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Abstract
Reference protection mechanisms, which control the prop-
agation of references, are commonly used to isolate and
to provide protection for components that execute within a
shared runtime. These mechanisms often incur an overhead
for maintaining the isolation or introduce inefficiencies in
the communication between the components.

This paper proposes a novel approach for component iso-
lation that avoids runtime overheads by controlling refer-
ences at compile time. We use the proposed approach to
build S-RVM, a Java Virtual Machine based on JikesRVM,
which enhances JikesRVM’s security by isolating the VM
from the application. Our experiments show that on the av-
erage S-RVM incurs no performance overhead when execut-
ing optimised code.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Modules,
packages; D.3.4 [Programming Languages]: Processors—
Run-time environments

General Terms Design, Languages, Measurement, Perfor-
mance, Security

Keywords Software Based Isolation

1. Introduction
Virtual Machines (VMs) frequently need to execute several
components of varying levels of trust. Examples includes
mobile code e.g. applets downloaded to the browser, third
party extensions to software systems and tasks in multi-
tasking VMs.

VMs rely on software-based protection mechanisms to
isolate trusted components from the untrusted ones. Soft-
ware protection mechanisms can operate at two levels: ref-
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erence protection1 and type protection [21]. Reference pro-
tection is the ability to declare objects that are limited to a
scope such that only code within that scope can name or hold
a reference to these objects. Type protection, most often im-
plemented as protection scopes, refers to the ability to allow
access to members of an object based on the scope of the
accessing code.

While reference protection is not as ubiquitous as type
protection, extensive research into it has been done within
the context of component isolation [2, 4, 10, 18] and in alias
control [9, 25].

This paper focuses on isolating the application from the
VM in metacircular VMs such as Singularity [2], Jikes-
RVM [3] and JNode [1]. Metacircular VMs are implemented
in the same language they target and execute within the same
runtime environment they provide. As the application and
the VM share the runtime environment, isolating the two is
paramount for maintaining the VM’s integrity. Nevertheless,
the existing mechanisms for isolation are considered insuffi-
cient for metacircular VMs due to the performance overhead
they introduce [8]. We argue that this overhead is avoidable
and that with the right design component isolation can be
provided at virtually no cost to the steady state performance.

To gain a better understanding of systems providing ref-
erence protection we introduce the concept of zones which
are groupings of objects based on the references allowed to
and from these objects. All objects in a zone share the same
permissions.

In this paper we present a classification of zones based
on the permitted references and show that a handful of zone
types are sufficient to describe the reference protection prop-
erties of component isolation. This classification captures
the salient features of the reference protection in the sys-
tem and is, therefore, useful for comparing the properties of
reference protection schemes.

We also identify the sealed zone—a zone type that can
prevent external references to the components’ internal data
while supporting a public interface that can be accessed

1 The original term [21] use for this level is Memory Protection. As this term
has since been overloaded we elect to use the less confusing term reference
protection.

13



by other components. While sealed zones promise efficient
communication through direct access, existing systems, such
as the J-Kernel [18], are implemented as libraries and rely on
proxy objects for enforcing the isolation. Consequently the
J-Kernel incurs a 10% performance overhead.

We have built S-RVM—a Java VM based on Jikes-
RVM—that uses sealed zones to isolate the VM from the
application. In S-RVM the VM and the application code ex-
ecute within separate tasks, each with its own type name
space. The application can only name its own types and
types that the VM exports. As types of internal VM objects
are not assignment compatible with any application type and
as the application cannot name these types, references from
the application to VM internal objects cannot be created.
Reference protection in S-RVM is, therefore, enforced at
compile time and does not incur any runtime cost.

Restricting the references gives S-RVM its main advan-
tage over JikesRVM. In JikesRVM an application has free
access to the VM. A malicious application can use that ac-
cess to breach the Java language security e.g. by bypassing
the type safety. In S-RVM, the application only has access
to the interface exposed by the VM, reducing the VM attack
surface area. Hence S-RVM provides a more secure environ-
ment for running untrusted code than JikesRVM.

We have tested the performance of our system with the
DaCapo benchmark suite [7]. Due to it’s design, S-RVM
takes slightly longer than JikesRVM to achieve optimal per-
formance. When achieving steady-state, the mean perfor-
mance over all the benchmarks in the suite is the same for
both the original JikesRVM and for S-RVM.

