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Abstract—We present the first side-channel attack on full-
fledged smartphones that recovers the elliptic curve secret
scalar from the electromagnetic signal that corresponds to
a single scalar-by-point multiplication in current versions
of Libgcrypt, OpenSSL, HACL* and curve25519-donna. To
avoid leaking information via side channels, these implemen-
tations follow the recommendations of RFC 7748 and use a
constant-time conditional swap operation. Our attack targets
signal differences created by systematic changes in operand
values during this conditional swap operation.

We deploy the attack, using low-cost equipment (<$800),
against two Android-based mobile phones and against a
Linux-based IoT development board. We repeat the attack
100 times, each time with a different scalar, on each device. In
all of the implementations considered in this work, our attack
successfully recovers the full secret key within seconds.

To mitigate the attack we suggest randomizing the
exclusive-or mask in the conditional swap operation. We
show that this countermeasure is effective in preventing this
and similar attacks.

1. Introduction
Since their introduction in Van Eck and Laborato [73]

and Kocher [40], side-channel attacks have proven to be a
severe threat to the security of cryptographic implementa-
tions. Dating back to the mid-90’s, there is a large body of
work focusing on mounting physical side-channel attacks
on embedded devices (e.g., microcontrollers, FPGAs, and
smart cards) using numerous channels, such as high-
bandwidth power analysis [20, 35, 41, 48, 49, 70, 80], elec-
tromagnetic emanations (EM) analysis at clock-scale fre-
quencies [1, 24, 52, 63], and fault injection attacks [14, 37].
More recently, the research community had started explor-
ing the vulnerability of complex devices, such as desktops,
laptops, server computers, phones, and tablets to physical
side-channel attacks. While the complexity and GHz-scale
speed of such devices has so far prevented high-bandwidth
physical attacks, low-bandwidth attacks running well below
the CPU’s clock speed, were demonstrated using several
channels, such as electromagnetic emanations [3, 18, 28–
30, 83], power analysis [26, 30], acoustics [27], and even
temperature fluctuations [15].

PCs and mobile devices are also vulnerable to side-

channel attacks stemming from contention on microarchi-
tectural CPU resources [25]. These, so-called microarchi-
tectural side channels, include cache- and timing-based
attacks on cryptographic implementations [12, 16, 17,
40, 46, 59, 60, 79], ASLR derandomization [32, 34],
attacks on mobile platforms [44], as well as attacks
from JavaScript [31, 58, 69]. In 2018, microarchitec-
tural transient execution attacks were used to leak data
across security domains, with devastating security conse-
quences [19, 39, 45, 71, 72, 74, 75, 77].

Recognizing the danger that microarchitectural in-
formation leakage poses, the cryptographic community
attempted to protect code running on complex devices
against non-speculative side channels by establishing the
notion of constant-time code. At a high level, the aim is
to avoid secret-dependent control flow and memory access
patterns, thereby decoupling the program’s secrets from
leakage observable through physical and microarchitectural
channels. Perhaps the most well-known example of such
a design is Curve25519 [13], which uses the highly-
regular Montgomery-ladder algorithm [50] and has a secret-
independent memory access pattern.

However, constant-time coding offers little protection
against high-bandwidth physical attacks. Demonstrating
this, [9, 53, 54] showed high-bandwidth physical at-
tacks on constant-time implementations of elliptic curve
cryptography, by using high-bandwidth oscilloscopes to
sample leakage from microcontroller-level targets at rates
exceeding the device’s clock-speeds. For PCs and mobile
devices however, physical attacks have only been shown at
bandwidths much lower than their GHz-scale clock speeds,
with results being limited to extracting keys from naive
and non-constant-time cryptographic implementations by
exploiting high-level key-dependent branches [27–30].

To address concerns of microarchitectural side-channel
attacks, RFC 7748 [42] now recommends constant-time
coding practices. However, the impact of such counter-
measures on low-bandwidth physical leakage is not clear.
Thus, in this paper we set out to investigate the interaction
between the regularity introduced by microarchitectural
side-channel countermeasures and the feasibility of low
bandwidth physical side channels on complex devices.

More specifically, we ask the following two main
questions.



(i) How vulnerable are constant-time elliptic curve imple-
mentations running on complex devices to simple power
and EM analysis, conducted well below the device’s operat-
ing speed? (ii) Can countermeasures for microarchitectural
attacks have adverse affects on the resilience of complex
devices to low-bandwidth physical side-channel attacks?

1.1. Our Contribution
Answering the first question, in this paper we show

that, unfortunately, constant-time elliptic curve implemen-
tations running on full-fledged mobile platforms can be
vulnerable to simple, low bandwidth, EM analysis. More
specifically, we evaluate four implementations of elliptic
curve digital signatures (Libgcrypt, OpenSSL, HACL* and
Curve25519-donna), all of which use practices of constant-
time coding for microarchitectural side-channel protection
and completely avoid any key-dependent branches and
memory accesses. We demonstrate that the high regularity
employed by constant-time elliptic curve implementations
fails to offer adequate protection even against coarse and
low bandwidth physical side channels. In particular, we
show how using only a single EM trace, an attacker can
extract keys from mobile devices running constant-time
elliptic curve cryptography within seconds.

Tackling the second question, we show that the
constant-time conditional swap operation, recommended
in RFC 7748 as a countermeasure for microarchitectural
attacks, ironically amplifies EM side-channel leakage. This
allows an EM attacker to use attacks at a lower bandwidth,
making cheap and non-invasive EM attacks on mobile
devices feasible. Overall, to the best of our knowledge,
this is the first work that demonstrates key extraction from
a mobile device running a highly regular constant-time
implementation of elliptic curve cryptography, where the
bandwidth required by the attack is significantly below the
device’s native execution speed.
Attack Setting. We target mobile phones, which are
equipped with 1.1–1.4 GHz CPU and run full-fledged
Android. We do not modify the phones’ hardware in any
way, and in particular leave the phones’ cases closed with
all internal EM shielding intact. Moreover, we do not
apply any modifications that might help with side-channel
analysis to the software stack. This includes running
an unmodified Android operating system, with all CPU
cores enabled, and with power management settings and
background applications in their factory defaults. We also
avoid the use of triggers for side-channel acquisition and
signal location, leaving all side-channel countermeasures
in the targeted software in place. Finally, the phones’ WiFi
is enabled and connected to our university network.

We do assume, however, that the attacker has a brief
and non-invasive access to the target device and can thus
place an inexpensive EM probe within a few centimeters
of the device. Prior work has shown that such probes can
be easily hidden in public locations, such as under a table
in a coffee shop or inside the charging surface at a public
phone charging station [30]. As such access is inherently
limited, we constrain ourselves to short attack windows
and small and easily concealable attack equipment. For
equipment, we avoid expensive and bulky top-of-the-line
spectrum analyzers used in prior works [3]. Instead, we
use a cheap and small software defined radio (SDR) device
(around $800), limiting our bandwidth to 40 MHz, which

is well below the target devices’ clock speeds. We further
avoid hardware-based cycle-accurate artificial triggering,
running the SDR in continuous sampling mode. Moreover,
unlike prior works, which require thousands of traces of
emanations from the target device [30], we perform key
recovery using only one trace.

Attack Overview. The attack consists of two main
phases. In the profiling phase, the attacker collects a small
number (up to 10) of EM traces from the device, while
using known scalars. The attacker uses these traces to train
classifiers that first identify the regions corresponding to
the scalar multiplication operation within each trace and
then identify the condition of each constant-time swap
operation executed during the scalar multiplications.

In the attack phase, the attacker places a probe next
to the target device and continuously monitors its EM
emanations, passively waiting for the device to perform a
cryptographic signing operation. Once a single EM trace
corresponding to such an operation is captured, our attack
automatically identifies the location of the scalar-by-point
multiplication operation and analyzes the condition of
each constant-time swap operation. Finally, using these
conditions, the attacker recovers the nonce used during
the signing operation and combines it with the (public)
message and signature to recover the target’s secret signing
key.

Leveraging Constant-Time Swap. To achieve constant-
time coding, the swap operation proposed by RFC 7748
uses a bit mask to swap two machine words, thereby
avoiding secret-dependent control flow. The value of this
mask is drawn from a random distribution if the swap
takes place and is all-zero if the swap does not take place.
Adopting this methodology, newer designs of cryptographic
implementations tend to process the secret key one-bit-at-
a-time, using the constant-time swap operation to swap
two internal values based on the key. Unfortunately, the
power consumption of mobile devices typically correlates
with the Hamming weight of processed values. Hence, the
difference between all-zero and random masks causes a
small bias in the CPU’s power consumption and with
it in the device’s electromagnetic emanations. Due to
the relatively low bandwidth of the attack, we cannot
distinguish between an all-zero and a random-looking value
in a single instruction. However, the repeated swapping of
multiple machine words, required for swapping two internal
values, amplifies the leakage via physical side channels
allowing us to distinguish the values. Thus, ironically, using
constant-time swap operation, while protecting against
microarchitectural side-channel attacks, renders newer
cryptographic implementations more vulnerable to low
bandwidth physical side-channel analysis compared to
older generation algorithms that process several key bits
at once.

