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Abstract. The seminal work of Heninger and Shacham (Crypto 2009)
demonstrated a method for reconstructing secret RSA keys from partial
information of the key components. In this paper we further investi-
gate this approach but apply it to a different context that appears in
some side-channel attacks. We assume a fixed-window exponentiation
algorithm that leaks the equivalence between digits, without leaking the
value of the digits themselves.
We explain how to exploit the side-channel information with the Heninger-
Shacham algorithm. To analyse the complexity of the approach, we model
the attack as a Markov process and experimentally validate the accuracy
of the model. Our model shows that the attack is feasible in the com-
monly used case where the window size is 5.

1 Introduction

One of the roles of a cryptographer is to ensure that implementations of crypto-
graphic primitives are secure. In recent decades, side-channel attacks have been
identified as a major threat to the security of cryptographic implementations.
These attacks observe the effects that executing implementation of a crypto-
graphic primitive has on the environment in which it executes. Such effects in-
clude the power the device consumes [18, 19], its electromagnetic emissions [10,
32], timing [1, 5, 29], micro-architectural components [11, 23], and even acoustic
and photonic emanations [13, 20]. By measuring these effects, an attacker can
obtain information on the internal state of the cryptographic algorithm, which
can lead to compromising the security of the primitive.

In many cases, there is a gap between the information obtained through the
side channel and secret information, such as plaintexts or keys, which the attacker
may wish to recover [8]. Techniques to bridge this gap have been developed for
multiple cryptographic schemes [3, 6, 7, 16, 24, 25].

For RSA [33], in many cases the side-channel information provides the private
key directly, requiring no further analysis [18, 31, 35]. When only partial infor-
mation on the private key is available, there are two main approaches for key re-
covery. The Coppersmith method factors the RSA public modulus N = pq given
enough consecutive bits of the private prime p [7]. The Heninger-Shacham (HS)
algorithm [16] exploits algebraic relationships among the two private primes p
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and q, the private exponent d, and the two partial private exponents dp and dq,
which are used in some implementations of RSA. Past works have used the HS
algorithm to correct errors when the attacker obtains a degraded version of the
key [15, 16, 30], to correct errors in side-channel information [15, 17, 21, 26,
27, 28, 30], and to recover information that is not obtained through the side
channel [2, 4, 36].

In this work we consider the case that an attacker obtains knowledge of digit
equivalence of the partial private exponents dp and dq. Specifically, we assume
that the exponents are represented as digits in radix 2ω and that the attacker
can find which digits of the representation are the same without knowing the
values of the digits themselves. Past works showed that such information can be
obtained through side-channel attacks on fixed-window implementations [12] and
that similar information can be obtained for sliding window implementations [17,
22, 34].

A naive approach for recovering the key from the digit equivalence informa-
tion is to brute force the values of each of the 2ω digits. However, such approach
requires testing 2ω! combinations, or an expected complexity of 2ω!/2. This com-
plexity requires significant resources even for ω = 4 and is prohibitive for the
commonly used case of ω = 5. Past works overcome this limitation by relying
on additional information from the precomputation stage of the fixed-window
and sliding window algorithms. Since hardening modular exponentiation against
side-channel attacks requires additional resources, it may be tempting to harden
the precomputation stage and rely on the complexity of recovering the key from
the digit equivalence for side-channel protection.

Our Contribution

In this work we show how to apply the HS algorithm to the problem of recovering
RSA private keys given digit equivalence. Specifically, we show how to use guesses
for low significant digits to prune the search space of the HS algorithm when
processing higher significant digits.

To analyse the complexity of our algorithm, we develop a theoretical model
based on Markov chains. We use the model to calculate the probability of success
and the number of operations required to recover the RSA key. Using this model
we show that for the case of ω = 4, more than 99% of the keys can be broken
with a search space of size 225, well within the means of modestly resourced
adversaries. For the common case of ω = 5, the model predicts that 65% of the
keys can be broken with a search space of 240, which is within the means of well
resources adversaries.