2. Related Work
In this section we review the existing work on reference
protection. Most of the research into reference protection
has been done within the context of Multi-tasking VMs
where it is used to provide some degree of task isolation,
which can be restrictive, relaxed or anywhere along that
spectrum. As most of the multi-tasking VMs are written in
Java or languages very similar to it, we focus on Java in
our discussion. We begin by reviewing the tools the Java
language provides for component isolation and discuss their
limitations. We proceed with a description of systems that
provide reference protection ordered by decreasing level of
isolation.

2.1 The Java Security Architecture
The Java programming language relies on three tools to
create protection domains [16]. The first is the Java class
loader concept [19]. One of the functionalities of the class
loader is to partition the type name space. In addition to
resolving the problem of name conflicts, this partitioning
prevents code that has no access to a class loader from
naming and using type information of types loaded by that
class loader.

The second tool is the security manager. The security
manager is a runtime authorisation mechanism that gets in-
voked whenever security sensitive operations are executed.
The security manager verifies that the code has the required
privilege level to execute the operation.

The third tool is the Java language type safety that ensures
that malicious code cannot bypass the other two tools.

While these tools can and have been used to create a
multi-tasking VM [6], three aspects of the Java security ar-
chitecture render it less than ideal for isolating components.
First, the isolation properties of the class loader mechanism
are weak. Class loaders only protect the type information.
They do not control the propagation of references to objects
and do not control the use of objects through any of their su-
pertypes (except for those loaded by the class loader). Sec-
ond, the dynamic nature of the security manager introduces
a runtime overhead. The reliance on examining the runtime
stack for finding the calling context exacerbates the over-
head. Third, the Java security manager is notoriously com-
plex and designing a comprehensive security policy is hard.

In other words, the Java security architecture puts the
onus of controlling object reference propagation on the pro-
grammer. To control propagation, the programmer needs to
have an intimate knowledge of the system libraries and any
other potential sharing sources as well as a good understand-
ing of the extent of sharing incurred by disclosing each ob-
ject reference. At the same time, the tools that Java provides
to assist the programmer are both complex and expensive to
use.

Many techniques for improving the Java security archi-
tecture have been suggested. These are divided into two main
approaches: implement reference protection for complete or
partial isolation of components; and provide the programmer
with better control over either the propagation or the use of
references. These techniques are described below.

2.2 Complete Isolation
MVM [10, 11] and JNode [1] isolate applications based on
the observation that the only initially shared values in classes
are the static fields, the associated Class object and String

literals. By providing each application with its own set of
values these systems completely isolate the applications.
The exception is the sharing of strings between applications,
which is supported by JNode and by early versions of MVM.

Isolation does not come without cost. In complete isola-
tion the only way to share objects is through communication
mechanisms, introducing the cost of marshalling and copy-
ing of data.

The Microsoft .Net framework [13] also provides com-
plete isolation. Applications in .Net run within application
domains, which are completely isolated from each other.
.Net supports the concept of remote types which allows ap-
plications to communicate across the application domain
boundaries. Remote types are implemented as proxies that
transparently marshall and send data across the communica-

14



tion channels. As such, they provide simpler communication
semantics but do not reduce the communication overhead.

2.3 Object Sharing
Isolation with object sharing relaxes the requirements of
complete isolation by allowing references from the compo-
nent objects to shared objects. Component isolation is main-
tained by prohibiting external references to component ob-
jects.

KaffeOS [4, 5], Singularity [2, 14], XMem [26] and CoL-
oRS [27] provide object sharing. To enforce task isolation,
KaffeOS and XMem use write barriers which introduce run-
time checks for reference store operations. Singularity and
CoLoRS avoid the runtime costs associated with write bar-
riers by using a separate type hierarchy for shared objects.
XMem and CoLoRS mostly rely on the OS process bound-
aries for protection. Reference protection in these system
is used for maintaining referential integrity within shared
memory sections.

Although sharing data reduces the overhead associated
with marshalling objects across communication channels,
it does not allow for remote method invocation. In those
systems remote method invocation mechanisms are imple-
mented on top of communication channels between applica-
tions.

2.4 Partial Isolation
Partial isolation makes a distinction between private and
public objects within the component space. Cross-component
references are permitted only to public objects.