We note here that a previous work [54] has demon-
strated an attack on the constant-time swap operation using
invasive high bandwidth attack techniques on 8-bit micro-
controllers and under well-controlled lab conditions. More
specifically, Nascimento et al. use an 8-bit ATMega328P
development board running at 7 MHz and executing a
bare-metal (i.e., no OS) elliptic curve scalar-by-point
multiplication [54, Appendix A]. They measure the mi-
crocontroller’s power consumption with a high-bandwidth



500 MHz oscilloscope while artificially increasing leakage
by modifying the electronic circuit, introducing a 50 Ohm
resistor into the microcontroller’s ground path. As the
microcontroller in Nascimento et al. requires two cycles per
load [54, Section 3], this results in a high-bandwidth signal
consisting of about 136 samples for each load operation.
With such precise observations, Nascimento et al. [54] can
recover a scalar by observing minute Hamming weight
variations in individual instructions (thereby avoiding
the use of amplification). In contrast, our attack is non-
invasive, requires no hardware modifications, and uses
40 MHz bandwidth to attack a 1.4 GHz mobile phone
(e.g., about 0.03 samples per cycle). We thus leverage
the EM signal amplification provided by the constant-time
swap operation in order to recover the swap condition,
resulting in key recovery using only a single leakage
trace. Finally, unlike Nascimento et al., who execute a
bare-metal version of the scalar-by-point multiplication
with artificial cycle-accurate triggering, we target deployed
cryptographic libraries running on multi-core full-fledged
Android mobile phones without any triggering while
overcoming the noise generated by the operating system
and other Linux background activities.
Countermeasure. As a final contribution, we develop
a countermeasure for the constant-time swap operation,
which prevents this systematic operand bias with only a
negligible impact on performance, increasing the execution
time of the ECDSA signing operation by less than 0.1%.
Our technique ensures a pseudo-random Hamming weight
for the masks used in the swap operations by XORing
the mask with a pseudo-random value prior to swapping
words and then XORing the possibly swapped words
with the same pseudo-random value. XORing with the
pseudo-random value removes the bias in the original mask.
We have empirically confirmed that this countermeasure
effectively mitigates our attack.
Summary of Contributions. In summary, this paper
makes the following contributions:
• We identify a weakness in a common implementations

of constant-time code running on mobile devices which
amplifies the EM leakage allowing detection using
inexpensive equipment (Section 3).

• We evaluate the problem with four leading implementa-
tions of elliptic curves on three high-end devices, show-
ing that the technique allows complete secret recovery
from a single EM trace (Section 4).

• We design a countermeasure that masks the EM signal
and show how to implement a portable version that
resists compiler optimizations (Section 5).

Responsible Disclosure. Following the practice of
responsible disclosure, we reported our findings to the
developers of the cryptographic libraries discussed in
this work and are working with them on implementing
countermeasures.

1.2. Targeted Software and Hardware
We show attacks against four different software imple-

mentations of ECC:
• The EdDSA signing routine in Libgcrypt 1.8.4, operating

over the Ed25519 curve.
• The ECDSA signing routine in OpenSSL 1.1.1, operating

over the secp256k1 curve.

• The scalar-by-point multiplication routine in the Donna
implementation of Curve25519.

• The EdDSA signing routine in HACL* operating over
the Ed25519 curve.

All software is compiled with gcc 4.6.3 for OLinuXino and
with gcc 5.4.0 for Android devices, using the default con-
figuration, makefile, optimization level, and side-channel
countermeasures.

We empirically demonstrate our attack using two ARM-
based Android mobile phones, a ZTE ZFIVE and Alcatel
Ideal, with both phones use Qualcomm CPUs and are
currently sold on Amazon.1 We further demonstrate some
of the attacks on an ARM-based IoT prototyping board,
A13-OLinuXino, running Debian Linux and equipped with
a CPU made by Allwinner. The electromagnetic signals
are acquired using an Ettus B200 mini SDR, connected to
a custom-built shielded probe implemented as a three-layer
20 mm diameter circular PCB (printed circuit board), with
top and bottom layers acting as shield and the middle layer
containing a circular feed line. See Figure 1 for a picture
of our setup. Note that the probe is positioned several
millimeters above the device’s chassis, without touching
it.

2. Background
2.1. Related Work

Side-channel attacks [40, 41] have been used to de-
feat numerous cryptographic implementations. EM side
channels in particular, in addition to being used to extract
cryptographic secrets from smart cards and other relatively
simple devices [1, 24, 63], have also been used to detect
malware [55, 67] and for performance profiling [66].
A significant body of recent work investigates how to
systematically create [83] and quantify [81, 82, 84] EM
emanation caused by instruction-level differences in pro-
gram execution.
Attacking Elliptic Curve (ECC) Cryptography. Among
prior side-channel attacks on cryptographic implemen-
tations using elliptic curves, many [22, 23] target rel-
atively simple devices, but some recent attacks target
more sophisticated devices, such as PCs [29] and mobile
phones [10, 30]. However, all these prior attacks target
either naive or NAF-based implementations of elliptic
curve scalar-by-point multiplication, which has since been
replaced by newer implementations that masks secret-
dependent control flow by using the constant-time swap
operation.

Cache-based side-channel attacks [5, 11, 62, 78] rely
on secret-dependent differences in the sequence of memory
locations accessed during EC scalar-by-point multipli-
cation. Such attacks are mitigated by using constant-
time conditional-swap operation, which exhibits the same
sequence of accesses regardless of the value of the secret
nonce.
Physical Attacks on non ECC implementations on
Complex Devices. Physical side-channel attacks on com-
plex devices have also been used to attack non ECC prim-
itives, primarily modular exponentiation, which is the key

1. https://www.amazon.com/TracFone-ZTE-ZFive2-Prepaid-
Smartphone/dp/B07CQ858Y3/ and https://www.amazon.com/GoPhone-
Alcatel-Ideal-Memory-Prepaid/dp/B01JGYLV4O/

 https://www.amazon.com/TracFone-ZTE-ZFive2-Prepaid-Smartphone/dp/B07CQ858Y3/
 https://www.amazon.com/TracFone-ZTE-ZFive2-Prepaid-Smartphone/dp/B07CQ858Y3/
 https://www.amazon.com/GoPhone-Alcatel-Ideal-Memory-Prepaid/dp/B01JGYLV4O/ 
 https://www.amazon.com/GoPhone-Alcatel-Ideal-Memory-Prepaid/dp/B01JGYLV4O/ 


Figure 1. Experimental setup for capturing EM emanations from ZTE ZFIVE (left) and Alcatel Ideal (right) phones. In each setup, our custom probe
(the flat, beige, circular object at the end of the silver-colored cable) is positioned close to but not touching the phone. The cable is held in position by
a mechanical arm, which is visible in the photo on the right. An Ettus B200-mini SDR (white box) digitizes the signal and sends it through a USB
cable to a personal computer (not shown) for analysis.

primitive in RSA and ElGamal. Recently, several physical
side-channel attacks on these implementations have been
published. These include chosen-message attacks [26, 27],
and an attack that exploits signal differences created by
fine-grain (only a few instructions) non-constant-time key-
dependent deviations in control-flow [38]. Additionally, the
One&Done attack [3] recovers bits of the secret exponents
from a signal that corresponds to windowed modular
exponentiation during RSA decryption in OpenSSL using
a state-of-the-art analog chain of a Keysight spectrum
analyzer. Finally, attacks have also been demonstrated on
symmetric cryptography running on GHz-scale System-on-
Chips made by ARM [8, 47] and Intel [65], albeit using
highly invasive techniques, precise probe placement, and
requiring case intrusion.

Physical Attacks on Embedded Hardware running
Constant-Time Elliptic Curve Implementations. As
mentioned in Section 1, several works have considered
mounting high-bandwidth physical attacks on constant-time
cryptography running on embedded hardware.

Batina et al. [9] proposes a chosen input attack on
several constant-time elliptic curve implementations, where
a single target trace is used during the key extraction phase.
Specifically, they use a high-bandwidth oscilloscope and
an accurate trigger to monitor the power consumption
of an ATmega 163 based smart card while injecting a
chosen input P into the computation of the scalar-by-point
multiplication operation. They then show that an attacker
can recover the card’s secret key from a single target trace,
assuming that the profiling traces corresponding to P are
available. Finally, to generate the profiling traces, Batina
et al. [9] assumes the attacker can collect additional traces
after the target trace is collected, using inputs P ′1, · · · , P ′256,
i.e., one input for every key bit.

Dugardin et al. [21] extends [9] by also accounting for
the carry bit propagation from the finite field operations.

While this requires more profiling traces corresponding
to the chosen input P , they show that these additional
traces can be used to detect and correct errors in recovered
secret key bits. Finally, Dugardin et al. [21] demonstrate
their attack on mbedTLS, a popular cryptographic library
running on a 168 MHz STM32F4 microcontroller, sampled
at 1 GHz using a lab-grade oscilloscope.

Roelofs et al. [64] identifies a limitation of the tech-
nique of Batina et al. [9]. In many cases, e.g., in ECDSA,
the attacker does not have control over the inputs sent to the
scalar-by-point multiplication operation without extensive
modifications. Exploiting the fact that signals sampled at
bandwidths comparable to the device’s execution speed
allow the attacker to obtain information about the indi-
vidual field operations performed during scalar-by-point
multiplication, [64] proposes using ECDSA’s verification
step, which must take external inputs, to generate the
profiling traces on the same device without hardware
modifications. Here, the target platform is an XMEGA 8-bit
controller running at 32 MHz, sampled via a ChipWhisperer
Lite board at 25 MHz using a cycle accurate trigger, and
taking about 60 s to complete a single scalar-by-point
multiplication operation.