We complement the theoretical analysis with concrete experiments, applying
our algorithm to randomly generated RSA-2048 keys. We find that the model is
highly accurate, correctly predicting the success and complexity of the attack.
Specifically, for the case of ω = 4, we can break 987 out of the 1000 keys we
experiment, with a search space of 225.
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2 Background

2.1 RSA

RSA [33] is a public key system that can be used for encryptions and for digital
signatures. To generate an RSA key, Alice picks two random primes, p and q.
The public key is (N, e), where N = pq, and e is chosen such that it is co-prime
with ϕ(N) = (p−1)(q−1). The private key is (p, q, d) where d = e−1 mod ϕ(N).
Most modern implementations use e = 65537 = 216 + 1, and choose p and q to
match the requirement.

We use n = blog2Nc+ 1 to denote the bit length of the public modulus N .
We further assume that the bit length of p and q is n/2.

To encrypt a message m, Bob calculates c = me mod N . To decrypt, Alice
calculates m = cd mod N . Signing a message m is done by calculating s =
md mod N , and the signature is verified by testing that m = se mod N .

CRT-RSA. Alice can reduce the complexity of the private key operations using
the Chinese Remainder Theorem (CRT). Specifically, Alice precomputes the
CRT-RSA private key (p, q, d, dp, dq, qinv ), where dp = d mod (p−1), dq = d mod
(q − 1), and qinv = q−1 mod p. To calculate cd mod N , Alice then computes:

mp = mdp mod p

mq = mdq mod q

h = qinv (mp −mq) mod p

m = mq + hq.

2.2 Fixed-Window Exponentiation

The fixed-window exponentiation algorithm, shown in Algorithm 1, calculates
BE mod M . The algorithm, parameterised by a window size ω, represents the
exponent E as a number in radix 2ω. We use the notation E[[i]] to refer to the
ith digit of E. That is, E is represented as a sequence of digits 0 ≤ E[[i]] < 2ω,
such that E =

∑
E[[i]]2ωi.

To perform the exponentiation, the algorithm first precomputes 2ω values
Bi = Bi mod M . It then initialises an intermediate result r to 1 and proceeds to
scan the exponent E digit by digit from the most significant to the least signifi-
cant. For each digit E[[i]], the algorithm raises r to the power of 2ω modulo M
using squaring ω times, each time reducing the result modulo M . It then multi-
plies the result by the precomputed value BE[[i]] = BE[[i]] mod M , again reducing

modulo M . At the end of the algorithm we have r = B
∑
E[[i]]2ωi mod M =

BE mod M .

2.3 Attacks on Fixed-Window Exponentiation

While the fixed-window algorithm is fairly regular and does not use secret-
dependent control flow, implementations may still leak information about the
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Algorithm 1: Fixed-window exponentiation

input : window size ω, base B, modulo M ,
exponent E =

∑
E[[i]]2ωi with 0 ≤ E[[i]] < 2ω.

output: BE mod M

//Precomputation
B0 ← 1
for j from 1 to 2ω − 1 do

Bj ← Bj−1 ·B mod M
end

//Exponentiation
r ← 1
for i from |E| − 1 downto 0 do

for j from 1 to ω do
r ← r2 mod M

end
r ← r ·BE[[i]] mod M

end
return r

digit being processed in each iteration. In some cases, the attacker can recover
(some of) the bits of each digit E[[i]] [36]. However, a common leakage identifies
digit equivalence, i.e. detecting when two digits E[[i]] and E[[j]] are the same
without identifying the digits themselves [12, 34]. Specifically, Genkin et al. [12]
uses a cache attack [22] to detect victim access patterns to the same digit, and
Walter [34] exploits a differential power analysis [19] to identify repeating pat-
terns in power traces. Several works recover similar information from sliding
window implementations of modular exponentiation [17, 22]. All these works
exploit leakage during the precomputation phase to recover the key. Specifically,
when computing Bi+1, Algorithm 1 uses Bi. The order of precomputation is
known, thus an attacker that identifies the use of Bi in the exponentiation phase
can tie to its use in the precomputation phase and recover the digit value.