Partial isolation is supported by the J-Kernel [18], where
it is implemented using automatically generated wrapper ob-
jects, called capabilities, that can be shared between tasks.
The advantage of this design is that it supports remote
method invocation via the capabilities. However the extra
processing required for creating a capabilities and convert-
ing data when invoking remote methods results in an over-
head of about 10%.

2.5 No Isolation
Some multi-tasking VMs do not make guarantees in respect
to isolation. Instead they provide the programmer with better
tools for controlling propagation of references and for limit-
ing the use of cross-task references.

I-JVM [15] provides initial isolation of components using
the techniques described by MVM. It also provides compo-
nents with access to a shared name service that can be used
for publishing and accessing remote objects. While compo-
nents are initially isolated, cross-component references are
passed using the shared name service or other remote ob-
jects. The initial isolation provides the programmer with bet-
ter controls of propagation. I-JVM, however, does not pro-
hibit any cross-component references.

Secure Java [24] and Luna [17] do not control the propa-
gation of references. Instead, they control the use of remote

references. Secure Java uses hardware protection mechanism
to restrict access to remote objects. Luna adds a remote pro-
tection scope to objects types.

2.6 Reference Protection for Alias Control
Confined Types [25] and Ownership Types [9] are both tech-
niques for alias control that use reference protection to pro-
tect internal data structures.

Confined types are an extension of package scoped
classes in Java. The type information of packaged scope
classes is only accessible to code in the package. That is,
code outside the package cannot extend these classes and
cannot invoke methods or access fields defined in a pack-
age scoped class. Confined types extend the restrictions of
package scoped classes by ensuring also that references to
objects of a confined type cannot escape the package scope.

Ownership types are a method of protecting the internal
representation of compound data structures. With ownership
types, references can be tagged as “owned” by an object,
limiting their propagation to a scope defined by the owner
object.

Like the J-Kernel, confined types and ownership types
allow indirect access to protected objects. Confined types are
accessible through public classes in the package and owned
types are accessible via the owner. Unlike the J-Kernel both
confined types and ownership types rely on the static nature
of the type system to avoid runtime overhead.

While both designs offer reference protection at no per-
formance cost, the inherent limitations of the designs pre-
clude their use for component isolation.

2.7 Summary
The different methods of providing component isolation
vary in the level of isolation and the methods of providing
it, but they do share one thing in common. They all report a
performance overhead.

For some benchmarks in some systems the overhead can
be as small as 1% [11]. For other benchmarks it can be
over 20% [4]. However, the mean overhead of component
isolation is always several percents.

While a few percents overhead may be an acceptable
price for the better security of reference protection, we ar-
gue that this price is avoidable. We argue that the combina-
tion of a static type system and indirect access to protected
objects is the key for providing reference protection at no
performance cost.

3. Reference Protection
As seen in the previous section, many different approaches
for reference protection have been suggested. To better un-
derstand the landscape it is useful to introduce the concept
of zones, where a zone is a group of objects that share the
same permissions for referring to and being referred to from
objects outside the zone.

15



As it is much easier to make decisions based on groups
of objects than to track permissions for each and every ob-
ject, the use of zones is implicit in the design of reference
protection systems. Hence, the classification we provide in
this section adds clarity and allows comparing systems from
across the domain. The classification identifies four types of
zones that are used as building blocks for constructing the
reference protection policy.

A privileged zone is a zone that can hold references to any
other zone, regardless of the restrictions otherwise imposed
on these zones. Privileged zones typically implement system
functionality.

Objects in isolated zones can only be referenced from
within the zone. External references into isolated zones are
prohibited.

Shared zones are those that can have incoming references
from multiple (non privileged) zones.

A sealed zone is a zone that can only have incoming
references from a corresponding interface zone. References
to the interface zone are typically always allowed.

Figure 1 shows the zone types and demonstrates possible
allowed cross-zone references. For clarity we do not display
privileged zones in this diagram.

