
Side-Channeling the Kalyna Key Expansion

Chitchanok Chuengsatiansup1, Daniel Genkin2,
Yuval Yarom1, and Zhiyuan Zhang1

1 University of Adelaide
2 Georgia Institute of Technology

Abstract. In 2015, the block cipher Kalyna has been approved as the
new encryption standard of Ukraine. The cipher is a substitution-permu-
tation network, whose design is based on AES, but includes several dif-
ferent features. Most notably, the key expansion in Kalyna is designed
to resist recovering the master key from the round keys.
In this paper we present a cache attack on the Kalyna key expansion
algorithm. Our attack observes the cache access pattern during key ex-
pansion, and uses the obtained information together with one round key
to completely recover the master key. We analyze all five parameter sets
of Kalyna. Our attack significantly reduces the attack cost and is practi-
cal for the Kalyna-128/128 variant, where it is successful for over 97% of
the keys and has a complexity of only 243.58. To the best of our knowl-
edge, this is the first attack on the Kalyna key expansion algorithm.
To show that the attack is feasible, we run the cache attack on the
reference implementation of Kalyna-128/128, demonstrating that we can
obtain the required side-channel information. We further perform the
key-recovery step on our university’s high-performance compute cluster.
We find the correct key within 37 hours and note that the attack requires
50 K CPU hours for enumerating all key candidates.
As a secondary contribution we observe that the additive key whitening
used in Kalyna facilitates first round cache attacks. Specifically, we de-
sign an attack that can recover the full first round key with only seven
adaptively chosen plaintexts.

1 Introduction

Since the seminal work of Kocher [32], side-channel attacks have become a ma-
jor threat to the security of virtually any cryptographic primitive. While side
channels come in many forms and exploitation techniques [33,40,67], a particular
recent concern is microarchitectural side channels [21], which extract secret infor-
mation by exploiting variations in instruction timing due to contention on CPU
resources. Since the introduction of cache attacks [47,48], it appears that nearly
every microarchitectural feature in modern CPUs can be used to attack crypto-
graphic primitives across hardware-backed security boundaries [1,2,12,14,47,66].

With respect to targeted cryptographic protocols, most research attention
have been given to Western standards such as AES [8,29,30,42,47], RSA [7,13,
37, 64], elliptic-curve cryptography [4, 49], presumably due to their wide spread

adoption, readily-available standardization documents, and acceptability of ref-
erence implementations. Much less attention in comparison has been given to
national cipher standards of former Eastern Bloc countries, which often deploy
their own cryptography standards [6,34,45,54]. While modern symmetric Eastern
Bloc designs are often based on AES, these often include variations in features
such as round function and key expansion, due to different trade-offs between
security and performance made by local standardization agencies while adapting
the cipher to local use. As side-channel attacks are by their very nature imple-
mentation specific, it is unclear how such local adaptations impact the cipher’s
side-channel resistance.

1.1 Our Contribution

Tackling this issue, in this work we investigate the Ukrainian cipher Kalyna [45]
as a case study of an Eastern Bloc cipher. At a high level, Kalyna is modeled
after AES, but has some important differences. First, Kalyna’s key expansion al-
gorithm is considered to be non-reversible [3,20]. Thus, a side-channel adversary
that wishes to attack Kalyna needs to retrieve all of the round keys. Moreover,
Kalyna uses an arithmetic addition operation, which is non-linear in GF(2), for
pre- and post-whitening. This is known to hinder cryptanalysis [35,43].

Despite these changes, we present the first cache attack against the Kalyna
key expansion algorithm, which significantly reduces the attack complexity in
all five variants (see Table 1). We also show that an attacker can practically ex-
tract the secret key from Kalyna-128/128’s reference implementation with a 97%
success probability and an expected complexity of 243.58. We demonstrate that
Kalyna’s computation of the round keys from the master key propagates differ-
ences between internal values in a way that allows using them for recovering the
master key. To the best of our knowledge, this is the first attack that recovers
the master key of Kalyna.

We further demonstrate that the additive key whitening used in Kalyna is
more vulnerable to cache attacks than the more common Boolean whitening.
The main cause is that due to carry ripples during addition, an attacker can use
a simple binary search to find the key. The attack requires only seven (chosen)
plaintexts to completely recover the key.

Table 1: Attack cost

Variant Block size Key length Rounds Columns Attack cost

Kalyna-128/128 128 128 10 2 243.58

Kalyna-128/256 128 256 14 2 280.47

Kalyna-256/256 256 256 14 4 2168.60

Kalyna-256/512 256 512 18 4 2173.45

Kalyna-512/512 512 512 18 8 2363.27

2

1.2 Paper Outline

The rest of this paper is organized as follows. Section 3 presents an overview of
the attack and describes the information obtained through the side channel. The
details of the attack on Kalyna-128/128 is described in Section 4, followed by a
description of the attacks on other variants of Kalyna in Section 5. In Section 6
we describe our implementations of proof-of-concept attacks, showing that both
the cache side-channel attack and key recovery are feasible.

2 Background

In this section we present background on the Kalyna cipher and the notation we
use to describe it, cache attacks, and the related work.

2.1 Kalyna

Kalyna is a substitution-permutation network whose design is based on AES.
It was one of the proposals for the Ukrainian National Public Cryptographic
Competition which was held between 2007 and 2010. In 2015, the cipher was
approved as the national standard of Ukraine.

Kalyna has five variants offering different key and block sizes as summarized
in Table 1. We mainly focus on the Kalyna-128/128 variant. For further details
and for other variants, see [45].

Bytes. The basic unit of information that Kalyna uses is a byte, which, following
standard convention, is a sequence of eight bits each having the value zero or
one. We use subscripts to refer to specific bits of a byte. Thus, a byte b consists of
the bits b0, . . . , b7. Depending on context, a byte represents one of three entities:
a sequence of bits, a number in the range [0, . . . , 255] where the byte b represents∑
bi2

i, or an element in the field of polynomials modulo x8 + x4 + x3 + x2 + 1
over GF(28).

We use the + and · operations for addition and multiplication of numbers.
Symbol ⊕ is used for polynomial addition and also doubles as bitwise XOR (ex-
clusive or). We denote the bitwise and operation with &.

Matrices. Kalyna represents most of its data as matrices of bytes. These
matrices have eight rows. The number of columns varies, but most matrices in
Kalyna-128/128 have two columns. For a matrix M we use M [i] to refer to the
ith byte, in column-first order, i.e. M [0] is the first byte of the first column,
M [1] is the second byte of the first column, and M [8] is the first byte of the
second column. We use M [i, . . . , j] to denote a subsequence of bytes in a matrix.
Columns can be interpreted both as sequences of bytes and as numbers modulo
264, where M [8i, . . . , 8i + 7] represents the number

∑7
j=0 256jM [8i + j]. Given

a set of indices Q, the projection of a matrix M over Q, denoted by M |Q is the
matrix M where all indices not in Q are zeroed. That is:

M |Q[i] =

{
M [i] i ∈ Q
0 i 6∈ Q

3

We sometimes use a graphical notation to better highlight the indices selected by
the set of indices. Specifically, we draw a matrix, with filled rectangles represent-
ing the selected indices. Thus M selects the even indices of M , i.e. M |{2i|0≤i<8},

and M = M |{5,7,9,11}.
Kalyna supports two addition operations on matrices. Matrix (bitwise) addi-

tion, denoted with ⊕, designates the conventional operation over the polynomial
field. Matrix column addition modulo 264, denoted by �, produces an output
matrix by adding columns. Specifically, the operator treats each column of the
input matrices as a 64-bit number. To produce a column of the output ma-
trix, the operator adds the two corresponding input columns (modulo 264) and
interprets the result of the sum as a matrix column. Crucially, unlike regular
addition, in column addition modulo 264 carries propagate between the cells of
same matrix column.

