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ABSTRACT

Capturing sets of closely related vertices from large networks
is an essential task in many applications such as social net-
work analysis, bioinformatics, and web link research. De-
composing a graph into k-core components is a standard and
efficient method for this task, but obtained clusters might
not be well-connected. The idea of using mazimal k-edge-
connected subgraphs was recently proposed to address this
issue. Although we can obtain better clusters with this idea,
the state-of-the-art method is not efficient enough to process
large networks with millions of vertices.

In this paper, we propose a new method to decompose
a graph into maximal k-edge-connected components, based
on random contraction of edges. Our method is simple to
implement but improves performance drastically. We ex-
perimentally show that our method can successfully decom-
pose large networks and it is thousands times faster than
the previous method. Also, we theoretically explain why
our method is efficient in practice. To see the importance
of maximal k-edge-connected subgraphs, we also conduct
experiments using real-world networks to show that many
k-core components have small edge-connectivity and they
can be decomposed into a lot of maximal k-edge-connected
subgraphs.
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Figure 1: A k-core component in the Arxiv-GrQc
dataset that can be decomposed into three maximal
k-edge-connected subgraphs, where £ = 17. Some
vertices are not shown due to space limit.

1. INTRODUCTION

Sets of closely related vertices from networks, or clusters,
play an important role in many applications such as social
network analysis, computational biology, and web link re-
search. For example, in social networks, cohesive groups
can be regarded as communities such as friends, co-workers,
neighbors, and so on. In protein-protein interaction net-
works, they may represent sets of proteins having the same
function [13]. In web graphs, they are likely groups of web
pages about the same or related topics [17]. Depending on
motivations and applications, a myriad of models for clusters
were proposed.

Among those, one of the most famous models is k-core [25,
14]. In a graph G = (V, E), the k-core of G is the largest
subgraph of G such that all vertices in it have degree at
least k. Since the k-core is not necessarily connected, con-
nected components of the k-core, called k-core components,
are often used as clusters. While computing clusters under
other models is NP-hard or requires at least O(|E|'"®) time,
enumerating k-core components for all £ takes only linear
time [5]. This fact and the simplicity of the notion of k-core
make it prominent in the study of real-world large networks
(see Section 2.2 for concrete applications).

However, there is a drawback of adopting k-core compo-
nents as clusters. That is, sometimes a k-core component
can be easily disconnected. See Figure 1 for an example of a
k-core component in a real-world network. As is easily seen,
the k-core component is not well-connected, and it can be
divided into three subgraphs by deleting a small number of
edges. Thus, it is more natural to regard it consisting of
three clusters than a single cluster. The main reason of this
issue is that k-core only restricts degrees of vertices in sub-
graphs and it does not use any structure of them. Indeed, as
we will discuss in Section 2.1, most of the classical models
also have the same risk.



This issue is already known and connectivity is widely
used as a measure of cohesion in social network analysis [30,
16]. Algorithmically, Zhou et al. [32] proposed to use maz-
imal k-edge-connected subgraphs (MKECS) as clusters. An
MEECS is a maximal subgraph that remains connected no
matter how we remove k — 1 or fewer edges in it. For ex-
ample, the k-core component in Figure 1 is properly decom-
posed into three clusters if we adopt MEECSs. It is known
that a k-core component can be (uniquely) partitioned into
MEKECSs. Thus, MEKECSs can be considered as a refinement
of k-core components into more tightly connected subgraphs.

Though adopting MEECSs is a promising idea, the algo-
rithm by Zhou et al. [32] is not fast enough and cannot be ap-
plied to large networks. The algorithm can be summarized
as follows. We first find a cut of size less than k£ and remove
edges in the cut, and then we repeat the same procedure on
each connected component in the resulting graph. The most
time-consuming part is finding cuts of size less than k. Of
course, we can find such cuts by using any algorithm that
computes the minimum cut. However, a typical algorithm,
due to Stoer and Wagner [27], takes O(|V||E| + |V |*log |V])
time and is quite costly. To reduce the number of times
to compute the minimum cut, Zhou et al. proposed sev-
eral heuristics to find small cuts. Though these heuristics
are highly effective, still we can only deal with graphs with
thousands of vertices. Since real-world networks are far more
gigantic, we need new techniques.

1.1 Our Contributions

In this paper, we propose a new efficient algorithm to
enumerate MkAECSs, which is several orders of magnitude
faster than the previous method. Now it becomes practical
to use MEKECSs in place of other models such as k-core when
analyzing large-scale networks with hundreds of millions of
edges and millions of vertices.

Our algorithm is designed based on a novel application of
random contraction, which has been a theoretical tool with
high affinity for cut problems [19]. Roughly speaking, con-
traction of an edge means removing the edge and merging
two endpoints of it. An overview of our method is as fol-
lows. Starting with the input graph, as long as there is an
edge, we randomly pick an edge and contract it. During the
contraction, if we have found a vertex of degree less than k,
then we cut edges incident to it immediately. We call this
process an iteration. Note that each (isolated) vertex in the
end corresponds to a connected component in the original
graph. Then, we repeat the iteration for each connected
component a sufficient number of times.

