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Characterness: An Indicator of Text in the Wild

Yao Li, Wenjing Jia, Chunhua Shen, Anton van den Hengel

Abstract—Text in an image provides vital information for inter-  vision. In contrast with some of the pioneering saliency detec-
preting its contents, and text in a scene can aid a variety of tasks tion models [1]-[4] which have achieved reasonable accuracy
from navigation to obstacle avoidance and odometry. Despite in predicting human eye xation, recent work has focused on

its value, however, detecting general text in images remains a __,. . . . ) .
challenging research problem. Motivated by the need to consider salient object detectio5]-{19]. The aim of salient object

the widely varying forms of natural text, we propose a bottom-up detection is to highlight the whole attention-grabbing object
approach to the problem which re ects the “characterness' of an with well-de ned boundary. Previous saliency detection ap-
image region. In this sense our approach mirrors the move from proaches can be broadly classi ed into either local [12], [16],
saliency detection methods to measures of “objectness’. In ordert[lg] or global [7], [9], [10], [14], [15], [17] methods. Saliency

to measure the characterness we develop three novel cues thad tect] h ifested itself i ; f includi
are tailored for character detection, and a Bayesian method for etection has manitested 1sefr in various torms, including

their integration. Because text is made up of sets of characters, image retargeting [20], [21] and image classi cation [22].
we then design a Markov random eld (MRF) model so as to Our basic motivation is the fact thaéxt attracts human
exploit the inherent dependencies between characters. attention even when amongst a cluttered background. This

We experimentally demonstrate the effectiveness Qf our char- has been shown by a range of authors including Jidd. [4]
acterness cues as well as the advantage of Bayesian multi-cue d Cerfet al. 23] wh i ed that h tend to f
integration. The proposed text detector outperforms state-of-the- an er et al. [23] who veri e at humans tend to focus
art methods on a few benchmark scene text detection datasets.On text in natural scenes.

We also show that our measurement of “characterness' is superior ~ Previous work [24]-[27] has also demonstrated that saliency

than state-of-the-art saliency detection models when applied to detection models can be used in early stages of scene text

the same task. detection. In [24], for example, a saliency map obtained from
Index Terms—Characterness, scene text detection, saliencyltti et al. [1] was used to nd regions of interest. Uchiasa
detection al. [27] showed that using both SURF and saliency features

achieved superior character recognition performance over us-
ing SURF features alone. More recently, Shaleakal. [25]
compared the performance of four different saliency detection
Human beings nd the identi cation of text in an imagemodels at scene text detection. Meng and Song [26] adopted
almost effortless, and largely involuntarily. As a result, mucthe saliency framework of [11] for scene text detection.
important information is conveyed in this form, including \hile the aforementioned approaches have demonstrated
navigation instructions (exit signs, and route information, fahat saliency detection models facilitate scene text detection,
example), and warnings (danger sigrte), amongst a host of they share a common inherent limitation, which is that they are
others. Simulating such an ability for machine vision systefjlstracted by other salient objects in the scene. The approach
has been an active topic in the vision and document analygjg propose here differs from these existing methods in that
community. Scene text detection serves as an important pigs propose a text-speci ¢ saliency detection modes. (a
processing step for end-to-end scene text recognition Whigharacterness model) and demonstrate its robustness when
has manifested itself in various forms, including navigatioRyplied to scene text detection.
obstacle avoidance, and odometry to name a few. A"EhOUQEMeasures of “objectness' [13] have built upon the saliency
some breakthroughs have been made, the accuracy of statqjgfection in order to identify windows within an image that are
the-art scene text detection algorithms still lags behind humggely to contain an object of interest. Applying an objectness
performance on the same task. measure in a sliding-window approach thus allows the identi -
Visual attention, or visual saliency, is fundamental to thgation of interesting objects, rather than regions. This approach
human visual system, and alleviates the need to process §38 peen shown to be very useful as a pre-processing step
otherwise vast amounts of incoming visual data. As suchffr a wide range of problems including occlusion boundary

has been a well studied problem within multiple disciplinegjetection [28], semantic segmentation [29], and training object
including cognitive psychology, neurobiology, and computeilass detectors [30].

. , o _ We propose here a similar approach to text detection,
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between characters. The object detection method of [13]akhough not particularly computationally demanding, involve
similar to that proposed here in as much as it is based orany parameters that need to be tuned manually. An advantage
a Bayesian framework combining a number of visual cuesf region-based approaches is that their results can be sent to
including one which represents the boundary of the obje@ptical Character Recognition (OCR) software for recognition
and one which measures the degree to which a putative objeicectly, without the extra text extraction step.
differs from the background. Hybrid approaches [41]-[47] are a combination of texture-

In contrast to saliency detection algorithms which eithdrased and region-based approaches. Usually, the initial step is
attempt to identify pixels or rectangular image windows thab extract potential characters, which is the same as region-
attract the eye, our focus here is instead on identifyingased approaches. Instead of utilizing low level cues, these
individual characters within non-rectangular regions. Whenethods extract features from regions and exploit classi ers
integrating the three new characterness cues developed, insteadecide whether a particular region contains text or not,
of simple linear combination, we use a Bayesian approachand this is considered as a texture-based step. In [44], poten-
model the joint probability that a candidate region represerital characters are extracted by the SWT initially. To reject
a character. The probability distribution of cues on both chamen-characters, two random forest classiers were trained
acters and non-characters are obtained from training samplesng two groups of features (component and chain level)
In order to model and exploit the inter-dependencies betwesaspectively. More recently, Huareg al. [47] extended SWT
characters we use the graph cuts [31] algorithm to carry dot Stroke Feature Transform (SFT) and proposed two Text
inference over an MRF designed for the purpose. Covariance Descriptors (TCDs) for classi er training.

