
1

Website Fingerprinting Through the Cache
Occupancy Channel and its Real World Practicality
Anatoly Shusterman, Zohar Avraham, Eliezer Croitoru, Yarden Haskal, Lachlan Kang, Dvir Levi, Yosef Meltser,
Prateek Mittal, Senior Member, IEEE, , Yossi Oren, Senior Member, IEEE, , and Yuval Yarom, Member, IEEE

Abstract—Website fingerprinting attacks use statistical analysis
on network traffic to compromise user privacy. The classical
attack model used to evaluate website fingerprinting attacks
assumes an on-path adversary, who observes traffic traveling
between the user’s computer and the network.

In this work we investigate a different attack model, in which
the adversary sends JavaScript code to the target user’s computer.
This code mounts a cache side-channel attack to identify other
websites being browsed. Using machine learning techniques to
classify traces of cache activity, we achieve high classification
accuracy in both the open-world and the closed-world models.
Our attack is more resistant than network-based fingerprinting
to the effects of response caching, and resilient both to network-
based defenses and to side-channel countermeasures. We carry
out a real-world evaluation of several aspects of our attack,
exploring the impact of the changes in websites and browsers
over time, as well as of the attacker’s ability to guess the software
and hardware configuration of the target user’s computer.

To protect against cache-based website fingerprinting, new
defense mechanisms must be introduced to privacy-sensitive
browsers and websites. We investigate one such mechanism, and
show that it reduces the effectiveness of the attack and completely
eliminates it when used in the Tor Browser.

I. INTRODUCTION

O ver the last decades the World Wide Web has grown
from an academic exercise to a communication tool that

encompasses all aspects of modern life. Users use the web
to acquire information, manage their finances, conduct their
social life, and more. This shift to the so called virtual life
has resulted in new challenges to users’ privacy. Monitoring
the online behavior of users may reveal personal or sensitive
information about them, including information such as sexual
orientation or political beliefs and affiliations.

Several tools have been developed to protect the online
privacy of users and hide information about the websites they
visit [21, 23, 81]. Prime amongst these is the Tor network [23],
an overlay network of collaborating servers, called relays, that
anonymously forward Internet traffic between users and web
servers. Tor encrypts the network traffic of all of the users, and
transmits it between relays in a way that prevents external
observers from identifying the traffic of specific users. The
Tor Project also provides the Tor Browser [97], a modified
version of the Firefox web browser, that further protects users
by disabling features that may be used for tracking users.

A. Shusterman, Z. Avraham, E. Croitoru, Y. Haskal, D. Levi, Y. Meltser,
and Y. Oren are with the Ben-Gurion University of the Negev

L. Kang performed this work while at the University of Adelaide
P. Mittal is with Princeton University
Y. Yarom is with the University of Adelaide and Data61

Past research has demonstrated that encrypting traffic is not
sufficient for protecting the privacy of the users [12, 33, 39,
41, 42, 50, 51, 61, 69, 76, 77, 83, 103, 104, 109]. Observable
patterns in the metadata of encrypted traffic, specifically, the
size of the transmitted data, its direction, and its timing, may
reveal the web page that the user is visiting. Applying such
website fingerprinting techniques to Tor traffic results in a
success rate of over 90% in identifying the websites that a
user visits over Tor [83].1

In this paper, we focus on an alternative attack model of
exploiting micro-architectural side-channels, a less explored
option for website fingerprinting. The attack model assumes a
victim that visits a website under the attacker’s control. The
website monitors the state of the victim computer’s cache, and
uses that information to infer the victim’s web activity in other
tabs of the same browser or even in other browsers.

Because the attack observes the internal state of the target
PC, rather than the network traffic, it offers the potential of
overcoming traffic shaping, often proposed as a defense for
website fingerprinting [13, 14, 18, 73, 105]. Similarly, the
attack may be applicable in scenarios where network-based
fingerprinting is known to be less effective, such as when the
browser caches the contents of the website [41].

We note that the malicious website does not need to be fully
under the control of the attacker. The attacker only needs to be
able to inject JavaScript code via the website to the victim’s
browser. This can be done, for example, through a malicious
advertisement or a pop-up window. Alternatively, documents
released by former NSA contractor Edward Snowden indicate
that some nation-state agencies have the operational capability
to exploit this vector on a wide scale. In March 2013 the
German magazine Der Spiegel reported on the existence of a
tool called QUANTUMINSERT, which the GCHQ and the NSA
could use to inject malicious code to any website [92]. The
Der Spiegel claims that the tool has been used to attack the
computers of employees at the partly-government-held Belgian
telecommunications company Belgacom and to target high-
ranking members of the Organization of the Petroleum Ex-
porting Countries (OPEC) at the organization’s Vienna head-
quarters. Finally, malicious advertisements are a viable option
for injecting cache side-channel attacks to browsers [32].

For a small number of websites, under the closed-world
model, Oren et al. [74] show the possibility of fingerprinting
via malicious JavaScript code. However, beyond showing the

1Website fingerprinting is a misnomer. Fingerprinting identifies individual
web pages rather than sites. Following this misnomer, in this work we use
the term website to refer to specific pages, typically the homepage of the site.

ability to distinguish between a handful of websites, their
work does not provide an analysis of the effectiveness of the
technique. Furthermore, following the disclosure of the Spectre
and the Meltdown attacks, which can also be potentially deliv-
ered via malicious JavaScript injection [54, 65], major vendors
deployed defenses against browser-borne side-channel attacks.
In particular, all modern browsers have reduced the resolution
of the JavaScript time function, performance.now(), by
several orders of magnitude [79, 102]. Traditionally, cache
attacks require high-resolution timers, and while mechanisms
to generate such timers in web browsers have been pub-
lished [35, 55, 86], it is not clear that these can be used for
website fingerprinting.

Thus, in this paper we ask: Are cache-based attacks a viable
option for website fingerprinting?

Our Contribution

We answer this question in the affirmative. We design
and implement a cache-based website fingerprinting attack
and evaluate it in both the closed-world and the open-world
models. We show that in both models our JavaScript-based
attacker achieves high fingerprinting accuracy even when the
attack is carried out on modern mainstream browsers that in-
clude all recently introduced countermeasures for side-channel
(Spectre) attacks. Even when taking these countermeasures to
the extreme, as is done in the Tor Browser, our attack remains
effective, although with a drop in accuracy.

Our attack consists of collecting traces of cache occupancy
while the browser downloads and renders websites. Adapting
the techniques of Rimmer et al. [83], we use deep neural
networks to analyze and to classify the collected traces. By
focusing on cache occupancy rather than on activity within
specific cache sets, our attack avoids the need for high resolu-
tion timers required by prior cache-based attacks. Furthermore,
because our technique does not depend on the layout of
the cache, it can overcome proposed countermeasures that
randomize the cache layout [66, 80, 106].

We investigate the source of the information in the cache
occupancy traces and show that they contain information from
both the networking activity and the rendering activity of
the browser. Using information from the rendering activity
allows our attack to remain effective even in scenarios that
thwart network-based fingerprinting, such as when the browser
retrieves data from its response cache and not from the
network, or when the network traffic is shaped.

We implement a potential countermeasure that introduces a
high level of activity into the last level cache. We show that
the countermeasure reduces the success rate of the attack. In
particular, the noise completely masks the activity of the Tor
Browser, reducing the attack accuracy to that of a random
guess. This countermeasure results in a mean slowdown of
5% for CPU benchmarks, which we consider reasonable when
visiting privacy-sensitive web sites.

Finally, we investigate several aspects that affect the real-
world applicability of the attack. We show that changes in
websites over time result in a gradual drop in the accuracy
of the attack, whereas the mere act of updating the browser
may result in significant drop in the ability to accurately

detect websites. We evaluate the attacker’s ability to probe
the hardware configuration of the target host, and show that
the attack can be resilient to incorrect guess of the hardware
and software configuration of the target.

More specifically, we make the following contributions:

• We design and implement the cache occupancy attack,
a cache-based side-channel attack technique which can
operate with the low timer resolution supported in modern
JavaScript engines. Our attacks only require a sampling
rate six orders of magnitude lower than required for the
prior attacks of Oren et al. [74] (Section IV).

• We evaluate the use of two machine learning techniques,
CNN and LSTM, for fingerprinting websites based on
the cache activity traces collected while loaded by the
browsers (Section V).

• We show that cache-based fingerprinting has high accu-
racy in both the closed- and the open-world models, under
a variety of operating systems and browsers (Section VI).

• We evaluate network-based and cache-based fingerprint-
ing with the browser response cache enabled, and show
that while the accuracy of network-based fingerprinting
drops significantly, the accuracy of cache-based finger-
printing is not affected (Section VII-C).

• We show that cache-based fingerprints contain infor-
mation both from the network activity and from the
rendering activity of the target device. Therefore, cache-
based fingerprinting maintains a high accuracy even in the
presence of traffic molding countermeasures which force
a constant bit rate on network traffic (Section VII-D).

• We explore real-world implications, including evaluating
the effects of concept drift and the importance of using
correct browser and cache size estimation on the finger-
printing accuracy, as well as evaluating a technique for
automatically determining the cache size (Section VIII).

• We design and evaluate a countermeasure that introduces
noise in the cache. The countermeasure is applicable from
both native code and from JavaScript and completely
blocks the attack on the Tor Browser, with a small
performance degradation. (Section IX).

II. BACKGROUND

A. Tor

Tor [23], is a collection of collaborating servers called re-
lays, designed to provide privacy for network communication.
Tor aims to protect users from on-path adversaries that can
observe the network traffic. In this scenario, a user uses a
PC to browse the web, and an adversary positioned between
the user’s PC and the destination web server captures the
information that the user exchanges with the web server.

A common protection for such an attack model is to use
encryption, e.g., using protocols such as TLS [22] which
underlies the security of the HTTPS scheme [82]. However,
this solution only protects the contents of the communication,
leaving the identity of the communicating parties exposed
to the adversary. Merely knowing that users connected to a

2

certain sensitive website may be enough to incriminate them,
even if the actual data exchanged over the secure connection
is not known. This risk became a reality in 2016, as tens
of thousands of individuals were persecuted by the Turkish
government for accessing the domain bylock.net [56].

The main aim of Tor is thus to protect the identity of the
communicating parties. Tor achieves this protection by for-
warding the users’ communication through a circuit consisting
of typically three Tor relays. The user encrypts the network
traffic with multiple layers of encryption, and each relay in the
circuit decrypts a successive layer to find out where to forward
the traffic. See Dingledine et al. [23] for further information.

B. Website Fingerprinting Attacks and Defences

In the conventional attack model of a network-level attacker,
much previous work has demonstrated the ability of an adver-
sary to make probabilistic inferences about users’ communi-
cations via statistical analysis, even if these communications
are in their encrypted form. These works have investigated
both the selection of features (such as packet sizes, packet
timings, direction of communication), as well as the design
of classifiers (such as Support Vector Machines, Random
Forests, Naive Bayes) to make accurate predictions [12, 33,
39, 41, 42, 50, 51, 61, 69, 76, 77, 83, 103, 104, 109]. In
response, several defense mechanisms have been proposed in
the literature [5, 13, 14, 18, 73, 105]. The common idea behind
these defenses is to inject random delays and spurious cover
traffic to perturb the traffic features and therefore obfuscate
users’ communications. A common point of all of these
defenses is a typical trade-off between latency/bandwidth and
privacy, and thus they face deployment hurdles. Rimmer et
al. [83] have recently proposed a family of classifiers based
on deep learning algorithms such as SDAE, CNN and LSTM,
which operate on the raw network traces, and are therefore
less sensitive to ad-hoc defenses against particular traffic
features. Following this work, Sirinam et al. [90] proposed
different CNN architectures that outperform previous attacks
on Tor Browser, and that can withstand the WTF-PAD [52]
countermeasure that modifies traffic characteristics.

One of the drawbacks of previous works is the high number
of traces required per website. To address this, Bhat et al. [7]
propose a neural network with a ResNet [40] architecture,
for high accuracy classification using a small amount of
data of packet timing information. Their experiments use
only 100 traces per website, achieving results comparable to
previous works which use thousands of traces. Sirinam et al.
[91] suggest another approach, using N-Shot learning [60].
Their approach compares pairs of feature traces for same and
different websites. It outputs a feature vector which is matched
against other output vectors of traces with known labels, and
classified to the most similar traces.