Though simple, our algorithm is efficient since (i) each
iteration can be implemented to run in linear time, (77) mul-
tiple cuts can be found in one iteration, and therefore (%ii)
the number of necessary iterations is small. Moreover, since
our method does not rely on complicated combination of
heuristics or pruning, it is robust and works well for various
types of networks and any choice of k.

We explain related works and applications of MKECSs in
Section 2. In Section 3, we give definitions used in this paper
and review several facts on edge-connectivity. We give an
overview and a detailed implementation of our algorithm
in Section 4. In Section 5, we show theoretical bounds on
the number of necessary iterations. Section 6 is devoted to
present our experimental results.

Table 1: Models of vertex clusters’.

Model Constraints Connectivity Complexity
clique degree high NP-hard
quasi-clique degree possibly low NP-hard
k-plex degree possibly low NP-hard
k-core degree possibly low  O(|E|)
r-clique distance possibly low NP-hard
r-clan distance possibly low NP-hard
r-club distance possibly low NP-hard
DN-Graph [29] triangles high NP-hard
k-truss [28] triangles high O(|E|*5)
MKEKECS connectivity high O(t|E)|)

(a) An ill-connected cluster (b) A well-connected cluster
that classical models fail to that cannot be found with
separate. DN-Graph and k-truss.

Figure 2: Examples of vertex clusters that other
models cannot handle well.

Frequently-asked question: Is the algorithm heuristic?
Is it an approximate method with no guarantee? — No, ab-
solutely not. First, our algorithm never cuts wrongly. Even
if we stop iterations earlier, the complete decomposition is
always a refinement of the current decomposition at hand.
Second, our algorithm does completely decompose a graph
into exact MEECSs quickly. We will present a theoretically
guaranteed iteration stopping criteria (Section 5.3) and con-
firm by experiments that the actual number of necessary
iterations is so small (Section 6.3.2).

2. RELATED WORK
2.1 Models of Cohesive Subgraphs

A cluster is often modeled as a subgraph satisfying some
conditions, and several notions of clusters have been pro-
posed. We review them and compare with MKECSs.

Degree-based Models: A clique is a subgraph whose ver-
tex is adjacent to every vertex in it. Since the condition of
cliques is too strict, using cliques we often miss important
clusters. Therefore, several relaxed notions were proposed.
A k-plezx [26] is a maximal subgraph in which every vertex
has edges to all but at most k vertices in it. A quasi-clique
with a parameter v is a subgraph with n vertices and ~(7)
edges. The problems of enumerating these subgraphs are
NP-hard. Moreover, all these models fail to separate sub-
graphs with high degree and low connectivity. For example,
using k-plex or quasi-clique, we will obtain the ill-connected
subgraph in Figure 2a as one cluster since all the vertices in
the subgraph have high degree.

Distance-based Models: An r-clique is a maximal sub-
graph such that the maximum distance between two vertices
in the original graph is at most r. An r-clan is an r-clique
such that the diameter is also at most r. An r-club is a

"Variable t in the time complexity of MEECS is the number
of iterations, which is very small as we later show theoreti-
cally and empirically.



maximal subgraph such that the diameter is at most r. The
problems of enumerating these models are also NP-hard.
Moreover, all of these models also fail to separate subgraphs
with low diameter and low connectivity. For example, using
r-clique, r-clan or r-clubs, we will obtain the ill-connected
subgraph in Figure 2a as one cluster since the subgraph has
small diameter.

Triangle-based Models: To address the problems of these
classic models, besides MKECSs, notions of a D N-graph [29]
and a k-truss [28] were recently proposed. A subgraph is
called a DN -graph when the minimum number of common
neighbors between endpoints over all edges in it satisfies
some condition. However, enumerating DN-graphs is also
an NP-hard problem. Similarly, a k-truss is the largest sub-
graph in which every edge is contained in at least k — 2
triangles. Though DN-graphs, k-trusses and MkKECSs take
connectivity into consideration, they are different in nature
because a triangle is a very local concept whereas edge-
connectivity is a more global concept. In particular, there
are a few or no triangles in (almost) bipartite networks such
as online dating networks, paper-author networks, product-
purchaser networks or movie-actor networks. For these net-
works, it is better to use MEECSs since we cannot find any
cohesive groups with D N-graphs or k-trusses. For example,
the cohesive subgroup in Figure 2b is neither D N-graphs
nor k-trusses for any choice of parameter, since there is no
triangle in the subgraph, whereas it is a 4-edge-connected
subgraph and can be found by our method.

2.2 Applications

Generally, we can use MKECSs in place of any other mod-
els we mentioned above. For example, in social networks,
MEECSs can be regarded as communities such as friends, co-
workers, neighbors, and so on. In protein-protein interaction
networks, MEKECSs may represent sets of proteins having the
same function [13]. In web graphs, MKECSs are likely to be
groups of web pages about the same or related topics [17].
Using MEKECS,; ill-connected subgraphs shown in Figures 1, 2
can be separated properly. In particular, when we want to
capture cohesive groups that interact each other well, con-
straints on connectivity is more direct than constraints on
degree, diameter, and triangles. Therefore, MEKECS seems
to be a more natural model than the classic models.

