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Abstract—We present an effective implementation of
the PRIME+PROBE side-channel attack against the last-
level cache. We measure the capacity of the covert channel
the attack creates and demonstrate a cross-core, cross-VM
attack on multiple versions of GnuPG. Our technique
achieves a high attack resolution without relying on
weaknesses in the OS or virtual machine monitor or on
sharing memory between attacker and victim.
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I. INTRODUCTION

Infrastructure-as-a-service (IaaS) cloud-computing
services provide virtualized system resources to end
users, supporting each tenant in a separate virtual ma-
chine (VM). Fundamental to the economy of clouds is
high resource utilization achieved by sharing: providers
co-host multiple VMs on a single hardware plat-
form, relying on the underlying virtual-machine monitor
(VMM) to isolate VMs and schedule system resources.

While virtualization creates the illusion of strict
isolation and exclusive resource access, in reality the
virtual resources map to shared physical resources,
creating the potential of interference between co-hosted
VMs. A malicious VM may learn information on data
processed by a victim VM [32, 42, 43] and even conduct
side-channel attacks on cryptographic implementations
[45, 47].

Previously demonstrated side channels with a reso-
lution sufficient for cryptanalysis attacked the L1 cache.
However, as Figure 1 shows, the L1 Data and Instruction
caches (denoted L1 D$ and L1 I$) are private to each
processor core. This limits the practicability of such
attacks, as VMMs are not very likely to co-locate
multiple owners’ VMs on the same core. In contrast,
the last-level cache (LLC) is typically shared between
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Fig. 1: System model for a multi-core processor

all cores of a package, and thus constitutes a much more
realistic attack vector.

However, the LLC is orders of magnitude larger
and much slower to access than the L1 caches, which
drastically reduces the temporal resolution of observ-
able events and thus channel bandwidth, making most
published LLC attacks unsuitable for cryptanalysis [32,
42, 43]. An exception is the FLUSH+RELOAD attack
[22, 45], which relies on memory sharing to achieve
high resolution. Virtualization vendors explicitly advise
against sharing memory between VMs [39], and no IaaS
provider is known to ignore this advice [36], so this
attack also fails in practice.

We show that an adaptation of the PRIME+PROBE
technique [28] can be used for practical LLC attacks.
We exploit hardware features that are outside the control
of the cloud provider (inclusive caches) or are control-
lable but generally enabled in the VMM for perfor-
mance reasons (large page mappings). Beyond that, we
make no assumptions on the hosting environment, other
than that the attacker and victim will be co-hosted on



the same processor package.

Specifically, we make the following contributions:

• We demonstrate an asynchronous PRIME+
PROBE attack on the LLC that does not require
sharing cores or memory between attacker and
victim, does not exploit VMM weaknesses and
works on typical server platforms, even with the
unknown LLC hashing schemes in recent Intel
processors (Section IV);

• We develop two key techniques to enable ef-
ficient LLC based PRIME+PROBE attacks: an
algorithm for the attacker to probe exactly one
cache set without knowing the virtual-address
mapping, and using temporal access patterns
instead of conventional spatial access patterns
to identify the victim’s security-critical accesses
(Section IV);

• We measure the achievable bandwidth of the
cross-VM covert timing channel to be as high
as 1.2 Mb/s (Section V);

• We show a cross-VM side-channel attack that
extracts a key from secret-dependent execu-
tion paths, and demonstrate it on Square-and-
Multiply modular exponentiation in an ElGamal
decryption implementation (Section VI);

• We furthermore show that the attack can also be
used on secret-dependent data access patterns,
and demonstrate it on the sliding-window mod-
ular exponentiation implementation of ElGamal
in the latest GnuPG version (Section VII).

II. BACKGROUND

A. Virtual address space and large pages

A process executes in its private virtual address
space, composed of pages, each representing a con-
tiguous range of addresses. The typical page size is
4 KiB, although processors also support larger pages,
2 MiB and 1 GiB on the ubiquitous 64-bit x86 (“x64”)
processor architecture. Each page is mapped to an
arbitrary frame in physical memory.

In virtualized environments there are two levels of
address-space virtualization. The first maps the virtual
addresses of a process to a guest’s notion of physical
addresses, i.e., the VM’s emulated physical memory.
The second maps guest physical addresses to physical
addresses of the processor. For our purposes, the guest
physical addresses are irrelevant, and we use virtual
address for the (guest virtual) addresses used by appli-
cation processes, and physical address to refer to actual
(host) physical addresses.

Translations from virtual pages to physical frames
are stored in page tables. Processors cache recently
used page table entries in the translation look-aside
buffer (TLB). The TLB is a scarce processor resource
with a small number of entries. Large pages use the
TLB more efficiently, since fewer entries are needed
to map a particular region of memory. As a result, the
performance of applications with large memory foot-
prints, such as Oracle databases or high-performance
computing applications, can benefit from using large
pages. For the same reason, VMMs, such as VMware
ESX and Xen HVM, also use large pages for mapping
guest physical memory [38].

B. System model and cache architecture

Cloud servers typically have multi-core processors,
i.e., multiple processor cores on a chip sharing a last-
level cache (LLC) and memory, as indicated in Figure 1.

1) Cache hierarchy: Because of the long access
time of main memory compared to fast processors,
smaller but faster memories, called caches, are used
to reduce the effective memory access time as seen
by a processor. Modern processors feature a hierarchy
of caches. “Higher-level” caches, which are closer to
the processor core are smaller but faster than lower-
level caches, which are closer to main memory. Each
core typically has two private top-level caches, one each
for data and instructions, called level-1 (L1) caches. A
typical L1 cache size is 32 KiB with a 4-cycle access
time, as in Intel Core and Xeon families.

The LLC is shared among all the cores of a multi-
core chip and is a unified cache, i.e., it holds both data
and instructions. LLC sizes measure in megabytes, and
access latencies are of the order of 40 cycles. Modern
x86 processors typically also support core-private, uni-
fied L2 caches of intermediate size and latency. Any
memory access first accesses the L1 cache, and on a
miss, the request is sent down the hierarchy until it hits
in a cache or accesses main memory. The L1 is typically
indexed by virtual address, while all other caches are
indexed by physical address.

2) Cache access: To exploit spatial locality, caches
are organized in fixed-size lines, which are the units
of allocation and transfer down the cache hierarchy. A
typical line size B is 64 bytes. The log2B lowest-order
bits of the address, called the line offset, are used to
locate a datum in the cache line.

Caches today are usually set-associative, i.e., orga-
nized as S sets of W lines each, called a W-way set-
associative cache. As shown in Figure 2a, when the
cache is accessed, the set index field of the address,
log2S consecutive bits starting from bit log2B, is used
to locate a cache set. The remaining high-order bits are

2



4 KB page Page offset Frame number 

Line offset Tag 

Large Page offset Large frame number 

Set index 

2 MB page 

0 11 5 16 20 32 

(a) Traditional cache

4 KB page Page offset Frame number 

Line offset 

Large Page offset Large frame number 

Set index 

2 MB page 

0 11 5 16 20 32 

Tag 

hash 
Slice id 

27 11 

(b) Sliced cache

Fig. 2: Cache indexing for an 8 GiB address space. A
cache (or slice) contains 2,048 sets with 64 B lines.

used as a tag for each cache line. After locating the
cache set, the tag field of the address is matched against
the tag of the W lines in the set to identify if one of the
cache lines is a cache hit.

As memory is much larger than the cache, more
than W memory lines may map to the same cache set,
potentially resulting in cache contention. If an access
misses in the cache and all lines of the matching set
are in use, one cache line must be evicted to free a
cache slot for the new cache line being fetched from the
next level of cache or from main memory for the LLC.
The cache’s replacement policy determines the line to
evict. Typical replacement policies are approximations
to least-recently-used (LRU).