More formally, letM [8i, . . . , 8i+7] =
∑7
j=0 256jM [8i+j] andN [8i, . . . , 8i+7] =∑7

j=0 256jN [8i+j], for matrices M and N we have:

(M �N)[8i, . . . , 8i+ 7] = M [8i, . . . , 8i+ 7] +N [8i, . . . , 8i+ 7]

=

 7∑
j=0

256jM [8i+ j] +

7∑
j=0

256jN [8i+ j]

 mod 264.

Moreover, we use � to denote the matrix column subtraction modulo 264. Finally,
we use Σ(M) to denote the sum of the columns of the matrix M modulo 264.

That is, Σ(M) =
∑
iM [8i, . . . , 8i+ 7] =

∑
i

∑7
j=0 256jM [8i+ j] mod 264.

Cipher Structure. Kalyna follows the design of AES with multiple rounds.
Each round consists of four operations: SubBytes, ShiftRows, MixColumns, and
AddRoundKey. Like AES, Kalyna also includes an initial plaintext whitening op-
eration. Encryption starts by setting the initial state to the plaintext. The cipher
then applies the operations to the state. The resulting state is the ciphertext.
Decryption applies the operations in the reverse order.

SubBytes. Kalyna specifies four substitution boxes (S-Boxes), which provide the
non-linear substitution step of each round. Each S-Box consists of 256 entries.
Given a state S, the SubBytes step applies one of the S-Boxes to each of the
state’s byte. Specifically,

SB(S)[i] = SB i mod 4[S[i]]

ShiftRows. As in AES, the ShiftRows moves bytes across rows in the state
matrix. The transformation depends on the state size and thus varies with the
different variants of the cipher. For Kalyna-128/128, the transform (see Figure 1)
is defined as:

SR(S)[i] =

{
S[i] i < 4
S[i+ 8] i ≥ 4

4

SR

Fig. 1: The ShiftRows in Kalyna-128/128.

1 1 5 1 8 6 7 4
4 1 1 5 1 8 6 7
7 4 1 1 5 1 8 6
6 7 4 1 1 5 1 8
8 6 7 4 1 1 5 1
1 8 6 7 4 1 1 5
5 1 8 6 7 4 1 1
1 5 1 8 6 7 4 1

Fig. 2: The MixColumns matrix.

MixColumns. The MixColumns transformation computes a linear function that
mixes the values along the columns of the state. For Kalyna, MixColumns op-
erates by multiplying the state matrix with the pre-defined 8-by-8 matrix (see
Figure 2). An important property of the matrix is that it is maximum distance
separable [38]. Consequently, given a total of eight out of sixteen known bytes in
the inputs and outputs of the transformation, we can recover the missing eight
bytes.

AddRoundKey. The AddRoundKey operation mixes key material into the state.
Kalyna expands the master key K to multiple round keys, where round key RK i

is used in the ith round. In each of the first nine rounds in Kalyna-128/128,
AddRoundKey uses matrix addition, i.e. ARK (S,RK i) = S ⊕ RK i. The 10th

round (last round) uses column addition modulo 264, i.e. ARK (S,RK 10) =
S�RK 10. Furthermore, Kalyna has a key whitening step before the first round,
where it uses column addition modulo 264 to mix additional round key, RK 0,
with the plaintext.

Key Expansion. Unlike AES, Kalyna uses a complex, non-reversible procedure
for generating the round keys. The procedure first generates an intermediate
key Kσ. This Kσ is then combined with the master key K to generate the even
round keys. Figure 3 shows the process.

Generating Kσ. As the left side of Figure 3 shows, to generate the intermediate
key Kσ, Kalyna performs three sets of SubBytes, ShiftRows and MixColumns
operations. The inputs of this process are the master key K and a constant C
that depends on the Kalyna variant. Kalyna-128/128 uses the constant 5, i.e. a
matrix having all bytes zero except for the least significant byte whose value is 5.

Generating RK i. Generating the round keys RK i follows a similar proce-
dure, but with two sets of SubBytes, ShiftRows and MixColumns operations, see
Figure 3 (right). For Kalyna-128/128, one of the input is Ki which is either the
master key K, if i mod 4 is 0 or 1, or the master key with the two columns
swapped, if i mod 4 is 2 or 3. More formally, we have:

Ki[j] =

{
K[j] if bi/2c is even
K[j ⊕ 8] if bi/2c is odd

Another input is the intermediate key Kσ modified by column addition mod-
ulo 264 with a round constant Ci. The round constant for round i is a matrix
with the value 0 in odd indices, and 2bi/2c in even indices.

5

�

MixColumns

ShiftRows

SubBytes

⊕MixColumns

ShiftRows

SubBytes

�

C K

A

B

C

D

A′

B′

C′

D′

�

MixColumns

ShiftRows

SubBytes

⊕MixColumns

ShiftRows

SubBytes

�

Ki Kσ � Ci

Ai

Bi

Ci

Di

A′i

B′i

C′i

D′i

RK iSubBytes

ShiftRows

MixColumns

Kσ

Fig. 3: The Kalyna-128/128 key expansion. Notations such as A,A′,Ai,A
′
i are

used as explicit reference to internal values computed during the key expansion.

Notation. To facilitate referencing the intermediate states during the gener-
ation of the round keys, Figure 3 also contains explicit names of various inter-
mediate states. For instance, State A0 is the result of column addition modulo
264 of K0 and Kσ � C0, i.e. A0 = K0 �Kσ � C0, B0 is the result of applying
SubBytes to A0. Hence, B0 = SB(K0 �Kσ � C0).

2.2 Cache Attacks

Caches. Caches are small and fast banks of memory that bridge the speed gap
between the fast processor and the slower memory by exploiting the temporal and
spatial locality that software exhibits. More specifically, the entire memory space
is divided into fixed-size lines, typically of size 64 bytes. When the processor
needs to access memory, it first checks if the required line resides in the cache.
In case of cache hit, when the required line is in the cache, the memory access
request is served from the cache. Conversely, in a cache miss, when the required
line is not in the cache, the processor is forced to retrieve the line from the slower
main memory, storing a copy in the cache for potential future use. Typically, due

6

to the limited size of the cache, the processor needs to evict another line from
the cache to make room for storing the retrieved cache line.

Set-associative caches. Modern caches are often set-associative. The cache is
divided into multiple sets, each containing a fixed number of ways. Each memory
block is mapped to a single cache set and can only be stored in the set it maps
to. Vendors do not always publish the details of the mapping function; however
past research has shown that the function can be reverse engineered, allowing a
user to determine the cache set that stores a given memory block [27,28,41,65].

Cache-based side-channels. Because caches are typically shared between
multiple programs, a malicious program that monitors the cache can learn in-
formation on the execution of other programs. This can be used to leak sensitive
information across security-domain boundaries. Over the years, many cache at-
tacks have been designed, demonstrating retrieval of encryption keys [13,15,17,
22,23,26,31,37,42,47,50,64] as well as other sensitive information [24,25,55,62].

Prime+Probe. Prime+Probe [37,47] is a cache attack technique that exploits
the set-associative structure of the cache. In the Prime phase, the attacker com-
pletely fills one or more cache sets with its data. The attacker then waits, letting
the victim execute for a certain duration. As the cache is already full, any mem-
ory access performed by the victim during its execution must cause eviction of
the attacker’s data back into the machine’s main memory. Finally, in the Probe
phase, the attacker measures the time to access the data previously used in
the prime phase to fill the machine’s cache. A short access time indicates that
the data is still cached, whereas long access time indicates that data has been
evicted. Thus, the attacker learns which cache sets the victim has accessed be-
tween the prime and the probe phases, exploiting the mapping between cache
sets and address bits to recover which address the victim has accessed.