Especially, as we stated before, MEKECSs can be consid-
ered naturally as a refinement of k-core components. There-
fore, we can expect that MKECSs can immediately improve
several applications using k-core. k-core has wide range
of applications such as finding the most influential spread-
ers in social network [20], analyzing structural properties
of networks such as hierarchies, self-similarity, and connec-
tivity [2, 3], analyzing and interpreting cooperative process
in networks [11], separating and fingerprinting protein com-
plexes in protein-protein interaction networks [1], and cap-
turing clusters in financial activity networks to discover fi-
nancial crimes [15].

Particularly, in some applications including [2] and [11],
k-core is used to approximate the connectivity of subgroups.
Their justification of using k-core is that a k-core component
is k-connected with high probability under the Erdds-Rényi
model [23], which is a model of random graphs. It is obvious
that MEKECSs directly solves their problems. Moreover, ex-
periments in this paper show that actually giant k-core com-
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Figure 3: An example of contraction. Vertex v and
w are contracted to a new vertex x.

ponents often have small connectivity and split into many
subgraphs by small cuts (Section 6.2.1).

3. PRELIMINARIES

In this paper, we focus on networks that are modeled as
undirected and unweighted graphs. Let G = (V, E) be a
graph with vertex set V' and edge set E. We describe the
number of vertices |V| as n and the number of edges |E|
as m. For two disjoint subsets of vertices S, T C V, we
define E(S,T) as the set of edges that have one endpoint
in S and the other endpoint in T. Then, we define E(S) =
E(S,V'\ S), and we write E(v) instead of E({v}). Also, we
define d(S, T'), d(S) and d(v) as the size of E(S,T), E(S) and
E(v), respectively. In particular, d(v) is called the degree of
a vertex v. We denote by G[S] the subgraph induced by S.
For any set of vertices S C V with 0 < |S| < n, the edge set
E(S) is called a cut. A cut with the minimum size is called
a minimum cut. For notational simplicity, we regard that
the minimum size of a cut is co when |V] = 1.

We formally define contraction of an edge. Let e = (v, w)
be an edge in a graph G = (V, E) with v # w. Let f be a
function that maps every vertex in V' \ {v,w} to itself, and
otherwise, maps it to a new vertex x. The contraction of e
results in a new graph G’ = (V', E’), where V' = V\{v, w}U
{o} and B = {(f(u), /) | (u,v) € B, f(u) # F(0)}.

See Figure 3 again for an example of contraction. We note
that, if there are edges from v and w to the same vertex, then
they will result in parallel edges. However, we never make
self-loops by contraction.

In the following two subsections, we review properties of
MEECSs and k-cores.

3.1 Edge Connectivity and Maximal k-Edge-
Connected Subgraphs

A graph G is called k-edge-connected if it remains con-
nected no matter how we remove less than k edges. In other
words, G is k-edge-connected if the minimum size of a cut
is at least k. From Menger’s theorem, it is also equivalent
to having at least k edge-disjoint paths between any two
distinct vertices. The edge-connectivity of a graph G is a
maximum k such that G is k-edge-connected.

A mazimal k-edge-connected subgraph (MEECS) is a k-
edge-connected induced subgraph G[S] such that no proper
superset T' D S induces a k-edge-connected subgraph. The
following property is well-known.

LEMMA 3.1. Let G = (V, E) be a graph and S1,S2 C V
be two intersecting vertex sets. If G[Si] and G[S2] are k-
edge-connected, then G[S1 U S2] is also k-edge-connected.

COROLLARY 3.1. Fach verter v € V belongs to exactly
one maximal k-edge-connected subgraph.

Therefore, to enumerate all MKECSs in the graph, it suffices
to partition the vertex set V' into MEKECSs.



Algorithm 1 Basic Iteration

1: procedure CONTRACTANDCUT(G, k)
2: G+ G

3 while G’ is not empty do

4 if Ju € V(G’) such that d(u) < k then

5: U < original vertices contracted to u
6: output G [U].

7 Remove u from G’.

8: else

9: Choose an edge (v,w) in G’ at random.
10: Contract v and w in G”.

Algorithm 2 Overall Algorithm

1: procedure DECOMPOSE(G, k, t)
Yo {G}
fori=1,2,...,t do
<+~ {}
for all G’ € 9, 1 do
4, <+ 4;U CONTRACTANDCUT(G, k)

return %

3.2 k-Core Components

Let G = (V, E) be a graph. Let S C V be the largest set
of vertices such that every vertex in G[S] has degree at least
k. We can easily see such S is uniquely determined and we
call the induced subgraph G[S] the k-core of G. We call each
connected component in the k-core a k-core component.

Let S be a k-core component and T be an MKECS with
|T| > 2, and suppose that S and T intersect. Since ev-
ery vertex in G[T] has degree at least k from the k-edge-
connectivity of G[T], every vertex in G[SUT] also has degree
at least k. However, from the maximality of the k-core, T
must be contained in S. Then, a k-core component can be
partitioned into MEECSs from Corollary 3.1, and MEKECSs
can be seen as a refinement of k-core components.

