational power allows for greater search-
space coverage, and DyFor GP forecasting performance
can be improved by simply increasing such power. Many
other forecasting models cannot be improved in this
manner.

Continued development and testing of the DyFor GP model
is planned. One way of possibly improving the forecasting
results of the GDP and CPI Inflation experiments would be
to increase the computing power employed. The above results
were achieved in a modest cluster computing environment (see
[65] for details) so there is much room for increasing the com-
puting power. Concerning the CPI Inflation experiment, Stock
and Watson [76] report that using an alternative Phillips Curve

14For these experiments, the amount of computation time for a single DyFor
GP run to incorporate and analyze newly-arriving data corresponding to a
single time period is approximately 3-5 minutes.

specification that replaces the unemployment rate explanatory
variable with a new composite index of 168 economic vari-
ables that they developed yields better forecasting performance
than the conventional Phillips Curve specification. Thus, this
composite index could be utilized by the DyFor GP model to
potentially produce further performance advances.

Results of this study indicate that the choice of fitness
measure plays an important part in the forecasting performance
of the DyFor GP model. In some cases a DyFor GP model
with MSE measure proved the most effective while for other
cases a DyFor GP model with MAD was best. A novel fitness
measure, CF, which combines aspects of MSE and MAD was
developed and tested. The CF measure relies on a parameter,
Ω, to determine which data are considered outliers and which
are not. Since an optimal specification forΩ was not known,
intuition was used to set this parameter. Further studies might
examine different settings for this parameter and/or develop
some algorithm to automatically adjust this parameter toward
its optimal setting. They may also investigate the conditions
under which the CF measure gives better performance than the
MSE and MAD measures and, perhaps, investigate alternative
measures such as the Akaike Information Criterion (AIC) or
the Schwarz Information Criterion (SIC).15

The observations on window behavior and retention of past
adaptations discussed in the previous section were made by
examining output files produced by the DyFor GP model
with the naked eye. Because these files are quite large, this
is not an efficient way to analyze such behavior. DyFor GP
implementation could be enhanced to produce more detailed
information about both of these aspects at every step of
the training and forecast period. This would allow for better
visualization and analysis. Window behavior could be further
studied by applying the DyFor GP model to several artificial
time series (similar to the one described in section IV-A) each
with different characteristics such as shorter/longer segment
lengths and smooth/abrupt transitions between segments. Ex-
periments of this kind may provide greater understanding of
how windowsize adjustment is affected by a changing process.

Also affecting window behavior is parameterN (from
tables II and VII) which specifies the number of expan-
sions/contractions that signal a stable process or a process
shift, respectively. Like parameterΩ of the CF fitness measure,
an optimal value for parameterN was not known and, thus,
intuition was used to specify its value. Future studies might
investigate optimal settings for parameterN for a variety of
time series.

Another direction for DyFor GP development is in the area
of forecast combination. As detailed in section III-G, it is
necessary to make multiple DyFor GP runs and use some
method to combine the multiple forecasts produced into a
single, out-of-sample forecast. The method utilized in this
study is a simple one that ranks each DyFor GP run based
on the accuracy of its most recent past forecast, selects the
top 3 runs, averages their current forecasts, and designates
this average forecast as the single, out-of-sample forecast to
be used. It is reasonable to expect that a more sophisticated

15A definition and description of AIC and SIC can be found in [21].

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 19

forecast combining method would result in performance im-
provements. One interesting method is the following. Suppose
the combination model of equation 5 (redisplayed here) is
considered.

F = α1f1 + α2f2 + . . . + αnfn

In this model,F is the combined forecast,f1, f2, . . . , fn

are the single forecasts to be combined, andα1, α2, . . . , αn

are corresponding weights subject to the condition that their
sum is one. Using all past forecasts produced by a set ofn

DyFor GP runs as training data, a GA could be employed to
evolve optimal weights for this model.

Future experiments are also planned in which the DyFor
GP is applied to other well-known economic time series
as well as time series important to other fields such as
weather-related series, seismic activity, and series arising from
biological/medical processes.

All in all, the DyFor GP model is a viable alternative for
real-world forecasting applications and may prove to stimulate
new advances in the area of time series forecasting.

REFERENCES

[1] Akgiray V. ‘Conditional heteroskedasticity in time series and stock
returns: Evidence and forecasts.’Journal of Business, vol. 62 (1989),
pg. 55-80.