Recently, machine learning has been used to recover
the secret key of an elliptic curve signature scheme [76],
again using a 168 MHz STM32F4 microcontroller sampled
at 1 GHz using a lab-grade oscilloscope via a cycle-
accurate trigger. Here, the authors use a convolutional
neural network to profile and attack a function inside
WolfSSL that reads precomputed values from a lookup
table. Using roughly 500 profiling traces, the authors can
classify the single target trace with 100% accuracy, thereby
extracting the key.

Finally, Nascimento et al. [54] show an attack on an
8-bit ATMega328P microcontroller mounted on a develop-
ment board, running a bare-metal OS-less scalar-by-point



multiplication at 7.3 MHz, and using several options for
implementing the constant-time swap. To acquire the signal,
they modify the board, introducing a 50 Ohm resistor
on the microcontroller ground plane. Nascimento et al.
[54] then sample the resulting signal using a 500 MHz
oscilloscope, obtaining a 500/7.3 · 2 = 136 samples for
each 8-bit memory load operation (which lasts two cycles
on the ATMega328P). Finally, [54] also modify the target
application to generate a cycle-accurate artificial trigger
(see Appendix A and Section 3 of [54]). Under such
controlled conditions, Nascimento et al. [54] experiment
with collecting ten or more training and testing sets,
and achieve an accuracy of around 90%. They show
that increasing the number of traces used for training
and for testing does not improve attack results. This
feasibility result was further extended in Nascimento and
Chmielewski [53], showing a non-profiled single trace
attack on Curve25519’s scalar by point multiplication from
the µNaCL library implemented on an STM32F4 Cortex-
M4 core running at 168 MHz and sampled at 2.5s GHz.
While the proposed attack can recover ∼90% of the key
bits, it likewise requires modification to the code that adds
a cycle-accurate trigger and ∼ 15 samples per cycle.

Compared to their attack, we attack full-fledged An-
droid mobile phones running multi-core CPUs at speeds
of 1.1–1.4 GHz. As our attack scenario assumes that the
attacker only has a short and non-intrusive access to the
target device. We do not use high quality signal analyzers or
oscilloscopes. Additionally, we do not modify the phones’
hardware in any way, leaving the cases closed, with all
internal circuity and shielding intact. Instead, we passively
acquire the phones’ EM signal using a software defined
radio at a bandwidth of 40 MHz, extracting the secret nonce
from a single trace containing about 1400/40 = 0.03
samples per load operation (compared to 136 samples
in [54] and 14 in [53]).

In terms of software, we attack the full digital signature
routine in multiple deployed cryptographic libraries while
leaving all of the side-channel countermeasures in the
libraries enabled. This contrasts with Nascimento et al.
[54] and Nascimento and Chmielewski [53], which only at-
tacked a prototype scalar-by-point multiplication. Likewise,
we do not modify any of the phones’ software, keeping
it in its default state, with all power management and
Android background activities running. The phones’ WiFi
is enabled and is connected to our university network
with default Android background traffic. Furthermore,
to ensure a realistic attack model, we do not use any
triggering. Instead, we rely on signal processing techniques
to locate the scalar-by-point multiplication operation and
the constant-time swaps inside it, as well as to accurately
extract the swap condition from the leakage signal.

2.2. Overview of ECDSA
The Elliptic Curve Digital Signature Algorithm

(ECDSA) is a public key signing scheme based on the
discrete logarithm assumption over elliptic curves.
Key Generation. First, the participating parties agree
on a choice of curve parameters: the elliptic curve field
and equation, and a base point G on the curve, which
generates a cyclic group. Let n be the order of G (i.e.,
nG = O, where O is the group’s neutral element, also
known as the point at infinity). Key generation consists

of selecting a random scalar d and computing Q = dG
where dG is the scalar-by-point multiplication of d and G,
using additive group notation. The secret signing key is d
and the public verification key is Q.
Message Signing and Signature Verification. To sign
a message m, the signer computes the cryptographic hash
of m and truncates the hash digest to the bit-length of n.
We denote this value as z. Next, the signer generates a
random nonce 1 ≤ k ≤ n− 1 and computes (x, y) = kG,
r = x mod n and s = k−1(z + r · d). If r or s are zero,
the process is repeated with a new random k. Finally,
the digital signature corresponding to m is then set to
σ = (r, s).

To verify σ, the verifying party computes z from
m as described above, computes w = s−1 mod n,
u1 = zw mod n, u2 = rw, (x, y) = u1G + u2Q and
finally checks that x ≡ r mod n, rejecting the signature
otherwise.
Nonce Secrecy. The security of ECDSA relies on the
attacker not having information about the value of the
nonce k. If the attacker learns the value of an nonce k
corresponding to some signature σ = (r, s) on a message
m, she can trivially recover the secret key by computing
d = (s · k− z)/r mod n where z is the truncated-hashing
of m as described above. Furthermore, even if partial
information about the nonce k is revealed, it may be
possible to recover the secret key [56].

2.3. Scalar By Point Multiplication
Dating back to Coron [20], elliptic curve based schemes

have been the target of numerous attacks [2, 6, 11, 33,
56, 62]. While exceptions do exist [61], most attacks
(including the attack described in this work) target the
scalar-by-point multiplication routine. As such, it is critical
that this routine be implemented in a side-channel safe
way, avoiding leaking information about k to the attacker.
Older implementations of elliptic curve cryptography used
the naive double and (sometimes) add algorithm or the
more performant sliding or fixed window methods. How-
ever, both these methods leak information through nonce-
dependent control flow and memory access patterns. Hence,
the current recommendation is to use implementations
based on the Montgomery powering ladder, which we now
describe.

Algorithm 1 Montgomery ladder multiplication.
Input: A positive scalar k = kn−1 · · · k0 and an elliptic curve

point P .
Output: [k]P .

1: procedure MONTGOMERY_LADDER(k, P )
2: R0 ← O . O is the neutral element
3: R1 ← P
4: for i← n− 1 to 0 do
5: Q0, Q1 ← CT_SWAP(R0, R1, ki) . swap if ki = 1
6: S0 = 2Q0

7: S1 = Q0 +Q1

8: R0, R1 ← CT_SWAP(S0, S1, ki) . swap if ki = 1

9: return R0

The Montgomery Powering Ladder. Algorithm 1
is a pseudocode of the Montgomery Ladder scalar-by-
point multiplication operation [51]. At a high level, the
Montgomery ladder processes scalar bits one at a time,



from the most significant to the least significant. For each
bit, the algorithm performs the Montgomery ladder step,
which constitutes a single elliptic curve double and a single
elliptic curve add operation (Lines 6 and 7) thereby ex-
hibiting key-independent control flow and memory access
pattern. The key material itself (k) is handled during a
single swapping routine (CT_SWAP, Lines 5 an 8), which
must be implemented in a side-channel safe way to avoid
leaking the values of bits of k.

The Montgomery ladder algorithm can be further
optimized in two ways. First, certain elliptic curves (known
as Montgomery curves) have a unified addition formula
which allows computing the double and add operations
using one formula, thereby replacing Lines 6 and 7 with
a single ladder step. Secondly, one swap operation can be
removed by merging swaps across consecutive iterations.
With this optimization, Line 8 is eliminated, and Line 5 is
modified to swap R0 and R1 when ki ⊕ ki+1 = 1.

Algorithm 2 Double-and-always-add multiplication.
Input: A positive scalar k = kn−1 · · · k0 and an elliptic curve

point P .
Output: [k]P .

1: procedure DOUBLE_ALWAYS_ADD(k, P )
2: R← O . O is the neutral element
3: for i← n− 1 to 0 do
4: R← 2R . always double R
5: T ← R+ P
6: R, T ← CT_SWAP(R, T, ki) . swap if ki = 1

7: return R0

The Double and Always Add Algorithm. Some
implementations use an alternative method called double-
and-always-add (Algorithm 2). As in the Montgomery
ladder case, the key bits are processed in one main loop
which performs a single double and a single add operation
in each iteration (Lines 4 and 5). As the result of the
add operation is only needed when the current key bit is
1, a conditional swap is used to update R when ki = 1
(Line 6).

2.4. The Conditional Swap Operation

Algorithm 3 Conditional Swap.
Input: Two arrays a, b of size n machine words and an integer

cond ∈ {0, 1}.
Output: Swap a and b if c = 1 and leave a, b as is if c = 0.

1: procedure CT_SWAP(a, b, cond )
. when cond is 0, set mask to all-zeros
. when cond is 1, set mask to all-ones

2: mask ← 0− cond
3: for i← 0 to n do
4: δ ← (a[i]⊕ b[i])&mask
5: a[i]← a[i]⊕ δ
6: b[i]← b[i]⊕ δ

As explained above, implementing the conditional swap
operation in a side-channel safe way is critical for avoiding
side-channel leakage. In particular, it is imperative that the
attacker cannot leverage side-channel information to learn
whether the swap operation has indeed occurred. To help
developers safely implement this operation, RFC 7748 [42,
Section 5.1] recommends using the pseudocode presented
in Algorithm 3. For each machine word i, the algorithm

uses an exclusive-or (XOR) to compute bitwise difference
between a[i] and b[i]. It then applies a bit mask to this
difference, such that the difference is either kept as-is or
zeroed out, depending on the condition cond . This masked
difference is then applied (via XOR operations) to the two
words a[i] and b[i]. The end result is that when cond = 1
the values of a and b are swapped, but otherwise they
remain unchanged. The key property of this conditional
swap is that the sequences of instructions and of memory
accesses performed are independent of the (secret) value
of cond . This prevents cache-based and many analog-
signal side-channel attacks from recovering the secret key
by obtaining information about the value of the swap’s
condition.