4. ALGORITHM DESCRIPTION

In this section, we first describe a high-level overview of
the proposed method (Section 4.1). Next, we discuss how to
implement an iteration to run in linear time (Section 4.2).
Finally, we introduce the forced contraction technique, which
drastically reducing the number of necessary iterations by
increasing the probability of successfully finding cuts (Sec-
tion 4.3).

4.1 Overview

First, we describe a high-level overview of the proposed
algorithm. The idea behind our method is repeatedly find-
ing cuts with size less than k and dividing the graph along
these cuts. If we reach the point that each connected com-
ponent has no cut with size less than k, then they are k-
edge-connected and thus MKECSs (see [32, Theorem 1] for
details).

A high-level overview of an iteration of our method is de-
scribed in Algorithm 1. While there is a vertex with degree
less than k, we remove it. Otherwise, we choose an edge uni-
formly at random and contract it. We repeat this process
until the graph becomes empty.

As Figure 4 schematically explains, the size of a cut E(S)
is equal to the degree of the vertex created by contracting

Figure 4: The relationship between the size of a cut
and the degree of the contracted vertex.

all vertices in S. Therefore, the removal of a vertex with
degree less than k in the algorithm corresponds to cutting
the original graph by removing less than k edges. However,
if we have contracted an edge in F(S) before contracting all
vertices S into a single vertex, Algorithm 1 fails to find a cut
even if a set of vertices satisfies d(S) < k. Thus, we repeat-
edly apply Algorithm 1 with randomization to thoroughly
enumerate cuts.

Our overall algorithm is just repeatedly calling Algorithm 1
for all subgraphs we have obtained so far (Algorithm 2). We
will see in Section 4.2 that an iteration of our method can
be implemented to run in linear time. We will show that the
number of iterations ¢ to find all such cuts is indeed small
theoretically (Section 5) and experimentally (Section 6.3).

Comparison with Karger’s minimum-cut algorithm:
An algorithm somewhat similar to our method is Karger’s
minimum-cut algorithm [19]. However, there are signifi-
cant differences between Karger’s algorithm and ours. (i)
It finds a minimum cut while our method finds cuts of size
less than k. In particular, our method cannot be achieved
just by combining Karger’s algorithm and the algorithm by
Zhou et al. [32]. Indeed, Karger’s algorithm is not a practical
minimum-cut algorithm in comparison with other minimum-
cut algorithms [12], while our method outperforms the previ-
ous method [32], based on a faster minimum-cut algorithm of
Stoer and Wagner [27]. (i) Implementation of our method
is more involved than Karger’s algorithm. Since Karger’s
algorithm only cares about the number of edges in the fi-
nal graph, it can skip many computations. However, since
we want to find vertices of degree less than k during an it-
eration, we need several new ideas to obtain a linear-time
implementation (Section 4.2). (%) Also, the forced contrac-
tion technique is a new significant idea (Section 4.3). It does
not change the worst case analysis of Karger’s algorithm, but
it does change the probability we find MKECSs (Section 5).

4.2 Linear-time Iteration

Next, we discuss how to efficiently implement the high-
level algorithm of Algorithm 1. This is not trivial at all
since the algorithm involves contraction of vertices, which is
not a standard operation.

Moreover, though our algorithm is similar to Karger’s
algorithm, efficiently implementing our algorithm is more
challenging than implementing Karger’s algorithm due to
the difference. Karger’s algorithm can be easily implemented
so that each iteration runs in O(m) time by randomly re-
ordering the edge list first and conducting binary search to
determine when the number of vertices in the contracted
graph becomes two, instead of fully simulating random con-
traction. The point is that, in Karger’s algorithm, we are
interested only in the number of edges between the last two
remaining vertices. This idea does not work for our algo-



rithm since we would like to find and remove vertices with
degrees less than k during the process.

4.2.1 Graph Representation and Contraction

The method we propose is to efficiently simulate ran-
dom contraction by managing the adjacency list using hash
dictionaries and materializing contraction like the weighted
quick-find algorithm [31].

Here, we deal with parallel edges by weights. For each
vertex v, we prepare a hash dictionary h, that contains edges
incident to v as its elements. A key of an edge (v,w) is w
and its value is the weight of it.

Instead of randomly selecting an edge each time, we ran-
domly re-order the edge list and process edges in this order.
When the endpoints of a selected edge are already contracted
to one vertex, we ignore the edge. Otherwise, we contract
the endpoints.

To contract an edge (u,v), we have to merge hash dic-
tionaries h, and h,. We use the following trick to reduce
the time complexity. That is, when merging two hash dic-
tionaries h, and h,, we insert edges from the smaller hash
dictionary to the larger one. This can be simply done by
inserting all edges of one hash dictionary, say h,, into the
other hash dictionary, say h,. Suppose that we are mov-
ing an edge to w in hy to h,. If h, does not contain the
edge (v, w), then we simply add the edge (v, w) to h, with
the same weight as the edge (u,w) in h,. Otherwise, we
increase the weight of (v, w) in h, by the weight of (u,w) in
h.. By using this trick, the algorithm speeds up drastically,
and we can prove that the worst-case time complexity be-
comes O(mlogn) and in typical situation the expected time
complexity becomes O(m).