2.4 The Heninger-Shacham Algorithm

The Heninger-Shacham (HS) algorithm [16] uses a branch-and-prune approach
for recovering an RSA private key from partial information on the bits of the
components of the private key. Specifically, let (N, e) be an RSA public key and
(p, q, d, dp, dq) be components of the corresponding private key, such that N = pq
is an n-bit RSA modulus with p and q primes, e = 216+1 is the public exponent,
d = e−1 mod (p − 1)(q − 1) is the private exponent, and dp = d mod p − 1,
dq = d mod q − 1 are the CRT-RSA private exponents.
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As Heninger and Shacham [16] note, there exist k, kp, and kq with 0 < k < e
such that

N = pq

ed = k(N − p− q + 1) + 1

edp = kp(p− 1) + 1

edq = kq(q − 1) + 1.

Moreover, Inci et al. [17] show that 0 < kp, kq < e and that given kp we can find
kq and vice versa.

Let τ(x) be the exponent of the largest power of two that divides x. We
note that because e is odd, τ(ed) = τ(d), τ(edp) = τ(dp), and τ(edq) = τ(dq).
Heninger and Shacham [16] first show how to find d mod 2τ(k)+2, dp mod 2τ(kp)+1,
and dq mod 2τ(kq)+1. They then define a slice of the private key as

slice(i) = (p[i], q[i], d[i+ τ(k)], dp[i+ τ(kp)], dq[i+ τ(kq)]) .

where i indicates the bit index starting from the least significant bit. Therefore
p[i] is the ith bit of p and p[0] refers to the least significant bit of p. Finally, they
show that if we have a partial solution (p′, q′, d′, d′p, d

′
q) for slice(0) to slice(i−1),

the following four congruences hold.

p[i] + q[i] = (N − p′q′)[i] (mod 2) (1)

d[i+ τ(k)] + p[i] + q[i] = (k(N + 1) + 1− k(p′ + q′)− ed′)[i+ τ(k)] (mod 2) (2)

dp[i+ τ(kp)] + p[i] = (kp(p′ − 1) + 1− ed′p)[i+ τ(kp)] (mod 2) (3)

dq[i+ τ(kq)] + q[i] = (kq(q′ − 1) + 1− ed′q)[i+ τ(kq)] (mod 2) (4)

Note that because p and q are primes and by the definition of τ(·), we have that
slice(0) = (1, 1, 1, 1, 1).

The HS algorithm has been proposed in the context of cold boot attacks [14],
where most of the errors are that bits containing 1 may decay into 0. Further
work has investigated the HS algorithm with unbalanced bidirectional errors [15,
30]. The HS algorithm has been further applied in the context of side-channel
attacks which can have noisy measurements [21, 26, 27, 28]. The HS algorithm
can be used to complete partial information obtained through cache attacks [2,
4, 36]

2.5 Markov Chains

This section introduces terminologies and relevant facts that we use in our anal-
ysis. We start with the definition of a Markov chain.

Definition 1. A discrete-time stochastic process {Xn}n∈Z+ on a countable state
space Ω is called a Markov chain if for every n

Pr(Xn = xn|Xn−1 = xn−1, . . . , X1 = x1) = Pr(Xn = xn|Xn−1 = xn−1).
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The intuition for the definition is that the history of a Markov chain is only
considered through the current state, and the knowledge of the previous states
has no impact on the movement to the next state.

An additional property that we use in the modelling is time-homogeneity.
This refers to the fact that the probabilities of transitioning to the next state,
with knowledge of the current state, do no change over time. That is,

Pr(Xn+1 = j|Xn = i) = Pr(Xn = j|Xn−1 = i).

Using the property of time-homogeneity, we then define the probabilities of tran-
sitioning between two states as

pij = Pr(Xn = j|Xn−1 = i).

These can be generalised to the k-step transition probabilities by considering
the probability of transitioning between states in k steps. That is,

pkij = Pr(Xn+k = j|Xn = i).

The analysis of Markov chains is greatly simplified knowing these proper-
ties. For example, we create a matrix P of the transition probabilities of each
of the possible transitions where each entry of the matrix [P ]i,j = pij . This
forms a stochastic matrix, where each row sums to 1, since each state has its
own probability distribution. The advantage of creating this matrix is that we
can easily compute the k-step transition probabilities by taking powers of the
matrix P [9, Theorem 1.1]. Then we have that the k-step transition probabilities
can be calculated as

pkij = [P k]i,j .