Temporal resolution. The time to execute one round of Prime+Probe de-
pends on the specific cache and the number of cache sets monitored, ranging
from a few thousands of cycles [37] and up to millions [55]. Past research has
demonstrated several techniques for improving the temporal resolution of ob-
served events. These include exploiting the OS scheduler to frequently interrupt
the victim [14, 26, 31], degrading the performance of the victim by contending
on resources the victim requires [4, 7, 11, 50, 51], and exploiting elevated privi-
leges [9, 10,17,42,56].

2.3 Related Work

A few side-channel attacks on Kalyna have been published. Fernbandes Medeiros
et al. [20] propose a correlation power analysis on Kalyna-128/128 where the
attack recovers all round keys with the success rate of 96% using 250 measured
values. Later on, Duman and Youssef [19] propose fault attacks on Kalyna. They
employ differential fault analysis and ineffective fault analysis to recover round
keys. Their attack works by reducing the number possible candidates then brute-
force to find the correct ones. To the best of our knowledge, no cache attacks on
Kalyna have been published.

7

There also exist differential cryptanalysis on reduced-round Kalyna where
most of the focus is on the variants whose key length is double the block size.
Akshima et al. [3] use meet-in-the-middle attack to recover subkeys for 9-round
Kalyna-128/256 and Kalyna-256/512. In [5], the authors recover all round keys
using parameters matching. Later on, [59] improve the attack on Kalyna-128/256
by using more optimal differential paths. Similarly, [36] propose a chosen plain-
text, reduced-round Kalyna attack on Kalyna-128/256 and Kalyna-256/512 where
the attack recovers the round keys.

In addition to differential cryptanalysis attack, the recent work [35] employs
an impossible differential attack, i.e. analysing input difference which never re-
sults in a particular output difference, on all variants of Kalyna. Nevertheless,
with the reduced-round attacks, the complexity is still relatively high. For ex-
ample, the attack on 4-round Kalyna-128/128 requires 2103 time complexity.

Note that all those attacks, only recover the round keys. Kalyna’s key ex-
pansion prevents using information from one or more round keys to derive the
missing keys or the master key. Hence, those attacks are forced to recover all of
the (reduced) round keys to be able to encrypt/decrypt messages. No published
attacks have recovered the master key.

Twofish [52,53] is a block cipher that also uses a non-reversible key expansion
procedure. Ortiz and Compton [46] demonstrate a power analysis attack on the
key schedule of Twofish. Specifically, they target an 80-bit implementation of
Twofish for a smartcard and show that the key can be recovered from the power
traces even in the presence of errors. Attack on key schedules have also been
demonstrated on DES [57, 58], AES [18, 39, 60], and Serpent [16]. We note that
the key schedule of these ciphers is not designed to deter recovery of the master
key from the round keys.

3 Cryptanalysis Overview

Due to the complex key expansion algorithm in Kalyna, knowing one or even all
of the round keys does not reveal the master key. Consequently, prior attacks
on Kalyna focus on recovering the round keys. Instead, in this work we focus on
recovering the master key in the presence of side-channel leakage from the key
expansion algorithm. Specifically, we assume a side-channel oracle that reveals
the two most significant bits (MSBs) of each S-Box access. More formally, given
a byte b, the oracle O(b) returns 64 · bb/64c. In Section 6 we show how we realize
such an oracle using the Prime+Probe [37,47] attack on the S-Box access.

Side-channel oracles tend to provide partial information on the observed
state. To find the missing information, prior cache attacks on block ciphers com-
bine the information observed over multiple inputs, which are typically assumed
to be randomly chosen. In our attack, we do not have this option since we target
the key expansion which is executed once (as opposed to the encryption which
goes into multiple rounds) and the inputs used for key expansion are fixed and
are not under attacker’s control. Instead, our attack exploits the differences be-

8

Procedure Techniques

1. Recover even bytes of A0=K�(Kσ�C0)

1.1 Guess A0[0, 2, 12, 14], i.e., A0

1.2 Guess A0[4, 6, 8, 10], i.e., A0

1.3 Guess A2[0, 2, 12, 14], i.e., A2

1.4 Guess A2[4, 6, 8, 10], i.e., A2

1.5 Filter wrong guesses

Side channel, bound, differential

Relationship across rounds

2. Recover odd bytes of A0=K�(Kσ�C0)

2.1 Guess A0[1, 3, 13, 15], i.e., A0

2.2 Filter wrong guesses

Side channel, bound, differential

Relationship across columns

3. Recover the intermediate key Kσ

3.1 Guess Kσ[0, 1, 2, 3], i.e., Kσ

3.2 Derive Kσ[4, 5, 6, 7], i.e., Kσ

3.3 Derive Kσ[8, 10, 12, 14], i.e., Kσ

3.4 Derive Kσ[9, 11, 13, 15], i.e., Kσ

Side channel, bound, differential

Meet-in-the-middle

Relationship among Ai,Kσ,Ki, Ci

Meet-in-the-middle

4. Recover the master key K

4.1 Derive K

4.2 Verify K

Reverse intermediate key expansion

Intermediate key expansion

K

Fig. 4: Steps of our attacks and techniques used.

tween the inputs used for generating the different round keys and relationships
between key parts to allow a more efficient search in the potential key space.

Our attack consists of four main steps as illustrate in Figure 4 for Kalyna-
128/128. We first use the structure of the key schedule algorithm to guess the
value of A0, we then use a meet-in-the-middle attack to find the value of Kσ,
which allows us to recover K.

4 Attacking Kalyna-128/128

In this section, we present the attack on the smallest variant of the cipher, Kalyna-
128/128. Section 5 presents an outline of the differences due to the increase in
the block size or the key in other variants of the cipher.

9

4.1 Recover Even Bytes of A0

The first step in recovering the master key K is to recover the even byte of
A0 = K�(Kσ�C0). Naively, there are 264 possible candidates for the even bytes
of A0. This section explain how we reduce the search space and narrow down to
only 1.4 candidates on average. The main tool is the side-channel information
from the oracle revealing the two MSBs of each SubBytes access. This enables
us to set the bound of the search and verify the correctness of the guesses.

According to the description of the Kalyna cipher [45], we observe that K0 =
K4 = K8 and K2 = K6 = K10. Consequently, we have A4 = A0 � (C4 � C0)
where C4�C0 is a known constant with the value 3 for even bytes and 0 for odd
bytes. Depending on the value of the LSBs of A0[0], adding 3 may or may not
cause a change in the two MSBs, i.e. the value returned from the side-channel
oracle O(·). For example, O(A0[0]) 6= O(A4[0]) indicates that the value in the
six LSBs of A0[0] is between 61 and 63. Otherwise, it is below 61. By comparing
O(A0) to O(A4) we can tighten the bounds on possible values of the six LSBs
of A0. This also applies to A2 by considering O(A2), O(A6) and O(A10). Table 2
shows the bounds for the six LSBs of even bytes of A0 and A2 in Kalyna-128/128.
Note that the table ignores carries from odd to even bytes because they are rare.
They only make minor changes to the bounds and even make the attack easier
since they reveal a significant amount of information about the key.

Table 2: Bounds on LSBs of even bytes of A0 and A2 in Kalyna-128/128.

Condition Range for A0[j] Range for A2[j]

O(Ai[j]) = O(Ai+8[j]) 0 – 48 0 – 33
O(Ai+4[j]) 6= O(Ai+8[j]) 49 – 60 34 – 57
O(Ai[j]) 6= O(Ai+4[j]) 61 – 63 58 – 63

Recall that with a high probability, there is only a small difference in the
even bytes of A0, A4, and A8 (resp. A2, A6, and A10) while the odd bytes
are identical. We initially observe the propagated differences among round key
expansions at A′0, A′4, and A′8 under two simplifying assumptions.

Assumption 1. Overflows of even bytes when adding Ci to Ki �Kσ do not
depend on i. This implies that for odd j, Ai[j] = Ai+4[j], i.e. A0 = A4 = A8

and A2 = A6 = A10 .