To the best our of knowledge, we are the rst to present
a saliency detection model which measures the characterngsssaliency detection

of image regions. This text-speci ¢ saliency detection model The underlying hypothesis of existing saliency detection
is less likely to be distracted by other objects which are orith s th th trast bet th lient
. X . . algorithms is the samethe contrast between the salien
usually considered as salient in general saliency detection. o .
- . object and background is higl€ontrast can be computed via
models. Promising experimental results on benchmark datase Fous features, such as intensity [12], edge density [13]

Y
demonstrate that our characterness approach outperforms t% .
state-of-the-art. Our MATLAB code is publicly available atongntatlon [12], ‘and most commonly color [8}-{19]. The

httos://cs.adelaide.edu avaoli/ for benchmarking purpose measurement of contrast also varies, including discrete form
pS:HCS. -edu-au 9 PUTPOSE- \ Llback-Leibler divergence [12], intersection distance [9],

distance [11], [13], [16], [18], and Euclidean distance [17].
Il. RELATED WORK As no prior knowledge about the size of salient objects is
A. Scene text detection available, contrast is computed at multiple scales in some

Existing scene text detection approaches generally fall inrfrc‘!)e.thOdS [5], [11], [12], [16], [17], [19]. To make the nal

. iency map smoother, spatial information is also commonly
one of three categories, namely, texture-based approacﬁg . ;
region-based approaches, and hybrid approaches. addpted in the computation of contrast [9], [10], [14], [16].

Texture-based approaches [32], [33] extract distinct textukge-rhe large amount of literature on _sahency detection can be
. S . ; roadly classied into two classes in terms of the scope of
properties from sliding windows, and use a classi exg

AdaBoost [32], [33]) to detect individual instances. Som%or.]traSt compgted_ocal methods [.12]’ [16]’ [19] estlma_te .
liency of an image patch according to its contrast against its

widely used features include Histograms of Gradients (HOGé;ﬁrroundin atches. They assume that patches whose contrast
Local Binary Patterns (LBP), Gabor Iters and wavelets. gp ) y P

) . viilues are higher against their surrounding counterparts should
Foreground regions on various scales are then merged 0 . .
Pe salient. As computing local contrast at one scale tends to

generate nal text regions. Yet, there is something profound - . : :
unsatisfying about texture-based approaches. Firstly, the bré/%ly highlight boundaries of the salient object rather than the

: A ) whole object, local methods are always performed at multiple
force nature of window classi cation is not particularly ap_scales

e e o Global metode (3 1, (9, 10, 14 15 (17
' Y. Postp 9IFED: o the other hand, take the entire image into account when

text extraction, is needed before text recognition. oo . . .
reS:%tlmatlng saliency of a particular patch. The underlying

Regmn-basgd approaches [34]-{40], on the other hand, E pothesis is that globally rare features correspond to high
extract potential characters through edge detection [34]-[3 g o
Sdliency. Color contrast over the entire image was computed

color clustering [37] or Maximally Stable Extremal Region
(MSER) detection [38], [39]. After that, low level featuresm [10]. Shen and Wu [15] stacked features extracted from all

. . atches into a matrix and then solved a low-rank matrix recov-
based on geometric and shape constraints are used to rejec : .
. . ry problem. Perazat al.[14] showed that global saliency can

non-characters. As a nal step, remaining regions are clusterg : . . ) . .
. . ) LY be estimated by high-dimensional Gaussian lterseXal.[5]
into lines through measuring the similarities between them, : . . .

. : introduced hypergraph modeling for salient object detection.
A typical example of region-based approaches was propose

by Epshteinet al. [34], where a local image operator, called o

Stroke Width Transform (SWT), assign each pixel with th€- Contributions

most likely stroke width value, followed by a series of rules in Although previous work [24]-[27] has demonstrated that
order to remove non-characters. All region-based approachessting saliency detection models can facilitate scene text
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Fig. 1. Overview of our scene text detection approach. The characterness model consists of the rst two phases.

detection, none of them has designed a saliency detectitgtection approach as a whole. In the rst phase (Sec. VI),
model tailored for scene text detection. We argue that adoptiwg compare the proposed characterness model with ten state-
existing saliency detection models directly to scene text detaxdf-the-art saliency detection algorithms on the characterness
tion [24]-[27] is inappropriate, as general saliency detecti@valuation task.In the second phase (Sec. VII), we use bound-
models are likely to be distracted by non-character objectsiimg boxes of detected text lines to compare against state-of-
the scene that are also salient. In summary, contributionstbé-art scene text detection approaches.

our work comprise the following.