[2] Andreou A., Georgopoulos E., and Likothanassis S. ‘Exchange rates
forecasting: a hybrid algorithm based on genetically optimized adaptive
neural networks.’Computational Economics, vol. 20 (2002), pg. 191-
202.

[3] Andrew M. and Prager R. ‘Genetic programming for the acquistion of
double auction market strategies.’Advances in Genetic Programming,
vol. 1 (1994), pg. 355-368.

[4] Angeline P. ‘Genetic programming and emergent intelligence.’Advances
in Genetic Programming, vol. 1 (1994), pg. 75-98.

[5] Bäck T. Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, and Genetic Algorithms. Oxford
University Press, 1996.

[6] Back B., Laitinen T., and Sere K. ‘Neural networks and genetic algo-
rithms for bankruptcy predictions.’Expert Systems with Applications,
vol. 11 (1996), pg. 407-413.

[7] Banzhaf W. and Langdon W. ‘Some considerations on the reason for
bloat.’ Genetic Programming and Evolvable Machines, vol. 3 (2002),
pg. 81-91.

[8] Banzhaf W.Genetic Programming: An Introduction. Morgan Kaufmann,
1998.

[9] Bidarkota P. ‘Alternative regime switching models for forecasting infla-
tion.’ Journal of Forecasting, vol. 20 (2001), pg. 21-35.

[10] Billio M., Sartore D., and Toffano C. ‘Combining forecasts: some results
on exchange and interest rates.’European Journal of Finance, vol. 6
(2000), pg. 126-145.

[11] Bollerslev T. ‘Generalized Autoregressive Conditional Heteroskedastic-
ity.’ Journal of Econometrics, vol. 31 (1986), pg. 307-327.

[12] Brameier M. and Banzhaf W. ‘A comparison of linear genetic program-
ming and neural networks in medical data mining.’IEEE Transactions
on Evolutionary Computation, vol. 5 (2001), pg. 17-26.

[13] Chambers L., editor.Practical Handbook of Genetic Algorithms: Appli-
cations. CRC Press, 1995.

[14] Chen S. and Yeh C. ‘Toward a computable approach to the efficient
market hypothesis: an application of genetic programming.’ Journal of
Economics Dynamics and Control, vol. 21 (1996), pg. 1043-1063.

[15] Chen S., Yeh C., and Lee W. ‘Option pricing with genetic program-
ming.’ Genetic Programming 1998: Proceedings of the Third Annual
Conference, vol. 1 (1998), pg. 32-37.

[16] Chiraphadhanakul S., Dangprasert P., and Avatchanakorn V. ‘Genetic
algorithms in forecasting commercial banks deposit.’Proceedings of the
IEEE International Conference on Intelligent Processing Systems, vol. 1
(1997), pg. 557-565.

[17] Cooley T. and LeRoy S. ‘Atheoretical macroeconometrics: a critique.’
Journal of Monetary Economics, vol. 16 (1985), pg. 283-308.

[18] Cortez P., Rocha M., and Neves J. ‘Evolving time series forecasting
ARMA models.’ Journal of Heuristics, vol. 10 (2004), pg. 415-429.

[19] Deboeck G., editor.Trading on the Edge: Neural, Genetic, and Fuzzy
Systems for Chaotic and Financial Markets. John Wiley and Sons, Inc.,
1994.

[20] Dekker M., van Donselaar K., and Ouwehand P. ‘How to use aggrega-
tion and combined forecasting to improve seasonal demand forecasts.’
International Journal of Production Economics, vol. 90 (2004), pg. 151-
167.

[21] Diebold F.Elements of Forecasting. International Thomson Publishing,
1998.

[22] Engle R. ‘Autoregressive conditional heteroskedasticity with estimates
of the variance of U.K. inflation.’Econometrica, vol. 50 (1982), pg. 987-
1008.

[23] Fischer I. and Harvey N. ‘What information do judges need to outper-
form the simple average?’International Journal of Forecasting, vol. 15
(1999), pg. 227-246.

[24] Fogel L., Owens A., and Walsh M.Artificial Intelligence through
Simulated Evolution. Wiley, 1966.