4.2.2 Worst-Case Time Analysis

We show that our algorithm proposed in Section 4.2.1 runs
in O(mlogn) time for any graph and any ordering of edges.
To this end, we first discuss a slightly different algorithm
and show that its time complexity is O(mlogn). Then, we
show that our algorithm is not slower than it.

We consider the following algorithm: let s(v) be the num-
ber of vertices in the original graph that are contracted to a
vertex v. Suppose we want to merge two hash dictionaries
hy and h,. If s(u) < s(v), then we insert all edges in the
hash dictionary h, into the hash dictionary h,. Otherwise,
we insert all edges in the hash dictionary h, into the hash
dictionary hy,.

We count how many times an edge e can be moved to dif-
ferent hash dictionaries. Let uo,u1,...,ur be the sequence
of vertices for which the edge e was inserted to their hash
dictionaries. Let s; be the value of s(u;) when the edge
e is inserted to the hash dictionary h,,. Since s(uo) = 1,
s(uig1) > 2s(u;) and s(ux) < n, k is at most log, n. Since
each edge is moved at most O(logn) times and the number
of edges is O(m), the total time complexity is O(mlogn).

Then, we analyze the running time of our algorithm. Note
that the only difference of our algorithm and the algorithm
described above is how we merge hash dictionaries. Indeed,
sequences of graphs obtained in the process are exactly the
same. Also, note that the number of moving edges in our
algorithm is always smaller than or equal to that in the
algorithm described above. Therefore, our algorithm also
runs in O(mlogn) time.

4.2.3 Expected Time Analysis

Next, we show theoretical evidence that the proposed al-
gorithm works in linear time in practical situations. A cru-
cial observation is that our algorithm can be seen as a vari-
ant of the weighted quick-find algorithm for the disjoint set
union-find problem [31].

In the disjoint set union-find problem, we process a se-
quence of two types of queries about disjoint sets. One is
finding the set containing a specified element, and the other
is joining two sets into one set.

The weighted quick-find algorithm manages sets with sim-
ple data structures such as arrays or lists, and it joins two
sets by inserting all elements in the smaller set into the larger
set. It is proved that, on random sequence of (join) queries,
the weighted quick-find algorithm runs in expected linear
time [21,9].

Regarding the hash dictionary h, as a set of neighbors of
a vertex v, our algorithm works similarly to the quick-find
algorithm. The difference is that sets might not be disjoint
since different vertices may (usually) have edges to the same
vertex. Nonetheless, we can show that our algorithm would
run in expected O(m) time.

We prepare 2m elements and we regard that each edge
has two corresponding elements. Then by merging these
elements properly, we can construct a family of n sets that
represents neighbors of vertices in the input graph. Then, we
run the quick-find algorithm on the family. Though we have
constructed the n sets deterministically, the query sequence
on the n sets is random. Thus, the expected running time
would be O(m) from [9,21].

Our algorithm can be seen as a variant of the algorithm
above, that is, (1) we start with the family of n sets, and
(2) we remove elements if they designate the same vertex.
These two differences just reduce the time complexity, and
it would be also O(m).

4.3 Forced Contraction

Finally, we propose a technique that we call the forced
contraction technique. We will see this technique drastically
improves the number of necessary iterations both theoreti-
cally (Section 5.2) and experimentally (Section 6.3).

The idea of the forced contraction technique is to imme-
diately contract v and v when the edge between vertices u
and v has weight at least k. If edge (u, v) has weight at least
k, then there is no cut with size less than k that separates
vertex u and v. Therefore, contracting them is safe, in the
sense that it never spoil a cut with size less than k, and the
probability of finding cuts of size less than k becomes higher.

Once a moderate number of vertices S’ in an MKECS S are
contracted to one vertex, since the number of edges between
S’ and S\ S’ is typically high, we can expect that another
vertex in S\ S’ will be contracted to S’ by forced contraction.
By contracting vertices in S this way, S’ will grow to the
whole S soon (see Section 6.3.3).

We can easily combine this technique to the implementa-
tion given in Section 4.2.1. After contracting two vertices,
if the weight of an updated edge becomes at least k, then
we contract its endpoints in the next step. We continue this
process until no edge has weight at least k.



S. ANALYSIS OF THE NUMBER OF ITER-
ATIONS

In this section, we bound the number of iterations we
should perform to completely decompose the input graph
into MKECSs. First, instead of directly bound it, we con-
sider the number of iterations to find a cut of size less than k
with high probability (say, 299). Specifically, we show that
it can be bounded by O(s?) without forced contraction (Sec-
tion 5.1) and O(log? s) with forced contraction (Section 5.2),
where s is the size of the smaller side of the cut. Then in
Section 5.3, based on these bounds, we argue how to decide
in practice the number of iterations throughout our method.

5.1 Separating Small MKECSs without Forced
Contraction

We bound the number of iterations to find a cut of size less
than k without forced contraction. Let A < k be the edge-
connectivity of the graph. Then from the submodularity of
cuts, there exists a vertex set S* with d(S*) = A that is
minimal with respect to inclusion relation. We note that it
suffices to show that the probability p we separate S™ in one
iteration is 2(1/s%). Indeed, if this holds, then we separate
S* with high probability in O(s?) iterations from Markov’s
inequality.

