
Warm Backup using Snooping

�

Danny Dolev Dalia Malki Yuval Yarom

The Hebrew University of Jerusalem

Jerusalem 91904, Israel

E-mail: fdolev,dalia,yvalg@cs.huji.ac.il

Abstract

Local Area Networks use a broadcast media to trans-

fer messages between hosts. This allows for network

snooping by unlisted parties. This paper proposes a

novel way for cheaply replicating services in a local

area network via snooping. We present a tool for

Warm Backup of �les that employs network snooping

for data dissemination. The tool allows for a selective

replication of �les in the system. The use of snoop-

ing signi�cantly reduces the overhead of �le replica-

tion. Operations on non-replicated �les su�er only a

slight overhead.

1 Introduction

Providing highly available services through repli-

cation of servers is a well known method. This pa-

per proposes a novel way for cheaply replicating ser-

vices in a Local Area Network (LAN) via snoop-

ing. The paradigm we develop is a general replica-

tion method, and we study this approach by an ex-

ample tool for warm backup (WB) replication of �les

in the Sun's Network File System (NFS) environment.

This method can also be extended for o�-line backups

through a Wide Area Network (WAN).

In an NFS environment, applications access �les

throughout the network in an automatic, transparent

way. We can view the entire network as providing a

global �le system service that is distributed among dif-

ferent machines. While being convenient in all ways,

this distribution leads to a reliability problem: the

failure of any of the machines that provide �le system

services can block an application from running. The

need for increased �le system availability was, there-

fore, apparent as soon as NFS systems became avail-

able.

In these environments, local-area broadcast net-

works such as the Ethernet and token-rings are a

de facto standard. These broadcast media carry the

point-to-point NFS messages and enable snooping by

unlisted parties.

Since faults are not common, our primary design

goal is minimizing the overhead incurred by replica-

tion on the primary server, during fail-free operation.

The optimal way to provide cheap replication of a

�

This paper appears in the �rst intl. workshop on Ser-

vices in Distributed and Networked Environments (SDNE),

June 1994, Prague, Czech Republic, pp. 60-65.

�le server in a broadcast network would be to place

another machine, the backup machine, that puts the

network interface in promiscuous mode, and snoops to

the network and updates its state whenever an update-

request to the �le server is intercepted. This scheme

is depicted in Figure 1(a). This scheme is, indeed,

attractive, since it does not incur any communica-

tion overhead for replicating the service. The prob-

lem with this naive approach is that snooping is not

foolproof, and some update-requests may be missed

by the backup. In this case, the states of the primary

�le server and the backup will diverge.

In order to guarantee the consistency of the primary

and the backup, we have to introduce an acknowledg-

ment message from the backup to the primary. This

results in the paradigm depicted in Figure 1(b). This

paradigm is similar to other primary{backup mech-

anisms, such as [4, 1], with several important di�er-

ences:

1. A novel feature of the WB scheme is the utiliza-

tion of broadcast hardware (and snooping) for

the e�cient dissemination of data to the primary

and its backup. Note that in the paradigm of

Figure 1(b), the (potentially large) update re-

quests are transmitted only once over the net-

work. The only communication overhead is the

short acknowledgment message. (Thus, the solid

arrows in the �gure represent \real" cost, whereas

the dashed arrows are achieved by the cost-free

communication snooping.)

2. The WB scheme does not require modi�cation of

the underlying �le system service. The snooping

program can be implemented as a user-level tool,

and be arbitrarily placed on any machine in the

network. Our prototype implementation has ex-

actly this property, and it provides the full NFS

interface and semantics.

3. Another consequence of Item 2 above is that the

WB tool can make a selective replication of �les,

be it the �les accessed by a particular applica-

tions, or those residing in certain designated di-

rectory subtrees. The tool can dynamically ac-

cept commands for replication of di�erent direc-

tories at di�erent times. We expect this to be a

most useful feature of this tool.



4. One warm backup machine can provide (selective)

replication for several �le servers.

5. This scheme is scalable: additional backup ma-

chines intercept the update data by snooping,

and only the acknowledgment mechanism has to

be extended to incorporate the extra backups.