3. The Nonce@Once Attack
3.1. Attack Overview

In this section we describe our attack on the constant-
time swap operation as standardized in RFC 7748 [42]
and presented in Algorithm 3. Recall from Section 2.4 that
the constant-time swap operation in Algorithm 3 hides the
value of the condition using a secret independent control
flow and memory access pattern. The key observation
we make in this paper is that the value of δ used in the
XOR instructions in Lines 5 and 6 of Algorithm 3 highly
depends on the value of cond .

More specifically, for practical purposes, we can con-
sider a and b to be random. When cond = 1, the value of
mask is all-ones, resulting in δ being the exclusive-or of
random values. Hence, with high probability, it consists of
a similar number of 0-valued and 1-valued bits. Conversely,
when cond = 0, mask is all-zero, and so are the bits of δ.
Next, we note that the value of δ is used during the main
loop of Line 3. Thus, if cond = 1 about half of the bits
in every word of a and b are toggled, whereas no such
toggling occurs when cond = 0, as it implies δ = 0.

Hamming-weight Leakage. In the Hamming-weight
model, which seems to apply to the devices we use, the
leakage correlates with the Hamming weight (number of
bits with a value 1) of values or of changes in values
(also known as Hamming distance). Thus, the difference
in the values of δ for true and false conditions results in
leakage under the Hamming-weight model. However, for
high-speed processors this difference may be too small to
be detectable without extremely high-end equipment.

Leakage Amplification. In our scenario the condition-
dependent bias occurs for each word of a and b. As the
phones we attack use a 32-bit architecture while every
elliptic curve point contains two coordinates of 256 bits
each, the bias repeats 16 times for each point. Furthermore,
in addition to point coordinates, implementations also store
several (up to four) machine words as implementation-
specific metadata and context, which are also swapped
using Algorithm 3. Overall, the XOR leakage is multiplied
by a factor of about 20·2 = 40 for both points, accentuating
the difference between the cond = 0 and the cond = 1
cases, so it can be easily observed.

A Physical Side Channel Attack. Our attack records
the unintentional electromagnetic emanations that the
target device radiates during a single ECDSA signing
operation. We then analyze this signal to identify snippets
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Figure 2. Signal examples covering two scalar-by-point loop iterations each for Libgcrypt, OpenSSL, HACL*, and curve25519-donna (left to right, top
to bottom) recorded on the OLinuXino board. The signal for a conditional swap (CS) is indicated by dashed red rectangles, whereas the signal for the
point arithmetic (double and add) is indicated by dashed black rectangles. While the signals differ between implementations, the iterations within each
implementation are very similar to each other.

corresponding to the swap operations. We then analyze
each such snippet and recover the value of cond . As
both Algorithm 2 and Algorithm 1 use the nonce bits
as condition values, our attack can recover almost all of
the nonce bits from a single ECDSA leakage trace. As
noted in Section 2, we can then use these nonce bits to
mathematically recover the secret signing key.

3.2. EM Signal Acquisition and Signature Loca-
tion

Setup. We use an Ettus B200-mini software defined radio
(SDR) connected to a custom electromagnetic probe to
capture the target’s electromagnetic emanations. The SDR
is set to capture a 40 MHz-wide frequency band around the
CPU frequency of each target (1.4 GHz for ZTE ZFIVE,
1.1 GHz for Alcatel Ideal, and 1 GHz for A13-OLinuXino).
The recorded signal is then digitally demodulated and
up-sampled before passing it through the custom signal
analysis that implements our attack.

Probe Positioning. For each target considered in this
work, we manually located a position which exhibited the
strongest electromagnetic leakage and positioned the probe
at this point. In all experiments, the probe does not make
electrical contact with the device’s chassis. Our attack is
effective at a range of about 20 millimeters away from the
device. While this range does imply physical proximity to
the target, we note that this is sufficient for many realistic
attack scenarios, such as placing the probe underneath a
tablecloth or inside a desk surface [30]. Finally, as we did
not modify the phone’s chassis, the leakage signal had to

penetrate the phone’s PCB shielding, battery, and outer
case to get to our electromagnetic probe.
Triggering. The first step in our signal analysis approach
is to identify the part of the signal that corresponds to the
overall scalar-by-point multiplication. Past work achieves
this by While past works achieved this by changing the
source code of the target library to generate a trigger signal,
such modifications are outside our attack model because
the attacker is not assumed to be capable of installing
malicious software on the target device. Instead, we sample
continuously, and resort to signal analysis to locate the trace
snippet corresponding to the scalar-by-point multiplication.
Locating the Signal. Because we do not use artificial
triggers to identify the signals corresponding to the scalar-
by-point multiplication operation, we need to scan the
captured signal and recognize the patterns that correspond
to it. Moreover, as the implementations we consider use
unrelated and significantly different code bases (including
in terms of count, order, or type of instructions), the signals
they produce vary widely, as Figure 2 shows. However, we
observe that most of the execution time of scalar-by-point
multiplications is spent on repeated point addition and
point doubling operations (Lines 6 and 7 in Algorithm 1
and Lines 4 and 5 in Algorithm 2). These point operations
are designed to eliminate variation in their execution time,
control flow, and data access patterns. Consequently, as
Figure 2 shows, loop iterations within each implementation
display very little variations in their EM leakage patterns.

To identify the scalar-by-point multiplication operation,
we exploit this repetition of similar patterns. More specif-
ically, in the profiling phase of the attack, we collect a
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Figure 3. Signal snippets corresponding to the conditional swap operation in Libgcrypt, OpenSSL, HACL*, and curve25519-donna (left to right, top to
bottom) when the swap condition is true (black) and when the swap condition is false (red). The recordings where done using the Olimex target and
up-sampled for visual clarity.

training trace that includes scalar-by-point operations using
randomly generated nonces. We then average the samples
of loop iterations in the training set, creating a template for
a single loop iteration. In the attack phase we use a moving
correlation between the template and the signal, and
identify a segment of the signal that contains the expected
number of matches to the template. In our experiments
we found that the loop iterations are sufficiently long and
have enough prominent signal features to reliably locate
the scalar-by-point multiplication in the collected trace
using a training trace of the signal corresponding to just
one scalar-by-point multiplication operation.

3.3. Identifying Conditional Swap Signals
Our attack aims at extracting the condition argument

of the conditional swap operations used during the scalar-
by-point multiplication. After identifying the signal seg-
ment that corresponds to the scalar-by-point multiplication
operation, we turn our focus to identifying the snippets
corresponding to the individual conditional swap operations.
Here, we again rely on the signal similarity between the
individual iterations of the scalar-by-point multiplication
loop, using the template matching from Section 3.2 to
identify individual loop iterations. We then identify the
signal segments that correspond to the conditional swap,
as these are located between two longer sequences of point
doubling and adding.

In all four implementations considered in this work
(Libgcrypt, OpenSSL, HACL*, and curve25519-donna),
the signal that corresponds to the conditional swap (shown
as CS in Figure 2) is much shorter than the signal that

corresponding to the elliptic curve double and add opera-
tions (shown as DOUBLE-ADD in Figure 2). Furthermore,
the signal corresponding to the double and add operations
has a number of sharply defined spikes that can help
precisely locating and aligning it. In contrast, there are
fewer features in snippets that correspond to the conditional
swap (CS), as these features are less sharply-defined. Thus
to reliably obtain signal snippets for each conditional swap,
we leverage the constant-time design of Algorithms 1
and 2. More specifically, we first use correlation with
the template of the loop iteration to locate the start of the
double and add operations. We then use the end of one
double-add snippet and the beginning of the next double-
add snippet as reference points in the signal’s timeline to
extract conditional-swap snippets at fixed timing offsets
relative to double-add reference points.

3.4. Recovering the Value of the Swap Condition
from a Snippet

After identifying the signal snippets corresponding to
conditional swaps, we need to analyze the signal and to
classify the snippets based to the value of the condition
that has been used. As we describe in Section 2, the
conditional swap constructs a mask, which is either all-
zeros or all-ones depending on the swap condition, which
it then applies to an exclusive-or-based swap for each
machine word in the internal representation of two elliptic
curve points. Next, the internal representation of an elliptic
curve point includes the big number representation of each
coordinate (stored as an array of several machine words) as
well as several machine words that contain point metadata.



Overall, the swap operation is responsible for conditionally
swapping several tens of machine words (about 50 in the
implementations we consider).