Another limitation of many website fingerprinting works
is the single-tab surfing assumptions. To overcome this lim-
itation, Xu et al. [108] proposed a classifier, combining the
Balance-Cascade [68] method and the XGBoost [16] classifier,
which finds the split point at which a second webpage is loaded
in another tab, and then classifies the first website. A different

approach, proposed by Zhuo et al. [114], uses a Profile Hidden
Markov Model (PHMM) [57]. This method builds a profile
out of a network trace of visiting a home-page of a website,
followed by deeper pages of the same site. It then calculates
the probabilities of a label given a sequence of network traces,
while treating the probabilistic noise inside each network trace.

C. Cache Side-Channel Attacks

When programs execute on a processor, they share the use of
micro-architectural components such as the cache. This shar-
ing may result in unintended communication channels, often
called side channels, between programs [31, 44], which may
be used to leak secret information. In particular, cache-based
attacks, which exploit contention on one of the processor’s
caches, can leak secrets such as cryptographic keys [4, 30, 75,
78, 98], keystrokes [36], address layout [27, 35, 37], etc.
Cache Operation. Caches bridge the speed gap between
the faster processor and the slower memory. The cache is a
small bank of memory, which stores the contents of recently
accessed memory locations. Most caches in modern processors
are set associative. The cache is divided into partitions called
sets. Each memory location maps to a single set and can only
be cached in the set it maps to. When the processor needs to
access a specific memory location, it successively searches in
a hierarchy of caches. In a cache hit, when the contents of the
required address is found in the cache, access is performed on
the cached contents. Otherwise, in a cache miss, the process
repeats on the next cache level. A miss on the last-level cache
(LLC) results in a time-consuming access to the RAM.
The Prime+Probe Technique. Past cache-based attacks
from web browsers [32, 74] employ the Prime+Probe tech-
nique [75, 78], which exploits the set-associative structure.
Each round of attack consists of three steps. In the first step,
the cache is primed, i.e., the attacker completely fills some of
the cache sets with their own data. The attacker then waits
some time to allow the victim to execute. Finally, the attacker
probes the cache by measuring the time it takes to access
the previously-cached data in each of the sets. If the victim
accesses memory locations that map to a monitored cache set,
the victim’s memory contents will replace the attacker contents
in the cache. Hence, the attacker will need to retrieve the
data from lower levels in the hierarchy, increasing the access
time to its data. Prime+Probe has been used for attacks on
data [75, 78] and instruction [3, 4] caches, as well as for
attacks on the LLC [48, 67]. It has been shown practical in
multiple settings, including across different virtual machines
in cloud environments [45] and from mobile code [32, 74].
Countermeasures in JavaScript. The time difference
between the latencies of a memory access and cache access
is on the order of 0.1µs. To distinguish between cache hits
and misses, cache attacks typically require a high resolution
timer. Following the first demonstration of a cache attack
in JavaScript [74], some browsers reduced the resolution of
the timers they provide. This approach had become wide-
spread after the disclosure of the Spectre attack [54], and
now all mainstream browsers incorporate this countermeasure.
Furthermore, while non-traditional timers in browsers have

3

been identified [29, 55, 86], browsers and extensions have
since disabled many of the features that allow sub-microsecond
resolution [71, 79, 87]. In particular, the Tor Browser restricts
the timer resolution to 100 ms, or 10 Hz.

Several of the previously discovered timers rely on browser
features that are accessible from JavaScript. These are not
accessible in environments such as Cloudflare Workers [9],
which rely on the absence of high-resolution timers to protect
against timing attacks [100].

D. Related Work

Several past works have looked at the possibility of per-
forming website fingerprinting based on local side-channel
information. In all of these works, which we survey in Table I,
the adversary observes some property of the system while the
victim browser is rendering a webpage. The adversary then
applies a machine learning classifier to the observed side-
channel trace to identify the rendered website.2 Some of these
works assume that the adversary has malicious control over
a hardware component or peripheral [19, 64, 110]. Others
assume that the adversary can execute arbitrary native code on
the target hardware [38, 49, 58, 70, 94]. Yet others only assume
that the adversary can induce the victim to render a webpage
containing malicious JavaScript code [10, 53, 70, 74, 101].
We mainly investigate the last model.

Kim et al. [53] abuse a data leak in the Chrome imple-
mentation of the Quota Management API, which has been
since fixed. Our attack, in contrast, is based on a fundamental
property of the CPU running the browser application, which is
far less trivial to fix (see Section IX). Moreover, the mitigations
put in place as part of the response to the Spectre and
Meltdown disclosures make the high sampling rates exploited
thus far [74, 101] unattainable in modern secure browsers.
Our attack, in contrast, achieves high accuracy at drastically
lower sampling rates and is capable of classifying a significant
number of websites at sampling rates as low as 10 Hz. To the
best of our knowledge, no cache attack that uses such low
clock resolutions has been demonstrated.

In addition, Oren et al. [74] only recorded a small number
of traces from a few popular websites, and did not investigate
the effectiveness of cache-based fingerprinting in open-world
contexts, or in scenarios where various anti-fingerprinting
measures are in place. We address all of these shortcomings in
this work. Furthermore, while Oren et al. [74] do target the Tor
Browser, the attack code executes in a different mainstream
browser. Unlike our work, they do not demonstrate an attack
from JavaScript code running within the Tor Browser.

Booth [10] is able to classify a moderate amount of websites
using a non-cache-based method with a millisecond clock.
Their attack, however, saturates all of the victim’s CPU
cores with math-intensive worker threads, making it highly
noticeable and easy to detect by the victim.

Cock et al. [20] implement a covert channel using an L1
cache occupancy channel. Ristenpart et al. [84] show that

2A different but closely related class of attacks are “history sniffing” attacks,
such as [62, 107], in which the attacker wishes to learn which websites the
victim has visited in the past.

a cache occupancy channel can detect keystroke timing and
network load in co-located virtual machines on cloud servers.
Both use the technique with high resolution (sub nanosecond)
timers. We are not aware of any prior use of the cache
occupancy channel to overcome low resolution timers.

III. THE WEBSITE FINGERPRINTING ATTACK MODEL

Target PC

Target AdversaryTarget Browser
Sensitive
Website

Secure Network

Figure 1: The classical website fingerprinting attack model.
The (passive) adversary monitors the traffic between the target
user and the secure network.

The classical attack model used to evaluate website finger-
printing attacks is presented in Figure 1. Here, the victim uses
a web browser to display a sensitive website. To protect their
privacy, the victim does not connect to the website directly,
but instead uses a secure network, such as the Tor network,
for the connection. The attacker is typically modeled as an on-
path adversary, who is capable of observing all traffic entering
and leaving the Tor network in the direction of the target user.
The adversary cannot understand the contents of the network
traffic since it is encrypted when it enters the Tor network.
The adversary is furthermore unable to directly determine the
ultimate destination of the communications after it exits the
Tor network, thanks to Tor’s routing protocol. Finally, due
to the encryption and the validation of the Tor network, the
attacker is unable to modify the traffic without terminating the
connection. An important thread of research on the security of
Tor has investigated the ability of such an adversary to perform
statistical traffic analysis of encrypted traffic, and then to
make probabilistic inferences about the victim’s communica-
tions [12, 39, 41, 42, 50, 51, 61, 69, 76, 77, 83, 103, 104, 109].

Gong et al. [33] suggest a variation on this scheme, in which
the attacker remotely probes routers to estimate the load of
the network traffic they process and performs the statistical
analysis based on this estimate. Jansen et al. [50] suggest
another variation in which the attacker monitors the traffic
inside the Tor network, rather then at the network’s edge.

In this work we discuss a different attack model, presented
in Figure 2. In this model, the target user has two concur-
rent browsing sessions. In one session, the user browses to
an adversary-controlled site, which contains some malicious
JavaScript code. In the other session, the user browses to
some sensitive website. Due to architectural boundaries, such
as sandboxing or process isolation, the malicious code cannot
directly observe the internal state of the sensitive session.
Hence, the adversary cannot directly determine the destination
of any communication issued from the sensitive session, even
when the sensitive session is using a direct unencrypted
connection to the remote server. The malicious code can,
however, observe the micro-architectural state of the processor,
and use this information to spy on the sensitive session.

4

Table I: Related work on website fingerprinting based on local side channels.

Sampling
Work Target Side Channel Attack Model rate [Hz]

Clark et al., 2013 [19] Chrome (Mac, Win, Linux) Power consumption Hardware 250000
Yang et al., 2017 [110] Multiple smartphones Power consumption Hardware 200000
Lifshits et al., 2018 [64] Android Browser, Chrome Android Power consumption Hardware 1000
Jana and Shmatikov, 2012 [49] Chrome Linux, Firefox Linux, Android Browser (VM) App memory footprint Native code 100000
Lee et al., 2014 [58] Chromium Linux, Firefox Linux GPU memory leaks Native code N/A
Spreitzer et al., 2016 [94] Chrome Android, Android Browser, Tor Android Data-Usage Statistics Native code 20–50
Gülmezoglu et al., 2017 [38] Chrome Linux (Intel and ARM), Tor Linux Performance counters Native code 10000
Matyunin et al., 2019 [70] Multiple smartphones Magnetometer Native code 10–100

and JavaScript
Oren et al., 2015 [74] Safari MacOS, Tor MacOS Last-level cache JavaScript 108

Booth, 2015 [10] Chrome (Mac, Win, Linux), Firefox Linux CPU activity JavaScript 1000
Kim et al., 2016 [53] Chromium Linux, Chrome (Win, Android) Quota Management API JavaScript N/A
Vila and Köpf, 2017 [101] Chromium Linux, Chrome Mac Shared event loop JavaScript 40000
This work Chrome (Win, Linux), Firefox (Win, Linux), Safari

MacOS, Tor Linux
Last-level cache JavaScript 10–500

Target PC

Target

Architectural
Boundary

Sensitive Session
Sensitive
Website

Standard Session
Standard
Website

Adversary

Secure Network

Figure 2: Remote cache-based website fingerprinting attack
model. The remote attacker injects malicious JavaScript code
into a browser running on the target machine.

Our attack can therefore be considered in two scenarios:

• A cross-tab scenario, where a user is made to
visit an attacker-controlled website containing malicious
JavaScript, and this website tries to learn what other
sensitive sites the user is visiting at the same time. These
attacker-controlled and sensitive browsing sessions can
be carried out on the same browser, on two different
browsers belonging to the same user, or even on two
browsers residing in two completely isolated virtual ma-
chines which share the same underlying hardware [85].
One possible way of causing the user to browse to such
an attacker-controlled site is through a phishing attack,
where the attacker sends fraudulent messages, purporting
to be from a benign source, that induces the victim to
click on a link to a malicious website. Alternatively, the
attacker may pay an advertisement service to display a
(malicious) advertisement when the user visits a third-
party website [32].

• A cross-network scenario, where the attacker is an active
on-path adversary capable of injecting JavaScript into any
non-encrypted page. The attacker would like to leverage
that access to try to learn about the user’s sensitive
activity, even though the attacker cannot manipulate or
access this traffic directly. For example, the user may si-

multaneously run one browsing session over an unsecured
connection for mundane tasks, and another browsing
session over a second, secured connection for sensitive
tasks. An attacker capable of modifying traffic on the
standard link can learn about activity carried out over
the secured link, whether this secure connection made
through a VPN, through the Tor network, or even through
a separate network adapter which the attacker cannot see.

The main challenge of our attack model is the extremely
restricted JavaScript runtime, which requires the attacker code
to be written in a particular way, as described in Section IV.

Regardless of the delivery vector, cache-based fingerprinting
has a strong potential advantage over network-based finger-
printing, since it can indirectly observe both the computer’s
network activity and the browser’s rendering process. As
we demonstrate in Section VII-D, both of these elements
contribute to the accuracy of our classifier.