For example, Figure 2 demonstrates a possible

paradigm for one primary and two backups. For

simplicity, the rest of this paper deals with the

single backup case. All the mechanisms can be

easily extended to the multiple backups case.

backup

client

snoopupdate

primary

(a)

backup

client

snoopupdate

primary

ack

(b)

Figure 1: The Primary-back Paradigm using Snooping

backup

client

snoopupdate

primary

ack

backup

snoop

ack

Figure 2: Multiple backups using Snooping

The WB tool has been fully implemented on a net-

work of Sun SparcStations. The tool is implemented

as a user level program. It allows the system adminis-

trator to specify on the 
y the directories to be repli-

cated. The performance section below provides exper-

imental results, showing an overhead of less than 8%

(on average) for non-replicated �les, and up to 56%

for replicated �les.

1.1 Related Work

To the best of our knowledge Powell and Presotto

were the �rst to describe a high availability mecha-

nism based on snooping in a LAN [10]. The paper

introduces a general scheme to recover from partial

failures in a distributed systems, based on checkpoint

and replay. Their approach uses a special node, a

recording process, which collects all the interactions

between nodes in the system for later replay. They

assume that the recording process is fail proof, and

can intercept all communication in the network. To-

day we know that it is impossible to implement this

approach without further interaction with the record-

ing process.

Our case study of snooping involves replicating a

�le system service. The issue of �le system replication

is an active area of research. This section does not

attempt to cover the vast number of works in this area.

It relates to a chosen few, that represent corresponding

leading approaches to this problem.

One approach for replicating services is the State

Machine approach [12]. In this scheme, the client re-

quests are delivered to all the servers in the same or-

der, to act upon. The servers are symmetrical and

in case any of them fails, all the other replica have

consistent states of the service. The advantage of this

approach is that faults are completely masked from

the client. However, the requirement of reliable and

ordered delivery of client requests to all the replica

presents a noticeable burden on the system. The

RNFS system [9] and the Deceit system [14], which

is based on it, are examples of replicated �le systems

implemented using this approach. They provide NFS

clients with a completely compatible interface, while

underneath they replicate each �le operation on a set

of disks. Both projects report that the reliable com-

munication between the replication stubs incurs a con-

siderable slowdown for non-replicated �les [9, 13] (e.g.

in RNFS write operations are 2{3 times slower than

regular NFS). Most of the slowdown is incurred by

the additional communication layer and the ordering

of the updates. As a result, additional replica incur

only a small overhead. The State Machine approach

requires that changes to the �le-service are made at

each client machine. As there may be many more

clients than servers, this may pose a considerable bur-

den. In contrast, in the WB tool no modi�cations at

the clients are required; Only the �le servers need be

modi�ed.

A non-symmetrical (primary-backup) solution to

replication is to designate one server as primary, and

let the other replica act as its backups. This scheme

has been used extensively in practice, because it is

cheaper during normal operation. Its drawback is in

the handling of failures and recoveries, which involves

re-electing a primary and is more expensive than the

State-Machine approach. The work of Budhiraja et

al. [3, 5] studies this approach formally. The primary-

backup paradigm of the WB tool is similar to [1, 4].

The di�erence is that the WB tool exploits snoop-

ing to optimize the propagation of updates >from the

client to the backups. In addition, implementing the

paradigms in [1, 4] would require changes to the NFS

protocol, since the response to the client is delivered

by the backup rather than the primary server. One

of our goals was to produce a paradigm that is feasi-

ble to implement at the user level, without any visible

change to the client.

Both HA-NFS [2] and Harp [8] use the primary



backup approach for replication, but utilize special

hardware. The HA-NFS scheme relies on dual-port

disks, and uses mirrored-updates for achieving atom-

icity of updates. Harp avoids physical writing to disk

while preserving the safety of update semantics by log-

ging updates into a memory unit which is supported

by a UPS. In this way, updates are never lost, but the

actual write to the disk may lag behind.

There are other replicated �le systems like LO-

CUS [16] and Coda [11], that do not maintain the

Unix �le system structure or semantics. These sys-

tems have their own kernel implementations of both

client and server. Their replication scheme employs

version time-stamping, and allows di�erent replica to

diverge. In contrast, the WB tool is built on top of the

Unix �le system, and does not modify its structure or

semantics. Its implementation is entirely at the user

level, and is added at the server machine only. It is

provably impossible to provide primary-backup repli-

cation with one backup, in the case of network parti-

tions [3]. In case of network partitions, the WB tool

allows the backup to diverge from the primary copy.