Leakage Amplification. Notice that when the swap
condition is false, there are about 80 exclusive-or opera-
tions whose one operand is always zero, and there are 80
machine words that are written to memory without actually
changing their values (Lines 4 and 5 in Algorithm 3).
However, when the swap condition is true, the operands
in those 80 exclusive-or operations have about the same
number zeros and ones, and the values written to those
80 machine words result in toggling about half of the bits
in those words. This repetition amplifies the difference in
the signal corresponding to the conditional swap operation,
resulting in a noticeable bias in the captured signal. Indeed,
Figure 3 shows signal snippets that correspond to the
relevant part of the conditional swap operation in the four
implementations considered in this work. In each case,
different values of the swap condition produce clearly
observable differences in the signal, presumably due to
the ×80 amplification factor created by the code of the
conditional swap.

Analyzing the Signal of the Swap Operation. To
recover the swap condition from the signal snippet, we
first perform a training phase with a known scalar. During
this phase, for each value of the swap condition we use a
k-means clustering algorithm, with a Euclidean distance
metric, to form c clusters of snippets collected during
training. After removing anomalous clusters that contain
only one-snippet, we take the centroid of each remaining
cluster as a reference signal. During the attack phase,
done on other traces with an unknown key, we compute
the distance between the new snippet and each of the
reference signals (up to c cluster centroids for false and
for true swap conditions), and use the swap value of
the closest reference signal as the recovered value of the
new snippet. We empirically find that when c is above
an implementation-specific threshold, ranging between 5
and 8, the swap conditions are recovered with high accuracy
(practically error-free in our experiments). We further find
that, increasing c beyond the threshold does not degrade
accuracy and it remains practically perfect. Increasing c
primarily increases the number of anomalous clusters that
are removed, without significantly impacting the number of
clusters that are actually used for swap-condition recovery.
Since the analysis is not very sensitive to the value of c,
instead of optimizing c for each combination of device
and cryptographic implementation, in our experiments we
simply use c = 10 for all attacks.

3.5. Nonce and Key Recovery
Using the signal analysis described above, we obtain

the reconstructed values for the swap conditions of each
swap-related signal snippet. Applying this method to
the signal corresponding to the entire scalar-by-point
multiplication operation allows us to directly recover the
sequence of swap conditions, and thereby recovering the
scalar k.

However, while our approach is capable of recovering
most of the bits of k, some bits are inadvertently missing
due to signal noise, algorithmic corner cases, and measure-
ment errors. We use a brute-force approach to recover the

missing bits. We generate candidates that match the known
bits of k. For each such candidate kc, we use the known
values of z, r, and s to compute a candidate private key dc,
using the equation dc = (s ·kc− z)/r mod n as described
in Section 2.2. We then use dc to compute a public key
candidate Qc = dcG, where G is the elliptic curve group
generator, and compare it with the actual public key Q
used to produce the signature (r, s). If the public keys
match, the analysis completes successfully. Otherwise, we
repeat the procedure with the next candidate. Because we
know the positions of the missing bits, each missing bit
roughly doubles the search space. Fortunately, the typical
number of missing bits is small, and the search is tractable.

In our experimental evaluation, we tested our signal
analysis on 100 ECDSA signing operations, each with a
different private key. We found that our signal analysis
approach failed to recover at most 15 key bits, thus
requiring a brute-force test of up to 32768 candidates
for each signing operation. Full key recovery using the
above procedure was completed for each of the 100 signing
operations. Overall, no signature required more than a few
CPU minutes to recover the correct private key, using only
a single core on a moderately powerful laptop system (a
Macbook Pro with an 2.7 GHz Intel Core i5 processor).

4. Experimental Evaluation
In this section we describe our measurement setup

and the results of recovering private keys from Libgcrypt,
OpenSSL, HACL* and curve25519-donna during ECDSA
signature computation on three different devices.

4.1. Experimental Setup

Targeted Hardware. We run the targeted applications on
two Android mobile phones, ZTE ZFIVE LTE2 [85] and
Alcatel IDeal [4], and on an Olimex A13-OLinuXino IoT
development board [57]. The ZTE ZFIVE has a quad-
core 1.4 GHz Qualcomm Snapdragon processor, while
the Alcatel Ideal has a quad-core 1.1 GHz Qualcomm
Snapdragon processor. The A13-OLinuXino is a single-
board computer with an ARM Cortex A8 processor [7]
made by Allwinner with Debian Linux.

As mentioned above, we aim for a realistic scenario and
avoid modifications that assist with side-channel analysis.
In particular, the devices are running unmodified Android
/ Linux operating systems, with all CPU cores enabled,
and with Android’s background applications and services
running in their factory defaults. Finally, the phones’ WiFi
is enabled and connected to the university network.
Targeted Software. We attack Libgcrypt 1.8.4 and
OpenSSL 1.1.1a. For HACL* and curve25519-donna
implementations, we use the latest version directly from
their respective git repositories. All four cryptographic
implementations use constant-time code for scalar-by-point
multiplication, relying on conditional swap operations
to avoid control flow that depends on the bits of the
scalar. Unless stated otherwise, we use Curve25519, whose
maximum order n is a 253-bit value, implying a 253-bit
nonce value. We note, however, that the choice of curve
has no significant impact on our attack. Any ECDSA
implementation that processes the nonce bits using the
constant-time operation outlined above is likely to be
similarly vulnerable. Finally, we use randomly generated
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Figure 4. Recovery of swap condition (left) and number of key candidates
in full-key recovery (right) for Libgcrypt on each of the target devices
(ZTE phone, Alcatel phone and Olimex board, from top to bottom).

nonces for both the profiling and for the key extraction
phases.
Data Acquisition Setup. Figure 1 shows our setup
for capturing the EM emanations from our target devices.
It consists of a small custom-made magnetic probe to
receive the EM signals, an Ettus B200-mini software
defined radio (SDR) to digitize the EM signal in the
desired frequency band, and a personal computer to process
the digitized signals. As shown in Figure 1, the probe is
placed in close physical proximity to the target device, but
without touching it and without opening its enclosure. A
mechanical arm is used to hold the probe in the desired
position during the experiments. The probe is connected to
the SDR which digitizes the signal and sends it, through a
USB cable, to a personal computer (not shown in Figure 1)
where the signal analysis and ECDSA key recovery is
implemented in MATLAB. Note that MATLAB is used
mainly for convenience, and that signal analysis and
key recovery would likely be significantly faster if they
were implemented in the Field Programmable Gate Array
(FPGA) that is available within the B-200mini SDR itself.

4.2. Attack Results
Our experimental results are based on repeating the

attack 100 times for each of the four target implementations
on each of the three devices. In each attack, we first
use the target’s API in order to randomly generate an
ECDSA private key and a message. Then, we initiate signal
collection while signing the message with the ECDSA key.
The signal from this single ECDSA signing operation is
then analyzed to recover the nonce k and the ECDSA
private key d. Finally, the recovered d is compared to the
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Figure 5. Recovery of swap condition (left) and number of key candidates
in full-key recovery (right) for OpenSSL on each of the target devices
(ZTE phone, Alcatel phone and Olimex board, from top to bottom).

ground-truth private key to determine if the attack was
successful.
Attacking Libgcrypt. Our first set of experimental
results consists of attacking a single instance of Libgcrypt’s
ECDSA signing operation, repeating this attack 100 times
on each of the three target devices considered in this work.
All 300 of these attack instances successfully recovered
the ECDSA private signing key. Figure 4 shows further
details on the results of our attack. For each device, we
show the clustering of the signal snippets according to
their distance from the closest 0-value cluster and from
the closest 1-value cluster. We also show the histogram
for the size of the search space for brute forcing the nonce
k that were considered before the value of the ECDSA
key was recovered. We can observe that, for all three
devices, the signal snippets that correspond to two possible
values of the swap condition are well-separated, resulting
in correct recovery of the swap condition for all snippets
that were identified. We also observe that the number
of key candidates to consider during full-key recovery
is highest on the ZTE phone, where the number of key
candidates is typically 211, with a maximum of 216. For
the Alcatel phone and the OLinuXino development board
full key recovery requires significantly fewer candidates.

Overall, we observed large signal quality variations
between the devices we tested. First, on the two Android-
based devices interrupts occur significantly more often than
on the Debian-based OLinuXino. Additionally, we found
that both phones have interferences due to bursts of activity
on other cores, occasionally preventing identification of
swap-related signal snippet (especially on the ZTE phone).
Finally, on the ZTE phone the signal for Libgcrypt’s point
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Figure 6. Recovery of swap condition (left) and number of key candidates
in full-key recovery (right) for HACL* on each of the target devices.

multiplication is unusually “choppy”, resulting in sporadic
failures to identify the swap snippets even in the absence
of interrupts and other interferences.

Attacking OpenSSL. Our second set of experiments
targets OpenSSL, repeating the attack 100 times for each
device. Figure 5 shows the clustering of signal snippets, and
the number of candidate values for the nonce, for this set of
experiments. As in Libgcrypt, the snippets that correspond
to the two swap conditions are clearly separable, and all
300 instances of the attack are successful in recovering the
key. However, compared to Libgcrypt, the identification
of snippets in OpenSSL performs significantly better on
the ZTE phone, with snippets missing only for interrupt
and interference related reasons. Overall, the analysis time
for an attack for OpenSSL was less than 2 seconds in all
attack instances.

Attacking HACL* and Curve25519-donna. Finally, our
experiments for HACL* (Figure 6) and curve25519-donna
(Figure 7) show results that are mostly similar to those
for OpenSSL, with success on all 300 attack instances
for HACL* and all 300 attack instances for curve25519-
donna, with each attack instance using less than 2 seconds
of analysis time.

