Optimisation in Multiple View Geometry: The L-infinity Way III - Large-Scale Methods

Anders Eriksson Queensland University of Technology

CVPR 2018 Tutorial

Overview

• L_{∞} and the Structure from Motion Pipeline Rotation Averaging L_{∞} Known Rotation Problem

Pseudo-Convexity Quasi-Convexity recap Other types of Convexity L_∞ and Pseudoconvexity

Carge-Scale Methods for L_∞ Interior-Point Methods Proximal Splitting Methods Resection-Intersection

Structure from Motion Pipeline

Typical Structure-from-Motion Pipeline.

Structure from Motion Pipeline

The L_{∞} formulation can solve core subproblems in the Structure-from-Motion (SfM) pipeline.

- Estimate Camera Pose
- Estimate 3D points
- Rotation Averaging + Known Rotation Problem

Estimate Camera Orientation

- Estimate relative (pairwise) rotation (Epipolar Geometry)
- Pind absolute rotations (Rotation Averaging)
- Solve the Known Rotation Problem

Estimating Relative Rotation

• Use epipolar geometry estimate relative rotations between all camera pairs

• Centroid:

$$\min_{x} \sum_{i=1}^{N} ||\hat{x}_i - x||_2^2$$

mean (or average) of the points

• (Single) Rotation Averaging

$$\min_{R \in SO(3)} \sum_{i=1}^{N} ||\hat{R}_i - R||^2$$

• (Multiple) Rotation Averaging

$$\min_{R_i \in SO(3)} \sum_{ij=1}^{N} ||R_i \hat{R}_{ij} - R_j||^2$$

(Also known as Rotation Synchronization)

Determine absolute camera rotations from pairwise relative measurements.

$$R_i R_{ij} = R_j, \quad \forall (i,j) \in \mathcal{N}$$

Determine absolute camera rotations from pairwise relative measurements.

$$\underset{R_1,\ldots,R_n}{\arg\min}\sum_{(i,j)\in\mathcal{N}} d(R_i\tilde{R}_{ij},R_j)^p,$$

where $p \ge 1$ and $d(\cdot, \cdot)$ is a distance function.

Determine absolute camera rotations from pairwise relative measurements.

(P)
$$\underset{R_i \in SO(3)}{\arg\min} \sum_{(i,j) \in \mathcal{N}} ||R_i \tilde{R}_{ij} - R_j||_F^2$$
, (chordal distance)

(P) is a non-convex problem.

A number of methods exist for solving this problem:

- efficiently [8]
- robustly [6]
- globally [1]*

*Rotation Averaging and Strong Duality Anders Eriksson, Carl Olsson, Fredrik Kahl and Tat-Jun Chin. CVPR 2018. Oral Session Tues 8:50am Room 255

L_{∞} Known Rotation Problem

Solve:

$$\min_{\{t,x\}\in\mathcal{C}} \max_{j,k} \left\| u_{j,k} - \frac{R_j^{1:2}x_k + t_j^{1:2}}{R_j^3 x_k + t_j^3} \right\|_p \quad \text{(KRot)}$$
with $\mathcal{C} = \left\{ x, t \mid R_j^3 x_k + t_j^3 > 0, \quad \forall j, k \right\}$

- Directly solvable in using L_{∞} formulation
- Potentially a large-scale problem, (no. cameras and 3D-points)

Structure from Motion Pipeline

The L_{∞} formulation can solve core subproblems in the Structure-from-Motion (SfM) pipeline.

- Rotation Averaging
- *L*_∞ Known Rotation Problem, ℝ^{3(m+n)} (m:cams and n:3D-pts)

How to solve this potentially Large-Scale problems in practise?

Overview

1 L_{∞} and the Structure from Motion Pipeline Rotation Averaging L_{∞} Known Rotation Problem

Pseudo-Convexity Quasi-Convexity recap Other types of Convexity L_∞ and Pseudoconvexity

Large-Scale Methods for L_∞ Interior-Point Methods Proximal Splitting Methods Resection-Intersection

Quasiconvex Function

A function *f* is *quasiconvex* if its sublevel sets $S_{\alpha}(f) = \{x | f(x) \le \alpha\}$ are convex for all α .