1) We propose a text detection model which re ects the IV. THE CHARACTERNESSMODEL
“characterness'i.e. the probability of representing a
character) of image regions.

2) We design an energy-minimization approach to characteMSER [48] is an effective region detector which has been
labeling, which encodes both individual characterneggplied in various vision tasks, such as tracking [49], image
and pairwise similarity in a uni ed framework. matching [50], and scene text detection [38], [41], [46],

3) We evaluate ten state-of-the-art saliency detection md8d], [52] amongst others. Roughly speaking, for a gray-
els for the measurement of “characterness'. To the bésale image, MSERs are those whose shape and size remain
of our knowledge, we are the rst to evaluate state-ofelatively unchanged over a set of different intensity thresh-
the-art saliency detection models for re ecting “chara®lds. The MSER detector is thus particularly well suited for

A. Candidate region extraction

terness' in this large quantity. identifying regions with almost uniform intensity surrounded
by contrasting background.
Ill. OVERVIEW For the task of scene text detection, although the original

Fig. 1 shows an overview of the proposed scene teMSER algorithm is able to detect characters in most cases,
detection approach. Speci cally, Sec. IV describes the chardbere are some characters that are either missed or incorrectly
terness model, in which perceptually homogeneous regions aganected (Fig. 2 (b)). This tends to degrade the performance
extracted by a modi ed MSER-based region detector. Threé the following steps in the scene text detection algorithms.
novel characterness cues are then computed, each of whiohaddress this problem, Chex al. [38] proposed to prune
independently models the probability of the region formingut MSER pixels which were located outside the boundary
a character (Sec. IV-B). These cues are then fused indetected by Canny edge detector. Neumann and Matas ex-
Bayesian framework, where Naive Bayes is used to modehded MSER to MSER++ [51] and later Extremal Region
the joint probability. The posterior probability re ects the(ER) [42]. In this paper, we use the edge-preserving MSER
“characterness' of the corresponding image patch. algorithm from our earlier work [40]q.f. Algorithm 1).

In order to consolidate the characterness responses wotivation. As illustrated in some previous work [50], [53],
design a character labeling method in Sec. V-A. An MREhe MSER detector is sensitive to blur. We have observed
minimized by graph cuts [31], is used to combine evidendbrough empirical testing that this may be attributed to the
from multiple per-patch characterness estimates into evideraege quantities ofmixed pixels(pixels lie between dark
for a single character or compact group of characters . Finalbackground and bright regions, amnice versa presenting
veri ed characters are grouped to readable text lines viaaong character boundaries. We notice that these mixed pixels
clustering scheme (Sec. V-B). usually have larger gradient amplitude than other pixels. We

Two phases of experiments are conducted separatelythiis propose to incorporate the gradient amplitude so as to
order to evaluate the characterness model and scene m@xiduce edge-preserving MSERs (see Fig. 2(c)).
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Fig. 2.
our modi ed eMSER succeeds.

Algorithm 1: Edge-preserving MSER (eMSER)

Input: A color image and required parameters
Output: Potential characters
1 Convert the color image to an intensity imalge
2 Smoothl using a guided Iter [54].

el e =T
SERVICE S-RVICE 0 =0

(a) Detected regions (b) Skeleton (c) Distance transform

Fig. 3. Efcient stroke width computation [39] (best viewed in color).
Note the color variation of non-characters and characters in (c). Larger color
variation indicates larger stroke width variance.

Cases that the original MSER fails to extract the characters while

Algorithm 2: Ef cient computation of stroke width
Input: A regionr
Output: Stroke width meari(l) and variancevar(l)

1 Extract the skeletois of the region.

2 For each pixep 2 S, nd its shortest path to the region
boundary via distance transform. The corresponding
lengthl of the path is de ned as the stroke width.

3 Compute the gradient amplitude mag , and then 3 Compute the meak(l) and variance/ar(l).
normalize it to[0; 255}

4 Getanewimagé =1+ r | (resp.l =1 rl).

5 Perform MSER algorithm oh to extract dark regions
on the bright background (resp. bright regions on the

dark background).