Assumption 2. When adding Ci to Kσ, the carry from bit five to bit six of even
bytes does not depend on i. This implies that O((Kσ�Ci)[j])=O((Kσ�Ci+4)[j])
for all 0 ≤ j < 16. We omit the index j when we refer to all the 16 bytes.

We can guess some of the even bytes of A0, determining the corresponding
bytes in A4 and A8. We can then track how the differences between the bytes

10

propagate through the first round of the round-key generation step to see how
they affect A′i and compare with the side-channel information we obtain on A′i.

We now look at the difference between oracle observations for A′i and A′i+4.

O (A′i)⊕O
(
A′i+4

)
= O

(
A′i ⊕A′i+4

)
= O (Di ⊕ (Kσ � Ci)⊕Di+4 ⊕ (Kσ � Ci+4))

= O (Di ⊕Di+4)⊕O ((Kσ � Ci)⊕ (Kσ � Ci+4)) (1)

Let ∆i be the oracle difference between Kσ � Ci and Kσ � Ci+4. That is,

∆i = O ((Kσ � Ci)⊕ (Kσ � Ci+4)) = O (A′i)⊕O
(
A′i+4

)
⊕O (Di ⊕Di+4)

By Assumption 2, we have ∆i = 0. Hence,

O (A′i)⊕O
(
A′i+4

)
= O (Di ⊕Di+4) (2)

We now look at each column of A′i separately. For the first column, we have:

Di ⊕ Di+4 = MC (Ci)⊕MC (Ci+4) = MC (SR(Bi))⊕MC (SR(Bi+4))

= MC (SR(Bi ⊕Bi))⊕MC (SR(Bi+4 ⊕Bi+4))

= MC (SR(SB(Ai)⊕ SB(Ai+4)))⊕MC (SR(SB(Ai)⊕ SB(Ai+4))) (3)

By Assumption 1 we have SB(Ai) = SB(Ai+4). Hence,

O(A′i)⊕O(A′i+4) = O(MC (SR(SB(Ai)⊕ SB(Ai+4)))) (4)

The side-channel observation provides the oracle values for the left-hand side
of Equation 4. We can now guess Ã0, the values of the four even bytes of A0 , and

calculate the corresponding Ã4 = Ã0 � (C4 � C0), D̃0 = (MC (SR(SB(Ã0)))),

and D̃4 = (MC (SR(SB(Ã4)))). If the guess is correct, i.e. when Ã0 = A0 , we
will get

O (A′0) ⊕O (A′4) = O
(
D̃0 ⊕ D̃4

)
(5)

If the guess is incorrect, the probability of a match is 2−16. To see this, there is
only one correct pattern of the 16 bits (two MSBs per byte of eight bytes).

Similarly, for Ã8 = Ã0 � (C8 � C0), D̃8 = (MC (SR(SB(Ã8)))) we have

O (A′0) ⊕O (A′8) = O
(
D̃0 ⊕ D̃8

)
(6)

with a probability 2−16 unless Ã0 = A0 .
With each byte having at most 49 possible values (c.f. Table 2), we need to

examine 494 ≈ 222.5 possible combinations of values. The probability that the
wrong guess matches both Equation 5 and Equation 6 is 2−32. Hence, we expect
that only the correct guess will match both.

Repeating the process for the right column of A′0 and for both columns of
A′2, we can recover the even bytes of A0 and A2, at a complexity of less than
222.5 · 4 = 224.5.

11

Handling Overflows in Kσ�Ci. The discussion so far makes two simplifying
assumptions We now remove Assumption 2 and account for the possibility of
carries from bit five to bit six of even bytes of Kσ � Ci. The main consequence
is that ∆i is not always zero and we need to accept some candidates when
Equations 5 or 6 are not satisfied.

We now investigate the possible values in ∆i. When an overflow occurs in an
even byte 2j′ for 0 ≤ j′ < 8, we have O(Kσ �Ci)[2j

′] = O(Kσ �Ci+4)[2j′] + 64
(mod 256). Hence, ∆i[2j

′] ∈ {0x40, 0xc0}.
Under rare conditions, the overflow can percolate and affect the oracle of

the following odd byte. Specifically, this can happen when an overflow occurs
in byte 2j′, the top two bits of the byte (before the overflow) are both set, and
the six least significant bits of byte 2j′ + 1 are also set. The probability of an
overflow is less than 1/2, hence the probability of a change in the oracle of a
given odd byte is lower than 2−9, and the probability that this happens in any
of the eight odd bytes of Kσ is less than 2%.

Thus, every byte of ∆i can have three potential values: 0x00, 0x40, and
0xc0. However, if we naively accept all possible guesses where the oracle matches
any of these values, we will accept incorrect guesses with a probability 2−3.32,
which would leave a rather long list of candidates.3 However, we observe that
an overflow to an odd byte 2j′ + 1 can only occur if ∆i[2j

′] = 0xc0 and that
at most one of ∆i[2j

′] and ∆i+4[2j′] can be non-zero. Thus, there are only nine
possible value assignments for the tuple

τj′ = (∆i[2j
′], ∆i[2j

′ + 1], ∆i+4[2j′], ∆i+4[2j′ + 1]). (7)

The probability that an incorrect guess results in a possible combination of val-
ues, therefore, is (9/256)4 ≈ 2−19.3. Hence, with an initial list of 222.5 candidates,
we expect that 23.2 ≈ 9 incorrect guesses will remain.

Another strategy an attacker can adopt is to assume that overflows to odd
bytes do not occur. This reduces the expected number of incorrect guesses to
about 1, but also means that the attack will fail on some percentage of the keys.

Handling Overflows to Odd Bytes. We now handle the case that Assump-
tion 1 does not hold. That is, when an odd byte 2j′ + 1 changes between Ai

and Ai+4. This happens when the addition of Ci to Ki �Kσ does not overflow
byte 2j′ whereas adding Ci+4 does overflow the byte. We can detect such over-
flows by observing the oracle of Ai and Ai+4. In the case of an overflow, we will
have O(Ai)[2j

′] = 0xc0 and O(Ai+4)[2j′] = 0x00. This is in contrast with the
case of the overflows of Kσ � Ci discussed in the previous subsection, where we
cannot observe overflows and need to guess them.

The main implication of overflows is that we can no longer split the even
and odd bytes as in Section 4.1 and expect the part with the odd bytes to
cancel out. To overcome this issue, we also guess odd bytes that we know change
between key rounds, and adapt the split accordingly. For example, if we know
that A0[3] 6= A4[3], we get

D0 ⊕D4 = MC (SR(SB(A0)⊕ SB(A4)))⊕MC (SR(SB(A0)⊕ SB(A4)))

3 For each byte, the probability of accepting is 3/4. For eight bytes, it is (3/4)8 ≈ 2−3.32

12

Having to guess odd bytes increases the number of guesses, affecting both
the complexity of the step and the length of the list of potential guesses. In the
worst case, when all the odd bytes in A6 differ from the corresponding bytes of

A10 , we need to guess four odd bytes at a complexity of 634 as well as four even

bytes at a complexity of 244, giving a total complexity of 242.3 (see Table 2).
Note also that if the six LSBs of an odd byte 2j′ + 1 are all set, we will observe
that O(A6[2j′ + 1]) 6= O(A10[2j′ + 1]).

We can reduce the complexity of this case by first filtering the guesses based
on O(A′2)⊕O(A′6) and only guess odd bytes for the surviving guesses. There is a
total of 244 ≈ 218.3 guesses of even bytes. By the argument above, there are only
five possible possible assignments for τj′ (see Equation 7). Hence, the expected
number of surviving guesses is 244 · (5/16)4 ≈ 211.6. Only for these surviving
guesses we need to guess values of odd bytes, reducing the overall complexity
to 634 · 244 · (5/16)4 ≈ 235.5. While this approach reduces the search space, it
does not reduce the expected number of guesses that survives the process, which
remains at 634 · 244 · (9/256)4 ≈ 222.9.