Therefore, describing a problem in this way enables us to convert a potentially
computationally difficult problem of calculating the probabilities of moving be-
tween two states in k steps, from a combinatorial problem, whose complexity
grows quickly in the number of steps, to a linear algebra problem of taking
matrix powers.

3 Attacker Model

Recall that the aim is to recover the secret exponent E, where E represents dp
and dq, used during the RSA exponentiation routine. The attacker knows that
the victim performs the exponentiation using a fixed-window method whose
width ω is publicly known.

We assume that the attacker can observe, via the side channel, the digit
equivalence of the secret exponent. Note that the attacker does not know the
values of those digits; the attacker only knows whether, for example, E[[i]] equals
E[[i]] for i 6= j.

Figure 1 illustrates digit equivalence for ω = 4. The attacker does know that
E[[2]] = E[[4]] = E[[7]] but does not know that they are 1010. Similarly, the
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1010 1010 10100111 01111100 11000001· · ·

E[[7]] E[[6]] E[[5]] E[[4]] E[[3]] E[[2]] E[[1]] E[[0]]

Fig. 1: A visualisation of digit equivalence for exponent E with ω = 4.

attacker knows that E[[0]] = E[[6]] but does not know their value. Moreover, the
attacker also knows that E[[0]] 6= E[[1]] 6= E[[2]] 6= E[[5]].

Continuing with this example, ω = 4 has 2ω = 24 = 16 possible different
values of the digits. This means that the naive approach of determining the
digits requires 16! ≈ 244. With well funded organisations, this attack is feasible.
However, commonly used ω is usually larger than this.

Consider ω = 5 as used in OpenSSL [36], there are a total of 25 = 32 different
digit values. The naive approach would require 32! ≈ 2118, rendering this attack
infeasible, even for well funded organisations such as the NSA.

4 Our Approach

We apply the HS algorithm with a branch-and-bound strategy together with
pruning from our knowledge of digit equivalence. Recall that the HS algorithm
reconstructs the CRT-RSA private components by looking at slices of the private
key (p, q, d, dp, dq). At every slice(i), the algorithm builds the key by satisfying
the four congruence relations described in Equations (1) to (4).

4.1 Algorithm Overview

In addition to the HS algorithm, we take advantage of side-channel information
regarding digit equivalence. This allows us to further prune the solution space by
removing any solutions that do not agree with our knowledge of digit equivalence.
As a consequence, we significantly reduce the solution space and can reconstruct
the key for larger window widths.

Our algorithm follows the HS algorithm and starts building the solution space
from the least significant bit denoted by bit 0. When considering dp and dq (hence
kp and kq), recall that slice(i) considers the bits dp[i+ τ(kp)] and dq[i+ τ(kq)].
This results in two scenarios. One is where τ(kp) and τ(kq) are zero, which we
denote as the aligned case. The other one is where τ(kp) and τ(kq) are not zero,
which we denote as the unaligned case. We begin our analysis with the aligned
case. The unaligned case is discussed in Section 4.4

4.2 Complexity Analysis of the Aligned Case

Assume the RSA fixed-window exponentiation uses a window width ω. This
means that there are 2ω different digits. Recall that we consider slice(i) and build
bit i for p, q, d, dp and dq. Furthermore, recall that slice(0) is known. Because we
assume τ(kp) = τ(kq) = 0, we know exactly one bit of the first (least significant)
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digit of each of dp and dq. Consequently, for the first digit, there remain 2ω−1

possible partial solutions. Because we do not know any further information about
the first digit, we cannot prune any possible solution at this step.

In the subsequent slices, there are two possibilities for pruning.

1. The first case is where the value of the current digit of dp (or dq) is equivalent
to one of the previously observed digits. We can compare the current partial
solution at each bit slice of the current digit and reject the solutions that do
not match the bits of the equivalent digit seen previously.

2. The second case is where the value of the current digit is not equivalent to
any of the previously observed digits. In this case, we can eliminate solutions
where the value of its current digit equals a value of a previously seen digit.

In our algorithm, we model the search space as a search tree. The starting
partial solution at slice(0) is at the root. Each level of the tree is a slice of the par-
tial solution. The tree width reflects the number of solutions kept after pruning
that level. For the purpose of the statistical analysis we make two assumptions
about the statistical distributions of digits in the keys.