Isolated

Shared

Interface B

Sealed B Sealed A

Interface A

Figure 1. Non-privileged Zone Types

We apply our classification method to the systems de-
scribed in Section 2 and show the results in Table 1, iden-
tifying the system, the system’s name for each zone and our
classification for that zone. For example, processes in Sin-
gularity [14] maintain independent heaps and do not share
memory with each other. Hence, these heaps are isolated
zones. Singularity processes communicate using channels,
which are bi-directional message conduits. A channel can
have an associated exchange heap that holds data shared by
the processes at the ends of the channel, and is, therefore, a
shared zone.

Sealed zones and their corresponding interface zones map
naturally into a component system model where each com-
ponent consists of private data, which is not accessible from
other components, and a Remote Procedure Call (RPC) in-
terface, which is used for communication between compo-
nents. Under this mapping, a sealed zone encloses the pri-
vate data of each component and the corresponding inter-

System Zone Zone Type
MVM Isolates Isolated
JNode Root Isolate Isolated (Priv.)

App Isolates Isolated
.Net App. Domain Isolated
J-Kernel Domain Capabilities Interface

Domain objects Sealed
KaffeOS Kernel Heap Shared (Priv.)

Shared Heaps Shared
Process Heaps Isolated

Singularity Process Isolated
Exchange heap Shared

Table 1. Zones in Multi-Tasking VMs

face zone forms the RPC interface. The reference protection
protects the private data, while RPCs are nothing more than
method invocation on objects within the interface.

4. S-RVM
S-RVM is a metacircular Java Virtual Machine based on
JikesRVM and designed to use reference protection with the
sealed zones model to isolate the VM from the application.

The basic architecture of JikesRVM is depicted in Fig-
ure 2. The VM executes at the bottom layer. The VM pro-
vides the basic services for the Java libraries but, as most
of it is written in Java, it uses some small part of the Java
libraries (shown as Core Libraries in the diagram). The ap-
plication itself executes on top of the Java Libraries.

Application

Core Libraries

VM

Java Library

Figure 2. JikesRVM

Using the same environment for executing both the appli-
cation and itself allows JikesRVM to achieve a high perfor-
mance. This performance, however, comes at the price that
there is no reliable way of separating VM objects from ap-
plication objects [20].

The lack of clear boundaries between the VM and the
application implicitly means that the application code has
direct access to VM objects. As the VM maintains the type
safety of the language, direct access to the VM can be used to
bypass type safety. Java language security depends on type
safety, hence direct access to VM objects allows applications
to bypass the Java security.

Blurred boundaries between the application and the VM
also cause difficulties for debugging and performance mea-
surements. For example, without clear boundaries it is hard
to collect performance data for application code only or to
perform an object graph analysis for the application.
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S-RVM reinstates a clear boundary between the applica-
tion and the VM by treating the VM and the application as
separate tasks. An interface layer is inserted between the VM
and the application task. This layer provides the system ser-
vices required for running a Java library. Reference protec-
tion ensures that the only VM objects accessible to the appli-
cation are those defined to be in the interface layer. Figure 3
shows the main components of S-RVM.

VM Task

Library
Java

App
Trusted

Core Libraries

VM

Application

Java Library

VM Interface Layer

Application Task

Figure 3. S-RVM

In addition to providing a clear boundary between the
VM and the application, the interface layer also forms a
trust boundary. The VM does not trust any code running
within the application task, including the application task’s
copy of the Java library. Not trusting the application’s library
code reduces the VM attack surface area. It also decouples
the Java library from the VM allowing the use of different
implementations of the Java library for the VM and the
application.

The rest of this section describes the implementation of
reference protection and the interface layer and discusses
some issues specific to securing the VM. These include the
asymmetric privileges required, issues related to the trust
boundary introduced in S-RVM and exception handling.

4.1 Reference Protection
The crux of separating the application and the VM lies in
using a separate base class loader for each task. The base
class loader in Java is responsible for loading the Java library
classes. Using separate base class loaders effectively creates
a separate class name space for each task.

With separate class name spaces, the type hierarchy as
viewed by application code is completely distinct from the
hierarchy seen by the VM code. Consequently, objects of ap-
plication types are not assignment compatible with any VM
type and vice versa. Thus, the separate name spaces, together
with the type safety, isolate the VM from the application and
lay the basis for reference protection.

In addition to the tasks name spaces, S-RVM creates a
name space for shared types which is used for VM interface
types. The @Export class annotation marks the classes that
belong in the interface layer. When these classes are loaded,
their names are added to the shared name space making them
available to the application task.