Another issue is that the subsequent steps of the attack make no use of the
values of odd bytes of A2 and only limited use of odd bytes of A0. Consequently,
when we need to guess more than two odd bytes in a column, the attack becomes
significantly harder. In such a case, the maximum number of guesses for the two
odd bytes is 632, for the two corresponding even bytes the number of guesses is
no more than 242, and for the other two even bytes is up to 342. Thus, the total
number of guesses is less than 632 · 242 · 342 ≈ 231.3. After filtering, we expect
to remain with approximately 212 valid guesses for the even bytes in a column.

The probability that we need to guess more than two odd bytes in at least
one of the columns of the key is less than 2%. Thus, for over 98% of the keys,
we have an effective attack.

Relationship Across Rounds. So far, we have created independent lists of
even bytes for each of the halves of A0 and A2. As calculated above, for some
keys we can expect these list to consist of up to 212 candidates. Because these
lists are independent, combining the guesses of the two halves can yield several
millions of possible candidates. To further trim these lists, we exploit the known
relationship between A0 and A2.

Recall that Ai = Ki � (Kσ � Ci) and that K2 is just K0 with the columns
swapped, i.e. K0[0, . . . , 7] = K2[8, . . . 15] and K0[8, . . . 15] = K2[0, . . . , 7], hence
the sum of the columns of the two is the same, i.e. Σ(K0) = Σ(K2). Moreover,
C0[0, . . . , 7] = C0[8, . . . , 15] = 0x0001000100010001, and C2 = C0 � C0, hence
Σ(C0) = Σ(C2)−Σ(C0) = 0x0002000200020002. Thus,

Σ(A0) = Σ(K0 �Kσ � C0) = Σ(K0) +Σ(Kσ) +Σ(C0)

= Σ(K2) +Σ(Kσ) +Σ(C2)−Σ(C0) = Σ(A2)−Σ(C0) (8)

Recall that we have four lists of guesses, one for each of A0 , A0 , A2 ,

and A2 . Selecting one guess from each of the lists provides us with guesses of

the even bytes Ã0 and Ã2 . We can now calculate S̃0 = Ã0 + Ã0 + Σ(C0)

13

and S̃2 = Ã2 + Ã2 where we abuse the notation to mean adding one column
of the matrix to the other. By Section 4.1, if our guesses are correct, we expect
the even bytes of S̃0 and S̃2 to have similar values. Specifically, we expect the
corresponding least significant bytes to be identical. Because we may miss carries
from odd bytes, we expect a difference of up to 1 between other corresponding
even bytes. For incorrect guesses, the probability of identical bytes is 1/256 and
for a difference of up to 1 between a pair of bytes is 3/256. Hence, the probability
of accepting a wrong guess is 2−27.2.

We verify experimentally that after this step, for 80% of the key only one
candidate survives and for 15% two candidates survive. Based on a sample of
1000 random keys, the expected number of candidates is 1.4.

4.2 Recovering Odd Bytes of A0

So far, we have focused on the even bytes of A0, showing that the expected
number of candidates for those is 1.4. We now discuss guessing the odd bytes we
require for the meet-in-the-middle attack.

In total, we need to guess bytes A0 , which together with the even bytes will

give us a guess of A0 . From the side-channel oracle, we learn the two MSBs of
each of those bytes, hence a naive approach would be to guess the remaining six
bits of each byte, arriving at a complexity of 224.

However, using side-channel information we can reduce the number of com-
binations to roughly 216. Specifically, we note that on the one hand, Kσ �C0 =
A0 � K0 = A0 � K, while on the other, Kσ � C0 = A′0 ⊕D0. We have side-
channel information on O(A) = O(K � 5) ≈ O(K) from the generation for Kσ,
and on O(A′0) from the expansion of RK 0. Moreover, given a guess of A0 , we

can find D0 . We can therefore compute two approximations of O(Kσ � C0),
and eliminate guesses in case of a mismatch.

4.3 Recovering Kσ

To recover Kσ we first split it into four parts of four bytes each. We guess one
of these parts and exploit the structure of the cipher for a meet-in-the-middle
attack to derive the remaining parts.

Guess Kσ[0,1,2,3]. We first guess Kσ . Note that we only need to guess the
six LSBs since the two MSBs are derived from D0⊕O(A′0), where D0 is known
from the previous step and O(A′0) is obtained from the side-channel oracle.

Derive Kσ[4,5,6,7]. Once we know Kσ , we use the meet-in-the-middle

attack to derive Kσ . As Figure 5 shows, we assume that we have a guess of

A0 , which determines D0 . Together with a guess of Kσ , these determine the

value of A′0 which determines C′0 . From the other end, the (assumed known)

value of RK 0 together with the guess of Kσ allow us to determine D′0 . Thus,
with a guess of four bytes of a column of Kσ, we can determine four bytes in the
input of the MixColumns transformation as well as four bytes in its output.

14

Using the MDS property of MixColumns, we can now determine the missing
bytes, specifically, the value of D′0 . Combining this with RK 0, allows us to

determine the missing bytes of Kσ . We note that the information we have on
the MSBs of Kσ �C0 allows us to eliminate wrong guesses with a probability of
1− 2−8. (Two bits for each of four bytes.)

A0

SB

B0

SR

C0

MC

D0

⊕

Kσ � C0

A′0

SB

B′0

SR

C′0

MitM

D′0

�

RK 0

Fig. 5: Meet-in-the-middle attack recovering Kσ[0, . . . , 7].

Derive Kσ[8,10,12,14]. In contrast to previous step, this time we consider
the relationship among Ai, K, Kσ and Ci. The first relationship that we use is

A0 = K � (Kσ � C0) (9)

Recall that we know A0 and (Kσ � C0) . Through subtraction, we obtain K
as illustrated in Figure 6a. The obtained value in byte K[6] may not be exact
due to a possible borrow from the unknown byte A0[5]. Hence, K[6] could be
(A0 � (Kσ � C0))[6]± 1 due to carry or borrow.

To recover the four target bytes Kσ , we relate the obtained K to the known

constant C2 and the already known A0 through the following relationship

A2 = K � (Kσ � C2) (10)

where we abuse the notation to mean operations are performed as a single col-
umn on the colored columns. As illustrated in Figure 6b, Kσ can be recovered

by subtracting (K � C2) from A2 . Note that similar remark as when recov-
ering K[6] also applies here, namely, carries and/or borrows can affect the value
of bytes Kσ[2, 4, 6].

Obtain Kσ[9,11,13,15]. Since we now know half a column of Kσ which

also allows us to compute the corresponding half a column of D′0 , we wish to

apply a similar meet-in-the-middle technique as for recovering Kσ . To do so,
another piece of information that we need is half a corresponding column of C′0.

Recall that we start the Kσ recovery process by guessing (Kσ � C0) . This

allows us to obtain A′0 . Now, with the extra information of Kσ obtained in

15

A0

�

Kσ

�

C0

mask

K

(a) Recover K[0, 2, 4, 6]

A2

�

K

�

C2

mask

Kσ

(b) Recover Kσ[8, 10, 12, 14]

Fig. 6: Relationships among Ai,K,Kσ and Ci to derive Kσ. The gray shade
highlights bytes whose values are known but not used in this recovery. The blue
shade highlights bytes whose values are known and used in this recovery. The
lighter blue shade denotes bytes with uncertainly. Note that here we abuse the
notation to mean performing operations as a single column of the matrix.

Section Section 4.3, we can compute (Kσ�C0) by adding the known constant C0

which allows us to compute A′0 . Then, following the sequence of SubBytes and

ShiftRows provides us C′0 . That is, we compute:

A′0 ← D0 ⊕ (Kσ � C0)

B′0 ← SB(A′0)

C′0 ← SR(B′0)

At this stage, we know C′0 , i.e. half-column input to MixColumns and D′0 ,
i.e. its corresponding half-column output. We can proceed with splitting the
input of MixColumns and solving for the unknown input half C′0 as illustrate
in Figure 7. Even though the four MixColumns output bytes that we know are
not consecutive, this does not affect our technique since both MC (C′0) and

MC (C′0) contribute to D′0 . Therefore, we can simply construct a system of

linear equations focusing on the four bytes C′0 and D′0 that we know and solve

for the four unknown bytes C′0 .