2 The WB Tool over NFS

This section describes the structure of the WB

tool within the NFS environment. For this section,

we assume a network consisting of three machines:

the client machine, the NFS server machine, and the

backup machine. The client machine executes user

applications that access �les on the NFS server ma-

chine. The backup machine snoops update-requests

on the network. The WB paradigm in this environ-

ment works as follows:

1. The NFS and the WB are noti�ed by the system

administrator about the directories she wishes to

be backed-up.

2. When the NFS server receives an update-request

from an application to a replicated �le, it must

wait for an acknowledgment-message from its

warm-backup. Update-requests are those that

modify the contents or the state of the �le, e.g.

write requests.

3. The WB server snoops for all NFS messages.

When it intercepts an NFS update-request to a

replicated �le, it issues the appropriate operation

on the local replica, and sends an acknowledg-

ment message via a reliable channel, e.g. a TCP

connection, to the NFS server in the site of the

accessed �le. This message contains a sequence

number and an identi�cation of the request (con-

taining the Sun-RPC ID of the request, and the

address of the client).

4. The NFS server serves the update-requests it

receives in the order of the acknowledgment-

messages it receives from the WB server. It re-

turns the results to the application.

5. If either the NFS server or the WB server loses

a message from the application, the application

will time-out and retransmit the request. (This

is the standard fault handling of the NFS/RPC

protocol.)

The modi�cation of the NFS server can be done

either internally, by modifying the NFS server (Fig-

ure 3(a)), or externally, by placing a mediator, on the

NFS server's machine, between the application and

the NFS server (Figure 3(b)). We chose to implement

the external modi�cations approach in order to avoid

modi�cations to existing software.

snoopupdate

ack
NFS WB

server

application

(a)

snoopupdate

ack WB
server

application

(b)
primary machine

mediator

NFS

Figure 3: The WB tool in the NFS Environment

Failure Recovery

The modi�ed NFS server and the WB server have

to dynamically detect each other's failures and recov-

eries. If the WB server fails, the NFS server contin-

ues normal operation. It should, however, detect the

WB recovery, and update it to a consistent state. In

case the primary NFS server fails, there are up-to-

date copies of all of the backed-up �les on the WB

machine. There are two possible approaches to han-

dle this case. First, the application can be modi�ed

to access the replica of the �les upon detecting an

NFS server failure. This modi�cation can be done in

the libraries level, and is transparent to the applica-

tion program. The second approach is to implement

a takeover mechanism in the WB server, which de-

tects the NFS server's failure, and responds to the

application request in a transparent way. Both these

approaches are standard in such a system, and their

details are beyond the scope of this compact presenta-

tion. The topic of re-integrating an NFS server upon

recovery is detailed elsewhere [7].

3 Implementation Details

The WB is feasible to implement, although we have

learned that its implementation involves a fair bit of

hacking system code. The WB tool has been imple-

mented in two parts: the backup server and the NFS

mediator.

The WB server

The backup process utilizes the Sun Network Inter-

face Tap (nit) device for putting the network interface

at the backup machine in promiscuous mode, and for

intercepting all the network tra�c. The nit device pro-

vides access to the raw network packets. These have to



1Mbytes 2Mbytes 4Mbytes slowdown

Standard NFS 12.57 (12.46-12.70) 26.87 (26.27-27.45) 54.06 (53.22-54.83)

Modi�ed NFS 13.37 (12.96-14.28) 28.00 (27.04-29.58) 57.88 (55.16-66.12) 6%

Replicated 19.73 (18.40-21.52) 39.25 (34.29-40.79) 80.10 (74.45-82.84) 49%

Table 1: NFS, modi�ed-NFS and WB-replication response times (in seconds).

be reassembled by the WB server into the RPC/UDP

datagrams of the NFS protocol. The server then �lters

the update-requests for the replicated �les.

In order to do this �ltering, the server has to be able

to identify the �les on the primary server machine.

The only identi�cation sent over the network by the

NFS protocol is an opaque �le handle, obtained by

the client when the �le is opened (see [15]). The WB

server obtains a copy of the relevant �le handles at

startup, and compares these handles against the �le

handles in the intercepted datagrams.

1

The mediator

The mediator process resides on the primary NFS

server machine, and simply \hides" the NFS server.