[25] Fogel L., Angeline P., and Fogel D. ‘An evolutionary programming
approach to self-adaptation on finite state machines.’Proceedings of the
4th Annual Conference on Evolutionary Programming, vol. 1 (1995),
pg. 355-365.

[26] Fogel D. and Chellapilla K. ‘Revisiting evolutionary programming.’
SPIE Aerosense98, Applications and Science of Computational Intel-
ligence, vol. 1 (1998), pg. 2-11.

[27] Fyfe C., Marney J., and Tarbert H. ‘Technical analysis versus market
efficiency—a genetic programming approach.’Applied Financial Eco-
nomics, vol. 9 (1999), pg. 183-191.

[28] Gately E.Neural Networks for Financial Forecasting. John Wiley and
Sons, Inc., 1996.

[29] Goto Y., Yukita K., Mizuno K., and Ichiyanagi K. ‘Daily peak load fore-
casting by structured representation on genetic algorithms for function
fitting.’ Transactions of the Institute of Electrical Engineers of Japan,
vol. 119 (1999), pg. 735-736.

[30] Gurney K.An Introduction to Neural Networks. UCL Press, 1997.
[31] Hendry D. and Clements M. ‘Pooling of forecasts.’Econometrics

Journal, vol. 7 (2004), pg. 1-31.
[32] Hiden H., McKay B., Willis M., and Tham M. ‘Non-linear partial

least squares using gentic programming.’Genetic Programming 1998:
Proceedings of the Third Annual Conference, vol. 1 (1998), pg. 128-133.

[33] Iba H. and Sasaki T. ‘Using genetic programming to predict financial
data.’ Proceedings of the Congress of Evolutionary Computation, vol. 1
(1999), pg. 244-251.

[34] Iba H. and Nikolaev N. ‘Genetic programming polynomialmodels of
financial data series.’Proceedings of the 2000 Congress of Evolutionary
Computation, vol. 1 (2000), pg. 1459-1466.

[35] Iba H., de Garis H., and Sato T. ‘Genetic programming using a minimum
description length principle.’Advances in Genetic Programming, vol. 1
(1994), pg. 265-284.

[36] Jeong B., Jung H., Park N. ‘A computerized causal forecasting system
using genetic algorithms in supply chain management.’The Journal of
Systems and Software, vol. 60 (2002), pg. 223-237.

[37] de Jong E., Watson R., and Pollack J. ‘Reducing bloat andpromoting
diversity using multi-objective methods.’Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2001), vol. 1 (2001),
pg. 11-18.

[38] Jonsson P. and Barklund J. ‘Characterizing signal behavior using genetic
programming.’ Evolutionary Computing: Lecture Notes in Computer
Science, vol. 1143 (1996), pg. 62-72.

[39] Ju Y., Kim C., and Shim J. ‘Genetic based fuzzy models: interest rate
forecasting problem.’Computers and Industrial Engineering, vol. 33
(1997), pg. 561-564.

[40] Kaboudan M. ‘Forecasting with computer-evolved modelspecifications:
a genetic programming application.’Computer and Operations Re-
search, vol. 30 (2003), pg. 1661-1681.

[41] Kaboudan M. ‘Genetically evolved models and normalityof their
residuals.’Journal of Economics Dynamics and Control, vol. 25 (2001),
pg. 1719-1749.

[42] Kaboudan M. ‘Forecasting stock returns using genetic programming
in C++.’ Proceedings of 11th Annual Florida Artificial Intelligence
International Research Symposium, vol. 1 (1998), pg. 502-511.

[43] Kaboudan M. ‘Genetic programming prediction of stock prices.’ Com-
putational Economics, vol. 6 (2000), pg. 207-236.

[44] Kaboudan M. ‘Genetic evolution of regression models for business and
economic forecasting.’Proceedings of the Congress of Evolutionary
Computation, vol. 2 (1999), pg. 1260-1268.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTEDJANUARY 2005 20

[45] Kim D. and Kim C. ‘Forecasting time series with genetic fuzzy predictor
ensemble.’IEEE Transactions on Fuzzy Systems, vol. 5 (1997), pg. 523-
535.

[46] Kinnear K. ‘Generality and difficulty in genetic programming: evolving
a sort.’ Proceedings of the fifth International Conference on Genetic
Algorithms, vol. 1 (1993), pg. 120-128.