There is often a well-defined relationship between
different levels of cache. The inclusiveness property of
a cache states that the Li+1 cache holds a strict superset
of the contents of the Li. The LLC in modern Intel
processors is inclusive [20].

Modern Intel processors, starting with the Sandy
Bridge microarchitecture, use a more complex architec-
ture for the LLC, to improve its performance. The LLC
is divided into per-core slices, which are connected by
a ring bus (see Figure 3). Slices can be accessed con-
currently and are effectively separate caches, although
the bus ensures that each core can access the full LLC
(with higher latency for remote slices).

To uniformly distribute memory traffic to the slices,
Intel uses a carefully-designed but undocumented hash
function (see Figure 2b). It maps the address (excluding
the line offset bits) into the slice id. Within a slice, the
set is accessed as in a traditional cache, so a cache set
in the LLC is uniquely identified by the slice id and set
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Fig. 3: Ring bus architecture and sliced LLC

index.

Hund et al. [19] found that on Sandy Bridge, only
the tag field is used to compute the hash, but we find
that this is only true if the number of cores is a power
of two. For other core counts, the full address (minus
line offset) is used.

III. CHALLENGES IN ATTACKING THE LLC

A. Attack model

We target information leakage in virtualized environ-
ments, such as IaaS clouds. We assume that the attacker
controls a VM that is co-resident with the victim VM
on the same multi-core processor, as shown in Figure 1.
The victim VM computes on some confidential data,
such as cryptographic keys. We assume that the attacker
knows the crypto software that the victim is running.

We do not assume any vulnerability in the VMM,
or even a specific VMM platform. Nor do we assume
that attacker and victim share a core, that they share
memory, or that the attacker synchronizes its execution
with the victim.

B. PRIME+PROBE

Our LLC-based cross-core, cross-VM attack is based
on PRIME+PROBE [28], which is a general technique
for an attacker to learn which cache set is accessed
by the victim VM. The attacker, A, runs a spy process
which monitors cache usage of the victim, V , as follows:
PRIME: A fills one or more cache sets with its own code
or data.
IDLE: A waits for a pre-configured time interval while
V executes and utilizes the cache.
PROBE: A continues execution and measures the time to
load each set of his data or code that he primed. If V has
accessed some cache sets, it will have evicted some of
A’s lines, which A observes as increased memory access
latency for those lines.

As the PROBE phase accesses the cache, it doubles
as a PRIME phase for subsequent observations.
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C. Overview of challenges for efficient PRIME+PROBE
attacks on the LLC

Constructing an efficient PRIME+PROBE attack on
the LLC is much harder than on the L1 caches. We
identify the following challenges, which we explain in
the following subsections:

1) Visibility into one core’s memory accesses from
another core via LLC;

2) Significantly longer time to probe the large LLC;

3) Identifying cache sets corresponding to security-
critical accesses by the victim without probing the
whole LLC;

4) Constructing an eviction set that can occupy exactly
one cache set in the LLC, without knowing the address
mappings;

5) Probing resolution.

D. Visibility of processor-memory activity at the LLC

By design, the higher-level caches, L1 and L2, will
satisfy most of the processor’s memory accesses, which
means that the LLC has less visibility into the victim’s
memory activity than the L1 caches. Since the attacker
only shares the LLC with the victim, if its manipulation
of the LLC state does not impact the state of the
higher-level caches used by the victim VM, the victim’s
accesses to its interesting code or data will never reach
the LLC and will be hidden to the attacker.

We leverage cache inclusiveness, which lets us re-
place victim data from the complete cache hierarchy,
without access to any of the victim’s local caches.

E. Infeasibility of priming and probing the whole LLC

Conventionally, for the L1 caches, the PRIME+
PROBE technique primes and probes the entire L1
cache, and uses machine-learning techniques to ana-
lyze the cache footprint in order to identify spatial
patterns associated with the victim’s memory activity
[4, 8, 31, 47]. This is infeasible to achieve with fine
resolution on the LLC, since it is orders of magnitude
larger than L1 caches (several MiB versus several KiB).
We overcome this challenge by first pinpointing very
few cache sets corresponding to relevant security-critical
accesses made by the victim, and then we only monitor
those cache sets during a prime or probe step, instead
of monitoring the whole LLC.

F. Identifying cache sets relevant to security-critical
victim code and data

How to identify cache sets relevant to a victim’s
security-critical accesses, however, is still challenging.

This is because the attacker does not know the virtual
addresses of those security-critical accesses in the vic-
tim’s address space, and has no control on how these
virtual addresses are mapped to the physical addresses.
Our solution to this challenge is to scan the whole
LLC by monitoring one cache set at a time, looking
for temporal access patterns to this cache set that are
consistent with the victim performing security-critical
accesses. The specific temporal access patterns depend
on the algorithms used. We delay the detailed discussion
of this to Section VI and Section VII, which use
a simple square-and-multiply exponentiation and the
latest sliding-window exponentiation in GnuPG as case
studies to show how algorithm-specific security-critical
lines can be identified.

G. Eviction set to occupy exactly one cache set

In order to monitor the victim’s accesses to one
specific cache set, thus pinpointing whether that cache
set is accessed by the victim, the attacker needs to be
able to occupy that specific cache set. To achieve this,
the attacker can construct an eviction set containing a
collection of memory lines in its own address space
that all map to a specific cache set. Since a cache set
contains W cache lines, the eviction set must contain
W memory lines in order to evict one complete set. As
long as the cache replacement policy replaces older lines
before recently loaded ones (e.g., with LRU replacement
policy used on Intel processors, or FIFO replacement),
touching each line in the eviction set once guarantees
that all prior data in the set has been evicted.

Constructing an eviction set for the virtually-indexed
L1 cache is trivial: the attacker has full control of the
virtual address space, and can arbitrarily choose virtual
addresses with the same set index bits. In contrast, the
LLC is physically indexed. In order to target a specific
cache set, the attacker must at least partially recover the
address mapping, which is a challenge, as the VMM’s
address-space mapping is not accessible to the attacker.

The sliced cache of modern Intel processors (Sec-
tion II-B2) further complicates the attack: even knowing
the physical address of memory lines may not be
sufficient for creating the eviction sets, since the slice
id is unknown to the attacker.

In Section IV, we discuss how we construct the
eviction set using large pages and without reverse-
engineering the hash function.

H. Probing resolution

Extracting fine-grained information, such as crypto-
graphic keys, requires a fine probing resolution. Since
the spy process can run asynchronously, without the
need to preempt the victim, the probing resolution
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of the LLC is not tied to victim preemption, but is
fundamentally limited only by the speed at which the
attacker can perform the probe. This is much slower
than for an L1 cache, for two reasons.

First, the LLC typically has higher associativity than
the L1 cache (e.g., 12 to 24-way versus 4 to 8-way),
hence more memory accesses are required to completely
prime or probe a cache set.

Second, the probe time increases due to the longer
access latency of the LLC (about a factor of 10 for
recent Intel processors). Even with all lines resident in
the LLC, the attacker, when performing a probe of one
LLC set, will still experience misses in the L1 and L2
caches, due to their lower associativity. Furthermore, a
miss in the LLC will cause more than 150 cycles latency
while a miss in the L1 or L2 cache has a latency of less
than 40 cycles.

As a consequence, probing an LLC set is about one
order of magnitude slower than probing an L1 cache.
In Section V, we characterize the probing resolution of
the LLC by measuring the channel capacity of an LLC
based covert channel.