Listing 1 demonstrates a snippet of the class RVMType

the access to which is required for the implementation of

Java reflection. The @Remote member annotation introduces
a new protection scope by indicating which members of the
exported class can be accessed from the application.

import org.vmmagic.mu.Export;
import org.vmmagic.mu.Remote;
@Export
public class RVMType {

@Remote
public RVMClassLoader getClassLoader() {

// Implementation of getClassLoader
}

}

Listing 1. An Interface Class

Importing a type is done by loading a stub correspond-
ing to the type. Listing 2 shows the stub code correspond-
ing to the snippet of the RVMType class. As can be seen in
Listing 2 the stub code includes the class definition with the
annotation @Import. As the VM only requires the member
signatures when importing types, only minimal declarations
of remote members are required. Stub classes are automati-
cally generated from the exported class’s class file.

import org.vmmagic.mu.Import;
@Import
public class RVMType {

public RVMClassLoader getClassLoader()
{ return NULL; }

}

Listing 2. A Stub of an Interface Class

The presented design supports reference protection with
the sealed zones model. The application cannot hold refer-
ences to VM objects unless they are of types in the interface
layer. Hence, the interface layer forms the interface zone in
the model and other VM objects are in the sealed zone.

As presented, this design is not specific to isolating the
VM from the application. The protection it provides is sym-
metric and the same design could be used for providing
reference protection in other environments such as multi-
tasking VMs or for isolating third party plugins. One of the
challenges of the VM environment is the asymmetric privi-
lege levels. This challenge is discussed below.

4.2 Privileged Access for the VM Task
The VM requires privileged access to application objects for
a few special purposes, including garbage collection, passing
references between application code and native code, excep-
tion throwing and array copying.

To allow passing of references between the VM and the
application we add the type MuObject which is an unboxed
reference to any object in the system. MuObject supports a
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single generic constructor that creates a MuObject reference
from any object reference and a generic get method which
returns the referenced object. JikesRVM uses Object refer-
ences to refer to application objects. Rather than rewriting
significant sections of JikesRVM to replace these references
with MuObject references, we also allow assigning any ob-
ject to VM Object references.

References that can refer to all the objects in the sys-
tem present the risk of breaching the reference protection.
S-RVM does not, currently, verify that VM objects are
not passed to the application using MuObject references.
Faults in the VM may, therefore result in the application
getting a reference to internal VM objects. Nevertheless, the
generic nature of MuObject.get() introduces a dynamic
type check before the referenced object can be used for any
purpose, providing some level of protection against such
VM faults.

Unboxed wrapper types are used to wrap arrays when
these are passed to the VM arraycopy methods. The use
of a different wrapper type for each array type allows us to
keep the array element type information across the VM/ap-
plication boundary and to avoid an otherwise required dy-
namic type check.

4.3 Creating a Trust Boundary
As discussed above, the interface layer is also a trust bound-
ary. Unlike most Java Virtual Machines, S-RVM does not
trust the Java library code used by the application. Instead,
the interface layer is designed to provide a security barrier
and to protect the VM from malicious applications.

Lack of trust is manifested in extra tests in interface meth-
ods. For example, to prevent the application code from using
reflection on VM types the VM method getObjectType()

which returns the type of an object is replaced with a secure
version which, when invoked by the application, ensures that
the object is an application object.

Lack of trust also implies that arrays cannot be shared
between the application and the VM. Instead, S-RVM uses
wrapper classes to provide the application with read-only
access to VM arrays.

A slightly more involved consequence of the lack of trust
is the handling of string objects. JikesRVM uses the String
implementation from the GNU Classpath library. A String

object uses an array of characters as a backing store. It
also records the offset into the array and the length of the
string. The contents of the backing store is considered to be
constant and is only shared with code trusted to maintain
this property. The backing store can, therefore, be shared
between String objects.

Strings are frequently transferred across the boundary be-
tween the VM and the application. Common operations that
manipulate String objects are JNI functions and creation
of String literals during class loading. Copying String

objects when transferring them between the application and
the VM would introduce a significant overhead. On the other

hand, sharing String objects or their backing stores would
reduce isolation and require the VM to trust the application
not to modify the contents of String objects.