Assumption 1. (digit independence)
No correlation between lower and higher significant key bits. That is, given the
knowledge of lower significant bits observed in the past, we do not gain further
information regarding higher significant bits to be explored in the future.

Assumption 2. (key independence)
No dependency between p and q, thus dp and dq. This means that the knowledge
of dp (resp. dq) does not provide additional information to infer dq (resp. dp).

We note that neither assumption hold in practice—Coppersmith [7] likely
implies that Assumption 1 is invalid and Heninger and Shacham [16] invalidates
Assumption 2. Hence, we only use them to facilitate the statistical analysis. The
agreement between our model and the experiments indicates that violations of
the assumptions do not result in significant statistical differences. We further
note that any violation of these assumptions is likely to facilitate attacks on
RSA.

We now consider slice(i). For the aligned case, slice(i) contains bits dp[i]
and dq[i], which fall in digits dp[[bi/ωc]] and dq[[bi/ωc]], respectively. The side-
channel information regarding the digit equivalence of dp[[bi/ωc]] and dq[[bi/ωc]]
is categorised into four possibilities

(P1) Both dp[[bi/ωc]] and dq[[bi/ωc]] have been seen;
(P2) dp[[bi/ωc]] has been seen, but dq[[bi/ωc]] has not;
(P3) dq[[bi/ωc]] has been seen, but dp[[bi/ωc]] has not;
(P4) Neither dp[[bi/ωc]] nor dq[[bi/ωc]] has been seen.

Figure 2 illustrates seen and unseen digits of dp and dq, in the aligned case,
where ω = 4. Each box represents a digit whose value is printed within the box
along with colors used to represent its value. The bit positions are given below
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1010 10100111 1101 11010001· · ·

dp[[5]] dp[[4]] dp[[3]] dp[[2]] dp[[1]] dp[[0]]

1000 10000011 00110101 1110· · ·

dq[[5]] dq[[4]] dq[[3]] dq[[2]] dq[[1]] dq[[0]]

Fig. 2: An example of seen and unseen digits in the aligned case, ω = 4.

the boxes. Recall that the attacker does not know the values of the digits; they
only know the digit equivalence. Considering this scenario, where ω = 4, there
would be 23 solutions at the end of the first digit at slice(3). The subsequent digits
for dp and dq are both unseen, corresponding to (P4), so pruning can only occur
at the end of the digit at slice(7). Using the notation introduced previously, any
solution where E[[1]] = E[[0]] in either dp or dq are pruned. Moving on to the next
digit, we get scenario (P2). The digit dp[[2]] has been seen previously in dp[[0]]
and thus pruning could occur at each slice(8) to slice(11), i.e. solutions where
E[[2]] 6= E[[0]] for dp are pruned. Additional pruning could occur from the unseen
digit of dq[[2]] at slice(11). The search continues on and the pruning at each slice
depends on whether the current digit has been seen.

Because the side-channel information only applies to full digits, i.e. groups
of ω bits, we only perform the pruning at a digit boundary. That is, we combine ω
steps of the HS algorithm. To simplify notation, we use γ to refer to the digit
number where bit i falls, i.e. γ = bi/ωc.

Let yγ and zγ be the numbers of unique digits that have been observed at
dp[[0]], . . . , dp[[γ]] and dq[[0]], . . . , dq[[γ]], respectively. We now make the concept of
a previously seen digit more concrete by saying that a digit dp[[γ]] (resp. dq[[γ]])
has been seen before if yγ = yγ−1 (resp. zγ = zγ−1).

Define two random variables Yγ and Zγ from the space {0, . . . , 2ω−1} for the
number of unique digits observed after reading γ digits. Hence, the four possibili-
ties above, i.e., (P1)–(P4), correspond to the four possibilities in Equation 5 for
moving to observe the next slice. That is, given the previous value (yγ−1, zγ−1),
we obtain the following probabilities:
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Pr ((Yγ , Zγ) = (yγ , zγ)|(Yγ−1, Zγ−1) = (yγ−1, zγ−1))