IV. CONSTRUCTING THE EVICTION SET

A. Methodology

We solve the problem of hidden mappings by
utilizing large pages. As discussed in Section II,
performance-tuned applications, OSes and VMMs use
large pages to reduce TLB contention. Large-page sup-
port of the VMM allows a large page in the guest
physical memory to be backed up by a large frame in the
actual physical memory. For our purpose, large pages
eliminate the need to learn the virtual-address mapping
used by the OS and VMM: a 2 MiB page is large enough
so that all the index bits are within the page offset,
thus the cache index bits are invariant under address
translation—the LLC is effectively virtually indexed.
A side effect of large pages is a reduction of TLB
misses and thus interference. But note that large-page
mappings are only required for the attacker, we make
no assumption on how the victim’s address space is
mapped.

In recent Intel CPUs, large pages are not sufficient
to locate an LLC slice, as memory lines with the same
set index bits may be located in different LLC slices.

Instead of following Hund et al. [19] in attempting
to reverse-engineer the (likely processor-specific) hash
function, we construct eviction sets by searching for
conflicting memory addresses. Specifically, we allocate
a buffer (backed up by large pages) of at least twice the
size of the LLC. From this buffer we first select a set
of potentially conflicting memory lines, i.e., lines whose

addresses have the same set index bits (e.g., address bits
6–16, see Figure 2b).

Algorithm 1: Creating the eviction sets
input : a set of potentially conflicting memory lines lines
output: a set of eviction sets for lines, one eviction set for

each slice

Function probe(set, candidate) begin
read candidate;
foreach l in set do

read l;
end
measure time to read candidate;
return time > threshold;

end
randomize lines;
conflict_set←{};
foreach candidate ∈ lines do

if not probe(conflict_set, candidate) then
insert candidate into conflict_set;

end
foreach candidate in lines− conflict_set do

if probe(conflict_set, candidate) then
eviction_set←{};
foreach l in conflict_set do

if not probe(conflict_set−{l}, candidate) then
insert l into eviction_set;

end
output eviction_set;
conflict_set← conflict_set− eviction_set;

end
end

We then use Algorithm 1 to create eviction sets for
a given set index for each slice. This first creates a
conflict set that contains a subset of the potentially con-
flicting memory lines such that for each slice, exactly
W memory lines in the conflict set map to the same
cache set. The conflict set is, effectively, a union of
eviction sets for all the slices (each eviction set contains
exactly W lines that map to the cache set in a slice.). The
algorithm, then, partitions the conflict set into individual
eviction sets, one for each slice.

The algorithm uses the function probe, which checks
whether a candidate memory line conflicts with a set of
lines. That is, whether accessing the set of lines evicts
the candidate from the LLC. The function first reads
data from the candidate line, ensuring that the line is
cached. It then accesses each of the memory lines in
the set. If, after accessing the set, reading the candidate
takes a short time, we know that it is still cached and
accessing the lines in the set does not evict it. If, on the
other hand, the read is slow, we can conclude that the
set contains at least W lines from the same cache set as
the candidate, and accessing these forces the eviction of
the candidate.

The algorithm creates the conflict set iteratively,
adding lines to the conflict set as long as the lines do
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Listing 1: Code for probing one 12-way cache set
1 lfence
2 rdtsc
3 mov %eax, %edi
4 mov (%r8), %r8
5 mov (%r8), %r8
6 mov (%r8), %r8
7 mov (%r8), %r8
8 mov (%r8), %r8
9 mov (%r8), %r8

10 mov (%r8), %r8
11 mov (%r8), %r8
12 mov (%r8), %r8
13 mov (%r8), %r8
14 mov (%r8), %r8
15 mov (%r8), %r8
16 lfence
17 rdtsc
18 sub %edi, %eax

not conflict with it. Intel’s hash function is designed
to distribute the selected potentially conflicting lines
evenly across all the LLC slices [20]. Hence, a buffer of
twice the size of the LLC is large enough to construct
the desired conflict set.

To partition the conflict set, the algorithm picks a
candidate from memory lines that did not make it into
the conflict set. The algorithm iterates over the members
of the conflict set, checking whether after removing the
member, the candidate still conflicts with the conflict
set. If removing the member removes the conflict, we
know that the member is in the same cache set of the
same LLC slice as the candidate. By iterating over all
the members of the conflict set we can find the eviction
set for the cache set of the candidate.

It takes about 0.2 seconds for determining the slices
of a single set index. When the number of cores in the
processor is a power of two, the set index bits are not
used for determining the LLC slice.Therefore, given the
eviction sets for one set index, it is straightforward to
construct eviction sets for other set index, without the
need to repeat the above procedure for each set index.
Otherwise, Algorithm 1 has to be repeated for every set
index.

B. Implementing the PRIME+PROBE attack

Once eviction sets are created, we can implement
the PRIME+PROBE attack. The implementation follows
the pointer-chasing technique of Tromer et al. [34]: We
organize all the memory lines in each eviction set as a
linked list in a random order. The random permutation
prevents the hardware from prefetching memory lines
in the eviction set.

Listing 1 shows the assembly code we use to probe
one set of the cache. The input in register %r8 is
the head pointer of the linked list, and the rdtsc

instruction (lines 2 and 17) is used to measure the time
to traverse the list. Each of the 12 mov instructions
(lines 4 to 15) reads one memory line in the eviction set,
which stores the pointer to the next memory line. Since
each mov instruction is data-dependent on the previous
one, access to the memory lines is fully serialized [28].
Upon completion, register %eax contains the measured
time.

The lfence instructions (lines 1 and 16) protect
against instruction re-ordering and out-of-order comple-
tion. It ensures that all preceding load instructions com-
plete before progressing, and that no following loads can
begin execution before the lfence. Intel recommends
using the cpuid instruction for full serialization of the
instruction stream [30]. However, as noted by Yarom
and Falkner [45], because the cpuid instruction is
emulated by the VMM, it is less suitable for the purpose
of measuring the timing in our attack.

C. Optimizations

Several optimizations on the scheme above are
possible, to minimize the probe time as well as its
variations.

Thrashing: As mentioned in Section II, probing the
cache implicitly primes it for the subsequent observa-
tion. However, due to the cache’s (approximate) LRU
replacement policy, using the same traversal order in
the prime and probe stages may cause thrashing, i.e.,
self-eviction by the attacker’s own data: If the victim
evicts a line, it will be the attacker’s oldest. On probing
that evicted line, it will evict the second-oldest, leading
to a miss on every probe. By using a doubly-linked list
to reverse the traversal order during the probe stage, we
minimize self-evictions, as the oldest line is accessed
last [34].

Interaction with higher-level caches: The attacker
data is also partially cached in higher-level caches.
Retrieving data from the higher cache levels is faster
than reading it from the LLC, hence variations in the
L1 and L2 contents affect the cache probe time and
introduce noise to its measurements. For example, with
an 8-way L1 cache and a timing difference of about
30 cycles between L1 access and LLC access, the
total variation can reach 240 cycles—much larger than
the difference between LLC and memory access. The
interaction of higher-level caches tends to have less
effect when the associativity of the LLC is much higher
than that of the L1 and L2 caches, since the L1 and L2
caches can only hold a small portion of the eviction
set for the LLC. An optimization is that instead of
measuring the total probe time, one can measure the
time of every load from the eviction set. This approach
reduces the noise from the multiple levels of caching,
but at the cost of an increased probe time.
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V. PROBING RESOLUTION VIA CHANNEL CAPACITY
MEASUREMENTS

Next, we study the probing resolution and the ef-
fectiveness of our proposed technique using a willing
transmitter, i.e., by constructing a covert channel and
characterizing the channel capacity. The covert channel
protocol is shown in Algorithm 2. It is similar to the
timing-based cache-channel protocol of Wu et al. [42]
but more efficient, because we use the technique from
Section IV to create an exact eviction set.