To avoid copying yet maintain the safety of String ob-
jects, S-RVM introduces two unboxed wrappers for VM
character arrays. The first, MuCharArray, provides read
only access to the character array and is used as the backing
store for String objects. The second, MuWriteableChar-
Array, provides write access to an underlying character ar-
ray for the purpose of creating a String object. When a
MuWriteableCharArray is converted to a MuCharArray,
it is sealed and write permission to it is revoked, ensuring
that String objects remain constant once created.

The S-RVM interface includes some utility methods that
allow copying to unsealed MuWriteableCharArrays and
from MuCharArrays using the VM implementation of the
array copy functions. It also includes the MuString class
which, like String, contains a MuCharArray, an offset and
a length. MuString is used for packing the information
about String objects when these are transferred between
the application and the VM.

4.4 Exceptions
When Java code encounters an exceptional situation it can
abort execution and throw an object of type Throwable or
any of its subtypes. The VM is required to generate and
throw exceptions when certain conditions, e.g. when the
application references a null pointer or when running out
of memory, occur.

Due to the separate type hierarchies, exceptions generated
in the VM task in S-RVM are not compatible with exceptions
in the application task and vice versa. S-RVM combines two
methods for ensuring exceptions are signaled and handled as
expected.

When the exception is the result of a hardware trap, such
as when it is the result of a null pointer reference or a divi-
sion by zero, S-RVM uses an upcall to the task to generate
the required exception object. For other exceptions, S-RVM
wraps each remote method with an exception handler that
converts the exception to the invoking task.

When S-RVM converts an exception it may lose some
type information. This loss occurs because the application
can declare exception types that are not recognised by the
VM. S-RVM, therefore, converts application exceptions to
the most specific supertype defined in the VM.

This loss of information cannot affect the VM response to
the exception because the VM can only handle the exception
types it recognises. If, however, the VM does not catch the
exception before returning to the application or if the VM re-
throws the exception, the loss of information may affect the
application As all the exception conversions that occur in our
benchmark do not lose type information, this is a theoretical
rather than an actual problem.

To rectify the information loss, the conversion code can
keep a reference to the original exception and use it instead
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1st Iteration 3rd Iteration 10th Iteration 20th Iteration
Benchmark JikesRVM S-RVM JikesRVM S-RVM JikesRVM S-RVM JikesRVM S-RVM

antlr 2,129 2,541 1,629 1,762 1,548 1,584 1,475 1,506
bloat 6,302 7,259 5,301 5,551 5,012 5,323 4,919 5,257
chart 9,373 10,083 6,444 6,353 6,383 6,214 6,403 6,217

eclipse 30,752 32,023 24,787 25,181 23,861 24,044 23,494 23,623
fop 2,202 2,600 1,636 1,694 1,546 1,533 1,501 1,498

hsqldb 2,909 3,273 1,959 2,011 1,881 1,836 1,775 1,677
jython 6,899 7,597 4,488 4,503 4,002 4,017 3,774 3,756

luindex 8,001 8,907 7,054 7,218 6,959 6,985 6,896 6,893
lusearch 2,583 2,980 1,657 1,605 1,459 1,454 1,438 1,443

pmd 5,122 5,793 4,085 4,094 3,907 3,828 3,774 3,711
xalan 2,598 2,910 1,845 1,905 1,623 1,626 1,598 1,595
mean 4,983 5,607 3,694 3,767 3,472 3,478 3,379 3,375

Table 2. Performance of JikesRVM and S-RVM

of converting the exception back to the application. As the
number of exceptions that are actually converted is very
low (less than 2,000 conversions in eclipse and less than
1,000 in any of the other DaCapo benchmarks), and as these
conversions only occur in the initial loading of classes, we
expect changes in the conversion algorithm will only have a
negligible effect on performance.

4.5 Summary
S-RVM is a proof-of-implementation of our design of com-
ponent isolation using sealed zones. S-RVM represents a
substantial change in JikesRVM’s design and as such re-
quires significant modifications to the software system of
which we have described the main architectural changes re-
quired to implement sealed zones. However, retrofitting an
existing system, enables us to make performance compar-
ison with the underlying single-tasked VM. The results of
this comparison are described in the next section.