Geometric Projection Error

The Geometric Projection Error is a quasiconvex function.

• The sum of quasiconvex functions is not necessarily a convex or quasiconvex function.

• The pointwise maximum of quasiconvex functions is a quasiconvex function.

```
Proof:
If f(x) = \max_i f_i(x) then S_{\alpha}(f) = \bigcap_i S_{\alpha}(f_i).
```


Intersection of convex sets is convex.

• Instead of minimizing the sum of the squared reprojection error

$$\min_{X} \sum_{i=1}^{N} \frac{f_i(X)^2 + g_i(X)^2}{\lambda_i(X)^2}$$

minimize the largest reprojection error

$$\min_{X} \max_{i} \left\| \frac{[f_{i}(X), g_{i}(X)]}{\lambda_{i}(X)} \right\|_{p}$$

• also written as

$$\min_{X} \left\| \frac{[f_{i}(X), g_{i}(X)]}{\lambda_{i}(X)} \right\|_{p, \infty}$$

Solve:

 $\min_{x} \max_{i} f_i(x)$

Alternatively:

 $\begin{array}{ll} \min_{x,s} & s\\ \text{s.t.} & f_i(x) \leq s, \quad \forall i \end{array}$

- A convex problem for fixed s.
- Find the smallest *s* such that the intersection $f_i(x) \le s$ is not empty.

Solve:

 $\begin{array}{ll} \min_{x,s} & s\\ \text{s.t.} & f_i(x) \leq s, \quad \forall i \end{array}$

- A convex problem for fixed s.
- Find the smallest *s* such that the intersection is not empty.
- Solve using i.e. bisection (more clever algorithms for updating *s* can be applied, Brent's method, Dinkelbach's algorithm, Gugat's algorithm)
- + Root-Finding is guaranteed to find the global minima.
- Need to solve a feasibility problem at each iteration.

Quasi-Convexity

A quasiconvex with several stationary points.

- + Guaranteed to find global minima.
- Need to solve a feasibility problem at each iteration.
- Slow
- Can have several local minima and saddlepoints ($\nabla f = 0$) \Rightarrow Using standard optimization algorithms will not guarantee global optimality

Other types of Convexity

Definition (Pseudo-Convexity)

f is called pseudoconvex if *f* is differentiable and whenever $\nabla f(\bar{x})(x-\bar{x}) \ge 0$ we also have that $f(x) \ge f(\bar{x})$.

(Pseudoconvex \Rightarrow Quasiconvex)

Lemma

If f is pseudoconvex, then $\nabla f(\bar{x}) = 0$ *if and only if* $f(x) \ge f(\bar{x})$ *for all x.*

Quasiconvex vs Pseudoconvex

A quasiconvex (but not pseudoconvex) function

- Can not be solved using a local solver

A pseudoconvex function. + Can be solved using a local solver

L_{∞} and Pseudoconvexity

In [13] it was shown that

$$f(x) = \frac{\left\| [a_1^T x + b_1, a_2^T x + b_2] \right\|^2}{(a_3^T x + b_3)^2}$$

is in fact a pseudoconvex function on $S = \{x | a_3^T x + b_3 > 0\}$.

max_i of Pseudoconvex Functions

Theorem (see [13])

If $f_i(x)$ are pseudoconvex functions then a stationary (or KKT) point of

$$\min_{X} \|f_i(X)\|_{\infty} \quad or \quad \min_{X,s} s$$

s.t. $f_i(x) \le s, \quad \forall i$

will also be a global minima.

Opens up L_{∞} problems to a whole world of non-linear solvers.