Since the sender and the receiver execute concur-
rently without synchronization, we use a return-to-zero
(RZ) self-clocking encoding scheme [14]. The sender
and the receiver each allocate a buffer of at least the
size of the LLC, backed up by large pages. They agree
on two arbitrarily chosen cache-set indices (preferably
without interferences from non-participating memory
accesses). The sender picks from its allocated buffer
two memory lines, line 0 and line 1, that map to the
two agreed cache set indices. To send a “1”, the sender
continuously accesses line 1 for an amount of time,
Tmark. Similarly, the sender continuously accesses line 0
for a time equal to Tmark to send a “0”. The RZ encoding
scheme makes sure there is enough time between two
consecutive bits by busy waiting for an amount of time,
Tpause.

Before monitoring the sender, the receiver first uses
Algorithm 1 to create eviction sets set 1 and set 0
for line 1 and line 0. It then uses PRIME+PROBE to
continuously monitor the two sets. To maximize channel
capacity, we set the idle interval between successive
probes to zero.

We construct the covert channel on a Dell server
platform with the Xen VMM, and a HP desktop plat-
form with VMware ESXi, Table I shows their configura-
tions. We use the default configurations for the VMMs,
which have large page support to transparently back up
the large pages in the guest physical memory with large
frames in the host physical memory. The only special
configuration is that for Xen, we need to use native
mode for the “rdtsc” instruction to avoid being emulated
by the VMM.

Figure 4 shows a sample sequence of the receiver’s
measurements when interleaved bits of ones and zeros
are transmitted. The figure clearly shows that the peaks
of set 0 occur during the troughs of set 1 and vice versa,
corresponding to the “101010...” sequence. The receiver
can get more than one sample for each mark, and the
pause duration is long enough to avoid overlapping
between “1” and “0”. The experiment indicates that the
threshold value should be 700 cycles. Note that the mark
duration seen by the receiver is much longer than Tmark
of the sender (100 cycles), since the receiver’s probe
takes much longer time than 100 cycles.

Algorithm 2: Covert channel protocol
line 1: cache line accessed by the sender to send “1”.
line 0: cache line accessed by the sender to send “0”.
set 1: eviction set conflicting with line 1.
set 0: eviction set conflicting with line 0.
Dsend[N]: N bits data to transmit by the sender.

Sender Operations:

for i← 0 to N−1 do
if Dsend[i] = 1 then

for an amount of time Tmark do
access line 1;

end
busy loop for an amount of time Tpause;

else
for an amount of time Tmark do

access line 0;
end
busy loop for an amount of time Tpause;

end
end

Receiver Operations:

for an amount of time Tmonitor do
probe set 1 in forward direction;
probe set 0 in forward direction;
probe set 1 in backward direction;
probe set 0 in backward direction;

end

TABLE I: Experimental platform specifications.

Dell R720 (server) HP Elite 8300 (desktop)
Processor Model Intel Xeon E5 2690 Intel Core i5-3470
Microarchitecture Sandy Bridge Sandy Bridge
Clock Frequency 2.9 GHz 3.2 GHz
# of Cores (slices) 8 4
LLC 20-way 20 MiB 12-way 6 MiB
Cache line size 64 B 64 B
VMM Xen 4.4 (HVM) VMware ESXi 5.1
Guest OS Ubuntu 14.04.1 LTS CentOS 6.5

The covert channel suffers from various transmission
errors, including bit loss, insertion of extra bits or bit
flips. We conduct an experiment to measure the effect
of the pause duration on channel capacity and error
rate. The sender generates a long pseudo-random bit
sequence (PRBS) with a period of 215−1 using a linear
feedback shift register (LFSR) with a width of 15 [29].
The LFSR can exhaust all the 215 states except the all-
zero state in one period, therefore the maximum number
of consecutive ones and consecutive zeros is 15 and 14,
respectively. To decode the signal, the receiver probes
both set 0 and set 1. It produces a “1” for each sequence
of consecutive probes in set 1 that take longer than a
threshold value (e.g., 700 cycles for the server and 400
cycles for the desktop), and a “0” for each sequence of
consecutive probes in set 0 that are above the threshold.
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Fig. 4: Sample sequence of receiver’s access time on
server platform, (a) set 1, (b) set 0. The sender transmits
the sequence “101010...”. Tmark = 100 and Tpause = 3000
cycles.

To estimate the error rate, we first identify a com-
plete period of the received PRBS to synchronize the
received signals with the sent PRBS, and then calculate
the edit distance [25] of one complete period of the sent
PRBS and the received data. The edit distance calculates
the number of insertion, deletion, or substitution opera-
tions required to transform a string to another string. In
the measurement, we fix Tmark as 100 cycles and vary
Tpause.
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Fig. 5: Channel capacity and error rate of the covert
channel.

Figure 5 shows the resulting channel capacity and
error rate. As can be expected, increasing the pause
duration reduces the error rate, but also the channel
capacity. With a small pause time, synchronization may
be lost during long sequences of the same bit value.
Consequently, it is hard to determine the number of
consecutive bits of the same value, resulting in many
bit-loss errors. As Tpause increases, the error rate drops
for both the server and the desktop, until leveling out at

about 0.5% and 3%, respectively, where insertion and
flip errors dominate the bit-loss errors.

The desktop shows a higher error rate than the
server, and larger variance. This is a result of the
desktop’s lower LLC associativity, as the interaction
with higher-level caches tends to be stronger when the
associativity of the caches is similar. Perhaps counter-
intuitively, the figure also shows that the channel capac-
ity on the generally more powerful server is about 20%
less than that of the desktop, also a result of the server’s
higher LLC associativity (and thus higher probe time)
as well as a slightly lower clock rate.

The key takeaway from Figure 5 is the high overall
bandwidth, on the desktop 1.2 Mb/s with an error rate
of 22%. Although the probe time for the LLC is much
longer than that of the L1 cache, this is balanced by the
efficiency gain from the concurrent execution of sender
and receiver. Our observed bandwidth of 1.2 Mb/s is
about 6 times that of the highest previously reported
channel capacity [42] for an LLC-based covert channel.

For an apples-to-apples comparison of channel band-
width, we need to know the error rate in the experiments
of Wu et al. [42]. Unfortunately, this error rate is not
mentioned, and the test conditions are not compatible
with ours. Nevertheless, note that if we reduce the
channel bandwidth to 600 Kb/s the error rate on the
server platform drops to below 1%. Thus, the data
transfer rate of our method is three times faster than
the raw transfer rate reported in [42].

We have also experimented with longer mark du-
rations, where the receiver can collect more than one
sample per mark. This can further reduce the error rate,
but the effects are not as pronounced as for changing
the pause duration, so we do not pursue this further.

VI. ATTACKING THE SQUARE-AND-MULTIPLY
EXPONENTIATION ALGORITHM

We now show how our approach can be used to
leak a secret by recovering a secret-dependent execution
path. We use as a case study the square-and-multiply
implementation of modular exponentiation.

A. Square-and-multiply exponentiation

Modular exponentiation is the operation of raising a
number b to the power e modulo m. In both RSA [33]
and ElGamal [11] decryptions, leaking the exponent e
may lead to the recovery of the private key.

The square-and-multiply algorithm [15] computes
r = be mod m by scanning the bits of the binary repre-
sentation of the exponent e. Given a binary representa-
tion of e as (en−1 · · ·e0)2, square-and-multiply calculates
a sequence of intermediate values rn−1, . . . ,r0 such that
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Fig. 6: Traces of activity in cache sets. The highlighted trace at cache set 43 is for the code of the squaring operation.

ri = bbe/2ic mod m using the formula ri−1 = ri
2bei−1 .

Algorithm 3 shows a pseudo-code implementation of
square-and-multiply.