What we want to compute is the probability that we con-
tract the whole S™ into a single vertex before contracting any
edge in E(S™). The original analysis by Karger [19] bounds
the probability that we find some fixed minimum cut. We
can use a similar approach here. First note that, since any
contraction in V'\ S* does not affect the probability, we can
assume that V consists of S* and another vertex v. Thus,
|E(S*,{v})| = d(S*) = A. Suppose that, in the process of
Karger’s algorithm, S* has been contracted to a set of ver-
tices S of s” vertices without contracting any edge in E(S).
Since G[S™] is A-edge-connected from the minimality of S*,
the vertex set S’ is also A-edge-connected. Hence, we have
at least \s’/2 edges in S’. Therefore, the probability that
we contract an edge in E(S’) in the next step is at most

sy 1 1 2
A2+ d(S*) Qd(s*ﬁrl_“—kl T

Thus, the probability that we find the cut E(S™) is at least
s 2 _ 12 — 1
Hs’:S (1 - s’+2) T (s+2)(s+1) T Q (?2) :

5.2 Separating Large MKECSs with Forced Con-

traction

We use the same notations as in the previous section.
Now, we turn to analyze the probability p that we separate
S* when using forced contraction, and show that p becomes
Q(log -) from Q( 5). Using the same argument as before,

it implies that we separate S* in O(log? s) iterations with
high probability.

We assume s > A since otherwise the analysis in the pre-
vious subsection gives a good bound. Similarly to the pre-
vious subsection, we can assume that V = S§* U {v} for a
vertex v. Since it is hard to analyze the behavior of forced
contraction in general, we first assume that G[S™] forms a
complete graph. In the end of this subsection, we show that
the same argument applies to random graphs and conclude
that p = Q( ) holds for typical cases.

We first observe a connection between Karger’s algorithm
(without forced contraction) on a complete graph and the
Erdés-Rényi model [18], which is a model for generating ran-
dom graphs. In the Erdés-Rényi model, we consider the se-
quence of graphs Go, G, .. '7G(§)’ where Gy is an empty

graph of n vertices, and for each i > 1, we make G; from
G;—1 by randomly picking a pair of vertices (u,v) that are
not adjacent in G;—1 and adding the edge (u,v). In particu-
lar, G(g) is exactly K, where K, is the complete graph of

n vertices.
We construct a subsequence Gy, ..., Gl _1 of Go, ..., G(g)

as follows. We first set G, = Go. Then, we add G; to the se-
quence G, G4, ... when we make G; from G;_1 by adding an
edge between two different connected components in G,;_;.
Let G be the graph obtained from K, by contracting each
connected component in G;. Note that G has exactly n —i
vertices, and it is not hard to see that G(,GY,...,Gn_; is
the graph sequence we observe when executlng Karger’s al-
gorithm on K,,. It is known that, in G, for some constant
¢ > 1/2, the largest connected component has size ©(n) and
the second largest connected component has size O(logn)
with high probability [8]. It means that, for some i, G con-
tains a connected component of size ©(n), and the number
of connected components in G is at least Q(;-2—) with high

probability. In such a case, i = n — Q-2 and Gl _ ()
ogn

logn )
contains a connected component of size ©(n).

Now, we use the connection to analyze the probability p
that we separate S* before contracting any edge in E(S™).
Suppose that we have contracted a constant fraction of ver-
tices U in S™ into one vertex u before contracting any edge
in E(S*). Then, since every vertex in S* \ U has at least
O(s) > X edges to u, the whole S* will be contracted to one
vertex by forced contraction. In the Erdés-Rényi model, this
situation corresponds to the case that the current graph G
has a connected component of size O(s). From the argu-
ment above, this situation happens if we have contracted S*
into O(j;2) vertices before contracting any edge in E(S™).
Similarly to the analysis in Section 5.1, the probability is at

least Hi/:O(s/ log s) (1 Y +2) =0 (log2

Suppose that G[S*] is a random graph with ¢ edges. We
assume t = Q(slog s) to make sure that G[S*] is connected
with high probability [8]. A crucial observation is that the
distribution of G[S*] is the same as the distribution of Gs.
Since G is connected (with high probability), we can define
Go,...,Gl_1 as above and the same argument follows. In
summary, over the choice of G[S™] and the order of edge