IV. DATA COLLECTION

A. Creating memorygrams

The raw data trace for network-based attacks takes the form
of a network trace, commonly in the pcap file format, which
contains a timestamped sequence of all traffic observed on
a certain network link. The corresponding data trace in the
case of cache attacks is the memorygram [74]—measured
at a constant sampling rate over a given time period. The
memorygrams of Oren et al. [74] describe the latency of
multiple individual sets or groups of sets at each point in time,
resulting in a two-dimensional array. In contrast, in this work
we use a simplified, one-dimensional memorygram form. The
contents of each entry in our memorygrams is a proxy for the
occupancy of the cache at the specific time period. We collect
memorygrams while the browser loads and displays websites,
and use the data as fingerprints for website classification.
The Cache Occupancy Channel. Unlike prior works [32,
74], which use the Prime+Probe side-channel attack from
JavaScript, we use a cache occupancy channel. The main
difference is that the Prime+Probe attack measures contentions
in specific cache sets, whereas our attack measures contention

5

over the whole cache. Specifically, our JavaScript attack al-
locates an LLC-sized buffer and measures the time to access
the entire buffer. The victim’s access to memory evicts the
contents of our buffer from the cache, introducing delays for
our access. Thus, the time to access our buffer is roughly
proportional to the number of cache lines that the victim uses.
Cache occupancy has previously been implemented in native
code and used for covert channels and for measuring co-
resident activity [20, 84]. Both of these implementations rely
on high resolution timers. We are not aware of any prior use
of the cache occupancy channel with a low resolution timer.

Native-code and JavaScript Memorygrammers. The
results in this paper compare two different memorygramming
methods – a native-code memorygrammer based on the Mastik
toolkit [111], which is written in C, and a portable code
memorygrammer, which is written in JavaScript. While both
the native-code memorygrammer and the JavaScript memory-
grammer run without super-user permissions, the native-code
memorygrammer offers several advantages to the attacker.
First and foremost, the native-code memorygrammer has ac-
cess to high-resolution timers, on the order of nanoseconds,
and is also able to query the CPU’s internal performance
monitoring counters. The JavaScript memorygrammer, in con-
trast, has more limited timer access. Another advantage of the
native-code memorygrammer is its direct access to memory.
While the native-code memorygrammer, which is running in
user mode, cannot completely map between its virtual address
space and physical memory, it can still determine the LLC
cache set responsible for each memory location in its own
address space. This is due to the use of the “huge pages”
memory mapping mode, in which the lowest 21 bits of the
virtual address are equal to those of the physical address. The
JavaScript memorygrammer, in contrast, is unable to directly
access memory, neither virtual nor physical, and relies on
accesses to JavaScript array objects, whose base address is
completely unknown to the attacker. We therefore consider
the native-code results to be a form of upper bound on the
performance of the cache occupancy channel, against which
the JavaScript results can be compared.

Overcoming Hardware Prefetchers. Ideally, we would like
to collect information across the whole cache. Intel processors,
however, try to optimize memory accesses by prefetching
memory locations that the processor predicts will be accessed
in the future. Because prefetching changes the cache state, we
need to fool the prefetchers. To fool the spatial prefetcher [47],
we use the technique of Yarom and Benger [112] and do not
probe adjacent cache sets. To fool the streaming prefetcher,
which tries to identify sequences of cache accesses, we use a
common approach of masking access patterns by randomizing
the order of the memory accesses we perform [67, 75].

Spatial Information. Compared with the Prime+Probe
attack, the cache occupancy channel does not provide any
spatial information. That is, the adversary does not learn
any information on the addresses that the victim accesses.
While this is a clear disadvantage of the cache occupancy
channel, our attack does not require spatial information. The
main reason is that modern browsers have complex memory

allocation patterns. Consequently, the location at which data
is allocated changes each time a page is downloaded, and the
location carries little information on the downloaded page. In
practice, not having spatial information is also an advantage.
Without it, there is no need to build eviction sets for cache
sets, a process that can take significant time [32].
Website Memorygrams. We capture memorygrams when
the browser navigates to websites and displays them. We use
a JavaScript-based memorygrammer to probe the cache at a
fixed rate of one sample every 2 ms. We continue the probe
for 30 seconds, resulting in a vector of length 15,000. When
a probe takes longer than 2 ms, we miss the slot of the next
probe. We use a special value to indicate this case. We use
this collection method for all mainstream browsers other than
the Tor Browser.

When the attack code is launched from within the Tor
Browser, where the timer resolution is limited to 100 ms, we
do not measure how long a sweep over the cache takes, but
instead count how many sweeps over the entire cache fit into
a single 100 ms time slot. In addition, we do not probe for 30
seconds in this setting, but rather for 50 seconds, to account
for the slower response time over the Tor network. Hence,
Tor memorygrams contain 500 measurements over the entire
50 second measurement time period.

The native-code memorygrammer used for the evaluations
in Section VII does not suffer from a reduced timing resolution
when measuring the Tor Browser. Therefore, on mainstream
browsers it runs for 30 seconds and produces 15,000 entries,
and on the Tor Browser it runs for 50 seconds and produces
25,000 entries.

Wikipedia

Github

Oracle

Figure 3: Examples of memorygrams. Time progresses from
left to right, darker shades correspond to more evictions.

Sanity Check. Before proceeding, we want to verify that
memorygrams can be used for fingerprinting. Indeed, Figure 3
shows graphical representations of memorygrams of three
sites: Wikipedia (https://www.wikipedia.com), Github (https:
//www.github.com), and Oracle (https://www.oracle.com), col-
lected through the native-code memorygrammer. Each memo-
rygram is displayed as a colored strip, where time goes from

6

https://www.wikipedia.com
https://www.github.com
https://www.github.com
https://www.oracle.com

left to right and the shade corresponds to cache activity (darker
shades correspond to more evictions). We see that the three
memorygrams of each site, while not identical, are similar
to each other. The memorygrams of different websites are,
however, very different from each other. This indicates that
memorygrams may be used for identifying websites.

B. Datasets

Closed World Datasets. We evaluate our cache-based
fingerprinting on six different combinations of browsers and
operating systems, summarized in Table II. Many early works
on website fingerprinting operated under a closed world as-
sumption, where the attacker’s aim is to distinguish among
accesses to a relatively small list of websites. Our closed
world datasets follow this line of work. These datasets consist
of 100 traces each for a set of 100 websites, to a total of
10,000 memorygrams. We use the same list of 100 websites
that Rimmer et al. [83] selected from the top Alexa sites.
Similar to previous works, no traffic molding is applied and
only one tab is opened at a time.
Open World Datasets. One common criticism of the
closed world assumption is that it requires the attacker to
know the complete set of websites the victim is planning to
visit, allowing the attacker to prepare and train classifiers for
each of these websites. This assumption was challenged by
many authors, for example Juárez et al. [51]. To address this
criticism, website fingerprinting methods are often evaluated
in an open-world setting. In this setting, the attacker wishes to
monitor access to a set of sensitive websites, and is expected
to classify them with high accuracy. Additionally, there is a
large set of non-sensitive web pages, all of which the attacker
is expected to generally label as “non-sensitive”.

To evaluate our fingerprinting method in the open-world
settings, we augment the closed-world datasets with additional
5,000 traces, each collected for a single unique website, again
using the list of websites provided by Rimmer et al. [83]. The
base rate for this setting is 33.3%, since a trivial classifier can
simply decide that all pages are non-sensitive.

C. Limiting Assumptions

As noted by Juárez et al. [51], many academic works that
deal with website fingerprinting make assumptions on the
conditions of the attacker and the system under attack that
are different from those encountered outside the lab. Our
threat model and data collection protocol also makes several
assumptions, as listed below.
Synchronization. Each trace in our data set contains a
single web browsing session, from beginning to end. A real-
world attacker would be faced with a continuous trace where
the beginning and end of browsing sessions is not clearly
marked, and in which multiple browsing sessions may overlap.
In the network-based website fingerprinting scenario, little to
no traffic travels through the network unless the user is actively
fetching a webpage. This makes the task of synchronization
relatively easy. In the cache-based scenario, however, the cache
is always active to a degree, even before the browser starts

to receive and render the webpage. Recognizing the start of
a trace may therefore be more difficult in the cache-based
setting than in the network-based setting, especially in the
case of a real attack. Our framework implicitly synchronizes
the trace with the start of the download. Due to varying
network conditions, we see differences of up to six seconds
between trace start and render start. As such, we believe
that our technique can identify websites even without the
synchronization. Further experimentation is required, however,
to verify this fact. We also note that if the machine is otherwise
idle, cache activity can serve as a (slightly noisy) indicator of
the start of the trace.
Hardware Diversity. Despite the diversity of CPU gen-
erations and configurations evaluated in this work, we only
used Intel CPUs. While in principle the cache contention
attack is agnostic of the specific structure of the cache, more
experiments are needed to verify its effectiveness on other
CPU architectures, such as Arm and AMD.
Full Cache Eviction. Our JavaScript code allocates a buffer
of the size of the victim’s LLC, and repeatedly accesses it
to observe cache occupancy. In Section VIII-D we evaluate
the adversary’s ability to correctly estimate the size of the
cache. The question remains, however, as to whether a single
pass over this buffer will cause it to fill up the whole LLC,
evicting all other entries. Unless the cache uses a true LRU
policy, some entries may not be replaced in a single pass over
the buffer. Worse, the mapping from virtual addresses used by
the program to physical addresses used to index the cache is
unlikely to be uniform. In Section VIII-C we show that the
attacker does not need to have an exact coverage of the cache
for the attack, hence we believe that full cache eviction is not
necessary for the attack.

V. MACHINE LEARNING

A. Problem Formulation

Website fingerprinting is generally formulated as a super-
vised learning problem, consisting of a template building step
and an attack step. In the template building step, the adversary
visits each target website multiple times and collects a set
of labeled traces (either network traces or memorygrams),
each corresponding to a visit to a certain website. Next, the
adversary trains a classifier on these labeled traces, using either
classical machine learning methods or deep learning methods.

In the attack step, the adversary is presented with a set
of unlabeled traces, each one corresponding to a visit to an
unknown website. The adversary then applies the previously
trained classifier to each of these traces and outputs a guess for
each trace. The accuracy of the classifier is finally calculated
as the percentage of the correctly assigned labels.

B. Deep Learning Models

Early works on website fingerprinting, starting from Cheng
and Avnur [17], used classical machine learning methods such
as Naive Bayes, Support Vector Machine (SVM) and k-Nearest
Neighbors (KNN). As a prerequisite step to running these
classical machine learning methods, the adversary needs to

7

apply an additional feature extraction step which transforms
the raw trace into a more succinct representation. Since these
features were chosen through human insight into the nature
of network traffic, there was no immediate way of directly
applying them to memorygram analysis.

Abe and Goto [2] and later Rimmer et al. [83] suggest
using deep learning for website fingerprinting. Deep learn-
ing performs automatic feature learning from the raw data,
reducing the reliance on human insight at the cost of a larger
required training set. Rimmer et al. [83] show that, given a
large enough training set, deep-learning website-fingerprinting
approaches are as effective as earlier methods. An advantage
of this approach is that it allows us to compare network-based
and cache-based fingerprinting operating directly on the raw
data, rather than on a specific choice of features.

Deep Neural Network Configuration. A deep neural
network (DNN) is typically configured as a sequence of non-
linear layers which transform the raw data, first extracting
salient features and then selecting the appropriate ones [34].
Every layer in a DNN consists of a set of artificial neurons,
each connected to a set of outputs from the previous layers.
At the forward propagation stage, the activation function is
applied to the product of the each neuron’s input and its weight
value, and then forwarded to the next layer. As a last layer,
we use a softmax layer, which outputs a vector containing
a-posteriori probabilities for each of the classes.

The process of training the neural network uses back-
propagation to update the weights of each neuron to achieve
a minimum loss at the output. First, the model calculates the
cost between the true classification of the measurement and the
predicted value using a loss function. Next, the model updates
the weights of the each neuron based on the calculated loss.
Every round of forward propagation and back-propagation is
called an epoch. A neural network model runs multiple epochs
to learn the weights for accurate classification.