perceptual divergence of a regionagainst its surroundings,
which is de ned as:

xo
h; (r)log

R:GB j=1

PD(r) =

ﬁj (r) . @
]

hj(r)’
B. Characterness evaluation

R . . .
1) Characterness cuesCharacters attract human attentiovhere the term p(x)!og% is the Kullback-Leibler diver-
because their appearance differs from that of their surrour@gnce (KLD) measuring the dissimilarity of two probability

properties of characters. of its discrete form [12], and replace the probability distri-

butions p(x), q(x) by the color histograms of two regions

Stroke Width (SW). Stroke width has been a widely exploitech(r) and h(r ) (r denotes the region outside but within
feature for text detection [34], [36], [44], [45]. In particular,ts bounding box) in a sub-channel respectivélyg? is the
SWT [34] computes the length of a straight line between twiadex of histogram bins. Note that the more different the two
edge pixels in the perpendicular direction, which is used ash&tograms are, the higher the PD is. In [57], the authors quan-
preprocessing step for later algorithms [44], [55], [56]. In [45}i ed the perceptual divergence as the non-overlapping areas
a stroke is de ned as a connected image region with uniforpetween the normalized intensity histograms. However, using
color and half-closed boundary. Although this assumption fise intensity channel only ignores valuable color information,
not supported by some uncommon typefaces, stroke widthich will lead to a reduction in the measured perceptual
remains a valuable cue. divergence between distinct colors with the same intensity.

Based on the ef cient stroke width computation method win contrast, all three sub-channels( R, G, B) are utilized
have developed earlier [39§ €. Algorithm 2), the stroke width in the computation of perceptual divergence in our approach.

cue of regionr is de ned as: . ) )
Histogram of Gradients at Edges (eHOG).The Histogram

Var(l). (1) of Gradients (HOGs) [58] is an effective feature descriptor
E()?° which captures the distribution of gradient magnitude and
where E(1) and Var(l) are stroke width mean and varianc@rientation. Inspired by [35], we propose a characterness cue
respectively ¢.f. Algorithm 2). In Fig. 3 (c), we use color based on the gradient orientation at edges of a region, denoted
to visualize the stroke width of exemplar characters and nopy €HOG. This cue aims to exploit the fact that the edge pixels
characters, where larger color variation indicates larger stroRecharacters typically appear in pairs with opposing gradient

width variance andice versalt shows that characters usuallydirections [35}.
have smallSW value. Firstly, edge pixels of a region are extracted by the Canny
edge detector. Then, gradient orientation®f those pixels
Perceptual Divergence (PD).As stated in Sec. Il, color are quantized into four types.e., Type 1:0 < =4
contrast is a widely adopted measurement of saliency. For
the task of scene text detection, we observed that, in ordetLet us assume the gradient orientation of an edge gixid p. If we
to ensure reasonable readability of text to a human. the colglow the ray along this direction or its inverse direction, we would possibly
f . | . ically disti f h’ f th nd another edge pixelg, whose gradient orientation, denoted by, is
of text in natural scenes is typically distinct from that of thg,roximately opposite te, i.e. | p

surrounding area. Thus, we propose the PD cue to measureaaaypically closed.

SW(r) =

ql , as edges of a character
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Fig. 4. Sample text (left) and four types of edge points represented in four
different colors (right). Note that the number of edge points in blue is roughly
equal to that in orange, and so for green and crimson.

or 7=4 < 2, Type 2. =4 < 3 =4, Type 3:
3=4 < 5=4, and Type 4.5=4 < 7=4. An
example demonstrating the four types of edge pixels for text
is shown in Fig. 4 (right), where four different colors are used
to depict the four types of edge pixels. As it shows, we can
expect that the number of edge pixels in Type 1 should be
close to that in Type 3, and so for Type 2 and Type 4.
Based on this observation, we de ne the eHOG cue as:

q
(i) ws(r)®+(wa(r)  wa(r)”

)

eHOG(r) =

: i4=1 Wi (I')

where w;(r) denotes the number o,g edge pixels in Type
within regionr, and the denominator i4:1 wi (r) is for the IIIIn
sake of scale invariance.
2) Bayesian multi-cue integration:The aforementioned
cues measure the characterness of a regiérom different Fig. 5. Observation likelihood of characters (blue) and non-characters (red)
. SW and eHOG disti ish ch i on three characterness cues, SW (top row), PD (middle row), and eHOG
perspectives. an e I_Stll’?gUL.% C_ ar_aCt_erS rom N@fkitom row). Clearly, for all three cues, observation likelihoods of characters
characters on the basis of their differing intrinsic structuresre quite different from those of non-characters, indicating that the proposed
PD exploits surrounding color information. Since they arges are effective in distinguishing them. Notice that 50 bins are adopted.
complementary and obtained independently of each other, we
argue that combining them in the same framework outperforms S )
any of the cues individually. To learn the distribution of cues on negative samples,
Following the Naive Bayes model, we assume that each cue €MSER algorithm is applied twice to each training image.
is conditionally independent. Therefore, according to Bayes' After erasing ground truth characters, the rest of the
theorem, the posterior probability that a region is a character extracted regions are considered as negative samples on

Bl

(its characterness score) can be computed as: which we compute the three cues.
_ p( jop(o) Fig. 5 shows the distribution of the three cues via normal-
p(g) = o) ized histograms. As shown in Fig. 5, for both SW and eHOG,
Q compared with non-characters, characters are more likely to

p P9 cue@ plcuso) —_: (4) have relatively smaller values (almost within the rst 5 bins).
k2f c;bg P(K) " cuez P(cugk) For the distribution of PD, it is clear that characters tend to
where = fSW;PD;eHOGg, andp(c) andp(b) denote the have higher contrast than that of non-characters.
prior probability of characters and background respectively,
which we determine on the basis of relative frequency.
We model the observation likelihoga{cugc) andp(cugh)
via distribution of cues on positive and negative samplgs Character labeling
respectively, with details provided as follows.