contractions, the probability is at least 2 log -

5.3 Deciding Number of Iterations in Practice

Now we argue when to stop our method in practice. Re-
call that we have shown that, with forced contraction, we
can find a cut of size less than k with high probability in
O(log? 5) = O(log®n) iterations. This gives a stopping cri-
teria: if we have not find any new cut of size less than
k during O(log®n) iterations, with high probability (say,
%), the obtained decomposition is the correct decompo-
sition into MKECSs. Thus, we can safely stop our method.
In Section 6, by obtaining correct decompositions using the
criteria, we experimentally show that about 50 iterations
are sufficient in most cases in practice to find all the cuts
(Figure 8).
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Figure 6: The distribution of sizes of MEKECSs for different k’s.
We should not consider the randomized feature of our Table 2: Datasets.
method is disadvantgge. Rath(?r our methoc.l gives a tra.de— Datasot Vortices Edges Type
off between th.e quality of solultlon and the time comple.)x%ty. Arxiv-GrQc 5.042 98,030 Social Graph
The trade-off is rather gOOd since the number of remalining Epinions 75,879 405,740  Social Graph
cuts decreases exponentially, as shown in Section 6 (Fig- IndiaWeb 1,382,908 16,917,053 Web Graph
ure 7). Thus, it takes a little time to figuring out 99% of LiveJournal 4,847,571 68,993,773  Social Graph
cuts, and it would be sufficient for many applications. If we IndochinaWeb 7,414,866 150,984,819 Web Graph
Hollywood 2,180,759 228,985,632 Social Graph

look for a better decomposition, we can keep running our
method from the iterative nature of our method. Further-
more, if our method does not find a new cut during O(log® n)
iterations, we can safely stop our method by concluding that
there is no remaining small cut.

6. EXPERIMENTS

The experiments were conducted on a Linux server with
Intel Xeon X5670 (2.93 GHz) and 48GB of main memory.
The proposed method was implemented in C++ using STL.

6.1 Datasets

We conducted experiments on the real-world networks
specified in Table 2. Basically we use first two smaller
datasets to compare the running time between the proposed
method and the previous method, and next four datasets for
other experiments. The details of datasets are as follows.

Arxiv-GrQc — Arxiv is an on-line archive for preprints of
scientific papers (arxiv.org). This dataset is the network
of collaboration in papers submitted to the general relativ-
ity and quantum cosmology category from January 1993 to
April 2003, where each node represents an author and each
edge represents co-authorship in these papers [22].

Epinions — Epinions is an on-line customer review site
(www.epinions.com). This dataset is the on-line social net-
work in Epinions, where each node represents a user and
each edge represents a trust relationship [24].

IndiaWeb — This dataset is a web graph of web pages

in the .in domain, crawled in 2004. Vertices correspond to
web pages and edges correspond to hyperlinks [7,6].
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LiveJournal — LiveJournal is a free on-line social net-
working website (www.livejournal.com). Each vertex cor-
responds to a member and each edge corresponds to a user-
to-user connection [4].

IndochinaWeb — This dataset is a web graph of web
pages in the country domains of Indochina countries, also
crawled in 2004. Vertices correspond to web pages and edges
correspond to hyperlinks [7,6].

Hollywood — This dataset is a social network of movie
actors. Vertices are actors, and two actors are joined by an
edge if they appeared in a movie together by 2011 [7,6].

6.2 MEKECSs in Real-World Networks

First, we investigate properties of MKECSs and k-core
components in real-world networks to see the importance
of MKECS enumeration. In particular, we show these net-
works contain large k-core components that are not tightly
connected.

6.2.1 Connectivity of k-Core Components

We start with evaluating connectivity of k-core compo-
nents to show the importance of computing MKECSs. We
computed the distribution of sizes of MEECSs and (esti-
mated) edge-connectivity of k-core components that they
belong to (Figure 5). Since it is too expensive to compute
exact edge-connectivity, we instead use upper bounds on it
computed by our method and maximum-flow algorithms.

We can observe that there are a lot of MEECSs that
are embedded in k-core components with edge-connectivity
much lower than k. For example, for the IndiaWeb dataset
with k& = 50, there are approximately thirty MkECSs that
are in k-core components with actual edge-connectivity less
than ten. For the LiveJournal dataset with £ = 50, there is
one big k-core component with edge-connectivity one that
consists of more than sixty MEECSs. Although the number

of k-core components with edge-connectivity less than k is
smaller than the number of k-core components with edge-
connectivity at least k, we can observe that the number of
vertices in former k-core components are much larger than
the number of vertices in latter k-core components. Thus,
we cannot ignore these k-core components just as outliers.
Therefore, we conclude that computing MEECSs instead of
k-core components will lead to better clustering.

6.2.2 Distribution of Subgraph Size

We next show how graphs are decomposed to MEKECSs.
We computed the distribution of sizes of MEKECSs for differ-
ent k’s (Figure 6).

The smaller k£ is, the more MKECSs we have. Since a
subgraph cannot have edge-connectivity larger than its size,
when k increases, small subgraphs disappear and only large
subgraphs remain. It is also the reason why the minimum
size of MEKECSs increases when k increases. On the other
hand, the maximum size decreases when k increases. This
is because these large subgraphs are further decomposed by
the stronger requirement on edge-connectivity.

Note that, in every data set, there are one or a few es-
pecially huge MEECS(s) and many other smaller MKECSs.
This might be explained by the so-called core-fringe struc-
ture of complex networks [10].

6.3 Number of Iterations and Precision

Now, we investigate how our method decomposes a graph
as iterations proceed. We analyze the trade-off between
the number of iterations and precision, and the number of
iterations we need to completely decompose a graph into
MEKECSSs, to show the efficiency of our method and guide
users for determining the number of iterations. We also show
how the forced contraction technique improves the perfor-
mance of our method.
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Table 3: Running time (in seconds)

(a) Comparison with the previous method.