4.3. Other Elliptic Curves and Primitives
We performed a few additional attacks where we used

other EC curves in Libgcrypt and OpenSSL, as well as at-
tacks on Libgcrypt’s Elliptic Curve Diffie-Hellman (ECDH)
implementation. As the scalar-by-point multiplication in
all these instances still uses the same conditional swap
code, our attack performs similarly to the Curve25519
case.
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Figure 7. Recovery of swap condition (left) and number of key candidates
in full-key recovery (right) for curve25519-donna on each of the target
devices.

5. Mitigation
As explained in Section 3.1, the main cause enabling

our attack is that the conditional swap operation computes
a value δ (Line 4 in Algorithm 3) which, depending on
the value of a nonce bit, is either random looking or zero.
Algorithm 3 xors δ with tens of machine words that make
up the internal representation of an elliptic curve point.
While we cannot recover the value of the current nonce bit
from a single computation of Line 4 of Algorithm 3, the
repeated xor of δ with tens of machine words amplifies the
Hamming-weight leakage of the value of δ, which depends
on a secret bit.
Avoiding Leakage Amplification. The main idea behind
our proposed mitigation is to modify the constant-time
swap operation to avoid repeated use of values with a
Hamming weight that directly reveals the current nonce
bit. Algorithm 4 below is an example of such a modifi-
cation. After computing δ (Line 5), we mask it using the
random word r generated in Line 3, thereby decoupling
its Hamming weight from the current nonce bit. We then
apply this masked δ to the machine words that make up
the elliptic curve points a and b, arranging the different
xor operations in a way that also decouples the Hamming
weight of intermediate values from the value of the current
key bit (Lines 7 and 8).
Empirical Evaluation. To empirically evaluate this
countermeasure, we manually checked the signal snippets
corresponding to the conditional swap operation and found
they no longer exhibit condition-dependent differences.
Next, Figure 8 shows the results of applying the clustering
algorithm from Section 3.4 on these signal snippets. As
can be seen, after applying this countermeasure the clusters



Figure 8. Correlation-based clustering of signal snippets without (top) and with (bottom) the proposed mitigation. With mitigation applied (bottom),
signal snippets for cond = 0 and cond = 1 can no longer be separated.

that correspond to the two values of the swap condition
are no longer separable. Similar results hold even for a
larger amount of clusters (e.g., c = 100, 1000). Finally, we
further verified that when employing this countermeasure,
the accuracy of detecting the swap condition using our
attack, is statistically equivalent to a random guess.

Algorithm 4 Modified Conditional Swap.
/small
Input: Two arrays a, b of size n machine words and an

integer cond ∈ {0, 1}.
Output: Swap a and b if c = 1 and leave a, b as is if

c = 0.
1: procedure CT_SWAP(a, b, cond )

. when cond is 0, set mask to all-zeros
. when cond is 1, set mask to all-ones

2: mask ← 0− cond
3: r ← random_word()
4: for i← 0 to n do
5: δ ← (a[i]⊕ b[i])&mask
6: δ ← δ ⊕ r
7: a[i]← (a[i]⊕ δ)⊕ r
8: b[i]← (b[i]⊕ δ)⊕ r

Dangerous Compiler Optimizations. Interestingly, while
implementing the countermeasure outlined in Algorithm 4
in OpenSSL, we found that the EM signal from the
resulting binary is very similar to the EM signal from the
unmodified OpenSSL code, rendering the modified version
vulnerable to our key extraction attack. Further investiga-
tion revealed that when used with high optimization levels
(“-O2” and above), the machine code the compiler produces
does not contain the countermeasure. We experimented
with three versions of the gcc compiler (4.6.3, 5.4.0, and
7.3.0), and also checked the results when compiling for
an x86-64 platform.

It appears that in its effort to improve the performance
of the code, the compiler is effectively undoing our
mitigation. Intuitively, the compiler finds that, after the

value of δ is computed at Line 5 of Algorithm 4, the
expression for the new value of a[i] can be written as
a[i] = a[i] ⊕ δ ⊕ r ⊕ r. Next, using the properties of
the bitwise xor operator, the compiler rewrites the above
expression as a[i] = a[i] ⊕ δ. After applying the same
optimization to the value of b[i] (Line 8), the compiler
further realizes that the value of r is not needed, eliminating
Lines 2 and 6 altogether. This effectively reverts the
changes between Algorithm 4 and Algorithm 3.
Overcoming Compiler Optimizations. While the
constant-time swap operation could be written from scratch
in assembly, the result might be complicated and hard to
verify due to the complex structure of the elliptic curve
point representation. Instead, we used gcc’s extended inline
assembly syntax to tell the compiler that the value of the
variable holding r might change in memory between lines 6
and 7 of Algorithm 4. This forces gcc to treat the values of
r in Lines 6 and 7 as if they were different, preventing the
optimization. We confirmed that the fix works and the code
behaves as required regardless of the level of optimization.
Figure 9 below shows the final implementation of the
constant-time swap routine (in C), including the inline
assembly syntax for avoiding the values of rand being
optimized out (Lines 12–17).
Performance Overheads. Empirically evaluating the
overhead of the additional XOR operations introduced by
our countermeasure, we have benchmarked the ECDSA
signing operation, with the constant-time swap operation
presented in Figure 9. We find that our approach increases
the duration of the ECDSA signing operation by less than
0.1%. While this demonstrates the efficiency of our coun-
termeasure, we note that this low overhead is not surprising,
as ECDSA is dominated by the mathematical operations
over elliptic curves, which are orders of magnitude longer
than XORs.
Swapping Pointers. As an alternative to the above
suggestion, Nascimento et al. [54] propose swapping the
pointers of a and b in Algorithm 3 as opposed to their
values. While this reduces the use of δ to only a single



machine cycle, which our attack cannot recover, we note
that this solution is not easily applicable to existing libraries
such as OpenSSL. This is since the API of the swap
operation does not get as input a pointer to the struct
holding the number, but instead gets the struct itself.
Thus, unless a library-wide modification of the constant-
time swap API is performed, multiple uses of the leaky δ
are required to swap the struct’s elements, potentially
producing detectable side channel leakage.

Moreover, swapping pointers introduces secret-
dependent memory access patterns as it makes the ad-
dresses holding the swap’s outputs (as opposed to the
contents) depend on the swap condition. This defeats
the purpose of RFC 7748, as the resulting implementa-
tion is now vulnerable to cache-based attacks, such as
Prime+Probe [46], or to attacks that monitor the address
bus [36, 43].

1 EC_point_swap_cond ( a , b , cond ) {
2 / / When cond i s 0 , s e t mask t o a l l −z e r o s
3 / / When cond i s 1 , s e t mask t o a l l −ones
4 mask=0− cond ;
5 / / Random v a l u e f o r m i t i g a t i o n
6 rand =random_word ( ) ;
7 / / For each machine word i n t h e
8 / / EC p o i n t r e p r e s e n t a t i o n
9 f o r ( i =0 ; i <nwords ; i ++){

10 d e l t a = ( a−>w[ i ] ^ b−>w[ i ] ) & mask ;
11 d e l t a = d e l t a ^ r and ;
12 asm v o l a t i l e (
13 / / No a c t u a l a s s e m b l e r code
14 ‘ ‘ ; ’ ’
15 / / But s p e c i f y t h a t rand i s changed
16 : ‘ ‘+ r ’ ’ ( r and )
17 : : ) ;
18 a−>w[ i ] = ( a−>w[ i ] ^ d e l t a ) ^ r and ;
19 b−>w[ i ] = ( b−>w[ i ] ^ d e l t a ) ^ r and ;
20 }
21 }

Figure 9. Conditional swap with our mitigation. The value of delta is
masked to avoid systematic cond-dependent differences in exclusive-or
operands.

6. Conclusions
We present the first side-channel attack on full-fledged

smartphones that recovers the secret scalar from the elec-
tromagnetic signal that corresponds to a single signing op-
eration in current versions of Libgcrypt, OpenSSL, HACL*
and curve25519-donna. Specifically, these implementations
use a constant-time conditional swap to avoid creating
control flow and memory access pattern differences that
correlate with bits of the secret scalar. Rather than relying
on different control-flow or memory access patterns, our
attack uses the signal differences created by systematic
differences in operand values during the conditional swap
operation itself to recover each bit of the secret.

We deploy the attack, using low-cost equipment
(<$800), against two Android-based mobile phones and
against a Linux-based IoT development board. We repeat
the attack 100 times, each with a different scalar, on each
device. Our attacks successfully recover the full secret key
within seconds for all of the implementations considered
in this work.

Our proposed countermeasure, which randomizes the
exclusive-or mask in the conditional swap operation, is

effective in preventing this and similar attacks, and has
been submitted to the developers of the targeted libraries
before the public disclosure of the results presented in this
paper.

7. Limitations and Future Work

Attack Range. The attack presented in this paper requires
that the EM probe to be positioned very closely to the
phones case, at a range of about 20 millimeters. While
this still allows for realistic threat models, such as hiding
the EM probe inside a desk or under a table cloth, other
works attacking non-constant-time code running on laptop
computers have achieved a range of about a meter [28].
We acknowledge this limitation and leave the task of
enhancing the attack range while maintaining its capability
of analyzing constant-time code to future work.