Algorithm 3: Square-and-Multiply exponentiation
input : base b, modulo m, exponent e = (en−1 · · ·e0)2
output: be mod m

r← 1
for i from n−1 downto 0 do

r← r2 mod m
if ei = 1 then

r← r ·b mod m
end

end
return r

The multiplications and modulo reductions directly
correspond to the bits of the exponent: each occurrence
of square-reduce-multiply-reduce corresponds to a one
bit, while each occurrence of square-reduce not fol-
lowed by a multiply corresponds to a zero bit. Conse-
quently, an attacker process that can trace the execution
of the square-and-multiply exponentiation algorithm can
recover the exponent [2, 45, 47]. We now show how we
can attack this algorithm using the technique developed
in Section IV. The main challenge is finding the cache
sets that hold the relevant victim code.

By their nature, side-channel attacks are very spe-
cific to the details of what is being attacked. Here we
develop an attack against the implementation of square-
and-multiply found in GnuPG version 1.4.13. For the
victim we use the default build, which compiles the
code with a high level of optimization (-O2), but leaves
the debugging information in the binary. The debugging
information is not loaded during run time, and does
not affect the performance of the optimized code. The
victim repeatedly executes the GnuPG binary to decrypt

a short file encrypted with a 3,072 bit ElGamal public
key. GnuPG uses Wiener’s table to determine the key
length to use. For a 3,072 bit ElGamal, Wiener’s table
returns a value of 269. GnuPG adds a 50% safety
margin, resulting in a key length of 403 bits.

The technique we use is fairly independent of the
specifics of the hardware platform. We apply it to our
two experimental platforms of Table I, but it will work
on all processors that have inclusive caches and large-
page mappings. It will also work on other implementa-
tions of the square-and-multiply algorithm, and in fact
on any algorithm whose execution path depends on
secret information.

B. Implementing the attack

The core idea of the attack is to monitor the use
of the squaring operation. While processing a “1” bit,
the squaring is followed by a modulo reduction, which
is followed by a multiply and another reduction. In
contrast, for a “0” bit, after the squaring there is only
one reduction, which will then be followed by the
squaring for the next bit. Hence, by observing the
time between subsequent squarings, we can recover the
exponent.

We trace cache-set activity looking for this access
pattern. To trace a cache set, we divide time into fixed
slots of 5,000 cycles each, which is short enough to get
multiple probes within each squaring operation. Within
each time slot, we prime the cache set, wait to the end
of the time slot and then probe the cache set.

Figure 6 shows the traces of several cache sets. Each
line shows a trace of a single cache set over 1,000 time
slots. Shaded areas indicate time slots in which activity
was detected in the traced cache set.
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As the figure demonstrates, some cache sets are
accessed almost continuously, others are almost never
accessed, whereas others are accessed sporadically. The
highlighted cache set at line 43 is the only one exhibit-
ing the activity pattern we expect for the squaring code,
with a typical pulse of activity spanning 4–5 time slots.
The pauses between pulses are either around six time
slots, for “0” bits, or 16–17 time slots for “1” bits.
In addition, there are some variations in the pattern,
including pulses of a single time slot and pauses of
over 20 time slots.

We can easily read the bit pattern of the exponent
from line 43 in Figure 6: Reading from the left, we
see two pulses followed by short intervals, indicating
two “0” bits. The next pulse is followed by a longer
interval, indicating a “1” bit. The resulting bit pattern
is 001001111111101...

To identify the cache set we correlate the trace of
the cache set with a pattern that contains a single pulse:
the pattern has 6 slots of no activity, followed by 5
with activity and another 6 without activity. We count
the number of positions in the trace that have a good
match with the pattern and mark traces that have a large
number of matches as potential candidates for being
the squaring cache set. We pass candidates to the user
for the decision on whether the trace is, indeed, of the
squaring cache set.

C. Optimization

Rather than searching all cache sets, we can leverage
some information on the GnuPG binary to reduce the
search space. In many installations, the GnuPG binary
is part of a standard distribution and is, therefore, not
assumed to be secret. An attacker that has access to
the binary can analyze it to find the page offset of the
squaring code. As there is some overlap between the
(4 KiB) page offset and the cache set index (Figure 2),
the attacker only needs to search cache sets whose set
index matches the page offset of the victim code. This
reduces the search space by a factor of 64.

D. Results
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Fig. 7: Distribution of capture errors

With this optimization, we require on average about
120 executions of the victim to locate the cache set of

the squaring code on the desktop platform. As the LLC
on the server platform is twice as big, we need about
240 executions there. Once found, we collect the access
information and use a shell script to parse the results.

Figure 7 shows the distribution of the number of
capture errors on the desktop and the server platforms.
Out of 817 exponentiations captured on the desktop
platform, we drop 46, where the observed exponent
is significantly longer or significantly shorter than the
expected 403 bits. For the server platform we collect
959 and drop 297. Figure 7 shows the distribution of
the number of capture errors over the remaining 771
(desktop) and 662 (server) captured exponentiations.

VII. ATTACKING THE SLIDING-WINDOW
EXPONENTIATION

In the previous section we showed how to recover
secret-dependent execution paths. We now show that our
attack can also be used to observe secret-dependent data
access patterns. As an example we use an implementa-
tion of the sliding-window exponentiation algorithm [7].

A. Sliding-window exponentiation

Given an exponent e, the sliding-window represen-
tation of the exponent is a sequence of windows wi,
each of length L(wi) bits. A window wi can be either
a zero window with a string of “0”s, or a non-zero
window that starts with a “1” and ends with a “1”.
For a sliding window representation with a window
size S, the length of the non-zero window satisfies
1 ≤ L(wi) ≤ S, hence the value of a non-zero window
is an odd number between 1 and 2S− 1. Algorithm 4
computes an exponentiation given the sliding-window
representation of the exponent.

Algorithm 4: Sliding-window exponentiation
input : window size S, base b, modulo m,

N-bit exponent e represented as n windows wi of
length L(wi)

output: be mod m

//Precomputation
g[0]← b mod m
s←MULT(g[0],g[0]) mod m
for j from 1 to 2S−1 do

g[ j]←MULT(g[ j−1],s) mod m
end
//Exponentiation
r← 1
for i from n downto 1 do

for j from 1 to L(wi) do
r←MULT(r,r) mod m

end
if wi 6= 0 then r←MULT(r,g[(wi−1)/2]) mod m;

end
return r

10



All

g[0]

g[1]

g[2]

g[3]

g[4]

g[5]

g[6]

g[7]

 0  50  100  150  200

M
u

lt
ip

lie
r

Sequence of multiplications in one exponentiation

Fig. 8: The usage patterns of the multipliers g[i] = b2i+1 in an exponentiation. The vertical line separates the
pre-computation and the body of the exponentiation. The x-axis shows the first 240 of 492 multiplications in the
exponentiation.

The algorithm scans the exponent from the most
significant to the least significant bit, executing a square
for each bit. Whenever it reaches the least significant bit
of a non-zero window, a multiplication is performed.
The multiplier used is bv mod m, where v is the value
of the non-zero window. For better performance, the
algorithm pre-computes multipliers bv mod m for each
odd value of v (1 ≤ v ≤ 2S− 1) and stores them in a
table g[i], which can be unambiguously indexed with
i = (v−1)/2. For example, when S = 4, we compute 8
multipliers, b1,b3,b5, ...,b15 mod m, which can be found
in g[0],g[1],g[2], ...,g[7], respectively.

To thwart recovery of the square-and-multiply se-
quence with the FLUSH+RELOAD attack [45], GnuPG
uses the multiply routine to calculate squares. Unless
explicitly mentioned otherwise, we use multiplication to
refer to the execution of the multiply routines, including
both the square and the true multiply. Thus, the GnuPG
implementation of the sliding-window algorithm per-
forms a sequence of multiplication operations.