It intercepts all incoming requests, and performs fast

�ltering of the relevant datagrams, in order to de-

tect update-requests to replicated �les. In case of an

update-request for a replicated �le, it bu�ers the re-

quest until it is acknowledged by the backup. In all

other cases, the request is immediately forwarded un-

altered to the NFS server.

In all cases, when a reply from the local NFS server

is ready, it is immediately forwarded back to the client.

4 Performance

The issue of performance has always been an impor-

tant consideration when building fault tolerant pro-

grams. This has an additional facet in the WB tool,

since the tool provides a selective replication service.

Therefore, the slowdown of the �le-server for non-

replicated �les should also be taken into account. This

cost is incurred by placing the mediator at the �le

server machine, and having to �lter all of the update

requests that modify replicated-�les (see Figure 3(b)).

The WB architecture is designed for incurring a

minimal overhead on the message tra�c in the system.

The dashed-arrows in Figure 3 are almost cost free,

and are done by network snooping. The reason for

saying that this is almost cost free is that in case the

WB server loses a message, it will be retransmitted.

Still, for write-operations on �les, the written data is

essentially sent only once over the network. Hence,

the main source of delay is the need to wait for an

acknowledgment message from the WB server.

We have measured the response time of the �le ser-

vice for both replicated and non-replicated �les. The

overhead for the non-replicated �les includes only the

mediator overhead, while the overhead for the repli-

cated �les also includes the acknowledgment message

latency, and the cost of the potential retransmission

1

This scheme relies on the fact that identical copies of the

�le handle are handed to all clients accessing the same �le. In

the Sun NFS implementation this is guaranteed to hold.

due to WB omissions. All the test were taken when

the load on the network and the machines was low.

The experimental results are summarized in Table 1.

The �rst row shows the measured response time of

vanilla NFS for various �le writing scenarios. Row 2

lists the modi�ed NFS service response times for non-

replicated �les (both the average and and the range

of observed times are shown). The last column com-

pares the average response time with standard NFS.

We performed the same tests while loading the �le

server concurrently fromanother machine with various

I/O activities. Similarly, we compared the response

time for more natural activities, such as compiling the

WB tool and L

a

T

E

X'ing this paper.

2

In all of these

tests, the overhead incurred by the mediator process

and the �ltering of packets was less than 8%.

Row 3 lists the response times and slowdown for

replicated �les with a single backup. In these tests, the

percentage of packets that were dropped by the WB

server was 0.5%. These tests show that the slowdown

of a single backup replication is between 45{56%.

The slowdown of replication is less than twice the

standard NFS service. This demonstrates clearly the

advantage of the primary-backup paradigm in the NFS

environment, and of utilizing the broadcast capability.

Note that the WB paradigm preserves the NFS se-

mantics in writing updates directly to the disk before

responding to the client.

The WB on the backup machine snoops for mes-

sages addressed at multiple NFS servers. It therefore

must put the network-interface of the backup machine

in promiscuous mode, and �lter the relevant messages

from among the multitude of messages transferred in

the system. This means that the WB server message

loss-rate is in
uenced by the local load on the machine.

Consequently, for best results, the WB server should

run on a dedicated machine|the backup machine. We

argue that this price is acceptable; the alternatives are

either supporting a fully replicated �le system, which

burdens all the �le servers in the system, or using a

special hardware, as in [2].

A Formal Analysis

We proceed with a more formal analysis of com-

plexity of the protocol. A precise characterization of

primary-backup protocols is provided in [5]. They

present several formal performance parameters con-

cerned with building a fault tolerant service using the

primary backup approach: (1) The number of replica,

2

In the �nal version of this paper, we intend to provide per-

formance measurements for the Andrew benchmark. However,

the main slowdown incurred by replication is due to write op-

erations, and we focused our tests on them.



(2) the time it takes the system to recover from a fail-

ure and resume normal service, and (3) the response

time of the service during a no-failure period.

The �rst and second issues are concerned with the

failure-detection and the recovery take-over mecha-

nism. Note that these issues are separate from the

provision of a single server equivalent service during

normal operation. We chose to leave these issues out

of this paper, and solutions for them can be found in

the literature, e.g. in [1, 2, 5, 14]. Also, since concur-

rent updates to �les are rare in the Unix environment,

we are not concerned with the possibility of network

partitions. Our focus is on optimizing operation dur-

ing normal behavior, i.e. the third issue.