We evaluate deep learning using two classifier models,
Convolutional Neural Networks (CNN) and Long Short-Term
Memory (LSTM) networks [43]. A CNN uses a sequence
of feature mapping layers alternating between convolutions
and max-pooling. Each of the layers sub-samples the previous
layer, iteratively reducing the size of the input to a more suc-
cinct representation, while preserving the information they en-
code. Each convolutional layer is a neural network specialized
for detecting complex patterns in its input. The convolution
layer applies several filters to the input vector, each of which is
designed to identify an abstract pattern in a sequence of input
elements it is provided with. The max-pooling layers reduce
the dimensionality of the data by subsampling the filters,
choosing the maximum value from adjacent groups of neurons
applied by the filters. This alternating sequence of layers
extracts complicated features from the input and produces
vectors short enough for the classifiers. The feature mapping
layers are followed by a dense layer, in which every neuron
is connected to every output of the feature extraction phase.
The LSTM-based network has an initial feature selection step
similar to the CNN, but then adds a layer in which each neuron
has a memory cell, with the output of this neuron determined

both by its inputs and by the value of this memory cell. This
allows the classifier to identify patterns in time-based data.
Hyperparameter Selection. Hyperparameters describe the
overall structure of the DNN and of each layer. The choice
of hyperparameters depends on the specific classification
problem. For network-based fingerprinting, we replicated the
parameters specified in the dataset provided by Rimmer et
al. [83]. For cache-based fingerprinting, we manually evaluated
several choices for each hyperparameter.

To prevent overfitting, we use 10-fold cross validation. We
split each dataset into 10 folds of equal size, and select one
fold, as a test set. The remaining 90% of the traces are used
for training the classifier, with 81% serving as the training set
and 9% as the validation set. The model trains on the training
set and the evaluation is done on the test set. The number of
epochs is regulated with an Early-Stop function which stops
the epochs when the accuracy of the validation set no longer
increases over successive iterations.

For the CNN classifier we use three pairs of convolution
and max pooling layers. For the LSTM classifier we use two.
As discussed above, the traces captured by the code running
within the Tor Browser contain only 500 measurements, due
to the reduced timer resolution. For these shorter traces, we
modified the architecture of our LSTM-based classifier. The
feature selection of this classifier contains only one convolu-
tion layer. We therefore used a pool-size of three for the max-
pooling layer to limit the feature reduction before the LSTM
layer. In addition, because of the small amount of features, we
could increase the number of LSTM units to 128 and learn
more complex patterns. The full hyperparameter tuning space
is described in Shusterman et al. [88, Appendix A].

VI. RESULTS

All of the results in this section were obtained by using
Keras version 2.1.4, with TensorFlow version 1.7 as the back
end, running on two Ubuntu Linux 16.04 servers, one featuring
two Xeon E5-2660 v4 processors the other two Xeon E5-2620
v3, both with 128 GB RAM. Our machine learning instances
took approximately 40 minutes to run in this configuration.

Table II presents the fingerprinting accuracy we obtain.
Recall that in this scenario the JavaScript interpreter of the
targeted browser executes the memorygrammer. Considering
that all modern browsers reduced their timer resolution and
some added jitter as a countermeasure for the Spectre at-
tack [79, 102], the first question we need to address is whether
it is even possible to implement cache-based fingerprinting
attacks in such an environment.

To answer this question, we measured the latencies of the
cache occupancy channel as the browser was rendering a rep-
resentative webpage, using the native code memorygrammer.
The measurement was made on a desktop computer featuring
an Intel Core i5-25006 CPU at 3.30 GHz with 6 MB last-
level cache, running CentOS 7.2.1511. Figure 4 shows the
cumulative distribution function (CDF) of the latencies of the
14,632 samples collected while rendering the Facebook home
page (https://facebook.com). The figure also highlights the
timer resolutions of three mainstream browsers. (See Table II.)

8

https://facebook.com

Table II: Accuracy obtained by in-browser memorygrammerdeviation.

Operating LLC Timer Closed World Open World
System CPU Size Browser Resolution CNN LSTM CNN LSTM

Linux i5-2500 6 MB Firefox 59 2.0 ms 78.5±1.7 80.0±0.6 86.8±0.9 87.4±1.2
Linux i5-2500 6 MB Chrome 64 0.1 ms 84.9±0.7 91.4±1.2 84.3±0.7 86.4±0.3
Windows i5-3470 6 MB Firefox 59 2.0 ms 86.8±0.7 87.7±0.8 84.3±0.6 87.7±0.3
Windows i5-3470 6 MB Chrome 64 0.1 ms 78.2±1.0 80.0±1.6 86.1±0.8 80.6±0.2
Mac OS i7-6700 8 MB Safari 11.1 1.0 ms 72.5±0.7 72.6±1.3 80.5±1.0 72.9±0.9
Linux i5-2500 6 MB Tor Browser 7.5 100.0 ms 45.4±2.7 46.7±4.1 60.5±2.2 62.9±3.3
Linux i5-2500 6 MB Tor Browser 7.5 (top 5) 100.0 ms 71.9±2.1 70.0±1.7 80.4±1.7 82.7±1.8

As we can see, even at the 2 ms resolution of the Firefox 59
timer, it is possible to distinguish between 80% of the probes
which take less than 2 ms and the remaining 20%. This is
a welcome side-effect of the use of a large buffer which is
accessed at every probing step. None of the cache probes
we measured, however, took longer than the 100 ms clock
period of the Tor Browser. Hence, when running within the
Tor Browser, we count the number of probes we can perform
within each clock tick. (See Section IV.)

0.0

0.2

0.4

0.6

0.8

1.0

 0 1 2 3 4

F
ir
e
fo

x
 5

9

S
a
fa

ri
 1

1
.1

C
h
ro

m
e
 6

4

F
ra

c
ti
o
n
 o

f
S

a
m

p
le

s

Latency (msec)

CDF of Latency

Figure 4: Cache probe latencies vs. browser timer resolutions.

The next question is whether the information we collect
with such a low resolution is sufficient for fingerprinting.
Indeed, Table II shows that in all of the environments we
test our classifier is significantly better than a random guess.
Remarkably, as our results show, even the highly restricted Tor
Browser can be used for mounting cache attacks, albeit with
a significantly lower accuracy than that mainstream browsers.

A. Closed World Results

We first look at the typical closed-world scenario investi-
gated by past works. In mainstream browsers, our JavaScript
attack code is consistently able to provide classification ac-
curacies of 70–90%, well over the base rate of 1%. The Tor
Browser attack, however, achieves a lower accuracy of 47%.
Yet, if we look not only at the top result output by the classifier,
but also check whether the correct website is one of the top
five detected websites, the accuracy of the Tor Browser attack
climbs to 72%, with a base rate of 5%. This method of looking
at the few most probable outputs of a classifier was previously
used in similar classification problems [15, 72]. With some a-
priori information an attacker can deduce which of the top five
pages the victim has accessed.

We can compare the accuracy of our cache-based finger-
printing to the one obtained by state-of-the-art network-based
methods, as reported by Rimmer et al. [83]. We see that while
there are differences between the classification accuracies
achieved in each case, the overall accuracy is comparable,

assuming both attacks capture the same amount of traces
per website. As in the network-based setting, we believe that
capturing more than 100 traces per website is likely to increase
the accuracy and the stability of our classifier.

B. Open World Results

We next turn into a different scenario of open-world dataset.
Recall that in this scenario the classifier needs to distinguish
between 101 classes. These include one class for each of the
100 sensitive websites, as well as one generic non-sensitive
class for all 5000 websites not included in the sensitive classes.
The best strategy for a random classifier in this case would
be to always classify all traces as non-sensitive, providing a
base accuracy rate of 33%. As seen in Table II, the accuracies
the classifiers achieve in this case are 70–90%, slightly better
results than in a closed-world scenario. The reason might be
that the classifier easily recognizes the non-sensitive class that
includes 33% of the traces in the dataset.

If we group all of the sensitive classes into a meta-class of
“sensitive websites”, the classification between sensitive vs.
non-sensitive sites becomes a binary classification problem.
We can, therefore, apply standard analysis techniques to this
aspect of the results. Using this labelling, we achieved a near
perfect classification in all of the open world settings we
evaluated, achieving an area under curve (AUC) of more than
99% in all cases, meaning that there is minimal confusion
between these two groups.

Table III: Average precision and recall obtained by in-browser
memorygrammer for LSTM model in open-world setting.

Operating System Browser Precision Recall

Linux Firefox 59 87.1±0.3 84.8±0.4
Linux Chrome 64 94.8±1.4 94.0±1.3
Windows Firefox 59 92.9±0.4 91.9±4.3
Windows Chrome 64 91.7±2.4 88.5±0.4
Mac OS Safari 11.1 80.0±0.5 77.3±0.6
Linux Tor Browser 7.5 57.8±0.3 55.7±3.6

Another set of metrics we can use are the average preci-
sion and recall our classifiers achieve across all 101 classes.
Precision for a class is defined as TP

TP+FP , where TP is
the number of true positives, i.e. the number of traces of
the class for which the classifier correctly detects the class,
and FP is the number of false positives, i.e. the number
of traces of other classes that the classifier claims belong
to the measured class. Recall is defined as TP

TP+FN , with
FN being the number of false negatives—traces of the class

9

that the classifier misclassifies. We calculate the precision and
the recall for each class separately and report the simple,
unweighted average, to avoid bias toward the majority class.
Table III shows the results for the LSTM classifier, which
in our experiments performs better than others. As shown
in the table, the classifier achieves recall rates of 77–94%
and precisions of 80–95% for mainstream browsers. For the
Tor Browser, the precision and recall are 56% and 58%
respectively, slightly worse than for mainstream browsers, but
still significantly better than the base rate.

VII. ROBUSTNESS TESTS

We now turn our attention to the robustness of our website
fingerprinting technique and test its resilience to issues known
to affect network-based fingerprinting.

A. Evaluation Setup

Collection Host

Memorygrammer

Target Browser Network TracerTest Harness

Network

Figure 5: Data Collection Setup for the Robustness Tests.

To compare the results of network fingerprinting with cache-
based fingerprinting, we need to modify our data collection
setup. The setup, illustrated in Figure 5, consists of two data
collection hosts. The memorygram collection host, which sim-
ulates the victim’s machine, runs both the target browser and
the memorygrammer software. The network tracer sits on-path
between the memorygram collection host and the Internet, and
collects a record of the network traffic. A test harness written
in Perl and Python invokes the memorygrammer, the network
tracer and the target browser at the same time, then saves
a correlated data record consisting of the memorygram, the
network trace in pcap format, and a screenshot of the target
web page for monitoring purposes. For data collection, we
use HP Elite 8300 desktop computers featuring Intel Core i5-
2500 CPUs at 3.30 GHz, with a 6 MB last-level cache, running
CentOS 7.2.1511 and either Firefox 59 or Tor Browser 7.5.

For the robustness tests we use a native-code memorygram-
mer, which is based on the Prime+Probe implementation of
Mastik, a side-channel toolkit released under the GNU Public
License [111]. We apply two modifications to the Mastik code.
First, we change the Prime+Probe code to measure cache
occupancy rather than activity in specific cache sets. Secondly,
we use the processor’s performance counters [46] to count the
number of cache evictions rather than use the high resolution
timer to identify evictions. The use of performance counters
for attack purposes has already been proposed and investigated
in the past [8, 11, 59, 99]. Every dataset of the following

scenarios contains 100 traces for each of the 100 URLs in a
closed-world setting, with memorygram traces and associated
network traces for comparison.

B. Baseline Scenario

Our baseline scenario replicates the results of our closed-
world JavaScript memorygrammer, as well as some of the
results of Rimmer et al. [83]. As we can see in Table IV,
the native-code memorygrammer gives a slightly better accu-
racy than the JavaScript memorygrammer on Firefox. When
attacking the Tor Browser, the native-code memorygrammer
achieves much better results than the in-browser JavaScript
code. We believe that the cause of the improvement is the
higher probing accuracy afforded by the native-code memory-
grammer. In both browsers, we achieve similar results to those
achievable with network-based fingerprinting.

C. Enabling the Response Cache

Network-based fingerprinting methods, by definition, must
rely on network traffic to perform classification. Typically,
due to caching, many web pages are loaded with partial
or no network traffic. As specified in RFC 7234 [28], the
performance of web browsers is typically improved by the
use of response caches. When a web browser client requests a
remote resource from a web server, the server can specify that
a particular response is cacheable, and the web browser can
then store this response locally, either on disk or in memory.
When the page is next requested, the web browser can ask
the server to send the response only if it has been modified
since the last time it was accessed by the client. In the case
of a response cache hit, the server only returns a short header
instead of the complete remote resource, resulting in a very
short network traffic sequence. In some cases, the client can
even reuse the cached response without querying the server for
a remote copy, resulting in no network traffic at all. Herrmann
et al. [41] demonstrate a significant decrease in the accuracy
of web fingerprinting when the browser uses the response
cache. Indeed, deleting or disabling the browser cache prior
to fingerprinting attacks is a common practice [76, 103].