[47] Kitchen J. and Monaco R. ‘Real-time forecasting in practice.’ Busi-
ness Economics: the Journal of the National Association of Business
Economists, vol. 38 (2003), pg. 10-19.

[48] Korczak J. and Lipinski P. ‘Evolutionary building of ofstock trading
experts in a real-time system.’Proceedings of the 2004 Congress on
Evolutionary Computation, vol. 1 (2004), pg. 940-947.

[49] Koza J.Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, 1992.

[50] Langdon W. ‘The evolution of size in variable length representations.’
1998 IEEE International Conference of Evolutionary Computation,
vol. 1 (1998), pg. 633-638.

[51] Langdon W. and Poli R. ‘Fitness causes bloat.’Soft Computing in
Engineering Design and Manufacturing, vol. 1 (1997), pg. 13-22.

[52] Lee D., Lee B., and Chang S. ‘Genetic programming model for long-
term forecasting of electric power demand.’Electric Power Systems
Research, vol. 40 (1997), pg. 17-22.

[53] Leigh W., Purvis R., and Ragusa J. ‘Forecasting the NYSEcomposite
index with technical analysis, pattern recognizer, neuralnetwork, and
genetic algorithm: a case study in romantic decision support.’ Decision
Support Systems, vol. 32 (2002), pg. 361-377.

[54] Levenick J. ‘Swappers: introns promote flexibility, diversity, and in-
vention.’ Proceedings of the Genetic and Evolutionary Computation
Conference GECCO ’99, vol. 1 (1999), pg. 361-368.

[55] Lipinski P. Evolutionary data-mining methods in discovering stock
market expertise from financial time series. Ph.D. Thesis, Université
Louis Pasteur, 2004.

[56] Liu Y. and Yao X. ‘Evolving neural networks for Hang Sengstock
index forecasting.’CECCO 2001: Proceedings of the 2001 Congress on
Evolutionary Computation, vol. 1 (2001), pg. 256-260.

[57] Makridakis, S., Wheelwright, S., and Hyndman, R.Forecasting: methods
and applications. John Wiley and Sons, Inc., 1998.

[58] Maniezzo V. ‘Genetic evolution of the topology and weight distribution
of neural networks.’IEEE Transactions on Neural Networks, vol. 5
(1994), pg. 39-53.

[59] Markose S., Tsang E., and Er H. ‘Evolutionary decision trees in FTSE-
100 index options and futures arbitrage.’Genetic Algorithms and Pro-
gramming in Computational Finance. Kluwer Series in Computational
Finance, 2002, Chapter 14, pg. 281-308.

[60] McMillan D. G. ‘Nonlinear predictability of stock market returns: Evi-
dence from nonparametric and threshold models.’International Review
of Economics and Finance, vol. 10 (2001), pg. 353-368.

[61] Michalewicz Z. Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag, 1992.

[62] Mitchell M. An Introduction to Genetic Algorithms. MIT Press, 1996.
[63] Mulloy B., Riolo R., and Savit R. ‘Dynamics of genetic programming

and chaotic time series prediction.’Genetic Programming 1996: Pro-
ceedings of the First Annual Conference, vol. 1 (1996), pg. 166-174.

[64] Nag A. and Mitra A. ‘Forecasting daily foreign exhange rates using
genetically optimized neural networks.’Journal of Forecasting, vol. 21
(2002), pg. 501-511.

[65] North Carolina State University.High Performance and Grid Computing.
http://www. ncsu.edu/itd/hpc/main.php, 2004.

[66] Neely C. and Weller P. ‘Predicting exchange rate volatility: genetic
programming versus GARCH and RiskMetricsTM .’ The Federal Reserve
Bank of St. Louis, (2002).

[67] Neely C., Weller P., and Dittmar R. ‘Is technical analysis in the foreign
exchange market profitable? A genetic programming approach.’ Journal
of Financial and Quantitative Analysis, vol. 32 (1997), pg. 405-426.

[68] Neely C. ‘Risk-adjusted, ex ante, optimal technical trading rules in
equity markets.’International Review of Economics and Finance, vol. 12
(2003), pg. 69-87.

[69] Nordin P. and Banzhaf W. Complexity compression and evolution.’ Pro-
ceedings of the Sixth International Conference on Genetic Algorithms,
vol. 1 (1995), pg. 310-317.