MC

C′0

� MC

C′0

mask

D′0

Fig. 7: Recover C′0[8, 9, 10, 11]

Once we know the full-column C′0 , performing MixColumns allows us to

recover the full-column D′0 . Then, Kσ can be recovered by subtracting D′0

16

from RK 0 . That is, we compute:

D′0 ← MC (C′0)

Kσ ← RK 0 � D′0

4.4 Recovering K

After we recover the entire Kσ, we can recover K by simply reversing the RK 0

expansion. For the Kalyna-l/k variants where the block size l is the same as the
key length k, i.e. l = k, we compute the following steps:

A′0 ← SB−1(SR−1(MC−1(RK 0 � (Kσ � C0))))

A0 ← SB−1(SR−1(MC−1(A′0 ⊕ (Kσ � C0))))

K ← A0 � (Kσ � C0)

Once we obtain K, we can verify by computing the Kσ expansion and check
against our recovered Kσ. If both match, this guarantees that we successfully
recover the correct K. In other words, if our guess of either the odd bytes of
(K � (Kσ �C0)) or (Kσ �C0) was not correct, we would detect at this step.
If that is the case, we try different candidates until we recover the correct K.

5 Attacks on Other Kalyna Variants

Most of the techniques described in Section 4 also apply to other variants of
Kalyna, which have larger block size (l) and/or key length (k). This section
discusses the hurdles that increasing the sizes adds and explains how we tackle
them to recover the master key.

5.1 Relationship of Ki

Recall that Ki is one of the inputs to RK i expansion. With an increase in the
key length k (regardless whether the block size l also increases), the variations
of Ki key part also increase. As a consequence, there are fewer Ki’s that are
identical to K0.

As shown in Figure 8, with three identical Ki’s, we can divide the bounds
on the six LSBs of A0 into three groups (as indicated by the number lines). In
contrast, when we have only two identical Ki’s, the bounds can be divided into
two groups. In a lucky case, such as in Kalyna-128/256, the size of those two
groups are nearly balanced. However, the splits in other variants may not be
well balanced, which results in less tight bound in a larger group. This implies
an increase in the cost of guessing Ai.

Another impact of having many variations of Ki is that it is more difficult to
apply the relationship across columns. Recall that in Kalyna-128/128 there are
only two variations of Ki whose difference in the column-wise sum is a known

17

K0 K4 K8 K2 K6 K10

0

49 61

63 0

34 58

63

Kalyna-128/128
K

K0 K10 K2 K8 K4 K14 K6 K12

0

33

63

Kalyna-128/256
K

Fig. 8: The relationship between the full master key K and Ki key part used for
RK i expansion in Kalyna-128/k. The effect on the bounds of the 6 LSBs of Ai

is presented using number lines.

constant. Therefore, the cost of applying the column-wise sum is equivalence to
guessing Ai of those two Ki variations. For other variants of Kalyna, it requires
significantly more guesses to be able to apply the column-wise sum. Take Kalyna-
128/256 as an example (see Figure 8). We need to guess all four Ki variations
so that the column-wise sum of, for example, K0 and K2 is equivalent (up to a
known constant) to that of K4 and K6. Therefore, we opt for guessing relevant
bytes of A0 instead of guessing A0,A2,A4 and A6.

Observe that not being able to use the relationship across column affects our
attacks in two ways. First, we lose an extra filter to eliminate wrong Ai guesses
(step 2.2 in Figure 4) thus resulting in having more candidates for subsequent
steps. Second, we can no longer derive a different column of Kσ from a known
column (step 3.3 in Figure 4). This forces us to guess more bits of Kσ to be able
to derive the full key K.

5.2 Large Constant Ci

Each RK i expansion uses a known constant Ci which is defined as a value
0x00010001...0001 shifted by the round key index i/2. The length of Ci is the
same as the block size l. Observe that if 0 ≤ i < 16, all even bytes of Ci are
non-zero while all odd bytes of Ci are zero, which is the case for Kalyna-l/128 and
Kalyna-l/256. However, in Kalyna-l/512, i can be as high as 18, which means that
in rounds 16 and 18 the even bytes are zero while the odd bytes are non-zero.
Therefore, we can no longer assume that the odd bytes from different round keys
(but with the same Ki) are identical (step 1 in Figure 4). Thus, we need to guess
odd bytes in addition to even bytes, increasing the complexity of our attacks.

18

5.3 Aligning Columns

One of the core techniques in our attacks is meet-in-the-middle operating column-
wise (steps 3.2 and 3.4 in Figure 4). This requires us to have sufficient informa-
tion aligned in the corresponding columns. The main obstacle that we face is
that the round key expansion performs the ShiftRows twice, resulting in diffu-
sion across columns. This is not a problem with Kalyna-128/k because there are
only two columns where ShiftRows merely splits the columns in half. However,
with Kalyna-256/k, ShiftRows spreads the information from one column into four
where only one quarter (thus less than half) remains in a column (see Figure 9a).
This is worse in Kalyna-512/512 where information is spread into eight columns.

To overcome the second ShiftRows, we increase the number of guessed bytes
and guess the bytes in locations that would maintain their alignment. That is,
instead of attempting to align a single column, we align multiple columns. We
guess bytes in an alternating pattern (see Figure 9b). This pattern applies to
both guessing Ai and Kσ.

Ai

SB

Bi

SR

Ci

MC

Di

⊕

Kσ � Ci

A′i

SB

B′i

SR

C′i

(a) Insufficient information

Ai

SB

Bi

SR

Ci

MC

Di

⊕

Kσ � Ci

A′i

SB

B′i

SR

C′i

(b) Sufficient and well aligned bytes

Fig. 9: Propagation and alignment of known bytes from initial guessed bytes to
perform meet-in-the-middle attack in Kalyna-256/k.

6 The Practical Attack

We now proceed to empirically validate the assumptions made for the analysis.
We implement a cache-based side-channel attack against the key expansion algo-
rithm in the reference implementation of Kalyna [44] and demonstrate that we
can instantiate the required oracle. We also describe how we exploit the additive
key whitening used in Kalyna to efficiently recover the first round key RK 0.

6.1 Instantiating the Oracle

Experimental Setup. We implement the attack on a Dell Vostro 5581,
featuring Intel Core i5-8265U CPU, with four cores and a 6 MB last-level cache,
running Ubuntu-18.04.5. We use the Prime+Probe attack as implemented in the

19

Mastik toolkit [63]. To achieve a high temporal resolution, we use SGX-Step [56].
We note that other approaches for achieving high temporal resolution exist [4,
11,14,26,31]. Thus the attack is feasible outside SGX.

Victim. The victim is an SGX enclave that runs the reference implementa-
tion of Kalyna [44]. The implementation uses four S-Boxes, each 256-bytes long,
occupying four consecutive cache lines each, to a total of 16 consecutive cache
lines. The cache attack identifies the cache line accessed. Hence, with four cache
lines per S-Box, the attack recovers the two most significant bits of the index.

Attack. As in past works, before the attack we disable frequency scaling,
automatic power management, and Intel Turbo Boost. We further isolate the
core that runs the victim and disable the cache prefetcher. We use a controlled-
channel attack [61] to stop enclave execution at the start of key expansion. That
is, we mark the page containing the S-Boxes as not existing, forcing an interrupt
when the enclave executes the first SubBytes operation. We then use SGX-Step
to single-step the enclave. We use Mastik to prime the cache sets that hold the
S-Boxes and mark the page that contains the S-Boxes as not-accessed prior to
each single step. After stepping, if the page has been access, we probe the cache
sets of the S-Boxes and record the results. We stop after 240 S-Box accesses.