However, this still leaks information, since the true
multiply (last statement in Algorithm 4) looks up the
pre-computed multiplier table using the value of the
non-zero window. An attacker can determine the po-
sition and value (and hence the length) of the non-zero
window by knowing when and which pre-computed
multiplier is used, which is sufficient to completely
recover the exponent [31].

As in Section VI, we tailor the attack to a specific
implementation of the algorithm. In this case, we use the
latest version (1.4.18) of GnuPG. The victim repeatedly
decrypts a short file encrypted with a 3,072 bit ElGamal
public key.

B. Multiplier usage pattern

The core idea of our attack is to monitor the use
of each pre-computed multiplier in the multiplication
operations. We define multiplier usage pattern Ui for a

multiplier g[i] as a bit vector indicating whether g[i] is
used as an operand in each multiplication operation of
a single exponentiation.

As a concrete example, Figure 8 displays the mul-
tiplier usage patterns (each horizontal line represents
a usage pattern for one multiplier) for the first 240
multiplications out of the 492 multiplications executed
during a single decryption with a 3,072 bit ElGamal key.
This has a 403-bit exponent, for which GnuPG uses
window size S = 4, resulting in 2S−1 = 8 multipliers.
The exponentiation requires 8 multiplications in the pre-
computation phase, 403 for squaring (one for each bit),
as well as 81 for the true multiply operation, for a total
of 492. For a 3,072-bit ElGamal key, the size of the
multiplier is also 3,072 bits, which may occupy 6–7
cache lines.

The usage pattern of the multipliers in the 8 multi-
plications of the pre-computation phase is very regular:
The first squares b (g[0]) to calculate s, while the next
7 multiply g[i− 2] with s to calculate the next odd
multiplier g[i− 1]. Thus g[0] is used as an operand in
the first two multiplications, and g[i] (1≤ i≤ 6) is used
in the (i+2)nd multiplication. g[7] is special, since it is
not used as an operand in the pre-computation phase,
but there is a write access to g[7] at the end of the pre-
computation phase, which will be captured in the first
time slot of the first multiplication in the exponentiation
body. We also include this write access to g[7] in the
usage pattern since it is useful to identify g[7].

The multiplier usage patterns in the exponentiation
phase are irregular. However, we can calculate some
statistical data on the expected use. For a window size
of S, the expected distance between non-zero windows
is S+ 1 [27]. Thus, on average, we expect N/(S+ 1)
non-zero windows in the exponent. With 2S−1 different
values of non-zero windows, we expect each multiplier
to be used 21−S ·N/(S+ 1) times during the exponen-
tiation. Hence, for window size S = 4, we expect each
multiplier to be accessed 21−4 ·403/(4+1)≈ 10 times
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during the exponentiation.

By combining the usage patterns for all the multi-
pliers, recovering the key is straightforward: the mul-
tiplications that do not use any of the multipliers are
identified as square operations, the remaining multipli-
cations are true multiply operations and the multipliers
can also be identified.

C. Identify multiplier cache set

A key step of our attack is identifying which cache
set corresponds to which multiplier. Similar to the attack
in Section VI, we need to scan every cache set for
a long sequence of time slots, e.g. spanning several
executions of ElGamal decryption. However, there are
three significant differences compared with the attack
in Section VI:

1) Since we want to get the use of a multiplier during
the multiplication operations, a naive trace of cache-set
activity will not tell when a multiplication operation
starts and ends. Therefore, our measurements of the
cache-set activities must be aligned with the sequence
of multiplication operations.

2) The locations of the multipliers are not only
unknown, but also differ for every execution of the
exponentiation. This is because the multipliers are
stored in heap memory that is dynamically allocated for
every execution of the exponentiation. Hence, multiplier
location information obtained during one exponentiation
cannot be used for locating the multiplier in subsequent
exponentiations. Furthermore, for every execution of
the exponentiation, a monitored cache set may contain
a multiplier, or may not contain any multipliers; the
probability depends on the size of a multiplier and the
total number of cache sets. This is in contrast with the
attack in Section VI where the location of the cache
set containing the squaring code is fixed for different
executions of the exponentiation.

3) The access to the multiplier is sparse and irreg-
ular, as can be seen in Figure 8. In Section VI, we
showed that the access to those cache sets containing
the squaring code shows regular temporal patterns that
can be easily recognized. However, since we do not
know when, during an exponentiation, each multiplier
is used, we have very little information on the temporal
access pattern of a multiplier.

In a nutshell, our strategy is as follows:

1) To trace the cache-set activities in the multiplica-
tion operations, we simultaneously monitor two cache
sets: one is the scanned cache set that may potentially
contain a multiplier, and the other is the cache set
containing the multiplication code. In this way, the
sequence of multiplications serves as the “clock” for
all the measurements.

2) Although we do not know the expected temporal
access pattern for a multiplier, we do know that cache
sets corresponding to the same multiplier must show
similar cache-set activities even in the presence of noise,
since they must all follow the usage pattern of that
multiplier. Therefore, we can cluster the scanned cache
sets into groups, each group showing similar cache-set
activities during the multiplication operations.

3) Since the multiplier usage pattern at the pre-
computation phase is regular and distinct, we can lever-
age this knowledge to identify which group corresponds
to which multiplier. The statistical information on the
use of the multiplier during the exponentiation phase
can also be leveraged to clean out some noise for the
clustering.

Putting it all together, our attack follows this outline:

1) Find the cache sets that contains the multipli-
cation code.

2) Collect cache-set activity traces for all the
cache sets (Section VII-D).

3) Filter out traces that do not match the expected
statistical properties of multiplier access (Sec-
tion VII-E).

4) Cluster the traces to amplify the signal (Sec-
tion VII-F).

5) Analyze the clusters to recover the multiplier
usage patterns and calculate the exponent (Sec-
tion VII-G).

With the exception of the last step, the attack is
automated. In Section VII-H we present the results of
running the attack on the experimental platforms.

D. Collect cache-set activity trace patterns

The purpose of this step is to create trace patterns
for the cache-set activities during the victim multiplica-
tion operations. A trace pattern is a bit vector of length
m, the number of multiplications in an exponentiation.
Each bit describes whether a cache set is accessed or not
in the multiplication operation. In the absence of noise,
if a cache set is used for a multiplier, we expect the
trace pattern of the cache set to match the usage pattern
of that multiplier. However, noise is present, both due to
system activity and due to capture errors. Nevertheless,
we still expect the trace pattern of the cache set to be
similar to the usage pattern of the multiplier.

To collect trace patterns, we first reuse the method
of Section VI-B to identify a cache set used for the
multiplication code. Next, we scan cache-set activities
for every cache set, each scan lasts for 35,000 time slots
(of 5,000 cycles each). For each scan, we simultane-
ously monitor the scanned cache set and the cache set
containing the multiplication code. Within each time
slot, we prime both cache sets, and at the end of the
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time slot we probe for activity in both sets. We use
the information obtained from the cache set containing
the multiplication code to identify when the victim
performs the exponentiation and when the multiplication
operations start and end. We then check for activity
in the scanned cache set during these multiplications
to construct the trace patterns. We leave the detailed
description on how we handle noise in the cache set
containing multiplication code to Appendix A.

Note that because a decryption takes about 7,000
time slots, each scan of 35,000 time slots contains 4–
5 complete exponentiations. Therefore, we can get 4–5
samples of trace patterns in each scan. We refer readers
to Appendix B for a discussion of the number of trace
patterns we need to collect.

E. Filter out unexpected trace patterns

Since the size of the multipliers is much smaller than
the size of the LLC, most of the trace patterns created
during the scan do not correspond to cache sets used for
multipliers. To reduce the amount of data we process in
the next phase, we leverage the statistical knowledge of
the multiplier usage patterns to filter out trace patterns
that are unlikely to be a multiplier.