(b) Running time for large datasets.

Dataset k  Zhou et al. [32] Proposed  Speedup
5 374.730 0.030 1.3 x 107
Arxiv-GrQc 7 5.158 0.020 2.6 x 102
10 0.984 0.017 5.9 x 10!
10 1.283 x 10° 1.948 6.6 x 10%
Epinions 20 2.103 x 10 1.084 1.9 x 104
30 2.626 x 103 0.871 3.0 x 103

6.3.1 Number of Remaining Cuts

First, we investigate the trade-off between number of iter-
ations and precision. We counted the number of remaining
cuts to be found against the number of iterations (Figure 7).
We ran the algorithm 100 times and took the average for
each configuration. Note that the algorithm finally answered
the exactly same results for 100 runs.

We can see the number of remaining cuts decreases ex-
ponentially. This is because the probability of successfully
finding a cut in one iteration is constant, and therefore the
probability that we still do not find it decreases exponen-
tially. From this result, we observe that even a small num-
ber of iterations results in a meaningful improvement over
just outputting k-core components.

Also, we can confirm that the forced contraction tech-
nique, which we proposed in Section 4.3, is highly effective.
For example, for the IndiaWeb dataset and the LiveJour-
nal dataset with & = 50, without the forced contraction
technique, the algorithm took approximately 50 and 70 iter-
ations to reach 0.1%. However, with the forced contraction
technique, it took only 5 and 10 iterations.

6.3.2 Number of Iterations to Complete

Second, we see how many iterations the algorithm took to
completely decompose graphs. We drew the distribution of
the number of iterations the algorithm spent to find the last
cut (Figure 8). We ran the algorithm 100 times and drew
the histogram, but again note that it finally answered the
exactly same results for 100 runs. We enabled the forced
contraction technique.

On average, the algorithm took only about three itera-
tions for the IndiaWeb dataset with k& = 50 and six iter-
ations for the LiveJournal dataset with £ = 50. Almost
all executions completely decomposed the graphs within ten
iterations, and we never reached twenty iterations. From
these results, we conclude that we only need a very small
number of iterations to completely decompose graphs.

%
Dataset 10 20 40 80 160 320
TndiaWeb 31 67 3L 3 1T
LiveJournal 1,102 613 215 62 18 9
IndochinaWeb  6.870 5,086 2,799 921 632 586
Hollywood 7.084 6913 5860 4486 2914 1,394

6.3.3 Ratio of Sizes of Contracted Vertices

Finally, we see how the forced contraction technique, which
we proposed in Section 4.3, changes the behavior of the
algorithm. We plotted the ratio of sizes of two vertices
contracted at each step in one iteration (Figure 9). More
precisely, let s(v) be the number of original vertices that
are contracted to vertex v. Then, we plotted the value of
min {s(v), s(w)} /(s(v) + s(w)) where v and w are the ver-
tices contracted at the step. We call s(v) the size of a vertex
v. We used the Arxiv-GrQc dataset and chose k = 10.

The first figure, without the forced contraction technique
(Figure 9a), looks rather random. The range of ratios widens
as the number of steps increases. This is because the maxi-
mum size of a vertex increases.

On the other hand, in the figure with the forced contrac-
tion (Figure 9b), we can see several blue curves. Each curve
represents a process that a vertex that had gained moderate
size by random contraction started to absorb nearby vertices
one after another by forced contraction. This confirms our
explanation in Section 4.3 and the analysis in Section 5.2.

6.4 Running Time

Finally, we see the running time of methods to decompose
graphs into MKECSs. For the previous method, we used the
implementation given by the authors of the method written
in Java. To measure time, we ran the program with the
same configuration ten times and took the average.

6.4.1 Comparison with the Previous Method

First, we compare running time of the proposed method
and that of the previous method [32] (Table 4a). For the pro-
posed method, we enabled the forced contraction technique
and set the number of iterations as ten. We checked that in
all executions the two methods output the same result and
ten iterations were enough.

We can observe that our method outperforms the previous
method by a factor of thousands or even tens of thousands.
In particular, the difference is larger for the larger network
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Figure 10: Running time for large real-world net-
works against various k’s.

because of the difference of time complexity of algorithms.
The difference is also larger for smaller k since the previ-
ous method depends on pruning techniques, which are not
effective for small k. Both the previous method and the pro-
posed method become faster for larger k. This is because the
size of the k-core becomes smaller, and vertices and edges
outside the k-core are irrelevant.

6.4.2 Performance on Large Networks

Next, we measured running time for larger real-world net-
works up to those with hundreds of millions of edges against
various k’s (Table 4b, Figure 10). We enabled the forced con-
traction technique. We set number of iterations as twenty for
the IndiaWeb dataset and the LiveJournal dataset, and we
set it as forty for the IndochinaWeb dataset and the Holly-
wood dataset. We chose these values since, with probability
at least 90%, we can find all cuts as shown in Section 6.3.

It shows that our algorithm has ideal scalability and is
quite efficient even for those very large networks. Similarly
to the previous section, it takes longer time for smaller k
because of the size of the k-core.
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