Results. Similar to prior works [26,31, 42], we find that even though we only
execute a single instruction, we can observe multiple accesses to the S-Boxes.
After filtering the accesses, we can correctly identify 96.55% of the memory
accesses, with the only failures being on Byte 7 of the state. In cases of failures, we
have two or three options for the oracle of Byte 7, depending on the subsequent
accesses to S-Box 3.

Summary. The attack takes several seconds and retrieves S-Box accesses with
a high success rate. Thus, it can be used as the oracle for our key-recovery attack.

6.2 Recovering the First Round Key

In Section 4.3 we use RK 0 as part of recovering the master key. We now show
how we can exploit the additive key whitening of Kalyna to easily recover RK 0.

In AES and in many similar ciphers, the first operation during encryption
is to apply Boolean whitening to the plaintext, i.e. to XOR it with a key. In
contrast, Kalyna uses additive whitening. Specifically, it computes P � RK 0

where P denotes a plaintext, and uses the result as the input to the first round.
Because (arithmetic) addition is not a linear operation in GF (2), additive key
whitening hinders cryptanalysis [35,43].

We observe, however, the additive masking is inferior when it comes to pro-
tection against cache attacks. The reason is that cache attacks observe specific
bits of the data. For example, the oracle we use observes the two MSBs of the
input to an S-Box. When Boolean whitening is used, changes in the plaintext
remain local, i.e. a change in the plaintext only affects the changed bit but not
other bits and cannot, therefore, expose more information to the attacker.

In contrast, with additive whitening, a change of a bit can change the pattern
of ripples of the carries, resulting in changes in other bits, which can reveal more

20

information. To exploit this property, we first encrypt an all-zero plaintext and
use our attack to recover the oracle for the SubBytes operation of the first round.
Because P = 0, we have P �RK 0 = RK 0, and the oracle reveals the two MSBs
of each byte of RK 0.

We now encrypt a plaintext where all the bytes have the value 32. We note
that if bit five of a key byte is zero, adding 32 will not change the values of bits
six or seven of the sum. Consequently, the oracle reading will be the same as for
the all-zero plaintext. If, however, bit five of the key byte is set, adding 32 will
cause a carry to bit six and the oracle reading will be different. Thus with the
value 32 we learn the value of bit five of each byte in RK 0.

In the next step we repeat the process, this time with a value of 16 for bytes
where bit five of the key is set and a value of 48 where it is clear. Using the
same argument, we now learn bit four of the key. We note that this is, basically,
a binary search that exploits carry ripples to recover the next bit. Hence, using
only seven adaptively chosen plaintexts, we can completely recover RK 0.

6.3 Recover the Master Key K of Kalyna-128/128

Experimental Setup. To validate our cryptanalysis, we performed a prac-
tical attack on recovering the master key K of Kalyna-128/128 on a compute
cluster. We spawn a task for each 16 guesses of the odd bytes of A0. During the
experiment, we record the task execution time and the execution time of testing
a single candidate.

Practical Attack. To prove that the attack is practical, we picked a random
secret key ensuring no overflows in Kσ � Ci when recovering the Kσ. We note
that overflows facilitate the attack, hence this choice represent a conservative
estimate. For the selected key, there are 69,249 candidates for odd bytes of A0.
We spawn 4,329 tasks, each of which tests 16 candidates. (The last task only
tests one candidate.) We then let the cluster schedule the tasks according to its
scheduling policies.

Results. To determine the worst-case execution time we run all 4,329 tasks
to completion. The key was found after 37 hours, but full completion took 49
hours. Testing a wrong guess takes on average about 44 minutes. The full attack
takes about 50 K CPU hours.

Acknowledgements

We would like to thank all reviewers for the insightful feedback, which has im-
proved the paper.

This work was supported by the ARC Discovery Early Career Researcher
Award (project number DE200101577); the ARC Discovery Project (project
number DP210102670); the Air Force Office of Scientific Research (AFOSR)
under award number FA9550-20-1-0425; The Blavatnik ICRC at Tel-Aviv Uni-
versity; the National Science Foundation under grant CNS-1954712; the Phoenix
HPC service at the University of Adelaide; and gifts from AMD, Google, and
Intel.

21

References

1. Acıiçmez, O.: Yet another microarchitectural attack: exploiting I-cache. In: CSAW
(2007)

2. Acıiçmez, O., Koç, Ç.K., Seifert, J.: Predicting secret keys via branch prediction.
In: CT-RSA (2007)

3. Akshima, Chang, D., Ghosh, M., Goel, A., Sanadhya, S.K.: Single key recovery
attacks on 9-round Kalyna-128/256 and Kalyna-256/512. In: ICISC (2015)

4. Allan, T., Brumley, B.B., Falkner, K.E., van de Pol, J., Yarom, Y.: Amplifying
side channels through performance degradation. In: ACSAC (2016)

5. AlTawy, R., Abdelkhalek, A., Youssef, A.M.: A meet-in-the-middle attack on
reduced-round Kalyna-b/2b. IEICE Trans. Inf. Syst. 99-D(4) (2016)

6. Belarus Standard STB 34.101.31-2011: Information technology and security
data encryption and integrity algorithms. Available at http://apmi.bsu.by/
assets/files/std/belt-spec27.pdf (2011)

7. Bernstein, D.J., Breitner, J., Genkin, D., Groot Bruinderink, L., Heninger, N.,
Lange, T., van Vredendaal, C., Yarom, Y.: Sliding right into disaster: Left-to-right
sliding windows leak. In: CHES (2017)

8. Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: CHES
(2006)

9. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.:
Software grand exposure: SGX cache attacks are practical. In: WOOT (2017)

10. Bulck, J.V., Piessens, F., Strackx, R.: Nemesis: Studying microarchitectural timing
leaks in rudimentary CPU interrupt logic. In: CCS (2018)

11. Cabrera Aldaya, A., Brumley, B.B.: HyperDegrade: From GHz to MHz effective
CPU frequencies. arXiv 2101.01077

12. Cabrera Aldaya, A., Brumley, B.B., ul Hassan, S., Pereida Garćıa, C., Tuveri, N.:
Port contention for fun and profit. In: IEEE SP (2019)

13. Cabrera Aldaya, A., Garćıa, C.P., Tapia, L.M.A., Brumley, B.B.: Cache-timing
attacks on RSA key generation. TCHES 2019(4) (2019)

14. Chakraborty, A., Bhattacharya, S., Alam, M., Patranabis, S., Mukhopadhyay, D.:
RASSLE: return address stack based side-channel leakage. TCHES 2021(2) (2021)

15. Chuengsatiansup, C., Feutrill, A., Sim, R.Q., Yarom, Y.: RSA key recovery from
digit equivalence information. In: ACNS (2022)

16. Compton, K.J., Timm, B., VanLaven, J.: A simple power analysis attack on the
Serpent key schedule. ePrint Archive 2009/473 (2009)

17. Dall, F., De Micheli, G., Eisenbarth, T., Genkin, D., Heninger, N., Moghimi, A.,
Yarom, Y.: CacheQuote: Efficiently recovering long-term secrets of SGX EPID via
cache attacks. TCHES 2018(2) (2018)

18. Dassance, F., Venelli, A.: Combined fault and side-channel attacks on the AES key
schedule. In: FDTC (2012)

19. Duman, O., Youssef, A.M.: Fault analysis on Kalyna. Inf. Secur. J. A Glob. Per-
spect. 26(5) (2017)

20. Fernandes Medeiros, S., Gérard, F., Veshchikov, N., Lerman, L., Markowitch, O.:
Breaking Kalyna 128/128 with power attacks. In: SPACE (2016)

21. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. JCEN 8(1) (2018)

22. Genkin, D., Pachmanov, L., Tromer, E., Yarom, Y.: Drive-by key-extraction cache
attacks from portable code. In: ACNS (2018)