We enable caching of page contents by the browser, and
measure the effect on fingerprinting accuracy. In the Firefox
browser we simply refrain from clearing the response cache
between sessions. For privacy reasons, the response cache in
the Tor Browser does not persist across session restarts. Hence,
when collecting data on the Tor Browser we “prime” the cache
before every recording by opening the web page in another tab,
allowing it to load for 15 seconds, then closing the tab.

When we keep the browser’s response cache, the advantage
of cache-based website fingerprinting emerges. As Table IV
shows, the accuracy of the standard network-based methods
degrades when caching is enabled. We can see a degradation
in accuracy of over 20% in the fingerprinting accuracy. In
contrast, the cache-based methods are largely unaffected by
the reduction in network traffic, achieving high accuracy
rates. This result supports the conclusion that the cache-
based detection methods are not simply detecting the CPU
activity related to the handling of network traffic, making them

10

Table IV: Accuracy obtained in robustness tests — Mean (percents) and Standard deviation.

Firefox Network Firefox Cache Tor Network Tor Cache
Test CNN LSTM CNN LSTM CNN LSTM CNN LSTM

Baseline 86.4±1.0 93.2±0.5 94.9±0.5 94.8±0.5 77.6±1.6 90.9±0.7 72.7±0.7 80.4±0.5
Response cache enabled 56.1±1.5 70.6±1.5 92.2±0.8 92.2±0.5 55.5±1.7 65.9±1.0 86.1±0.5 86.3±0.6
Render only – – – – 1.0±0.0 1.0±0.0 63.3±1.1 63.9±1.5
Network only – – – – 77.6±1.6 90.9±0.7 19.9±1.8 51.9±2.7
Concept drift – – – – 64.5±2.2 81.0±0.6 68.3±0.5 75.6±0.7

essentially a special case of network-based classifiers, but are
rather detecting rendering activities of the browser process.

D. Net-only and Render-only Results

Oren et al. [74] show that cache activity is correlated with
network activity, suggesting that cache-based fingerprinting
identifies the level of network activity. To rule out this pos-
sibility and show that website rendering also contributes to
fingerprinting, we separate rendering (or more precisely, data
processing) activity from handling of network data.
Render-Only Fingerprinting. To capture the data processing
activity, we neutralize the network activity by guaranteeing
constant traffic levels. More specifically, we apply molding
to the network traffic, ensuring that data flow between the
collection host and the network at a fixed bandwidth of 10 KB
every 250 ms. To achieve that, we queue data transmitted at a
higher rate, or send dummy packets when the transmitted data
does not fill the desired bandwidth. These dummy packets are
silently dropped by the receiver. The approach is, basically,
BuFLO [25], with τ = ∞, i.e., when the data stream continues
indefinitely. This approach has a high bandwidth overhead
compared to WTF-PAD and WT, however, it is designed to
ensure that the network traffic is constant irrespective of the
contents of the website. As expected, the raw network captures
in this scenario all have the exact same size, which happens
to be twice as large as the largest network capture recorded
without traffic molding.

Because all the traces are identical, the network-based
classifier assigns the same class to all of the traces, and its
accuracy is the same as a random guess. The results of cache-
based fingerprinting show a drop in accuracy compared with
unmolded traffic. However, the accuracy is still significantly
better than a random guess. This experiment demonstrates the
resilience of cache-based website fingerprinting to mitigation
techniques aimed at network-based fingerprinting, and sug-
gests that this privacy threat may require different mitigation
techniques, as we explore further in Section IX.
Network-Only Fingerprinting. In a complementing exper-
iment, we aim to capture only the network traffic. To collect
this dataset, we first capture traffic data from a real browsing
session. We then use a mock setup, that does not involve a
browser at all. Instead, we use two tcpreplay [1] instances,
one at the collection host, and the other at a server, to emulate
the network traffic, replaying the data from the pcap file.

We find that the cache-based classifier can classify many
pages even in the absence of rendering activity. However, the
accuracy is significantly lower than in the case that rendering
activity does take place. In particular, our CNN classifier

only detects the correct website in about 20% of the cases,
significantly lower than the 73% we get for the matching
closed-world scenario, but still much better than the 1%
expected for a random guess. The accuracy of the network-
based classifier is the same as for the baseline, simply because
the network traffic is replicated.

Combining these two experiments, we conclude that cache-
based fingerprinting identifies features both in the network
traffic patterns and in the contents of the displayed web pages.

VIII. REAL WORLD PRACTICALITY

Previous sections show that cache-based website fingerprint-
ing attacks can have a high accuracy. However, these attacks
are carried out in a lab environment, and may not achieve the
same success in a real-world environment, where the attacker
does not know the victim’s machine configuration or browser
version, or where some time has passed between the training
phase and the attack phase. In this section we investigate
the feasibility of our attack in these more realistic scenarios.
Specifically, we look at the effects and implications of concept
drift between training and testing, unknown browser, and
unknown cache size.

A. Effect of Concept Drift

Juárez et al. [51] note that the accuracy of network-based
website fingerprinting declines as time passes between training
set collection and the collection of data for performing the
website fingerprinting attack. They attribute the decline both
to changes to the websites and changes to the version of
browser the users use. We now proceed to evaluate the effects
of concept drift on the accuracy of our cache-based attack,
including both causes of change.
Methodology: We apply the methodology of Section IV to
collect multiple closed-world datasets. During a period of 20
weeks, we collect weekly datasets, each dataset containing 100
traces for every 100 closed-world website. Our memorygram
collection platform features an Intel Core i5-3470 processor
with 6 MB LLC, running CentOS 7.6 operating system. In the
first 13 weeks we use Firefox version 60.7. After 13 weeks, we
upgrade to version 60.8 using the yum system update utility.

We use five of the datasets, collected four weeks apart of
each other, in weeks 2, 6, 10, 14, and 18, to train five models,
one for each of the datasets. The training uses 10-fold cross
validation on the traces from the dataset. We then test how
well each of the five models classifies the traces in each of
the 20 datasets collected for the experiment.
Results: Figure 6 shows the results of our experiment. Each
of the five lines shows the accuracy of one of the models. The

11

0.0

0.2

0.4

0.6

0.8

1.0

 1 5 10 15 20

Train Dataset Week:

A
c
c
u
ra

c
y

Test Dataset Week

2 6 10 14 18

Figure 6: Concept Drift – Effects of time difference between collecting training and test data.

horizontal axis shows the week the test dataset was collected
at and the vertical axis is the model’s classification accuracy.

As expected, each model achieves its best performance at
the week in which it is collected. We further see that, with
the exception of week 13, the decline in model accuracy is
quite moderate. For example, the model collected in week 2
still achieves over 47% in week 13. (Compared with 84%
in week 2 and 1% base rate). This compares well with the
results of Juárez et al. [51], who note with network-based
fingerprinting the accuracy drops to under 50% within less
than ten days. However, the browser upgrade in week 13 has
a significant impact on the accuracy of the models. Models
based on data collected before the change do poorly on data
collected after the change and vice versa. Although we used
the Firefox browser as a case study, the concept drift of data
traces is influenced by both webpage changes and browser
updates. Therefore, we expect the problem to also appear in
Google Chrome and in the Tor Browser.

B. Cross-Browser Fingerprinting

Different browsers use different algorithms for downloading
and presenting pages. As such, we expect different browsers
to produce different signatures for the same website. At the
same time, for attack efficiency, it is desired to minimize the
number of models created for different scenarios. One option
is to create a single training dataset which would learn over
all possible types of browser software. We now investigate the
relationship between the browsers and the attack efficiency.

Table V: System Setup for the Cross-Browser Experiment.

Browser OS CPU LLC

Firefox 60.8 Linux i5-2500 6 MB
Chrome 77 Windows i5-3470 6 MB
Safari 11.1 Mac OS i7-6700 8 MB

Methodology: We test the sensitivity of classifiers to the
browser used for collecting the training sets. We further test
whether a single classifier can correctly identify websites
irrespectively of the browser used by the victim. We collect
traces on three hosts, summarized in Table V. On each host,
we collect our closed-world dataset and use the data to build
four models. Three of the models are trained on a dataset
collected on one of the hosts. The fourth model is trained
with the combined data of all three datasets. We use 10-fold
cross validation for the evaluation.

Results: The experiment shows the importance of matching
the browser used for collecting the training data to the target
browser. Figure 7 shows the accuracy of the four models
we trained when tested against the data from each browser,
and against the combined dataset. The vertical axis specifies
the browser used for collecting the training dataset, while the
horizontal axis is the browser used for collecting the testing
dataset. Accuracy is presented both numerically and by using
darker shades for higher accuracy.

The results show that training on a single browser only
allows fingerprinting on the same browser. With cross-browser
classification, the results are close to random, achieving the
base rate accuracy of 1%. Nonetheless, with a training set that
includes data collected on all browsers, the accuracy is almost
as high as with training on each specific browser. Thus, one
model can suffice for cross-browser classification, provided
that the model is trained with data from all browsers.

C. Effect of Cache Size Misestimation

The cache occupancy attack we use assumes we know the
target computer’s cache size. Presumably, using too small
a buffer might fail to force cache contention, whereas too
large a buffer would cause evictions regardless of the victim’s
activity. To validate this assumption, we measure the effect of
an incorrectly estimated last-level cache size on fingerprinting
accuracy, by creating datasets in which the buffer size differs
from the actual cache size.
Methodology: We collect traces with incorrectly estimated
cache sizes. We use a host with an Intel Core i5-3470 pro-
cessor, with a 6 MB last-level cache, running CentOS 7.6 and
Firefox 60.8. We collect three datasets, each with a different
“guess” of a cache size, reflected in the size of the buffer we
use for the cache occupancy attack. One guess is the correct
cache size of 6 MB. The other guesses are a smaller and a
larger cache (4 MB and 8 MB). We train an LSTM model on
each of these datasets, using a 10-fold cross validation with
90% of the traces used for training and 10% for testing. We
evaluate the models against each of the collected datasets.
Results: Figure 8 shows that as long as we use the same
buffer size for both the training and the test sets, the accuracy
of the classifier is high. However, if the model is trained
with one estimation and tested with a different estimation,
the results are close to a random guess. Surprisingly, correctly
guessing the cache size is less important than matching the
guess between the training and testing sets. That is, the cache

12

Firefox

Chrome

Safari

All

Firefox Chrome Safari All

T
ra

in
 B

ro
w

s
e
r

Test Browser

82.6 3.0 1.1 28.9

 1.4 72.2 1.8 24.8

 0.8 0.9 72.5 24.7

82.2 67.5 68.6 72.7

Figure 7: Classifier accuracy with differ-
ent browser combinations.

4MB

6MB

8MB

4MB 6MB 8MB

T
ra

in
 B

u
ff
e
r

S
iz

e

Test Buffer Size

84.0 1.0 1.0

 1.5 82.0 1.0

 1.0 1.3 80.9

Figure 8: Cache size misestimation clas-
sifiers performance.

3MB

4MB

6MB

8MB

9MB

3MB 4MB 6MB 8MB 9MB

E
s
ti
m

a
te

d
 C

a
c
h
e
 S

iz
e

Last-level Cache Size

61.5 30.8 5.1 2.6 0

39.5 36.8 21.1 2.6 0

0 30 60 10 0

0 0 33.3 33.3 33.3

0 0 0 0 0

Figure 9: Real-world accuracy of the
LLC size detection code.

occupancy attack is not too sensitive and works well with
wrong estimations of the cache size.