5. Results
We have tested the performance of S-RVM on an IBM
x3500 server with two quad-core Xeon E5345 processors
and 24GB of RAM; running Fedora release 16. The VM
was compiled using the production configuration, with edge
count profiling information collected from running the Da-
Capo fop benchmark. We have retrofitted both S-RVM and
JikesRVM with the Double.toString() implementation
from the OpenJDK [22].

To measure the VM start up time we ran the time-
honoured “Hello World!” program on both S-RVM and on
JikesRVM 3.1.1. The JikesRVM image contains significant
parts of the Java library precompiled at a high optimisation
level. By contrast, the application task in S-RVM has no
classes preloaded. In addition to loading the code for the
application, the application task needs to load and compile
those classes of the Java library that the application uses. S-
RVM, therefore, takes much longer to start than JikesRVM.
Running “Hello World!” in JikesRVM 3.1.1 takes 68ms.
Running the same program in the S-RVM application task
takes 245ms—almost four times longer.

To measure the performance of optimised code in the
VM we use the DaCapo benchmark suite release 2006-10-
MR2. The DaCapo suite test harness runs each test multiple
times to allow adaptive compilers time to learn and adjust to
the program patterns. Table 2 shows the performance of the
DaCapo benchmarks in the first, third, tenth and twentieth
iteration on both JikesRVM 3.1.1 and on S-RVM. For each
benchmark we report the geometric mean of the results from
40 runs of the test, rounded to the nearest millisecond. For a
measure of the relative overall performance, we also report
the geometric mean of the running times of all benchmarks
for each configuration.

Figure 4 shows the performance results for S-RVM rel-
ative to JikesRVM. The value of 100 represents the perfor-
mance of JikesRVM for each benchmark scenario. As can
be seen in the diagram, in the first iteration S-RVM con-
sistently underperforms, with a mean performance indicat-
ing an overhead of over 10%. (The actual figure is around
12.54%.) However, as the number of repetitions increases,
the gap closes until it disappears at 10 iterations.

We have also tested the performance of the S-RVM code
without the added security of a separate task. (That is, the ap-
plication code was executed within the context of the VM, as
in JikesRVM.) The results, summarised in Figure 5 demon-
strate a much more consistent behaviour, with an overall
overhead of around 1.5%.

As S-RVM adds complexity to JikesRVM, a small over-
head is expected. The results of running S-RVM without a
separate task seem to match this expectation. The improved
performance seen in most of the benchmarks when running
the application in a separate task conflicts with our expecta-
tions.

We believe this improved performance is the result of
having two separate copies of the Java library. With two
copies of the Java library, each copy is optimised for a
different workload. The library in the VM is optimised for
the workload the VM generates while the library in the
application is optimised for the workload of the application.

This hypothesis is supported by two observations. The
first is that edge count information for some “hot” meth-

19



 90

 95

 100

 105

 110

 115

 120

a
n
tlr

b
lo

a
t

ch
a
rt

e
clip

se

fo
p

h
sq

ld
b

jyth
o
n

lu
in

d
e
x

lu
se

a
rch

p
m

d

xa
la

n

m
e
a
n

1st iteration
3rd iteration

10th iteration
20th iteration

Figure 4. Relative Performance of S-RVM

ods show significant differences between the VM and the ap-
plication. E.g. DaCapo fop tends to invoke AbstractMap.

equals with identical objects whereas the VM tends to use
different objects (68% identical for the application vs. 28%
for the VM). Edge count information improves optimisation.
Consequently, significant differences in edge count profiling
data are likely to translate to noticeable changes in perfor-
mance.

The second observation is that the optimising compiler
eliminates some code when compiling some application task
methods. An example is the search of the Atom table in
String.intern(), which is only required when executing
within the VM.

In JikesRVM and when S-RVM is run without task sepa-
ration, both these workloads share a single copy of the li-
brary. The optimising compiler cannot optimise the code
to either workloads, resulting in a less than optimal perfor-
mance of the Java library code.