=



(
yγ−1
2ω

)(
zγ−1
2ω

)
if yγ = yγ−1 and zγ = zγ−1(

yγ−1
2ω

)(
2ω − zγ−1

2ω

)
if yγ = yγ−1 and zγ = zγ−1 + 1

(
2ω − yγ−1

2ω

)(
zγ−1
2ω

)
if yγ = yγ−1 + 1 and zγ = zγ−1(

2ω − yγ−1
2ω

)(
2ω − zγ−1

2ω

)
if yγ = yγ−1 + 1 and zγ = zγ−1 + 1

(5)

We derive these probabilities by utilising the independence of the two keys, dp
and dq. Therefore, we consider each contribution to the probability separately
and the contribution is either the proportion of seen digits or the proportion of
unseen digits, depending on whether the current digit has been seen in the key
stream. Therefore, we can calculate the probability of a particular key sequence
by multiplying the probability of the individual components. In Section 4.3 we
discuss the formulation of these probabilities into two independent Markov chains
to model the key recovery.

Note that the complexity of our attack depends on the size of the search
space, i.e. the number of nodes in the search tree. Let Wγ be a random variable
that denotes the search space (the number of possible candidate keys) or tree
width after γ digit steps. The change of the width at each step is defined as
follows.

1

2ω
if yγ = yγ−1 and zγ = zγ−1

2ω − zγ
2ω

if yγ = yγ−1 and zγ = zγ−1 + 1

2ω − yγ
2ω

if yγ = yγ−1 + 1 and zγ = zγ−1

(2ω − yγ) (2ω − zγ)

2ω
if yγ = yγ−1 + 1 and zγ = zγ−1 + 1

Observe that the change in the width only depends on the number of unique
digits that have been seen and the number of digits scanned, γ. In other words,
the width is not dependent upon the sequence of Yγ or Zγ but the value at γ.
Since we know that the first digit must be odd (due to being prime), the first
bit must be one. This means that there are fewer possibilities for the first digit.
Consequently, this gives a factor of 2ω−1 for the first width since we have one
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fewer binary choice for the first bit. Therefore, the width after reading in γ digits
from each of dp and dq is

2ω−1

2γω

yγ∏
m=1

(2ω −m)

zγ∏
m=1

(2ω −m) . (6)

As noted previously, the width is independent of the order of the sequence. The
expression takes the product of the yγ and zγ numerators of the change in widths
and the initial width 2ω−1, then divides by the number of 2ω for γ digits scanned.
Assume the threshold of 2t, we have

2ω−1

2γω

yγ∏
m=1

(2ω −m)

zγ∏
m=1

(2ω −m) ≥ 2t

and therefore to exceed the threshold we need
yγ∏
m=0

(2ω −m)

zγ∏
m=0

(2ω −m) ≥ 2t−1+(γ−1)ω.

4.3 Independent Markov Chains

Recall the two assumptions in our analysis, namely, digit independence (i.e.
previously observed digits do not determine unexplored digits) and key inde-
pendence (i.e. knowing dp does not infer dq or vice versa). We use these prop-
erties to create identical distributed Markov chains and analyse these chains
operating on dp and dq independently. Each Markov chain has the state space
Ω = {0, . . . , 2ω − 1} whose transitions have two possibilities:

1. Sample a digit that has previously been seen, or
2. Sample a digit that has not been seen.

Therefore, we define the probability transitions as

yγ →


yγ−1 with probability

yγ−1
2ω

yγ−1 + 1 with probability
2ω − yγ−1

2ω
.

Using this formulation, we construct a probability transition matrix P . An
example for ω = 4 state chain is given below. Notice that the matrix has non-zero
probabilities on the main diagonal and the diagonal above only.

P =



1

4

3

4
0 0

0
1

2

1

2
0

0 0
3

4

1

4

0 0 0 1


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Let Yγ be a random variable for the number of unique digits observed at
digit γ. Thus, the Markov chain tracking the evolution of either dp or dq is

I = {Yγ}γ∈{0,...,2ω−1}.

Given the Markov chain structure, we can calculate the probabilities of having
observed yγ unique digits, after observing γ digits.