As discussed in Section VII-B, during the first few
multiplication operations, g[0] is accessed twice and
other multipliers are accessed once in sequence. A
multiplier is expected to be used 10 times during the
subsequent exponentiation phase. Therefore, we can
discard trace patterns that show too little or too much
activity (< 5 or > 20 multiplications). Furthermore, we
remove trace patterns that do not show activity within
the first few multiplications.

F. Clustering trace patterns

In the absence of noise, the trace patterns for cache
sets used for the same multiplier are identical to the
multiplier usage pattern, so usage patterns of all cache
sets containing the same multiplier would be identical.
With moderate noise we cannot expect them to be
identical, but they should at least be similar. We rely on
this similarity to group trace patterns for a multiplier
together, thereby converging towards the actual usage
of that multiplier in multiplication operations. Because
our attack collects enough trace patterns, we are highly
likely to capture multiple trace patterns for each multi-
plier.

To group similar trace patterns, we use a hierarchical
clustering algorithm [17] with the edit distance [25]
between the trace patterns as the measure of similarity.
The clustering algorithm is quadratic in the number of
trace patterns. Figure 9 demonstrates a cluster of trace
patterns, representing the usage pattern of a multiplier.

G. Identify corresponding multipliers for clusters

The final step is recovering usage patterns of all the
pre-computed multipliers, which directly exposes the
exponent, as we discussed in Section VII-B. We find that
identifying the clusters representing usage of multipliers
is fairly straightforward. According to the statistical
information on multiplier usage (Section VII-B), we
can easily locate those clusters that match expectations.
Therefore, we focus on error correction and on mapping
clusters to corresponding multipliers. Unlike previous
steps, which are automated, this step requires manual
processing.

To explain how we capture errors, we look at a
sample cluster in Figure 9, showing a cluster with
15 trace patterns. Each horizontal line represents a
trace pattern of the multiplier cache set, indexed by
the multiplication sequence. The shaded areas are the
multiplication indices in which the scanned cache set
shows activity. The solid vertical lines show the ground-
truth activity, i.e., the usage pattern for the multiplier,
as obtained from the victim’s key. Red marks indicate
activity detected due to noise in the scanned cache line.
Because the noise is independent of the multiplication
activity, it can be easily identified by comparing all the
trace patterns in the cluster.

In the figure we can see another noise effect: the
further we advance in the exponentiation, the more the
trace patterns deviate from the ground truth. We believe
that this deviation is caused by short pauses in the victim
operation which result in our attack interpreting a single
multiplication operation as two separate multiplications.
While we do try to correct these (Appendix A), our fix
is, evidently, not perfect.

For correcting errors, we process the trace patterns
from left to right. We re-align all the trace patterns in
a cluster based on their common positions that have
access to the corresponding multiplier. This removes
the spurious accesses as we progress through the trace
patterns.

Lastly, we assign trace patterns to pre-computed
multipliers, g[i], by comparing the patterns in the first
few multiplications with the knowledge of the pre-
computation phase in Algorithm 4. For the cluster in
Figure 9, the trace patterns indicate that the first multi-
plication operation of that multiplier occurs at the third
index. According to the sequence of multiplications
in the pre-computation stage, we conclude that this
cluster represents usage patterns of multiplier g[1]. By
processing all clusters with the same technique, we
are able to identify usage patterns of all pre-computed
multipliers.
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Fig. 9: A cluster of traces

H. Results

We test the attack five times on each platform,
each time with a different key. In each attack, the
victim runs in one VM, repeatedly executing the GnuPG
program, decrypting a short text file. The attacker runs
continuously in another VM, observing activity in the
shared LLC. Table II summarizes the results.

TABLE II: Results of attack on sliding window.

server desktop
Online attack time 27m 12m
Offline analysis time 60s 30s
Manual processing time 10m 10m
Observed exponentiations 79,900 33,600
Interesting exponentiations 1,035 734
Average cluster size 20.4 17.7
Minimum cluster size 12 5

Most of the attack time is spent on the online attack,
collecting observations of cache sets. Due to the larger
cache size, we collect more observations on the server
platform. We filter out over 97% of the observations
because they do not match the expected activity of a
multiplier, leaving 700–1000 interesting traces, which
we pass to the clustering algorithm. This offline phase
takes less than a minute, leaving us with a list of
clusters. The average cluster size is around 20 traces,
with a minimum of 5. In all test cases, we require about
10 minutes of an expert to do the manual processing of
the clusters to completely recover the actual usage of
multipliers and recover the key.

VIII. RELATED WORK

A. PRIME+PROBE

This technique has been used for attacks against
several processor caches, including the L1 data cache
[28, 31, 34, 47], L1 instruction cache [1, 2, 4] and the
branch prediction cache [3]. All these caches are core-
private, and the attacks exploit either hyper-threading or
time multiplexing of the core.

Zhang et al. [47] use PRIME+PROBE to implement
a cross-VM attack on the square-and-multiply imple-

mentation of GnuPG version 1.4.13. The attack relies
on exploiting a weakness in the Xen scheduler and on
having a non-zero probability of the spy and victim
time-sharing the same core. The attack requires six
hours of constant decryptions for collecting enough data
to break the key. In contrast, we use the LLC as an
attack vector, which is used by all cores, and do not
need to trick the scheduler to share a processor core,
resulting in a much faster attack.

B. LLC based covert channel

Percival [31] describes an L2 covert channel with
a capacity of 100 KiB/s, but does not explain how the
attack recovers the address mapping. Ristenpart et al.
[32] experiment with L2 covert channels in a cloud
environment, achieving a bandwidth of about 0.2 b/s.
Xu et al. [43] extend this attack, reporting an L2-based
channel with a capacity of 233 b/s. By focusing on a
small group of cache sets, rather than probing the whole
cache, Wu et al. [42] achieve a transfer rate of over
190 Kb/s. By accurately mapping the cache sets, our
attack achieves a much higher bandwidth (up to 1.2
Mb/s) than prior work.

C. LLC based side channel attacks

Due to the low channel capacity, an LLC-based side
channel typically only leaks course-grain information.
For example, the attacks of Ristenpart et al. [32] leak in-
formation about co-residency, traffic rates and keystroke
timing. Zhang et al. [46] use an L2 side channel to detect
non-cooperating co-resident VMs. Our attack improves
on this work by achieving a high granularity that enables
leaking of cryptographic keys.

Yarom and Falkner [45] show that when attacker and
victim share memory, e.g. shared libraries, the technique
of Gullasch et al. [16] can achieve an efficient cross-
VM, cross-core, LLC attack. The same technique has
been used in other scenarios [5, 22, 35, 44, 48]. Our
attack removes the requirement for sharing memory, and
is powerful enough to recover the key from the latest
GnuPG crypto software which uses the more advanced
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sliding window technique for modular exponentiation,
which is impossible using FLUSH+RELOAD attacks.

In concurrent work Irazoqui et al. [23] describes the
use of large pages for mounting a synchronous LLC
PRIME+PROBE attack against the last round of AES.

IX. MITIGATION

A. Fixing GnuPG

One approach to fixing GnuPG for preventing in-
formation leaks is exponent blinding, which splits the
exponent into two parts. Modular exponentiation is
performed on each part, followed by combining the
results [9].

An alternative is a constant-time implementation that
does not contain any conditional statements or secret-
dependent memory references. Techniques for constant-
time implementations have been explored, for example,
in Bernstein et al. [6]. These approaches can be tricky
to get right, and recent work has demonstrated that
a “constant-time” implementation of OpenSSL is still
susceptible to timing attacks at least on the ARM
architecture [10].