V. LABELING AND GROUPING

1) Labeling model overviewie cast the task of separating
Learning the Distribution of Cues. In order to learn the characters from non-characters as a binary labeling problem.
distribution of the proposed cues, we use the training set B be precise, we construct a standard gr&phk (V;E),
text segmentation task in the ICDAR 2013 robust readinghereV = fvig is the vertex set corresponding to the candi-
competition (challenge 2). To our knowledge, this is is the onate characters, aril = fg g is the edge set corresponding
benchmark dataset with pixel-level ground truth so far. Tht® the interaction between vertexe€achv; 2 V should
dataset contains 229 images harvested from natural scefgslabeled as either characteg, I = 1, or non-character,
We randomly selected 129 images as the training set, while. li = 0. Therefore, a labeling sdt = fl;g represents
the remaining 100 images were treated as the test set #o@¢ separation of characters from non-characters. The optimal
characterness evaluation in our experiment (Sec. IV-B).
To learn the distribution of cues on positive samples, Wezln'our work, we congider the edge betwqen two vertexes (regions) exists
. ._only if the Euclidean distance between their centroids is smaller than the
directly compute the three cues on characters, as pix

) 8 ﬁ’]khimum of their characteristic scales. Characteristic scale is de ned as the
level ground truth is provided. sum of the length of major axis and minor axis [44].
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labelingL can be found by minimizing an energy function:B. Text line formulation

L =argmin E(L); (5) The goal of this step, given a set of characters identi ed in
L the previous step, is to group them into readdinles of text.
whereE (L) consists of the sum of two potentials: A comparable step is carried out in most region-based text

detection approaches [34], [44], In this work, we introduce a

E(L)= U(L;(’L V(L) ®)  mean shift based clustering scheme for text line formulation.
u(L) = ui (1) @) Speci cally, two normalized features (characteristic scale

x and major orientation [44]) are exploited to group regions

V(L) = vi (i3 1); (8) into clusters via mean shift. For each cluster with at least two
ij 2E elements, we group elements into text lines based on their

. . . ) spatial distance measured by Euclidean norm.
whereu; (l;) is the unary potential which determines the cost

of assigning the label; to v;, andv; (l;;1;) is the pairwise

potential which re ects the cost of assigning different labels to /|, ProPOSEDCHARACTERNESSM ODEL EVALUATION

v; andv; . This model is widely adopted in image segmentation

algorithms [59], [60]. The optimdl can be found ef ciently =~ To demonstrate the effectiveness of the proposed character-

using graph-cuts [31] if the pairwise potential is submodulaness model, we follow the evaluation of salient object detection
2) The design of unary potentialcharacterness score ofalgorithm. Our characterness map is normalized to [0,1], thus

extracted regions is encoded in the design of unary potentisgdated as saliency map. Pixels with high saliency valige, (

directly: intensity) are likely to belong to salient objects (characters in
p(qj) =0 our scenario) which catch human attention.
ui(li) = 1 p(g) I=1: ©) We qualitatively and quantitatively compare the proposed

“characterness' approach with ten existing saliency detec-

3) The design of pairwise potentialis characters typically tion models: the classical Itti's model (IT) [1], the spectral
appear in homogeneous groups, the degree to which propertiesidual approach (SR) [3], the frequency-tuned approach
of a putative character (stroke width and color, for examplgfT) [7], context-aware saliency (CA) [17], Zhai's method
match those of its neighbors is an important indicator. Th{C) [6], histogram-based saliency (HC) [10], region-based
clue plays an important role for human vision to distinguiskaliency (RC) [10], Jiang's method (CB) [16], Rahtu's method
characters from cluttered background and can be exploited(RA) [19] and more recently low-rank matrix decomposition
design the pairwise potential. In this sense, similarity betwe@nR) [15]. Note that CB, RC and CA are considered as the best
extracted regions is measured by the following two cues. salient object detection models in the benchmark work [61].

Stroke Width Divergence (SWD).To measure the stroke For SR and LC, we use the implementation from [10]. For
width divergence between two extracted regionsand r,, the remaining approaches, we use the publicly available im-
we leverage on the stroke width histogram. In contrast witlementations from the original authors. To the best of our
Algorithm 2 where only pixels on the skeleton are taken intknowledge, we are the rst to evaluate the state-of-the-art
account, the distance transform is applied to all pixels withigaliency detection models for re ecting characterness in this
the region to nd the length of the shortest path. Therefore, tit@rge quantity.
stroke width histogram is de ned as the histogram of shortestUnless otherwise speci ed, three parameters in Algorithm 1
length. Then, SWD is measured as the discrete Kicd. ( were set as follows: the delta value X in the MSER was set
Equ. 2) of two stroke width histograms. to 10, and the local window radius in the guided Iter was

Color Divergence (CD). The color divergence of two setto 1, = 0:5. We empirically found that these parameters
regions is the distance between the average color of the twerk well for different datasets.
regions (in the LAB space) measured by L2 norm.