D. Cache Size Estimation

In this section we evaluate the adversary’s ability to cor-
rectly estimate the size of the cache. We start with a lab
experiment on machines under our control and follow with
a real-world experiment on users’ machines.
Initial Lab Experiment: In our initial lab experiment [88],
we created a JavaScript program that allocates a 20 MB array
in memory and iterates over it in several patterns which should
fit in well into different configurations of cache set-counts and
associativities. We then recorded the minimum, maximum and
mean access time per element, plus the standard deviation, for
each of these configurations. We collected 1,350 such measure-
ments from multiple systems with cache sizes of 3 MB, 4 MB,
6 MB, and 8 MB. We then used MATLAB’s classification
learner tool to apply a variety of machine learning classifiers to
the measured data. Using both KNN and SVM classifiers, we
were able to correctly classify the configuration of the target’s
last-level cache with over 99.8% classification accuracy under
5-fold cross validation. Interestingly, even a simple tree-based
classifier which compared the minimum iteration time of
three different configurations to a predefined threshold was
99.6% accurate. We ported this simple tree-based classifier
to JavaScript, creating an LLC cache size detector which we
tested and found capable of accurately detecting the cache
sizes of 15 different machines with diverse browser, hardware
and operating system configurations, taking less than 300 ms
to run in all cases. We thus concluded that generic attacks that
adapt to the specific hardware configuration seems feasible.
Real-world Cache Size Detection: For our real-world
experiment we set up a custom-designed man-in-the-middle
(MITM) environment that injects the cache-size estimation
code to the users’ browsers. In this setup, shown in Figure 10,
users connect to the Internet via a wireless access point. Traffic
between the access point and the Internet is filtered by a
MITM server, implemented as an Internet Content Adaptation
Protocol (ICAP) [26] in a Squid-Cache proxy server [96].
The MITM server monitors access to non-encrypted websites,
and injects the JavaScript code that performs the cache size
estimation to the accessed pages.
Experiment: We conducted the experiment during an under-
graduate programming “hackathon”. Prior to the experiment,

MITM Server

Target PCs

Wireless AP HTTP Websites

Figure 10: Physical setup of the real-world experiment.

participating students provided the ground-truth hardware con-
figuration of their computers, including the MAC addresses,
used for identifying the computer, and the last-level cache size.
Because most traffic the students accessed was encrypted, we
ended up asking participants to also visit the non-encrypted
website http://askcom.me, to ensure we can inject the code.
Ethical Considerations: The experiment design allows
us access to participants’ web browsing activity. To address
potential ethical issues, we made sure to limit the amount of
information we record. Specifically, we recorded the URLs of
accessed websites, but not their contents. We kept track of the
MAC address of the participants’ computers, but did not store
any personally identifying information that can link specific
participants to their computers. Finally, sensitive websites,
such as health or banking websites, were not likely to be
intercepted, because these are likely to be encrypted.

Participation in the experiment was voluntary. Students
were briefed about the procedure and the implications of
the experiment, were asked to provide written consent before
participating, and were given the option not to participate.
Participating students received one bonus point in the final
grade of an undergraduate course. Prior to conducting the
experiment we sought and received approval from the Ben-
Gurion University’s Institutional Review Board (IRB).

Table VI: Machine Configurations for Real-World Experiment

Property Value

Operating System Windows: 82, Linux: 1, Mac OS: 6, Android: 1
Browser Chrome: 81, Edge: 1, Firefox: 3, Safari: 1, Unknown: 4
CPU Generation Gen 2 (Sandy Bridge) to Gen 5 (Broadwell): 21, Gen 6

(Skylake): 42, Gen 7 (Kaby Lake): 18, Gen 8 (Coffee
Lake): 9

Last-Level Cache 3 MB: 39, 4 MB: 29, 6 MB: 17, 8 MB: 4, 9 MB: 1

Results: Table VI summarizes the hardware and software
configurations of the participating computers. The vast major-
ity of the participants used Chrome browser on Windows, and
featured a wide diversity of Intel CPU micro-architectures,

13

http://askcom.me

spanning from Generation 2 (Ivy Bridge) all the way to
Generation 8 (Coffee Lake).

Figure 9 shows the data segmentation by the cache sizes.
From this figure, we can understand besides the accuracy,
the true positive rate and the false positive rate of each
classification. The x-axis shows the ground truth of the LLC
size, as collected from the participants. The y-axis shows the
possible classification results from the injected code. The data
inside the confusion matrix shows us the probability to get
each estimate given the ground-truth size. As the figure shows,
the real-world performance of the cache size detection code
is considerably worse than under ideal conditions, but it still
performs much better than a random guess. We conjecture that
the lower accuracy may stem from the difference between the
training setup (a standalone web page in the lab setup) and
the testing setup (a MITM injected script in the real-world
experiment). The accuracy may be increased by training the
classifier under more realistic conditions, or by extending the
testing time beyond 300 milliseconds.

IX. COUNTERMEASURES

We now discuss potential countermeasures to our finger-
printing attack. We first describe a cache masking technique
we experimented with. We then follow with a review of other
cache attack countermeasures suggested in the literature.

A. Cache Activity Masking

A well-studied mitigation approach from the domain of
network-based cache fingerprinting involves creating spurious
network activity to mask the actual website traffic [25]. It is
possible to adapt this technique to our domain and create ac-
tivity in the cache to mask the website rendering activity. Our
initial experiments show some promise, but further research is
needed to assess its effectiveness and its effect on performance
and on power consumption.
Masking implementation. Our countermeasure repeatedly
evicts the entire last-level cache. More specifically, we al-
locate a cache-sized buffer and access every cache line in
the buffer in a loop. Such masking could be applied in the
browser, in the operating system, as a browser plugin, and
even incorporated into a security-conscious website in the
form of JavaScript delivered to the client. For our initial proof
of concept implementation we use a native code application,
based on Mastik [111]. This setting allows us to investigate the
effectiveness of our countermeasure while leaving deployment
complexities for future work.
Evaluation. For evaluation, we use a computer featuring an
Intel Core i5-2500, running Centos Linux version 7.6.1810.
We enable the countermeasure, then collect website traces both
for Firefox (Linux) and for the Tor Browser, using the same
mix of traces described in Section IV-B—100 traces of each of
100 websites for the closed-world scenario and one additional
trace of each of 5,000 websites for the open-world scenario.
As in Section V-B, we use 10-fold cross validation for building
and evaluating the models.

We find that the countermeasure completely thwarts the
attack when training is done on an unprotected system—the

accuracy of our classifier is at or below the base rate of 1%
for the closed-world scenario and 33% for the open-world
scenario. We also evaluate a scenario in which the adversary is
allowed to train on traces with the countermeasure applied. In
this more challenging scenario, the countermeasure completely
thwarts the attack when the attack code is running from the
Tor Browser. On Firefox, however, we only notice a moderate
reduction in the effectiveness of the attack. In the closed-world
scenario, the attack achieves an accuracy of 73%, and in the
open-world, 77%. (Down from 79% and 86%, respectively.)
Performance Impact. To understand the effect that our
countermeasure has system performance, we use the industry-
standard SPEC CPU benchmark [93], the de-facto standard
benchmark for measuring the performance of the CPU and the
memory subsystems. Figure 11 shows the results of the SPEC
CPU 2006 benchmarks with our countermeasure, relative to
no countermeasure. The countermeasure causes a slowdown
of around 5% (geometric mean across the benchmarks) with
a worst case slowdown of 14% for the bwaves benchmark.
These results are from the average of ten executions of the
benchmarks for each case. With Tor network performance
being as it is, we believe that the performance hit on CPU
benchmarks is acceptable for this scenario.

B. Other Countermeasures

Most of the past research into cache attacks has been done in
the context of side-channel cryptanalysis. Due to the different
scenario, many of the countermeasures typically suggested for
cache-based attack are no longer effective. Techniques such as
constant-time programming [6] are only applicable to regular
code, typically found in implementations of cryptographic
primitives. It is hard to see how such techniques can be applied
to web browsers. Similarly, as we show, timer-based defenses
that reduce the timer frequency or add jitter are not effective.

Cache randomization techniques [66, 80, 106] dissociate
victim and adversary cache sets, and prevent the adversary
from monitoring victim access to specific addresses. However,
our attack measures the overall cache activity rather than
looking at specific victim accesses. As such, such techniques
are unlikely to be effective against our attack.

Cache partitioning, either using dedicated hardware [24,
106] or via page coloring [63], is a promising approach for
mitigating cache attacks. In a nutshell, the approach parti-
tions the cache between security domains, preventing cross-
domain contention. Web pages are often rendered within the
same browser process. A page-coloring countermeasure will,
therefore, need to adapt to the browser scenario. Alternatively,
the current shift to strict site isolation [95] as part of the
mitigations for Spectre [54], may assist in applying page
coloring to protect against our attack. A further limitation of
page coloring is that caches support only a handful of colors.
Hence, colors need to be shared, particularly when a large
number of tabs are open. To provide protection, page coloring
will have to be augmented with a solution that prevents
concurrent use of the same color by multiple sites.

CACHEBAR [113] limits the contention caused by each
process as a protection for the Prime+Probe attack. Like cache

14

0%

5%

10%

15%

20%

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar

xalancbm
k

IN
T

bw
aves

gam
ess

m
ilc

zeusm
p

grom
acs

cactusAD
M

leslie3d

nam
d

dealII

soplex

povray

calculix

G
em

sFD
TD

tonto
lbm

w
rf

sphinx3

FP

S
lo

w
d
o
w

n

Figure 11: Performance slowdown of our countermeasure on the SPEC benchmark. Error bars indicate one standard deviation.
INT and FP show the geometric mean of the SPEC integer and floating point benchmarks, respectively.

partitioning, this approach works at a process resolution and
may require adaptions to work in the web browser scenario.
Furthermore, unlike past cryptographic attacks that aim to
identify specific memory accesses, our technique measures
the overall memory use of the victim. Consequently, unless
CACHEBAR is configured to partition the cache, some cross-
process contention will remain, allowing our attack to work.

X. LIMITATIONS AND FUTURE WORK

Although we demonstrate the feasibility of cache-based
website fingerprinting and provide an analysis of the attack, we
do leave some areas for further study. Being the first analysis
of its kind, the scope of the work does not match similar
works on network-based website fingerprinting. In particular,
our datasets are significantly smaller than those of Rimmer
et al. [83], for example. Providing larger datasets would allow
better analysis of the effectiveness of the technique.

For most of our experiments we use identical machine con-
figurations for collecting the training and test datasets. Some of
our results, in particular in sections VIII-B and VIII-C, show
the potential for using a single classifier that can effectively
classify memorygrams collected on multiple configurations.
It would also be interesting to improve the accuracy of our
cache size detection script, perhaps by training it under more
realistic conditions. Similarly, it would be interesting to see
whether the classifier can genuinely find commonalities be-
tween multiple browsers rendering the same website, or more
generally whether a classifier can perform app classification
and detect which browser is being used to browse to a
previously unknown website.

This work further shares many of the limitations of network-
based fingerprinting [51]. In particular, websites tend to change
over time or based on the identity of the user or the specifica-
tions of the computer used for displaying them. Furthermore,
our work, like most previous works, assumes that only one
website is displayed at each time. Rimmer et al. [83] briefly
discuss temporal aspects of website fingerprinting and our
work further investigates concept drift over a 20 week period.
A followup to our results would be a direct comparison
between the concept drift of network-based fingerprinting
and cache-based fingerprinting. We believe that while the
content elements of a website, such as images and text, may
change quickly, the general structure of a website changes
much slower. Hence, cache-based traces may be better able

to capture this structure and therefore be less sensitive to
concept drift. Another followup would be a design of drift-
resistant classifiers which can obtain good accuracy results
with minimum maintenance over time.

XI. AVAILABILITY

To allow reproduction of our results, we published several
of the JavaScript datasets used in this work on the IEEE
DataPort website [89]. The linux_chrome,linux_ff59
and linux_tor are traces that collected on a Linux machine,
using the browsers Chrome, Firefox and Tor correspond-
ingly. The directories win_chrome and win_ff59 are with
data collected on Windows 10, using the browsers Chrome
and Firefox respectively. Finally, the directory mac_safari
is data collected on MacOs with the Safari browser. The
experiment of the countermeasure is in a folder named
linux_tor_counter. These directories have subdirecto-
ries CW and OW, for the closed-world and open-world sce-
narios. The closed-world files include up to 100 traces per
website, whereas the open-world files contain one trace per
each website. All of the data files are in JSON format.

The implementation of the JavaScript memorygram-
mer is available online at (https://codepen.io/atoliks24/pen/
GRRPzQm).