In most benchmarks, the added performance of the spe-
cialised Java libraries is enough to more than offset the over-
head introduced by the added complexity of S-RVM, result-
ing in a better performance for these benchmarks. The most
notable exception is the bloat benchmark which shows a

Benchmark JikesRVM S-RVM Overhead
antlr 22MB 30MB 8MB (36%)
bloat 40MB 45MB 5MB (13%)
chart 36MB 45 MB 9MB (25%)

eclipse 60MB 69MB 9MB (15%)
fop 31MB 40MB 9MB (29%)

hsqldb 102MB 110MB 8MB (8%)
jython 35MB 44MB 9MB (26%)

luindex 24MB 31MB 7MB (29%)
lusearch 45MB 53MB 8MB (18%)

pmd 37MB 45MB 8MB (22%)
xalan 47MB 54MB 7MB (15%)

Average 7.9MB

Table 3. Memory Footprint of S-RVM

 90

 95

 100

 105

 110

 115

 120

a
n
tlr

b
lo

a
t

ch
a
rt

e
clip

se

fo
p

h
sq

ld
b

jyth
o
n

lu
in

d
e
x

lu
se

a
rch

p
m

d

xa
la

n

m
e
a
n

1st iteration
3rd iteration

10th iteration
20th iteration

Figure 5. Performance of S-RVM Without Task Separation

significant slowdown and the gap widens as the number of
iterations increases.

Table 3 shows the minimum heap size required for ex-
ecuting the DaCapo benchmarks on JikesRVM and on S-
RVM. S-RVM incurs a fairly constant overhead of about
8MB. While the relative overhead is significant, especially
for the smaller tests, its absolute value does not seem to
change much between the tests. With current memory sizes
an overhead of 8MB is not expected to be significant except
for the most extreme scenarios.

6. Conclusion
This paper addresses the issue of the overhead incurred by
controlling reference propagation for isolating components.
We present a study of zone types used in reference protection
and propose the use of sealed zones for achieving isolation.
We validate the proposed type system design by using it to
implement S-RVM.

S-RVM is a proof-of-implementation Java VM which
provides better security properties than JikesRVM, on which
it is based. S-RVM segregates application objects and con-
trols references between them and VM objects, thereby
restricting application access to internal VM data struc-
tures. We measure the performance of S-RVM with the Da-
Capo benchmark suite and demonstrate that on the average
S-RVM incurs no performance overhead over JikesRVM.
These performance results confirm that the design works
and that it works well.

7. Future Work
Rather than replicating library code used by the VM and the
application, it may be possible to share the classes meta-
data, including both the byte code and the compiled code.
Techniques for class sharing have been investigated in the
past [11, 12]. Applying these and similar techniques to S-
RVM can reduce the memory footprint and can provide pre-
compiled library code to the application, reducing the appli-
cation startup time. To provide the steady-state performance,
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“hot” methods would still need to be specialised and their
code cannot be shared.

S-RVM runs two separate components—the VM and the
application. Two natural extensions to this model are sup-
porting multiple components and multi-tasking.

At this stage, a rudimentary support for multi-tasking
is available. Initial performance evaluation indicates that
While some parallel benchmarks perform reasonably well,
in most cases multi-tasking in S-RVM is less efficient than
executing multiple VMs. As the scheduling and memory
management subsystems in JikesRVM are tuned for execut-
ing a single application, this result is to be expected. Past
research [23] suggested algorithms for multi-tasking mem-
ory management which may alleviate the problem.

Resource accounting and task termination, are not ad-
dressed by the current implementation. Accounting for I/O
and time resources is orthogonal to memory isolation. As the
type information of objects in S-RVM indicate the task the
object belongs to, we believe that the work we have done
will facilitate the accounting of memory resources. Further
research is required to validate this.

Task termination is a more difficult issue in the frame-
work we have chosen. The main limitation is that JikesRVM
does not, currently, support class unloading. Each task loads
a significant number of classes. Without class unloading a
terminating task would leave these classes in the system.
Each of these classes consumes resources. Hence the total
number of tasks that could, potentially, run on JikesRVM
and derivative systems is limited.

Another issue that will need addressing is the conver-
sion of legacy software. The level of effort required will de-
pend to a large extent on the design of the specific legacy
software. Monolithic software which lacks clear boundaries
will, probably, require a major reengineering effort. On the
other side of the spectrum, software designed for a dis-
tributed environment and which uses well defined explicit
communication mechanisms might only require replacing
the implementation of these mechanisms.

It would be interesting to see how much effort is required
for converting applications built with the OSGi framework.
Some reengineering would, probably, be required, but con-
version may be facilitated by the use of automated tools.
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