22

http://apmi.bsu.by/assets/files/std/belt-spec27.pdf
http://apmi.bsu.by/assets/files/std/belt-spec27.pdf

23. Genkin, D., Poussier, R., Sim, R.Q., Yarom, Y., Zhao, Y.: Cache vs. key-
dependency: Side channeling an implementation of Pilsung. TCHES 2020(1)
(2020)

24. Gras, B., Razavi, K., Bosman, E., Bos, H., Giuffrida, C.: ASLR on the line: Prac-
tical cache attacks on the MMU. In: NDSS (2017)

25. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: Automating attacks
on inclusive last-level caches. In: USENIX Security (2015)

26. Gullasch, D., Bangerter, E., Krenn, S.: Cache games - bringing access-based cache
attacks on AES to practice. In: IEEE SP (2011)

27. Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks against
kernel space ASLR. In: IEEE SP (2013)

28. Irazoqui, G., Eisenbarth, T., Sunar, B.: Systematic reverse engineering of cache
slice selection in Intel processors. In: DSD (2015)

29. Irazoqui Apecechea, G., Eisenbarth, T., Sunar, B.: S$A: A shared cache attack
that works across cores and defies VM sandboxing - and its application to AES.
In: IEEE SP (2015)

30. Irazoqui Apecechea, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! A
fast, cross-VM attack on AES. In: RAID (2014)

31. Kayaalp, M., Abu-Ghazaleh, N.B., Ponomarev, D.V., Jaleel, A.: A high-resolution
side-channel attack on last-level cache. In: DAC (2016)

32. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: CRYPTO (1996)

33. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: CRYPTO (1999)
34. Kryptos Logic: A brief look at North Korean cryptography. https:

//www.kryptoslogic.com/blog/2018/07/a-brief-look-at-north-
korean-cryptography/ (Jul 2018)

35. Kumar Gupta, S., Ghosh, M., Mohanty, S.K.: Cryptanalysis of Kalyna block cipher
using impossible differential technique. In: ICMC (2020)

36. Lin, L., Wu, W.: Improved meet-in-the-middle attacks on reduced-round Kalyna-
128/256 and Kalyna-256/512. DCC 86(4) (2018)

37. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: IEEE SP (2015)

38. MacWilliams, F.J., Sloane, N.: The Theory of Error-Correcting Codes. North-
Holland Publishing Company (1977)

39. Mangard, S.: A simple power-analysis (SPA) attack on implementations of the
AES key expansion. In: ICISC (2002)

40. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets
of smart cards. Springer (2007)

41. Maurice, C., Le Scouarnec, N., Neumann, C., Heen, O., Francillon, A.: Reverse
engineering Intel last-level cache complex addressing using performance counters.
In: RAID (2015)

42. Moghimi, A., Irazoqui, G., Eisenbarth, T.: CacheZoom: How SGX amplifies the
power of cache attacks. In: CHES (2017)

43. Mukhopadhyay, D., Chowdhury, D.R.: Key mixing in block ciphers through addi-
tion modulo 2n. ePrint Archive 2005/383 (2005)

44. Oliynykov, R.: Kalyna block cipher reference implementation. https://github.
com/Roman-Oliynykov/Kalyna-reference (2015), visited: 6 December 2021

45. Oliynykov, R., Gorbenko, I., Kazymyrov, O., Ruzhentsev, V., Kuznetsov, O., Gor-
benko, Y., Dyrda, O., Dolgov, V., Pushkaryov, A., Mordvinov, R., Kaidalov, D.:
A new encryption standard of Ukraine: The Kalyna block cipher. ePrint Archive
2015/650 (2015)

23

https://www.kryptoslogic.com/blog/2018/07/a-brief-look-at-north-korean-cryptography/
https://www.kryptoslogic.com/blog/2018/07/a-brief-look-at-north-korean-cryptography/
https://www.kryptoslogic.com/blog/2018/07/a-brief-look-at-north-korean-cryptography/
https://github.com/Roman-Oliynykov/Kalyna-reference
https://github.com/Roman-Oliynykov/Kalyna-reference

46. Ortiz, J.J.G., Compton, K.J.: A simple power analysis attack on the twofish key
schedule. CoRR abs/1611.07109 (2016)

47. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The case
of AES. In: CT-RSA (2006)

48. Percival, C.: Cache missing for fun and profit. In: Proceedings of BSDCan (2005),
https://www.daemonology.net/papers/htt.pdf

49. Pereida Garćıa, C., Brumley, B.B.: Constant-time callees with variable-time callers.
In: USENIX Security (2017)

50. Pereida Garćıa, C., Brumley, B.B., Yarom, Y.: “Make sure DSA signing exponen-
tiations really are constant-time”. In: CCS (2016)

51. Pessl, P., Groot Bruinderink, L., Yarom, Y.: To BLISS-B or not to be: Attacking
strongSwan’s implementation of post-quantum signatures. In: CCS (2017)

52. Schneier, B., Kelsey, J., Whiting, D., Ferguson, N., Wagner, D., Hall, C.: Twofish:
A 128-bit block cipher. In: First AES Conference (1998)

53. Schneier, B., Kelsey, J., Whiting, D., Wagner, D.A., Hall, C.: On the Twofish key
schedule. In: SAC (1998)

54. Shishkin, V., Dygin, D., Lavrikov, I., Marshalko, G., Rudskoy, V., Trifonov, D.:
Low-weight and hi-end: Draft Russian encryption standard. In: Current Trends in
Cryptology (CTCrypt) (2014)

55. Shusterman, A., Kang, L., Haskal, Y., Meltser, Y., Mittal, P., Oren, Y., Yarom, Y.:
Robust website fingerprinting through the cache occupancy channel. In: USENIX
Security (2019)

56. Van Bulck, J., Piessens, F., Strackx, R.: SGX-Step: A practical attack framework
for precise enclave execution control. In: SysTex (2017)

57. Wagner, M., Heyse, S.: Single-trace template attack on the DES round keys of a
recent smart card. ePrint Archive 2017/57 (2017)

58. Wagner, M., Heyse, S.: Improved brute-force search strategies for single-trace and
few-traces template attacks on the DES round keys. ePrint Archive 2018/937
(2018)

59. Wang, G., Zhu, C.: Single key recovery attacks on reduced AES-192 and Kalyna-
128/256. Sci. China Inf. Sci. 60(9) (2017)

60. Wichelmann, J., Moghimi, A., Eisenbarth, T., Sunar, B.: MicroWalk: A framework
for finding side channels in binaries. In: ACSAC (2018)

61. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: Deterministic side chan-
nels for untrusted operating systems. In: IEEE SP (2015)

62. Yan, M., Fletcher, C.W., Torrellas, J.: Cache telepathy: Leveraging shared resource
attacks to learn DNN architectures. In: USENIX Security (2020)

63. Yarom, Y.: Mastik: A micro-architectural side-channel toolkit. https://cs.
adelaide.edu.au/˜yval/Mastik (2016)

64. Yarom, Y., Falkner, K.: Flush+Reload: A high resolution, low noise, L3 cache
side-channel attack. In: USENIX Security (2014)

65. Yarom, Y., Ge, Q., Liu, F., Lee, R.B., Heiser, G.: Mapping the Intel last-level
cache. ePrint Archive 2015/905 (2015)

66. Yarom, Y., Genkin, D., Heninger, N.: CacheBleed: a timing attack on OpenSSL
constant-time RSA. JCEN 7(2) (2017)

67. Yuce, B., Schaumont, P., Witteman, M.: Fault attacks on secure embedded soft-
ware: Threats, design, and evaluation. J. Hardw. Syst. Secur. 2(2) (2018)

24

https://www.daemonology.net/papers/htt.pdf
https://cs.adelaide.edu.au/~yval/Mastik
https://cs.adelaide.edu.au/~yval/Mastik

	Side-Channeling the Kalyna Key Expansion