[70] Phua P., Ming D., and Lin W. ‘Neural network with genetically evolved
algorithms for stocks prediction.’Asia-Pacific Journal of Operational
Research, vol. 18 (2001), pg. 103-107.

[71] Rosca J. ‘Generality versus size in genetic programming.’ Genetic
Programming 1996: Proceedings of the first annual conference, vol. 1
(1996), pg. 381-387.

[72] Sarantis N. ‘Nonlinearities, cyclical behaviour and predictability in stock
markets: international evidence.’International Journal of Forecasting,
vol. 17 (2001), pg. 459-482.

[73] Sathyanarayan R., Birru S., and Chellapilla K. ‘Evolving nonlinear time
series models using evolutionary programming.’CECCO 99: Proceed-
ings of the 1999 Congress on Evolutionary Computation, vol. 1 (1999),
pg. 243-253.

[74] Sexton R. ‘Identifying irrelevant input variables in chaotic time series
problems: using genetic algorithms for training neural networks.’ Journal
of Computational Intelligence in Finance, vol. 6 (1998), pg. 34-41.

[75] Smith K., Gupta J.Neural Networks in Business: Techniques and
Applications. Idea Group Pub., 2002.

[76] Stock J. and Watson M. ‘Forecasting inflation.’Journal of Monetary
Economics, vol. 44 (1999), pg. 293-335.

[77] Stock J. and Watson M. ‘Forecasting output and inflation: the role of
asset prices.’Journal of Economic Literature, vol. 41 (2003), pg. 788-
829.

[78] Tackett W. ‘Genetic programming for feature discoveryand image
discrimination.’ Proceedings of the fifth International Conference on
Genetic Algorithms, vol. 1 (1993), pg. 135-142.

[79] Trippi R., Turban E., editors.Neural Networks in Finance and Investing:
Using Artificial Intelligence to Improve Real-World Performance. Irwin
Professional Pub., 1996.

[80] Tsang E. and Li J. ‘EDDIE for financial forecasting.’Genetic Algo-
rithms and Programming in Computational Finance. Kluwer Series in
Computational Finance, 2002, Chapter 7, pg. 161-174.

[81] U.S. Department of Commerce Bureau of Economic Analysis. http://
www.bea.doc.gov/bea/glossary/glossaryg.htm, 2004.

[82] Venkatesan R. and Kumar V. ‘A genetic algorithms approach to growth
phase forecasting of wireless subscribers.’International Journal of
Forecasting, vol. 18 (2002), pg. 625-646.

[83] Wagner N. and Michalewicz Z. ‘Genetic programming withefficient
population control for financial times series prediction.’2001 Genetic
and Evolutionary Computation Conference Late Breaking Papers, vol. 1
(2001), pg. 458-462.

[84] Wagner N. and Michalewicz Z. ‘Forecasting with a dynamic window
of time: the DyFor genetic program model.’Lecture Notes in Computer
Science, vol. 3490 (2005), pg. 205-215.

[85] Wagner N. and Michalewicz Z. ‘Time series forecasting for dynamic
environments: the DyFor genetic program model.’Proceedings of the
International Seminar on Soft Computing and Intelligent Systems (WI-
SIS’04), 2005, vol. 1 (2005), pg. 152-164.

[86] Wang J. ‘Trading and hedging in S&P 500 spot and futures markets
using genetic programming.’The Journal of Futures Markets, vol. 20
(2000), pg. 911-942.

[87] Whitley D. ‘The GENITOR algorithm and selection pressure: why rank-
based allocation of reproductive trials is best.’Proceedings of the Third
International Conference on Genetic Algorithms, vol. 1 (1989), pg. 116-
121.

[88] White H.Artificial neural networks: approximation and learning theory.
Blackwell, 1992.

[89] White J. ‘A genetic adaptive neural network approach topricing option:
a simulation analysis.’Journal of Computational Intelligence in Finance,
vol. 6 (1998), pg. 13-23.

[90] Yang Y. ‘Combining forecasting procedures: some theoretical results.’
Econometric Theory, vol. 20 (2004), pg. 176-222.

[91] Yao X. and Liu Y. ‘EPNet for chaotic time series prediction.’ First Asia-
Pacific Complex Systems Conference, vol. 1 (1997), pg. 146-156.