The aforementioned two cues measure divergence between
two regions from two distinct prospectives. Here, we combing® Datasets

them ef ciently to produce the uni ed divergence (UD) as: ) _ .
For the sake of more precise evaluation of "characterness’,

UD(rq;r2) = SWD(rq;rp) +(1 )CD(r1;r2); (10) we need pixel-level ground truth of charactémis mentioned
. . . . in Sec. IV-B, to date, the only benchmark dataset with pixel-

where_ the coefcient speci es the relative weighting of the level ground truth is the training set of text segmentation task
two divergence. In our experiments we set 0:5s0 thatthe i, o' |cpAR 2013 robust reading competition (challenge
two d|vgrgences are equally Welght?d' we m‘_';lke use of t ?Which consists of 229 images. Therefore, we randomly
uni ed divergence to de ne the pairwise potential as: selected 100 images of this dataset here for evaluation (the

vi (li:1)=[1; 6 ;11 tanh(UD(r;;r;)));  (11) Other 129 images have been used for leaming the distribution

of cues in the Bayesian framework).

where [] is the Iverson bracket. In other words, the more
similar the color and stroke width of the two vertexes are, spataset of pixel-level ground truth is also adopted in [25]. However, it is
the less likely they are assigned with different labels. not publicly available.
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Fig. 6. Quantitative precision-recall curves (left, middle) and F-measure (right) performance of all the eleven approaches. Clearly, our approach achieves
signi cant improvement compared with state-of-the-art saliency detection models for the measurement of ‘characterness'.

TABLE |
QUANTITATIVE PERFORMANCE OF ALL THE ELEVEN APPROACHES INVOC OVERLAP SCORES

Ours | LR[15] | CB[16] | RC[10] | HC[10] | RA[19] | CA[17] | LC6] | SR[BI | FT [/ | T [
05143 | 0.2766 | 0.1667 | 02717 | 0.2032 | 0.1854 | 0.2179 | 0.2112 | 0.2242 | 0.1739 | 0.1556

B. Evaluation criteria Table | illustrates the performance of all approaches mea-
red by VOC overlap score. Our result is almost twice that
the best saliency detection model LR on this task, as shown
Table 1.

Fig. 7 shows some saliency maps of all approaches. It is

To be more precise, the PR curve is obtained by binarizif served that our approach has obtainfad_ visually more feas.ible
the saliency map using a number of thresholds ranges from d ('?a_ults than other approaches_ have: it u_sually gives high
255. The F-measure is computed@s?+1) P R)=( 2P+ R), saliency values to characters Wh_|le suppressing non-characters,
whereP andR are precision and recall rates at an adapti\)ghere":IS the state-of-ihe-art saliency datection models may be
threshold T that is twice the mean saliency value. We Seqttracted by other objects in the natural scang,(sign boards

2 =0:3as that in [7]. The VOC overlap score [62] is de ned© also considered as salu_ant_objects n CB)' . .
is\ s9 In summary, both quantitative and qualitative evaluation

aSisrsy - Here,S is the ground truth mask, arfis the our demonstrate that the proposed characterness model signi -

se_gmenta’ﬂon mask o_btamed by bma_mzmg the salle_ncy mggmly outperforms saliency detection approaches on this task.
using the same adaptive threshdldduring the calculation of

F-measure.
The resultant PR curve (resp. F-measure, VOC overlap
score) of a dataset is generated by averaging PR curves (resp.

F-measure, VOC overlap score) of all images in the dataset. " this section, we evaluate our scene text detection ap-
proach as a whole. Same as previous work on scene text

detection, we use the detected bounding boxes to evaluate
C. Comparison with other approaches performance and compare with state-of-the-art approaches.

As shown in Fig. 6, in terms of the PR curve, all existin ompared with Sec. VI in which only 119 images are uti-

saliency detection models, including three best saliency detd¢€d 10 leamn the distribution of cues, all images with pixel-
tion models in [61] achieve low precision rate (below 0.5) iffVe! ground truth (229 images) are adopted here. Thus, the
most cases when the recall rate is xed. However, the proposgigtrioution is closer to the real scene. ,
characterness model produces signi cantly better results, ingi-" oM the large body ,Of work on scene text detection,
cating that our model is more suitable for the measurement'§f cOMpare our result with some stgt‘e-of-the-art approaf:'hes,
characterness. The straight line segment of our PR curve (wiigfuding TD method [44], Epshtein's method [34], Li's
recall rates ranging from 0.67 to 1) is attributed to the fa&'ethOd [39], [40], Yi's method [37], Meng's method [26],

only foreground regions extracted by eMSER are considere§umann's mﬁthod [41], [;2] hZhang‘s method .[.35] and
as character candidates, thus background regions always e approaches presented in the ICDAR competitions. Note

a zero saliency value. It can also be observed from the t the_bandwidth of mean Sh?ﬁ clustering in the text line
curve that in our scenario, two best existing saliency detectig?{mu'at'on step was set to 2.2 in all experiments.
models are RC and LR.