When reporting the vulnerability to the GnuPG
team, we also provided a patch, which changes the
exponentiation algorithm to a fixed-window exponen-
tiation, and ensures that the access patterns to the mul-
tipliers do not depend on exponent bits. This measure
falls short of a constant-time implementation because
the implementation of the multiplication and modular
reduction are not constant time. While it is possible to
leak information from these implementations [12, 13],
we are not aware of a micro-architectural attack that can
exploit this weakness.

B. Avoiding resource contention

While fixing GnuPG is clearly desirable, this does
not address the general issue of maintaining isolation
and preventing information leaks in a multi-tenant en-
vironment. Since the root cause of LLC attacks is
resource contention, the most effective countermeasure
is to eliminate the resource contention. This can be
achieved with different granularity.

1) Avoid co-residency: This is the coarse-grained
partitioning of the resource: simply disallowing VMs
from different tenants to be hosted on the same pro-
cessor package, which prevents sharing of the LLC
among the attacker and the victim VMs. However, this
approach is fundamentally at odds with the core moti-
vation of cloud computing: reducing cost by increasing
resource utilization through sharing. Given the steady
increase in core counts, the economics will shift further
in favor of sharing.

2) Cache partitioning: Cache partitioning is a form
of fine-grained resource partitioning. There are several
approaches to partition the cache.

One approach is to partition the cache by sets. This
can be achieved through page coloring, where frames of
different color are guaranteed to map to different cache
sets [26]. The VMM can manage the allocation of host-
physical memory so that VMs from different tenants are
mapped to frames of disjoint colors. Coloring frames
complicates the VMM’s resource management and leads
to memory wastage due to fragmentation. It is also
incompatible with the use of large pages, and thus
foregoes their performance benefits.

STEALTHMEM [24] proposes a smarter way to uti-
lize the page coloring technology by only reserving very
few colors, known as stealth pages, for each physical
core to store the security-sensitive code and data. It
ensures that the security-sensitive code and data will not
have cache conflicts with other code and data. However,
this approach does not eliminate the LLC-based covert
channel.

The latest Intel processors provide cache allocation
technology (CAT), which partitions the cache by ways
[21]. CAT defines several classes of service (COS), and
each COS can be allocated a subset of ways in each
cache set. This can be used to partition the LLC between
COSes. The architecture presently supports up to four
COSes, which may not be sufficient in many cloud
environments. Further research is required to study the
use of CAT and its effectiveness as a countermeasure
to LLC-based attacks.

Fine-grained cache partitioning can also be done
dynamically using special load and store instructions
that can lock a security-critical cache line into the cache,
as in the partition-locked cache (PLcache) proposed by
Wang and Lee [40]. However, the PLcache design only
locks data in the cache, it is not clear how it can be
extended to lock instructions.

C. Run-time diversification

Other proposals for secure cache designs randomize
the memory-to-cache mapping [40, 41]. This random-
izes resource contention, so an attacker cannot extract
useful information. These designs have been applied
to the L1 data cache without causing performance
degradation, but use on the much larger LLC has not
been investigated to date.

Fuzzy time approaches disrupt the timing measure-
ment by adding noise or slowing it down, or reduce the
accuracy of the clock [18, 37]. The drawback is that it
may impact other benign applications that require the
access to the high-resolution timers.
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X. CONCLUSIONS

We have presented a method for implementing an
LLC-based PRIME+PROBE attack. We have demon-
strated that the LLC presents a high-bandwidth channel,
in the worst case exceeding 1 Mb/s. We have then shown
that the approach can be used to mount cross-core,
cross-VM side channel attacks that leak keys effectively
for crypto code with secret-dependent execution paths
as well as with secret-dependent data access. We have
demonstrated these attacks against implementations of
ElGamal decryption in GnuPG. The attack is very
effective, taking a few seconds to break the key when
used against old versions of GnuPG and between 12
and 27 minutes for the latest version.

Our assumptions are minimal: we rely on cache
inclusiveness and utilize large-page mappings in the
attacker, and assume that the VMM uses large frames
to map guest physical memory. Beyond that we make
no assumptions on the environment or the victim, other
than it repeatedly decrypts text using the same key. In
particular, we do not require memory sharing across
VMs, do not exploit VMM weaknesses and show that
the same attack works with different VMMs and differ-
ent hardware platforms.

Given these weak assumptions, we believe that our
attack is eminently practical, and as such presents a
real threat against keys used by cloud-based services.
However, we have not tested the attack in a noisy
environment, nor in a real cloud settings. Experimenting
in such environments to measure the effects of noise on
the attack is left for future work.

Given the dependence on large-page mappings, the
easiest countermeasure would be to disable large pages
in the VMM, but this will result in a performance
penalty for all clients of the cloud provider, whether
or not they are potential targets—the provider will most
likely not be too keen to use this defense. Also, it might
be possible to adapt our attack to work without large
pages (although at a reduced efficiency).

While fixing GnuPG would defeat our specific at-
tacks, this will not prevent information leaks from other
software. In principle, any frequently-executed secret
computation that is not constant-time is vulnerable
to the attack. Leveraging hardware support for LLC
partitioning might be the most promising defense, but
whether those mechanisms work in practice remains to
be seen.
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APPENDIX A
HANDLING NOISE IN THE MULTIPLICATION CACHE

SET

The technique of Section VII-D relies on identify-
ing the sequence of multiplication operations from the
activity in the multiplication cache set. In the absence
of noise, this is a trivial task. However, two types of
noise complicate the process: occasional gaps within
a single multiplication operation and the merging of
multiple multiplication operations to a single sequence
of activity. We suspect that the former is caused by short
bursts of system activity and that the latter is caused
by our probing process occasionally failing to evict all
victim lines from the multiplication cache set.

To clean this noise, we remove short gaps of inactiv-
ity in the multiplication cache set and break sequences
of activity longer than twice the expected length of
a multiplication operation. We use the cleaned result
to identify multiplication operations. With the multipli-
cation operation identified, we can generate the trace
patterns by checking for activity in the other probed
cache set during each multiplication operation.

Figure 10 shows an example of a trace of the two
cache sets and the results of identifying the multiplica-
tion operations. The first, fourth and fifth multiplications
show no indication of noise in the multiplication cache
set. In the sixth multiplication we notice that no activity
is indicated in the multiplication cache set during the
second time slot. Because this gap is short, we include
this time slot in the multiplication.

The trace captures activity in the multiplication
cache set during time slots 11 to 22. As this period
is longer than twice the expected length of a multipli-
cation, we treat it as the second type of noise and split
it into two multiplications.

Thus, the trace in Figure 10 spans six multiplica-
tions. The other cache set shows activity during the first
and sixth of these. That is, the trace pattern from this fig-
ure is 100001. We ignore activity captured in the other
cache set that in time slots outside the multiplication
operations, e.g. in time slot 26.

APPENDIX B
CALCULATING THE NUMBER OF REQUIRED

OBSERVATIONS

We have seen that the attack collects traces for all
the cache sets on LLC during multiple exponentiations.
The question that remains is how many exponentiations
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Fig. 10: Traces of the multiplication and another cache
sets, indicating time spans of multiplication operations
(shaded) and the multiplication index.

we need to observe in order to collect enough traces for
the attack.

For effectively identifying multipliers, including re-
dundancy for error correction, we need 10–15 traces
for each multiplier. On our experimental platforms, a
3,072 bit multiplier maps to 6–7 cache sets on the LLC.
If we collect one trace from each cache set with zero
error rate, we expect to obtain processable traces from
6–7 cache sets. However, as shown in Figure 6, some
cache sets are constantly active on our desktop platform,
demonstrating an error rate for a third of all sets. Hence,
we anticipate to obtain four or five usable traces for
each multiplier during an exponentiation. By collecting
observations for four exponentiations from each cache
set, the expected number of reliable traces for each
multiplier is between 16 and 20, which satisfies our
requirements.
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