Similarly, all currently presented non-invasive physical
attacks on laptops and phones target public key primitives,
which are relatively slow compared to their symmetric
counterparts (e.g., AES). While invasive attacks on hard-
ware AES engines on Intel CPUs exist [65], these are
invasive and require the EM probe to touch the target’s
main board. Thus, the task of developing non-invasive
attacks on constant time symmetric primitives running on
non-embedded devices is an important future work.

Cross Device Training. The attacks in this paper use
the same physical device for the training and the key
extraction phases. This is a limitation because in realistic
scenarios the attacker is unlikely to be able to perform
profiling runs on the target’s phone. We do note, however,
that the leakage signal is mostly affected by the probe’s
exact positioning, as opposed to manufacturing differences
between identical devices. In particular, removing the probe
from the device and putting it back caused more differences
than changes induced by two identical devices. While prior
works already suggests that attacks similar to ours can be
generalized to work across different devices [3, 68], we
leave the task of mounting the attack descried in this paper
with cross-device training to future work.

Attacking High-End Targets. Finally, the attacks
presented in this paper are performed on commercially
available mobile phones. While these do run GHz-scale
multi-core CPUs, the leakage of constant-time code on
more powerful hardware such as high-end phones and
tablets or personal computers still remains unexplored.
Previous works targeting laptop computers [26–29] all
attacked highly non-constant time implementations, further
amplifying their leakage using an adversarially chosen
ciphertext. As such implementations have now been mostly
replaced with modern constant-time code, we leave it to
future work to develop attacks capable of targeting constant
time code running on high-power devices.

Acknowledgments
This research was supported by the Air Force Office of

Scientific Research (AFOSR) under award number FA9550-
20-1-0425; the Australian Research Council project num-
bers DE200101577 and DP210102670, DARPA ARFL con-
tracts FA8750-19-C-0531 and HR001120C0087; DARPA
LADS contract FA8650-16-C-7620; National Science Foun-
dation (NSF) grants CCF-1563991 and CNS-1954712;



Office of Naval Research (ONR) contracts N00014-17-1-
254 and N00014-19-1-2287; the Research Center for Cyber
Security at Tel-Aviv University established by the State of
Israel; and gifts from Intel and AMD. The opinions and
recommendations expressed in this work are those of the
authors, and do not neccessarily reflect the views of any
of the supporting organizations.

References

[1] D. Agrawal, B. Archambeault, J. R. Rao, and P. Ro-
hatgi, “The EM side-channel(s),” in CHES, 2002, pp.
29–45.

[2] T. Akishita and T. Takagi, “Zero-value point attacks
on elliptic curve cryptosystem,” in International
Conference on Information Security (ISC), 2003, pp.
218–233.

[3] M. Alam, H. A. Khan, M. Dey, N. Sinha, R. L.
Callan, A. G. Zajic, and M. Prvulovic, “One&done:
A single-decryption EM-based attack on OpenSSL’s
constant-time blinded RSA,” in USENIX Security,
2018, pp. 585–602.

[4] Alcatel, “Alcatel ideal specifications,” http://www.
phonescoop.com/phones/phone.php?p=5097, Feb 24,
2016.

[5] T. Allan, B. B. Brumley, K. E. Falkner, J. van de Pol,
and Y. Yarom, “Amplifying side channels through
performance degradation,” in ACSAC, 2016, pp. 422–
435.

[6] D. F. Aranha, F. R. Novaes, A. Takahashi, M. Ti-
bouchi, and Y. Yarom, “LadderLeak: Breaking
ECDSA with less than one bit of nonce leakage,”
in CCS, 2020, pp. 225–242.

[7] ARM, “ARM Cortex A8 processor manual,”
https://www.arm.com/products/processors/cortex-a/
cortex-a8.php, accessed April 3, 2016.

[8] J. Balasch, B. Gierlichs, O. Reparaz, and I. Ver-
bauwhede, “DPA, bitslicing and masking at 1 GHz,”
in CHES, 2015, pp. 599–619.

[9] L. Batina, Ł. Chmielewski, L. Papachristodoulou,
P. Schwabe, and M. Tunstall, “Online template at-
tacks,” in Indocrypt, 2014, pp. 21–36.

[10] P. Belgarric, P. Fouque, G. Macario-Rat, and M. Ti-
bouchi, “Side-channel analysis of Weierstrass and
Koblitz curve ECDSA on Android smartphones,” in
CT-RSA, 2016, pp. 236–252.

[11] N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom,
““Ooh aah... just a little bit” : A small amount of
side channel can go a long way,” in CHES, 2014, pp.
75–92.

[12] D. J. Bernstein, “Cache-timing attacks on AES,” 2005,
http://cr.yp.to/papers.html#cachetiming.

[13] D. J. Bernstein, “Curve25519: New Diffie-Hellman
speed records,” in PKC, 2006, pp. 207–228.

[14] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On
the importance of eliminating errors in cryptographic
computations,” J. Cryptology, vol. 14, no. 2, pp. 101–
119, 2001.

[15] J. Brouchier, T. Kean, C. Marsh, and D. Naccache,
“Temperature attacks,” IEEE SP, vol. 7, no. 2, pp.
79–82, 2009.

[16] B. B. Brumley and N. Tuveri, “Remote timing attacks
are still practical,” in ESORICS, 2011, pp. 355–371.

[17] D. Brumley and D. Boneh, “Remote timing attacks
are practical,” in USENIX Security, 2003.

[18] R. Callan, A. G. Zajic, and M. Prvulovic, “A practical
methodology for measuring the side-channel signal
available to the attacker for instruction-level events,”
in MICRO, 2014, pp. 242–254.

[19] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp,
M. Minkin, D. Moghimi, F. Piessens, M. Schwarz,
B. Sunar, J. Van Bulck, and Y. Yarom, “Fallout:
Leaking data on Meltdown-resistant CPUs,” in CCS,
2019, pp. 769–784.

[20] J. Coron, “Resistance against differential power anal-
ysis for elliptic curve cryptosystems,” in CHES, 1999,
pp. 292–302.

[21] M. Dugardin, L. Papachristodoulou, Z. Najm,
L. Batina, J. Danger, and S. Guilley, “Dismantling
real-world ECC with horizontal and vertical template
attacks,” in COSADE, F. Standaert and E. Oswald,
Eds., 2016, pp. 88–108.

[22] J. Fan and I. Verbauwhede, “An updated survey on
secure ECC implementations: Attacks, countermea-
sures and cost,” in Cryptography and Security: From
Theory to Applications - Essays Dedicated to Jean-
Jacques Quisquater on the Occasion of His 65th
Birthday, 2012, pp. 265–282.

[23] J. Fan, X. Guo, E. D. Mulder, P. Schaumont, B. Pre-
neel, and I. Verbauwhede, “State-of-the-art of secure
ECC implementations: A survey on known side-
channel attacks and countermeasures,” in HOST,
2010, pp. 76–87.

[24] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromag-
netic analysis: Concrete results,” in CHES, 2001, pp.
251–261.

[25] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey
of microarchitectural timing attacks and countermea-
sures on contemporary hardware,” J. Cryptographic
Engineering, vol. 8, no. 1, pp. 1–27, 2018.

[26] D. Genkin, I. Pipman, and E. Tromer, “Get your hands
off my laptop: Physical side-channel key-extraction
attacks on PCs,” in CHES, 2014, pp. 242–260.

[27] D. Genkin, A. Shamir, and E. Tromer, “RSA key
extraction via low-bandwidth acoustic cryptanalysis,”
in CRYPTO’14, 2014, pp. 444–461.

[28] D. Genkin, L. Pachmanov, I. Pipman, and E. Tromer,
“Stealing keys from PCs using a radio: Cheap elec-
tromagnetic attacks on windowed exponentiation,” in
CHES, 2015, pp. 207–228.

[29] D. Genkin, L. Pachmanov, I. Pipman, and E. Tromer,
“ECDH key-extraction via low-bandwidth electromag-
netic attacks on PCs,” in CT-RSA, 2016, pp. 219–235.

[30] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer,
and Y. Yarom, “ECDSA key extraction from mobile
devices via nonintrusive physical side channels,” in
CCS, 2016, pp. 1626–1638.

[31] D. Genkin, L. Pachmanov, E. Tromer, and Y. Yarom,
“Drive-by key-extraction cache attacks from portable
code,” in ACNS, 2018, pp. 83–102.

[32] D. Goruss, C. Maurice, A. Fogh, M. Lipp, and
S. Mangard, “Prefetch side-channel attacks: Bypass-
ing SMAP and kernel ASLR,” in CCS, 2016, pp.
368–379.

[33] L. Goubin, “A refined power-analysis attack on
elliptic curve cryptosystems,” in PKC, 2003, pp. 199–

http://www.phonescoop.com/phones/phone.php?p=5097
http://www.phonescoop.com/phones/phone.php?p=5097
https://www.arm.com/products/processors/cortex-a/cortex-a8.php
https://www.arm.com/products/processors/cortex-a/cortex-a8.php
http://cr.yp.to/papers.html#cachetiming


210.
[34] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuf-

frida, “ASLR on the line: Practical cache attacks on
the MMU,” in NDSS, 2017.