Precision, recall and F-measure computed via adaptife Datasets
threshold are illustrated in the right sub-gure of Fig. 6. We have conducted comprehensive experimental evaluation
Our result signi cantly outperforms other saliency detectionn three publicly available datasets. Two of them are from the
models in all three criteria, which indicates that our approadfenchmark ICDAR robust reading competition held in differ-
consistently produces results closer to ground truth. ent years, namely ICDAR 2003 [63] and ICDAR 2011 [64].

For a given saliency map, three criteria are adopted ¥
evaluate the quantitative performance of different approach8
precision-recall (PR) curve, F-measure and VOC overlérﬁ
score.

VIl. PROPOSEDSCENE TEXT DETECTION APPROACH
EVALUATION
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Image GT ours LR[15] CB[16] RC[10] HC[10] RA[19] CAI[L7] LC [6] SR [3] FT [7] IT [1]

Fig. 7. Visual comparison of saliency maps. Clearly, the proposed method highlights characters as salient regions whereas state-of-the-art saliency detection
algorithms may be attracted by other objects in the scene.

. . L TABLE Il
ICDAR 2003 dataset contains 258 images for training and 254, yarion oF cHARACTERNESS CUES ON THECDAR 2011DATASET.

images for testing. This dataset was also adopted in the ICDAR

2005 [65] competition. ICDAR 2011 dataset contains two  Cues precision | recall | f-measure

folds of data, one for training with 229 images, and the other _SW 071 0.63 0.67

one for testing with 255 images. To evaluate the effectiveness __PD 0.64 0.63 0.63
eHOG 0.58 0.65 0.61

of the proposed algorithm on text in arbitrary orientations, we

also adopted the Oriented Scene Text Database (OSTD) [37] gw:PHDOG 8;2 822 822
in our experiments. The dataset set contains 89 images with PD+eeHOG 0'73 0-63 0.67
text lying in arbitrary orientations. SWiPDIeHOG 0.80 0.62 0'70

Baseline 0.53 0.67 0.59

B. Evaluation criteria

According to literature review, precision, recall and f-
measure are the most popularly adopted criteria used ne@di ed eMSER algorithm improves the performance, we
evaluate scene text detection approaches. However, de nitiepmpare it with the original MSER algorithm on the ICDAR
of the three criteria are slightly different across datasets. 2011 dataset. For fair comparison, when learning the distri-

In the ICDAR 2003 and 2005 competition, precision anbution of cues on negative samples, we use MSER rather
recall are computed by nding the best match between eatitan eMSER to harvest negative samples and then compute
detected bounding boxg®j and each ground trutjfGj. In the three cues. Note that the parameter setting is identical for
this sense, only one-to-one matches are taken into accolpeth scenario.
To overcome this unfavorable fact, ICDAR 2011 competition Using the MSER algorithm achieves a recall of 66%, a
adopts the DetEval software [66] which supports one-to-oiwecision of 67% and an f-measure of 66%. In comparison,
matches, one-to-many matches and many-to-one matches. Woen the eMSER is adopted, the precision rate is boosted
the OSTD dataset, we use the original de nition of precisiosigni cantly (80%), leading to an improved f-measure (70%).
and recall from the authors [37], which are based on computhis is owing to that eMSER is capable of preserving shape of
ing the size of overlapping areas betwgBj andjG;j. In all regions, whereas regions extracted by MSER are more likely
three datasets, f-measure is always de ned as the harmoisidoe blurred which makes cues less effective.
mean of precision and recall.

D. Evaluation of characterness cues

C. eMSER versus MSER The proposed characterness cuies. W, PD and eHOG)

Since the proposed characterness cues are computedancritical to the characternss model and the nal text detec-

regions, the extraction of informative regions is a prerequisiten result. In order to show that they are effective in distin-
for the robustness of our approach. To demonstrate that théshing characters and non-characters, we evaluate different
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TABLE IIl TABLE IV
EVALUATION OF BAYESIAN MULTI -CUE INTEGRATION ON THEICDAR RESULTS ONICDAR 2003DATASET.
2011DATASET.
_ method precision | recall | f-measure

Cues precision | recall | f-measure Ours 0.79 0.64 0.71
Native Bayes model 0.80 0.62 0.70 Kim [46] 0.78 0.65 0.71
SVM 0.71 0.42 0.53 TD-Mixture [44] 0.69 0.66 0.67
SVM-MRF 0.54 0.62 0.58 Yi [45] 0.73 0.67 0.66
Epshtein [34] 0.73 0.60 0.66
o Li [40] 0.62 0.65 0.63
combinations of the cues on the ICDAR 2011 dataset. Table Il ~Vj[37 0.71 0.62 0.62
shows the evaluation via precision, recall and f-measure. Note ~Becker [65] 0.62 0.67 0.62
that the baseline method in Table Il corresponds to the result ~— Meng [26] 0.66 0.57 0.61
obtained by directly preforming text line formulation after Li [39] 0.59 0.59 0.59
candidate region extraction. Chen [65] 0.60 0.60 0.58
As shown in Table I, the performance of the proposed  Neumann [41] 0.59 0.55 0.57
approach is generally poorer when only one cue is adopted. _Zhang [35] 0.67 0.46 0.55
However, the f-measures are still much higher than the base- _Ashida 0.55 0.46 0.50

line method, which indicates that individual cues are effective.
We also notice that the SW cue shows the best f-measure when
individual cue is considered. This indicates that characters and