XII. CONCLUSIONS

In this work we investigate the use of cache side channels
for website fingerprinting. We implement two memorygram-
mers, which capture the cache activity of the browser, and
show how to use deep learning to identify websites based on
the cache activity that displaying them induces.

We show that cache-based website fingerprinting achieves
results comparable with the state-of-the-art network-based
fingerprinting. We further show that cache-based fingerprinting
outperforms network-based fingerprinting when the browser
caches objects. Finally, we demonstrate that cache-based fin-
gerprinting is resilient to both traffic molding and to re-
duced timer resolution. The former being the standard defense
for network-based website fingerprinting and the latter the
currently implemented countermeasure for mobile-code-based
micro-architectural attacks. To the best of our knowledge, this
is the first cache-based side-channel attack that works with the
100 ms clock rate of the Tor Browser.

15

 https://codepen.io/atoliks24/pen/GRRPzQm
 https://codepen.io/atoliks24/pen/GRRPzQm

We carried out a real-world evaluation of our attack on a
set of computers with diverse hardware and software configu-
rations. Our results show that, while the accuracy of the attack
is severely degraded when the precise hardware and software
configuration of the victim is not known beforehand, it is still
significantly higher than the base rate accuracy of a random
guess. Surprisingly, mispredicting the LLC cache size of the
victim’s computer had only a minor impact on the accuracy of
the website fingerprinting attack, as long as the training and
testing steps were carried out under the same assumption.

ACKNOWLEDGEMENTS

We would like to thank Vera Rimmer for her helpful
comments and insights. We would also like to thank Roger
Dingledine and our shepherd Rob Jansen for reviewing and
commenting on the final version of the conference paper.

This research was supported by the ARC Centre of Ex-
cellence for Mathematical & Statistical Frontiers, an ARC
Discovery Early Career Researcher Award DE200101577,
Intel Corporation, Israel Science Foundation grants 702/16 and
703/16, NSF CNS-1409415, and NSF CNS-1704105.

REFERENCES

[1] “Tcpreplay,” https://tcpreplay.appneta.com/.
[2] K. Abe and S. Goto, “Fingerprinting attack on Tor anonymity using

deep learning,” in APAN, 2016.
[3] O. Acıiçmez, “Yet another microarchitectural attack: : exploiting I-

Cache,” in CSAW, 2007.
[4] O. Acıiçmez, B. B. Brumley, and P. Grabher, “New results on instruc-

tion cache attacks,” in CHES, 2010.
[5] K. Al-Naami, A. El Ghamry, M. S. Islam, L. Khan, B. M. Thuraising-

ham, K. W. Hamlen, M. Alrahmawy, and M. Rashad, “BiMorphing: A
bi-directional bursting defense against website fingerprinting attacks,”
IEEE Transactions on Dependable and Secure Computing, 2019.

[6] D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact of a
new cryptographic library,” in LATINCRYPT, 2012.

[7] S. Bhat, D. Lu, A. Kwon, and S. Devadas, “Var-CNN: A data-efficient
website fingerprinting attack based on deep learning,” PoPETs, vol.
2019, no. 4, pp. 292–310, 2019.

[8] S. Bhattacharya and D. Mukhopadhyay, “Who watches the watchmen?:
Utilizing performance monitors for compromising keys of RSA on Intel
platforms,” in CHES, 2015.

[9] Z. Bloom, “Cloud computing without containers,” https://blog.
cloudflare.com/cloud-computing-without-containers/, 2018.

[10] J. M. Booth, “Not so incognito: Exploiting resource-based side chan-
nels in JavaScript engines,” Bachelor Thesis, Harvard, April 2015.

[11] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun,
and A. Sadeghi, “Software grand exposure: SGX cache attacks are
practical,” in WOOT, 2017.

[12] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
distance: website fingerprinting attacks and defenses,” in CCS, 2012.

[13] X. Cai, R. Nithyanand, and R. Johnson, “Cs-buflo: A congestion
sensitive website fingerprinting defense,” in WPES, 2014.

[14] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A sys-
tematic approach to developing and evaluating website fingerprinting
defenses,” in CCS, 2014.

[15] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Ya-
maguchi, and R. Greenstadt, “De-anonymizing programmers via code
stylometry,” in USENIX Sec, 2015.

[16] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in KDD, 2016.

[17] H. Cheng and R. Avnur, “Traffic analysis of SSL encrypted web
browsing,” Project paper, University of Berkeley, 1998.

[18] G. Cherubin, J. Hayes, and M. Juárez, “Website fingerprinting defenses
at the application layer,” PoPETs, vol. 2017, no. 2, pp. 186–203, 2017.

[19] S. S. Clark, H. A. Mustafa, B. Ransford, J. Sorber, K. Fu, and W. Xu,
“Current events: Identifying webpages by tapping the electrical outlet,”
in ESORICS, 2013.

[20] D. Cock, Q. Ge, T. C. Murray, and G. Heiser, “The last mile: An
empirical study of timing channels on seL4,” in CCS, 2014.

[21] W. Dai, “PipeNet description,” Post to the cypherpunks mailing list.
https://www.freehaven.net/anonbib/cache/pipenet10.html, 1998.

[22] T. Dierks and E. Rescola, “The transport layer security (TLS) protocol
version 1.2,” Internet Requests for Comments, RFC 5246, 2008.

[23] R. Dingledine, N. Mathewson, and P. F. Syverson, “Tor: The second-
generation onion router,” in USENIX Sec, 2004.

[24] L. Domnitser, A. Jaleel, J. Loew, N. B. Abu-Ghazaleh, and D. Pono-
marev, “Non-monopolizable caches: Low-complexity mitigation of
cache side channel attacks,” TACO, vol. 8, no. 4, pp. 35:1–35:21, 2012.

[25] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-Boo,
I still see you: Why efficient traffic analysis countermeasures fail,” in
IEEE SP, 2012.

[26] J. Elson and A. Cerpa, “Internet content adaptation protocol (icap),”
Internet Requests for Comments, RFC Editor, RFC 3507, April 2003.

[27] D. Evtyushkin, D. V. Ponomarev, and N. B. Abu-Ghazaleh, “Jump over
ASLR: attacking branch predictors to bypass ASLR,” in MICRO, 2016.

[28] R. Fielding, M. Nottingham, and J. Reschke, “Hypertext transfer
protocol (HTTP/1.1): Caching,” Internet Requests for Comments, RFC
Editor, RFC 7234, June 2014, http://www.rfc-editor.org/rfc/rfc7234.txt.

[29] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand pwning unit:
Accelerating microarchitectural attacks with the GPU,” in IEEE SP,
2018.

[30] C. P. Garcı́a, B. B. Brumley, and Y. Yarom, ““Make sure DSA signing
exponentiations really are constant-time”,” in CCS, 2016.

[31] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
J. Cryptographic Engineering, vol. 8, no. 1, pp. 1–27, 2018.

[32] D. Genkin, L. Pachmanov, E. Tromer, and Y. Yarom, “Drive-by key-
extraction cache attacks from portable code,” in ACNS, 2018.

[33] X. Gong, N. Borisov, N. Kiyavash, and N. Schear, “Website detection
using remote traffic analysis,” in PET, 2012.

[34] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (Adaptive
Computation and Machine Learning series). The MIT Press, 2016.

[35] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on
the line: Practical cache attacks on the MMU,” in NDSS, 2017.

[36] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in USENIX Sec,
2015.

[37] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
side-channel attacks: Bypassing SMAP and kernel ASLR,” in CCS,
2016.

[38] B. Gülmezoglu, A. Zankl, T. Eisenbarth, and B. Sunar, “PerfWeb: How
to violate web privacy with hardware performance events,” in ESORICS
(2), 2017.

[39] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable website
fingerprinting technique,” in USENIX Sec, 2016.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[41] D. Herrmann, R. Wendolsky, and H. Federrath, “Website fingerprinting:
attacking popular privacy enhancing technologies with the multinomial
naı̈ve-bayes classifier,” in CCSW, 2009.

[42] A. Hintz, “Fingerprinting websites using traffic analysis,” in Privacy
Enhancing Technologies, 2002.

[43] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[44] W. Hu, “Lattice scheduling and covert channels,” in IEEE SP, 1992.
[45] M. S. Inci, B. Gülmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar,

“Cache attacks enable bulk key recovery on the cloud,” in CHES, 2016.
[46] Intel Corp., “Intel 64 and IA-32 architectures software developer’s

manual volume 3B,” Sep. 2016. [Online]. Available: https://www.
intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-
32-architectures-software-developer-vol-3b-part-2-manual.pdf

[47] ——, “Intel 64 and IA-32 architectures optimization refer-
ence manual,” https://www.intel.com/content/www/us/en/architecture-
and-technology/64-ia-32-architectures-optimization-manual.html, Jun.
2016.

[48] G. Irazoqui Apecechea, T. Eisenbarth, and B. Sunar, “S$A: A shared
cache attack that works across cores and defies VM sandboxing - and
its application to AES,” in IEEE SP, 2015.

[49] S. Jana and V. Shmatikov, “Memento: Learning secrets from process
footprints,” in IEEE SP, 2012.

[50] R. Jansen, M. Juárez, R. Galvez, T. Elahi, and C. Dı́az, “Inside job:
Applying traffic analysis to measure Tor from within,” in NDSS, 2018.

[51] M. Juárez, S. Afroz, G. Acar, C. Dı́az, and R. Greenstadt, “A critical
evaluation of website fingerprinting attacks,” in CCS, 2014.

16

https://tcpreplay.appneta.com/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://www.freehaven.net/anonbib/cache/pipenet10.html
http://www.rfc-editor.org/rfc/rfc7234.txt
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html

[52] M. Juárez, M. Imani, M. Perry, C. Dı́az, and M. Wright, “Toward an
efficient website fingerprinting defense,” in ESORICS (1), 2016.

[53] H. Kim, S. Lee, and J. Kim, “Inferring browser activity and status
through remote monitoring of storage usage,” in ACSAC, 2016.

[54] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Haburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwartz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in IEEE SP, May 2019.

[55] D. Kohlbrenner and H. Shacham, “Trusted browsers for uncertain
times,” in USENIX Sec, 2016.

[56] N. Köskal, “‘Terrifying’: How a single line of computer code put
thousands of innocent Turks in jail,” http://www.cbc.ca/news/world/
terrifying-how-a-single-line-of-computer-code-put-thousands-of-
innocent-turks-in-jail-1.4495021, Jan. 2018.

[57] A. Krogh, M. Brown, I. S. Mian, K. Sjolander, and D. Haussler,
“Hidden Markov models in computational biology. Applications to
protein modeling,” Journal of Molecular Biology, vol. 235, no. 5, pp.
1501–1531, 1994.

[58] S. Lee, Y. Kim, J. Kim, and J. Kim, “Stealing webpages rendered on
your browser by exploiting GPU vulnerabilities,” in IEEE SP, 2014.

[59] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside SGX enclaves with branch shadowing,”
in USENIX Sec, 2017.

[60] F. Li, R. Fergus, and P. Perona, “One-shot learning of object cate-
gories,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4, pp.
594–611, 2006.

[61] S. Li, H. Guo, and N. Hopper, “Measuring information leakage in
website fingerprinting attacks and defenses,” in CCS, 2018.

[62] B. Liang, W. You, L. Liu, W. Shi, and M. Heiderich, “Scriptless timing
attacks on web browser privacy,” in DSN, 2014.

[63] J. Liedtke, H. Härtig, and M. Hohmuth, “OS-controlled cache pre-
dictability for real-time systems,” in IEEE RTAS, 1997.

[64] P. Lifshits, R. Forte, Y. Hoshen, M. Halpern, M. Philipose, M. Tiwari,
and M. Silberstein, “Power to peep-all: Inference attacks by malicious
batteries on mobile devices,” PoPETs, vol. 2018, no. 4, pp. 1–1, 2018.

[65] M. Lipp, M. Schwartz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX Sec,
Aug. 2018.

[66] F. Liu and R. B. Lee, “Random fill cache architecture,” in MICRO,
2014.

[67] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in IEEE SP, 2015.