[35] N. Homma, A. Miyamoto, T. Aoki, A. Satoh, and
A. Shamir, “Collision-based power analysis of mod-
ular exponentiation using chosen-message pairs,” in
CHES, 2008, pp. 15–29.

[36] K. Itoh, T. Izu, and M. Takenaka, “A practical
countermeasure against address-bit differential power
analysis,” in CHES, 2003, pp. 382–396.

[37] M. Joye and M. Tunstall, Eds., Fault Analysis in Cryp-
tography, ser. Information Security and Cryptography.
Springer, 2012.

[38] H. A. Khan, M. Alam, A. G. Zajic, and M. Prvulovic,
“Detailed tracking of program control flow using
analog side-channel signals: a promise for IoT mal-
ware detection and a threat for many cryptographic
implementations,” in SPIE Defense + Security, 2018,
2018.

[39] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in IEEE
SP, 2019, pp. 1–19.

[40] P. C. Kocher, “Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems,” in
CRYPTO’96, 1996, pp. 104–113.

[41] P. C. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “In-
troduction to differential power analysis,” J. Crypto-
graphic Engineering, vol. 1, no. 1, pp. 5–27, 2011.

[42] A. Langley, M. Hamburg, and S. Turner, “Elliptic
curves for security,” RFC 7748, Internet Engineering
Task Force, 2016. [Online]. Available: http://
www.ietf.org/rfc/rfc7748.txt

[43] D. Lee, D. Jung, I. T. Fang, C.-C. Tsai, and R. A.
Popa, “An off-chip attack on hardware enclaves via
the memory bus,” in USENIX Security, 2020.

[44] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and
S. Mangard, “ARMageddon: Cache attacks on mobile
devices,” in USENIX Security, 2016, pp. 549–564.

[45] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg, “Meltdown: Reading
kernel memory from user space,” in USENIX Security,
2018, pp. 973–990.

[46] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee,
“Last-level cache side-channel attacks are practical,”
in IEEE SP, 2015, pp. 605–622.

[47] J. Longo, E. De Mulder, D. Page, and M. Tunstall,
“SoC it to EM: electromagnetic side-channel attacks
on a complex system-on-chip,” in CHES, 2015, pp.
620–640.

[48] S. Mangard, E. Oswald, and T. Popp, Power Analysis
Attacks — Revealing the Secrets of Smart Cards.
Springer, 2007.

[49] T. S. Messerges, E. A. Dabbish, and R. H. Sloan,
“Power analysis attacks of modular exponentiation in
smartcards,” in CHES, 1999, pp. 144–157.

[50] P. L. Montgomery, “Modular multiplication without
trial division,” Mathematics of Computation, vol. 44,
no. 170, pp. 519–521, 1985.

[51] P. L. Montgomery, “Speeding the Pollard and elliptic

curve methods of factorization,” in Mathematics of
Computation, vol. 13, no. 3, 1987, pp. 243–264.

[52] E. D. Mulder, S. B. Örs, B. Preneel, and I. Ver-
bauwhede, “Differential power and electromagnetic
attacks on a FPGA implementation of elliptic curve
cryptosystems,” Computers & Electrical Engineering,
vol. 33, no. 5–6, pp. 367–382, 2007.

[53] E. Nascimento and L. Chmielewski, “Applying hori-
zontal clustering side-channel attacks on embedded
ECC implementations,” in CARDIS, T. Eisenbarth
and Y. Teglia, Eds., 2017, pp. 213–231.

[54] E. Nascimento, L. Chmielewski, D. Oswald, and
P. Schwabe, “Attacking embedded ECC implemen-
tations through cmov side channels,” in SAC, 2016,
pp. 99–119.

[55] A. Nazari, N. Sehatbakhsh, M. Alam, A. G. Zajic,
and M. Prvulovic, “EDDIE: EM-based detection of
deviations in program execution,” in ISCA, 2017, pp.
333–346.

[56] P. Q. Nguyen and I. Shparlinski, “The insecurity of
the elliptic curve digital signature algorithm with
partially known nonces,” Des. Codes Cryptography,
vol. 30, no. 2, pp. 201–217, 2003.

[57] Olimex, “A13-OLinuXino-MICRO user manual,”
https://www.olimex.com/Products/OLinuXino/A13/
A13-OLinuXino-MICRO/open-source-hardware,
accessed April 3, 2016.

[58] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D.
Keromytis, “The spy in the sandbox: Practical cache
attacks in JavaScript and their implications,” in CCS,
2015, pp. 1406–1418.

[59] D. A. Osvik, A. Shamir, and E. Tromer, “Cache
attacks and countermeasures: The case of AES,” in
CT-RSA, 2006, pp. 1–20.

[60] C. Percival, “Cache missing for fun and profit,” in
BSDCan (2005)., 2005.

[61] C. Pereida García and B. B. Brumley, “Constant-
time callees with variable-time callers,” in USENIX
Security, 2017, pp. 83–98.

[62] J. van de Pol, N. P. Smart, and Y. Yarom, “Just a
little bit more,” in CT-RSA, 2015, pp. 3–21.

[63] J.-J. Quisquater and D. Samyde, “Electromagnetic
analysis (EMA): measures and counter-measures
for smart cards,” in International Conference on
Research in Smart Cards: Smart Card Programming
and Security, 2001, pp. 200–210.

[64] N. Roelofs, N. Samwel, L. Batina, and J. Daemen,
“Online template attack on ECDSA: Extracting keys
via the other side,” in AFRICACRYPT, 2020, pp. 323–
336.

[65] S. Saab, P. Rohatgi, and C. Hampel, “Side-channel
protections for cryptographic instruction set exten-
sions,” IACR ePrint archive 2016/700, 2016.

[66] N. Sehatbakhsh, A. Nazari, A. G. Zajic, and
M. Prvulovic, “Spectral profiling: Observer-effect-
free profiling by monitoring EM emanations,” in
MICRO, 2016, pp. 59:1–59:11.

[67] N. Sehatbakhsh, M. Alam, A. Nazari, A. G. Zajic,
and M. Prvulovic, “Syndrome: Spectral analysis for
anomaly detection on medical IoT and embedded
devices,” in HOST, 2018, pp. 1–8.

[68] N. Sehatbakhsh, A. Nazari, M. Alam, F. Werner,
Y. Zhu, A. Zajic, and M. Prvulovic, “Remote: Ro-

http://www.ietf.org/rfc/rfc7748.txt
http://www.ietf.org/rfc/rfc7748.txt
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino-MICRO/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino-MICRO/open-source-hardware


bust external malware detection framework by using
electromagnetic signals,” IEEE Transactions on Com-
puters, vol. 69, no. 3, pp. 312–326, 2019.

[69] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser,
P. Mittal, Y. Oren, and Y. Yarom, “Robust website
fingerprinting through the cache occupancy channel,”
in USENIX Security, 2019, pp. 639–656.

[70] F.-X. Standaert, L. Oldeneel tot Oldenzeel,
D. Samyde, and J.-J. Quisquater, “Power analysis of
FPGAs: How practical is the attack?” in FPL, 2003,
pp. 701–711.

[71] J. Stecklina and T. Prescher, “LazyFP: Leaking FPU
register state using microarchitectural side-channels,”
CoRR, vol. abs/1806.07480, 2018.

[72] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx, “Foreshadow: Extracting
the keys to the Intel SGX kingdom with transient
out-of-order execution,” in USENIX Security, 2018,
pp. 991–1008.

[73] W. Van Eck and N. Laborato, “Electromagnetic
radiation from video display units: An eavesdropping
risk?” Computers & Security, vol. 4, pp. 269–286,
1985.

[74] S. van Schaik, A. Milburn, S. Österlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida,
“RIDL: Rogue in-flight data load,” in IEEE SP, 2019,
pp. 88–105.

[75] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and
Y. Yarom, “CacheOut: Leaking data on Intel CPUs
via cache evictions,” in IEEE SP, 2021.

[76] L. Weissbart, S. Picek, and L. Batina, “One trace
is all it takes: Machine learning-based side-channel
attack on EdDSA,” in SPACE, 2019, pp. 86–105.

[77] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, R. Strackx,
T. F. Wenisch, and Y. Yarom, “Foreshadow-
NG: Breaking the virtual memory abstraction
with transient out-of-order execution,” https://
foreshadowattack.eu/foreshadow-NG.pdf, 2018.

[78] Y. Yarom and N. Benger, “Recovering OpenSSL
ECDSA nonces using the FLUSH+RELOAD cache
side-channel attack,” IACR Cryptology ePrint Archive
2014/140, 2014.

[79] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high
resolution, low noise, L3 cache side-channel attack,”
in USENIX Security, 2014, pp. 719–732.

[80] S.-M. Yen, W.-C. Lien, S.-J. Moon, and J. Ha, “Power
analysis by exploiting chosen message and internal
collisions — vulnerability of checking mechanism
for RSA-decryption,” in Mycrypt 2005, 2005, pp.
183–195.

[81] B. B. Yilmaz, R. L. Callan, M. Prvulovic, and
A. G. Zajic, “Quantifying information leakage in
a processor caused by the execution of instructions,”
in 2017 IEEE Military Communications Conference,
MILCOM 2017, 2017, pp. 255–260.

[82] B. B. Yilmaz, R. L. Callan, M. Prvulovic, and
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