TABLE V
RESULTS ONICDAR 2011DATASET.

non-characters are much easier to be separated by using the ~method precision | recall | f-measure
SW cue. From Table I, we can easily conclude that the order Kim [46] 0.81 0.69 0.75
of discriminability of individual cues (from high to low) is: Ours 0.80 0.62 0.70
SW, PD and eHOG. Neumann [42] 0.73 0.65 0.69
When two cues are combined, thanks to the signi cant Li [40] 0.63 0.68 0.65
increase in the precision rate, the f-measure of the proposed _Yi 0.67 0.58 0.62
approach is boosted by a large extent (about 5%). TH-TextLoc 0.67 0.58 0.62
Finally, the best performance is achieved when all cues _Li[39] 0.59 0.62 0.61
are combined. Although there is a slightly drop in recall Neumann 0.69 0.53 0.60
rate, precision rate (80%) is signi cantly higher than all other I@'\é“pﬁﬁf 82;‘* 823 822
combinations, thus the f-measure is the best. KAIST AIPR 060 045 051
. . . . . ECNU-CCG 0.35 0.38 0.37
E. Evaluation of Bayesian multi-cue integration Text Hunter 050 0.26 034

In Eq. 4, based on the assumption that the three proposed
characterness cues are conditional independent, we fuse them

using the Native Bayes model. Here, to show that the simpigyng with the performance of other state-of-the-art scene

Native Bayes model is effective in our scenario, we compaggxt detection algorithms. Note that methods without reference

it with two other cue integration con gurations: correspond to those presented in each competition.
SVM. In this con guration, we simply concatenate the On the ICDAR 2003 dataset, our method achieves sig-
three cues to produce a nal three-dimensional featufg cantly better precision (79%) than all other approaches.
vector for each potential text region. Then, we train Besides, our recall rate (64%) is above the average, thus our
linear SVM classi er after feature normalization. Negaf-measure (71%) is superior than others. Although supervised
tive predictions are directly removed when testing.  |earning (random forest) is adopted in TD-Mixture [44], its
SVM-MREF. In this con guration, as the former one, Weprecision (69%) is much lower than ours (79%), which in-
still train a linear SVM classi er using concatenated cuegjicates the strong discriminability of the Bayesian classi er
However, instead of using SVM for classi cation directly,yhich is based on fusion of characterness cues.
we use the normalized decision value from the SVM o the ICDAR 2011 dataset, our method achieves a preci-
output to replace characterness score in the MRF modgh, of 80%, a recall of 62%, and an f-measure of 70%. In
while the pairwise potential remains the same. terms of precision, our rate (80%) is only 1% lower than that

We report the experimental results on the ICDAR 2011 datagftkim's method [46] (81%) which is based on two times of

in Table. Ill. As shown in Table. Ill, whereas both the SVMsupervised learning. Besides, we report the best performance

and SVM-MRF con gurations suffer low recall and precisioramongst all region-based approaches.

rate respectively, the simple Native Bayes model achievesour method achieves a precision of 72%, a recall of 60%

signi cantly superior performance than both. and an f-measure of 61% on the OSTD dataset [37] which
outperforms Yi's method [37], with an improvement of 6% in
F. Comparison with other approaches f-measure.

Table IV and Table V show the performance of our approachFig. 8 shows some sample outputs of our method with
on two benchmark datasetsée( ICDAR 2003 and 2011), detected text bounded by yellow rectangles. Our method can
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Fig. 8. Sample outputs of our method on the ICDAR datasets (top two rows) and OSTD dataset (bottom two rows). Detected text are in yellow rectangles.

handle several text variations, including color, orientation and
size, as shown in Fig. 8. The proposed method also works
well in a wide range of challenging conditions, such as strong
light, cluttered scenes, exible surfaces and so forth.
In terms of failure cases (see Fig. 9), there are two culprits
of false negatives. Firstly, the candidate region extraction step
misses some characters with very low resolution. Furthermore,
some characters in uncommon fonts are likely to have low
characterness score, thus likely to be labeled as non-characters
in the character labeling model. This problem may be SOW%. 9. False negatives of our approach. Clearly, there are two kinds of
by enlarging the training sets to get more accurate distributigheracters that our approach cannot handle, (i) characters in extremely blur
of characterness cues. On the other hand, most false positﬁ}gslow resolution (top row), (ii) characters in uncommon fonts (bottom row).
stem from non-characters whose distribution of cues is similar

to that of characters.
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