Note that this Markov chain is time-homogeneous since the transition proba-
bilities do not change with the number of digits that have been read. This allows
the calculation of the probabilities at each number of digit γ read as the γth
power of the probability transition matrix. That is,

Pr(Yγ = yγ |Y1 = y1) = [P k]y1,yγ

since both dp and dq are independent and identically distributed.
The probability transition matrix P and its powers completely determine the

system. Note also that we consider the initial state of beginning the first digit
with a single unique value. This means that we will always consider the top row
of the matrix P for calculation of the relevant probabilities,

To finalise this discussion, thanks to the independence assumptions, we can
calculate the transition probabilities for random variables Yγ and Zγ , the number
of unique digits observed by digit γ of dp and dq respectively,

Pr(Yγ = l, Zγ = m) = Pr(Yγ = l)Pr(Zγ = m) = [P γ ]1,yγ [P γ ]1,zγ .

Note that the index of the starting state is 1, as we consider the probability of
moving from state 1 to j in γ steps.

Regarding computational complexity, the naive calculation seen previously
required that at each step, ω probabilities are calculated, thus resulting in
the complexity O(ωγ). Utilising the Markov chain approach, the calculation
is reduced to taking the γ powers of P where each matrix multiplication is
O((2ω)2.37) = O(22.37ω). This means that our approach has the computational
complexity of O(γ22.37ω).

4.4 Unaligned Case

As previously mentioned, many real examples do not begin scanning digits from
the least significant bit, i.e. τ(kp) and τ(kq) are not zero. Our analysis suggests
modelling these offsets as independent geometric random variables. That is, each
bit stream of dp and dq, the offset O has probability of occurring of

Pr (O = o) =
1

2o+1
, o ∈ {0, 1, . . .}.

We calculate the change in width by taking the assumption that all bits
before the offset are known and we retain knowledge of their values. This has
no impact on the evolution of the Markov chain. Therefore, we can utilise the
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same probability transitions while adjusting the weight by the offset. As a result,
given the offsets op and oq, we have that the width can be calculated as(

1

2op

)(
1

2oq

)(
2ω−1

2kω

) yγ∏
m=1

(2ω −m)

zγ∏
m=1

(2ω −m) . (7)

That is, we derive this expression from Equation 6 and adjusting for the
known bits, which are those before the offset. Note that this means that any
offset provided will lower the width for the same digit γ, and number of digits
observed, yγ and zγ . Therefore, the case with no offsets for scanning digits will
have the largest width, for identical keys.

We calculate the expected width at each digit γ by summing over widths
of the offset Equation 7 and the probabilities of being in a state (yγ , zγ) from
Equation 5. Explicitly, this gives the expected width for a digit γ of

E[Wγ ]=
∑
yγ≤γ

∑
zγ≤γ

∑
op

∑
oq

[P γ ]1,yγ [P γ ]1,zγ
1

2op
· 1

2oq
·2
ω−1

2γω

yγ∏
m=1

(2ω−m)

zγ∏
m=1

(2ω−m) .

5 Results and Comparisons

We theoretically and experimentally evaluate our approach of reconstructing
RSA private keys given side-channel information of digit equivalence. For the
former, we use our derived formulas to estimate the search space and success
probability. For the latter, we run our algorithm on a high-performance cluster
and observe the convergence to the solution. In both cases, we also set threshold
on the space complexity.

5.1 Theoretical Results

For the theoretical evaluation, we consider the RSA fixed-window exponentiation
with ω = 4, 5 and 6. For each ω, we use three different thresholds corresponding
to three computation budgets. These three thresholds are 225, 240 and 260 which
represent resource-constrained attackers, well-funded organisations, and nation-
state organisations such as the NSA.

The results for ω = 4 are shown in Figure 3. This suggests that the algo-
rithm can recover the majority of the key before reaching the lowest resource-
constrained attackers threshold of 225. To be more precise, 99.9% of the key can
successfully be recovered. Further analysis shows that the keys that exceed the
maximum width have many consecutive unique digits at the beginning of the
key. Thus, this allows the width to grow much quicker than the ability to prune
infeasible keys.

The results for ω = 5 is shown in Figure 4. As expected, the percentiles,
median and mean all increase as the window width increases from ω = 4 to ω = 5.
Even though it becomes more challenging for resource-constrained attackers, it
is feasible for well-funded organisations.
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Fig. 3: Distribution of width seen at each slice for ω = 4 for both the theoretical
and experimental results.

Fig. 4: Distribution of width seen at each slice of the Markov chain model, ω = 5.