[68] X. Liu, J. Wu, and Z. Zhou, “Exploratory undersampling for class-
imbalance learning,” IEEE Trans. Systems, Man, and Cybernetics, Part
B, vol. 39, no. 2, pp. 539–550, 2009.

[69] L. Lu, E. Chang, and M. C. Chan, “Website fingerprinting and
identification using ordered feature sequences,” in ESORICS, 2010.

[70] N. Matyunin, Y. Wang, T. Arul, J. Szefer, and S. Katzenbeisser,
“MagneticSpy: Exploiting magnetometer in mobile devices for website
and application fingerprinting,” arXiv:1906.11117, 2019.

[71] Mozilla Foundation, “Security advisory 2018-01,” https://www.mozilla.
org/en-US/security/advisories/mfsa2018-01/, 2018.

[72] A. Narayanan, H. Paskov, N. Z. Gong, J. Bethencourt, E. Stefanov,
E. C. R. Shin, and D. Song, “On the feasibility of internet-scale author
identification,” in IEEE SP, 2012.

[73] R. Nithyanand, X. Cai, and R. Johnson, “Glove: A bespoke website
fingerprinting defense,” in WPES, 2014.

[74] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The spy in the sandbox: Practical cache attacks in JavaScript and
their implications,” in CCS, 2015.

[75] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: The case of AES,” in CT-RSA, 2006.

[76] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website finger-
printing in onion routing based anonymization networks,” in WPES,
2011.

[77] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze,
and K. Wehrle, “Website fingerprinting at internet scale,” in NDSS,
2016.

[78] C. Percival, “Cache missing for fun and profit,” 2005, presented
at BSDCan. http://www.daemonology.net/hyperthreading-considered-
harmful.

[79] F. Pizlo, “What Spectre and Meltdown mean for WebKit,” https:
//webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/,
Jan. 2018.

[80] M. K. Qureshi, “CEASER: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in MICRO, 2018.

[81] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transac-
tions,” ACM Trans. Inf. Syst. Secur., vol. 1, no. 1, pp. 66–92, 1998.

[82] E. Rescola, “HTTP over TLS,” Internet Requests for Comments, RFC
Editor, RFC 2818, 2000, https://tools.ietf.org/html/rfc2818.

[83] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen,
“Automated website fingerprinting through deep learning,” in NDSS,
2018.

[84] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in CCS, 2009.

[85] J. Rutkowska and R. Wojtczuk, “Qubes OS architecture,”
https://www.qubes-os.org/attachment/wiki/QubesArchitecture/arch-
spec-0.3.pdf, Feb. 2010.

[86] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic timers
and where to find them: High-resolution microarchitectural attacks in
JavaScript,” in Financial Cryptography, 2017.

[87] M. Schwarz, M. Lipp, and D. Gruss, “JavaScript zero: Real JavaScript
and zero side-channel attacks,” in NDSS, 2018.

[88] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and
Y. Yarom, “Robust website fingerprinting through the cache occupancy
channel,” in USENIX Sec, 2019.

[89] A. Shusterman, L. Kang, Y. Haskal, Y. Meltzer, P. Mittal, Y. Oren, and
Y. Yarom, “Website fingerprinting - last level cache contention traces,”
2019. [Online]. Available: http://dx.doi.org/10.21227/a33s-cf63

[90] P. Sirinam, M. Imani, M. Juárez, and M. Wright, “Deep fingerprinting:
Undermining website fingerprinting defenses with deep learning,” in
CCS, 2018.

[91] P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright, “Triplet
fingerprinting: More practical and portable website fingerprinting with
n-shot learning,” in CCS, 2019.

[92] Spiegel Online, “Documents reveal top NSA hacking unit,”
http://www.spiegel.de/international/world/the-nsa-uses-powerful-
toolbox-in-effort-to-spy-on-global-networks-a-940969-2.html, Dec.
2013.

[93] C. D. Spradling, “SPEC CPU2006 benchmark tools,” SIGARCH Com-
puter Architecture News, vol. 35, no. 1, pp. 130–134, 2007.

[94] R. Spreitzer, S. Griesmayr, T. Korak, and S. Mangard, “Exploiting
data-usage statistics for website fingerprinting attacks on Android,” in
WISEC, 2016.

[95] The Chromium Project, “Site isolation,” https://www.chromium.org/
Home/chromium-security/site-isolation.

[96] The Squid Software Foundation, “The Squid Proxy,” http://www.squid-
cache.org.

[97] The Tor Project, Inc., “The Tor Browser,” https://www.torproject.org/
projects/torbrowser.html.en.

[98] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi, “Crypt-
analysis of DES implemented on computers with cache,” in CHES,
2003.

[99] L. Uhsadel, A. Georges, and I. Verbauwhede, “Exploiting hardware
performance counters,” in FDTC, 2008.

[100] K. Varda, https://news.ycombinator.com/item?id=18280156, 2018.
[101] P. Vila and B. Köpf, “Loophole: Timing attacks on shared event loops

in Chrome,” in USENIX Sec, 2017.
[102] L. Wagner, “Mitigations landing for new class of timing attack,”

https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-
class-timing-attack/, Jan. 2018.

[103] T. Wang and I. Goldberg, “Improved website fingerprinting on Tor,”
in WPES, 2013.

[104] ——, “On realistically attacking Tor with website fingerprinting,”
PoPETs, vol. 2016, no. 4, pp. 21–36, 2016.

[105] ——, “Walkie-Talkie: An efficient defense against passive website
fingerprinting attacks,” in USENIX Sec, 2017.

[106] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in ISCA, 2007.

[107] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson, “I still
know what you visited last summer: Leaking browsing history via user
interaction and side channel attacks,” in IEEE SP, 2011.

[108] Y. Xu, T. Wang, Q. Li, Q. Gong, Y. Chen, and Y. Jiang, “A multi-tab
website fingerprinting attack,” in ACSAC, 2018.

[109] J. Yan and J. Kaur, “Feature selection for website fingerprinting,”
PoPETs, vol. 2018, no. 4, pp. 200–219, 2018.

[110] Q. Yang, P. Gasti, G. Zhou, A. Farajidavar, and K. S. Balagani, “On
inferring browsing activity on smartphones via USB power analysis
side-channel,” IEEE Trans. Information Forensics and Security, vol. 12,
no. 5, pp. 1056–1066, 2017.

[111] Y. Yarom, “Mastik: A micro-architectural side-channel toolkit,” http:
//cs.adelaide.edu.au/∼yval/Mastik/Mastik.pdf, Sep. 2016.

17

http://www.cbc.ca/news/world/terrifying-how-a-single-line-of-computer-code-put-thousands-of-innocent-turks-in-jail-1.4495021
http://www.cbc.ca/news/world/terrifying-how-a-single-line-of-computer-code-put-thousands-of-innocent-turks-in-jail-1.4495021
http://www.cbc.ca/news/world/terrifying-how-a-single-line-of-computer-code-put-thousands-of-innocent-turks-in-jail-1.4495021
https://www.mozilla.org/en-US/security/advisories/mfsa2018-01/
https://www.mozilla.org/en-US/security/advisories/mfsa2018-01/
http://www.daemonology.net/hyperthreading-considered-harmful
http://www.daemonology.net/hyperthreading-considered-harmful
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://tools.ietf.org/html/rfc2818
https://www.qubes-os.org/attachment/wiki/QubesArchitecture/arch-spec-0.3.pdf
https://www.qubes-os.org/attachment/wiki/QubesArchitecture/arch-spec-0.3.pdf
http://dx.doi.org/10.21227/a33s-cf63
http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969-2.html
http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969-2.html
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation
http://www.squid-cache.org
http://www.squid-cache.org
https://www.torproject.org/projects/torbrowser.html.en
https://www.torproject.org/projects/torbrowser.html.en
https://news.ycombinator.com/item?id=18280156
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
http://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf
http://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf

[112] Y. Yarom and N. Benger, “Recovering OpenSSL ECDSA nonces
using the FLUSH+RELOAD cache side-channel attack,” Cryptology
ePrint Archive, Report 2014/140, 2014. [Online]. Available: http:
//eprint.iacr.org/2014/140

[113] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to defeating
side channels in last-level caches,” in CCS, 2016.

[114] Z. Zhuo, Y. Zhang, Z. Zhang, X. Zhang, and J. Zhang, “Website
fingerprinting attack on anonymity networks based on profile hidden
markov model,” IEEE Trans. Information Forensics and Security,
vol. 13, no. 5, pp. 1081–1095, 2018.

Anatoly Shusterman is a Ph.D student in the
Department of Software and Information Systems
Engineering in Ben-Gurion University of the Negev,
Israel.

Zohar Avraham is an undergraduate student in the
Department of Software and Information Systems
Engineering in Ben-Gurion University of the Negev,
Israel.

Eliezer Croitoru is a Linux System Engineer at Internet Rimon and a
contributor to the Squid-Cache and ICAP open-source projects.

Yarden Haskal is an undergraduate student in the
Department of Software and Information Systems
Engineering in Ben-Gurion University of the Negev,
Israel.

Lachlan Kang Lachlan Kang is a network secu-
rity and internet privacy expert who has spent his
research career trying to improve online anonymity
by finding flaws in existing systems and patching
them. His current research interests include offensive
network and internet security.

Dvir Levi is an undergraduate student in the De-
partment of Software and Information Systems En-
gineering in Ben-Gurion University of the Negev,
Israel.

Yosef Meltser is an undergraduate student in the
Department of Software and Information Systems
Engineering in Ben-Gurion University of the Negev,
Israel.

Prateek Mittal (SM’ 17) is an Associate Profes-
sor in the Department of Electrical Engineering at
Princeton University. He obtained his Ph.D. from
the University of Illinois at Urbana-Champaign in
2012. He is the recipient of the NSF CAREER
award (2016), ONR YIP award (2018), M.E. Van
Valkenburg award, Google Faculty Research Award
(2016, 2017), Cisco Faculty research award (2016),
Intel Faculty research award (2016, 2017), and IBM
Faculty award (2017). He was awarded Princeton
University’s E. Lawrence Keyes Award for outstand-

ing research and teaching, and is the recipient of multiple outstanding paper
awards including ACM CCS and ACM ASIACCS.

Yossi Oren (SM’ 17) received his M.Sc. degree in
Computer Science from the Weizmann Institute of
Science, Israel, and his Ph.D. degree in Electrical
Engineering from Tel Aviv University, Israel, in
2008 and 2013 respectively. He is a Senior Lec-
turer (Assistant Professor) with the Department of
Software and Information Systems Engineering in
Ben-Gurion University, Israel. His research interests
include implementation security (power analysis and
other hardware attacks and countermeasures; low-
resource cryptographic constructions for lightweight

computers) and cryptography in the real world (consumer and voter privacy
in the digital era; web application security).

Yuval Yarom (M’16) is a senior lecturer in com-
puter science at the University of Adelaide, where
he heads the security domain in the Centre for Dis-
tributed and Intelligent Technologies. His research
focuses on the security implications of the discrep-
ancy between the nominal and the true behaviour
of processors, with a focus on side channel and
speculative execution attacks. He is the recipient
of the 2020 Chris Wallace Award for Outstanding
Research and is a DECRA Fellow.

18

http://eprint.iacr.org/2014/140
http://eprint.iacr.org/2014/140

	Introduction
	Background
	Tor
	Website Fingerprinting Attacks and Defences
	Cache Side-Channel Attacks
	Related Work

	The Website Fingerprinting Attack Model
	Data Collection
	Creating memorygrams
	Datasets
	Limiting Assumptions

	Machine Learning
	Problem Formulation
	Deep Learning Models

	Results
	Closed World Results
	Open World Results

	Robustness Tests
	Evaluation Setup
	Baseline Scenario
	Enabling the Response Cache
	Net-only and Render-only Results

	Real World Practicality
	Effect of Concept Drift
	Cross-Browser Fingerprinting
	Effect of Cache Size Misestimation
	Cache Size Estimation

	Countermeasures
	Cache Activity Masking
	Other Countermeasures

	Limitations and Future Work
	Availability
	Conclusions
	Biographies
	Anatoly Shusterman
	Zohar Avraham
	Eliezer Croitoru
	Yarden Haskal
	Lachlan Kang
	Dvir Levi
	Yosef Meltser
	Prateek Mittal
	Yossi Oren
	Yuval Yarom