In the terminology of [5], the service blocking time

is the longest period between the time a client request

is received at the primary, and the time a response is

sent. Let � be an upper bound on the communication

latency between two machines. The blocking time of

the WB tool with a single backup is �, which matches

the lower bounds achieved in [5] (making similar as-

sumptions about failure types, and ignoring processing

time).

3

Their analysis can be re�ned by noting that the

latency of short messages, e.g. acknowledgments, is

much smaller than the latency of large data messages.

Let � be the latency of the acknowledgment messages.

Usually � � �. For example, in our environment,

which consists of SparcStations over an Ethernet, the

latency of a 4 bytes datagram using UDP/IP is about

0:4 milliseconds, so � = 0:4ms. The latency of the

8K-Bytes NFS write requests is about 3 milliseconds,

thus � = 3ms.

Using this re�nement, the blocking time of our pro-

tocol in the case of a single backup is only �; the time

it takes to send the acknowledgment message from the

backup to the primary. This demonstrates the advan-

tage of utilizing broadcast (and snooping) over point-

to-point protocols, where the lower bound ([5]) is �.

5 Other Uses

Our approach o�ers the potential for a geographi-

cally distributed backup of �le systems without bur-

dening the local �le server with remote communica-

tion. This can be done by having a local node snoop

on the local network, and asynchronously o�-load the

backup to the remote site. The advantage of asyn-

chronous update is that the remote backup is not a

part of the update loop, and the response to local up-

dates is not delayed by backing up. In addition, in our

approach, the primary server is not disrupted by the

back up process.

The scheme of [10] for fault-tolerance in a dis-

tributed environment requires a reliable Publishing

mechanism, which is not achievable without software

protocols. Snooping can provide a tool for achiev-

ing the reliability of this scheme. To achieve this, we

3

For multiple backups, [5] makes the assumption that a des-

ignated backup can intercept messages from all other backups

in a single � delay time. This assumption does not hold in the

environments we have in mind. These results are, therefore,

incomparable.

replace their recording process, which relies on reli-

able publishing, with our snooping paradigm, which

is based on software protocols for reliability.

6 Limitations

We are aware of several limitations of the approach

presented here:

1. The WB tool relies on network snooping, which

works only on broadcast media. In networks,

such as ATM or FDDI, that do not operate with

broadcast media, snooping will not work. A pos-

sible workaround is to modify the client to use the

multicast feature of these networks, and to send

updates to a multicast group, in which both the

primary server and the replicas are members.

2. The current design does not have congestion con-

trol, and in highly loaded networks will incur ad-

ditional load by inducing retransmissions.

3. The view of the �le at the WB site will diverge

from the primary replica in the following cases:

� Non-deterministic updates to the state of the

�le, such as the recording of the last modify

time, will not be consistent at the primary

and backup sites.

� Rejected updates (e.g. when the �le system

is full) are not detected by the WB server

in the current implementation. In order to

handle this case, the mediator should inform

the WB server about the rejection before re-

turning the rejection-response to the client.

We plan to incorporate this error handling

in the next version of the WB tool.

� Client crashes, when the last update is re-

ceived only by the WB server but not by the

NFS server. The WB server will update its

copy of the �le assuming that the NFS server

received the update, or will receive a retrans-

mission. But, if the client crashes, there is

no guarantee that the NFS server will receive

the update.

Every replication system is provably either prone

to blocking, or to inconsistency e.g. in case of net-

work partition. Practical tools should provide the

user with means to overcome the inconsistency, or

at least to detect it. As these problems are com-

mon to all replication schemes, we have chosen

not to discuss them in the context of this paper.

7 Conclusions

Computer networks are using broadcast media.

This o�ers an e�cient way to disseminate messages

to multiple destinations. Future networks such as the

high-speed FDDI ring and wireless networks also pos-

sess the broadcast capability. Understanding the po-

tential in broadcast communication is, therefore, im-

portant (see also [6]).