These plots give insight into how the key recovery behaves. Most of the typical
behaviour of keys is contained within a relatively small band demonstrated by
the middle 50%. The mean is higher than the 75th percentile, which highlights
that the maxima tend to be much higher than the middle values. The influence
of the unaligned keys lowers the width in general, as the resulting reduction in
width is a power-of-two offset. This has a large impact in lowering the median
and percentile ranges, since many combinations of unaligned keys still occur with
high probability, while have large reductions to the size of the width. Table 1
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summarises the success probability and the threshold for window width ω = 4
and 5.

Table 1: Success rate in reconstructing keys for different ω and thresholds

225 240 260

ω = 4 99.9% 100.0% 100.0%
ω = 5 8.2% 64.8% 99.9%

5.2 Experimental Results

To demonstrate the practicality of our attack, we implement and run the attack
on a high-performance cluster. We are interested in the behaviour of convergence
to a solution before reaching the search tree width threshold which we set to
225 (resource-constrained attackers). If the solution space exceeds this threshold
width, the search is abandoned as it would be too computationally intensive to
continue the search.

The distribution of the search tree width at each bit slice for ω = 3 and 4 are
shown in Figure 5 and Figure 3 respectively. It shows the widths up to slice(85).
The widths at the subsequent layers fluctuate between 1 and 2. One of these
solution is the key in which we want to recover. These results are generated
with 1000 samples with randomly generated secret values. The key is randomly
generated with e = 65537 and with 2048-bit RSA modulus.

Fig. 5: Distribution of width seen experimentally at each slice, ω = 3.
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The success rate for ω = 4 is 98.7%. From these results, we can observe
that the search widths follow a general pattern of an exponential-like increase
before an exponential-like decrease. This aligns with our understanding. Initially,
building the key with no seen digits, we expect there to be a growing number
of possibilities for the digit string. As we move further along the slices of the
key, at some point, we would have enough information of the key to narrow the
search space.

Table 2 lists the values of the widths seen when ω = 4 and threshold is 225.
Note that the maximum and minimum width seen in the experimental results is
not the true maximum and minimum as it is affected by the attacker-imposed
threshold. The search is abandoned when the tree width exceeds the threshold,
so we would get that the tree width drops to zero when an experiment passes
the threshold, and the maximum width captured will be the width right before
the run was abandoned. The theoretical results also accounts for extremely low
probability events; thus a higher theoretical maximum is expected.

Table 2: Comparison of the width seen when ω = 4 and threshold 225

Theoretical Experimental

bit index maximum bit index maximum

mean 39 570 000 38 790 000

min* 3 8 20 3

25% 31 880 31 33 000

median 31 9 700 26 26 000

75% 35 98 000 30 240 000

max* 47 1 400 000 000 38 67 000 000

* Expect different theoretical and experimental results. The experimental results
stop after the search tree exceeds the threshold.

Despite the differences of the success rate, 98.7% from experiments and 99.9%
using the theoretical model, the general behaviour of the search tree is similar.
We see this in Figure 3 and Table 2. Ignoring the minimum and maximum due
to the difference in performing the search experimentally, the mean of the tree
width reaches its peak around bit index 40 with roughly the same value in both
theoretical and experimental results. The middle 50% range occurs roughly at
bit index 32, although the ranges of this value is much lower in the theoretical
results. Again, this could be due to the modelling accounting for extremely low
probability events.
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6 Conclusions

In this work we apply the Heninger-Shacham algorithm in a new context. We
assume a side-channel adversary that can observe the equivalence of digits in
the private exponents of CRT-RSA. We show how to apply the algorithm given
such information and develop a theoretical model that allows us to analyse the
complexity of the attack. The model shows that the attack is feasible for a
suitably funded organisation with a window size of 5 bits. We further validate
the model through experimentation with randomly chosen RSA keys.

Our model assumes that the digit equivalence information is complete. A
potential extension of this work is to evaluate cases where we have partial infor-
mation. For example, when there are errors in the digit equivalence information
or when we only know the class of the digits (e.g. the Hamming weight). The
work could also be extended to consider cases that use sliding window exponen-
tiation.

The results presented here has, once again, made apparent the importance
of using constant-time implementations against side-channel attacks.
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