The ability to snoop on a broadcast network has led

us to devise a completely new scheme for a cheap repli-

cation of �les on a LAN. The Warm Backup (WB)

tool snoops on the network, and updates the state of

the backup by applying the updates it intercepts. This

tool is attractive because it can be plugged into any

system without changing the structure of the �le ser-

vice. Our prototype implementation within the NFS

environment operates entirely at the user level, is easy

to use, and can be programmed to selectively backup

certain directories. This 
exibility makes it an attrac-

tive tool.

The experimental results presented here show that

the regular �le system service during no-failure peri-

ods su�ers on average less than 8% slowdown. Sim-

ilarly, the replicated service costs around 50% slow-

down on average, over the regular NFS service. These

performance results compare favorably with existing

replicated �le systems.

Acknowledgments

We would like to thank Gil Shwed for initiating this

work, and for many fruitful discussions. Yuval Harari

implemented an initial package that tested several im-

plementation ideas, and helped formulate the current

paradigm. We are thankful to the Computer Science

dept. of the Cornell University and to the ISIS lab, for

allowing us to use their machines for implementingand

experimenting with the WB tool, and for enduring the

numerous `reboot's we performed. We bene�tted from

discussions with Bradford Glade and Keith Marzullo.

References

[1] P. Alsberg and J. Day. A Principle for Resilient

Sharing of Distributed Resources. In Proceedings

of the Second International Conference on Soft-

ware Engineering, pages 627{644, Oct. 1976.

[2] A. Bhide and S. P. Morgan. A Highly Available

Network File Server. RC 16161, IBM Research,

May 1990.

[3] N. Budhiraja. The Primary-Backup Approach:

Lower and Upper Bounds. PhD thesis, dept. of

Computer Science, Cornell University, June 1993.

(TR 93-1353).

[4] N. Budhiraja, K. Marzullo, F. B. Schneider, and

S. Toueg. Optimal Primary-Backup Protocols.

In 6th Intl. Workshop on Distributed Algorithms

proceedings (WDAG-6), (LCNS, 647), pages 362{

378, November 1992.

[5] N. Budhiraja, K. Marzullo, F. B. Schneider, and

S. Toueg. The Primary-Backup Approach. In

S. Mullender, editor, Distributed Systems. ACM

Press, 1993.

[6] D. Dolev and D. Malki. On Distributed Algo-

rithms in a Broadcast Domain. In Intl. Confer-

ence on Automata, Languages and Programming,

pages 371{387, July 1993.

[7] Y. Harari. Warm Backup Tool for Unix Network

File System. internal manuscript, 1992.

[8] B. Liskov, S. Ghemawat, R. Gruber, P. John-

son, L. Shrira, and M. Williams. Replication

in the Harp File System. In Proceedings of the

13th Symposium on Operating Systems Princi-

ples, pages 226{238, Oct. 1991.

[9] K. Marzullo and F. Schmuck. Supplying High

Availability with a Standard Network File Sys-

tem. In 4th Intl. Conf. Distributed Computing

Systems, pages 447{453. IEEE, June 1988.

[10] M. Powell and D. Presotto. Publishing: a

Reliable Broadcast Communication Mechanism.

In Symposium on Operating Systems Principles,

number 9, pages 100{109, October 1983.

[11] M. Satyanarayanan, J. Kistler, P. Kumar,

M. Okasaki, E. Siegel, and D. Steere. Coda: A

Highly Available File System for a Distributed

Workstation Environment. IEEE trans. on Com-

puters, 39(4):447{459, April 1990.

[12] F. Schneider. Implementing Fault Tolerant Ser-

vices Using the State Machine Approach: A Tu-

torial. Computing Surveys, 22(4):299{319, De-

cember 1990.

[13] A. Siegel. Perfomance in Flexible Distributed File

Systems. PhD thesis, dept. of Computer Science,

Cornell University, Feb 1992. (TR 92-1266).

[14] A. Siegel, K. Birman, and K. Marzullo. De-

ceit: A Flexible Distributed File System. TR

89-1042, dept. of computer science, Cornell Uni-

versity, Ithaca, NY, Nov 89.

[15] Sun Micronsystems Inc. NFS: Network File Sys-

tem Protocol Speci�cation. RFC 1094, SRI Net-

work Information Center, March 1989.

[16] B. Walker, G. Popek, R. English, C. Kline, and

G. Thiel. The LOCUS Distributed Operating

System. In 9th Symp. on Operating Systems Prin-

ciples, pages 49{70, 1983.