Solving L_{∞} using Local Methods

LOQO an interior point algorithm for general non-convex problems.

	bisection	LOQO
Triangulation:		
5 cameras	1.23	.00281
10 cameras	1.38	.00358
20 cameras	1.29	.00645
30 cameras	1.36	.00969
Homography:		
10 points	1.05	.00816
20 points	1.17	.0128
30 points	1.22	.0193
Resectioning:		
10 points	.823	.0128
20 points	.994	.0287
30 points	1.04	.0418

Average execution times (s).

LOQO 50-100 times faster than bisection on smaller problems

Pseudo-Convexity - Summary

- *L*_∞ problems are **pseudoconvex**.
- Stationary points of pseudoconvex functions are global minima.
- Local methods can be used to solve our *L*_∞-problems.

Overview

• L_{∞} and the Structure from Motion Pipeline Rotation Averaging L_{∞} Known Rotation Problem

Pseudo-Convexity Quasi-Convexity recap Other types of Convexity L_∞ and Pseudoconvexity

Carge-Scale Methods for L_∞ Interior-Point Methods Proximal Splitting Methods Resection-Intersection

Three Algorithms for Large-Scale L_{∞} Optimization

Interior-Point method

- Pseudo-Convex Proximal Splitting
- Block Coordinate Descent

Overview

1 L_{∞} and the Structure from Motion Pipeline

Rotation Averaging L_{∞} Known Rotation Problem

2 Pseudo-Convexity

Quasi-Convexity recap Other types of Convexity L_{∞} and Pseudoconvexity

S Large-Scale Methods for L∞ Interior-Point Methods

Proximal Splitting Methods Resection-Intersection

 $\min_{x} f(x)$ s.t. $c_i(x) \le 0,$ $i \in 1, ..., m$

- A class of algorithms for non-linear constrained optimization problems
- A standard formulation using barrier functions and Newton's algorithm

$$\min_{x} f(x)$$

s.t. $c_i(x) \le 0$,
 $i \in 1, ..., m$

Recall our L_{∞} -problem:

$$\begin{array}{l} \min_{x} & s \\ \text{s.t.} & f_{i}(x) - s \leq \mathsf{o}, \\ & i \in \mathsf{1}, ..., m \end{array}$$

1 - Interior-Point Methods cont.

$$\min_{x} f(x)$$
s.t. $c_i(x) - w = 0,$

$$w \ge 0,$$

$$i \in 1, ..., m$$

$$\min_{x} f(x) - \mu \sum_{i=1}^{m} \log w$$

s.t. $c_i(x) - w = 0,$
 $i \in 1, ..., m$

$$\min_{x} f(x) - \mu \sum_{i=1}^{m} \log w + \lambda^{T} (c_{i}(x) - w)$$

 λ Lagrangian multipliers

Slide 29/56

$$\min_{x} f(x) - \mu \sum_{i=1}^{m} \log w + \lambda^{T} (c_{i}(x) - w)$$

 λ Lagrangian multipliers

Set gradient to o

$$abla f(x) -
abla c(x) = 0$$

 $-\mu W^{-1}e + \lambda = 0$
 $c(x) - w = 0$

Set gradient to o

$$abla f(x) -
abla c(x) = 0$$

 $-\mu W^{-1}e + \lambda = 0$
 $c(x) - w = 0$

Solve using Newton's method

- A local method
- Well-studied and understood method
- LOQO has numerical issues for large problems
- Specialized Interior Point Methods for L_{∞} problems has been proposed [3]
- Faster than bisection

Overview

1 L_{∞} and the Structure from Motion Pipeline

Rotation Averaging L_{∞} Known Rotation Problem

2 Pseudo-Convexity

Quasi-Convexity recap Other types of Convexity L_{∞} and Pseudoconvexity

Large-Scale Methods for L_∞
 Interior-Point Methods
 Proximal Splitting Methods
 Resection-Intersection

2 - Proximal Splitting Methods [4]

- Approach based on Proximal Splitting methods (ADMM)
- Very simple to implement
- Efficient for Large-Scale problems

Alternating Direction Method of Multipliers - (ADMM)

Solve:

min
$$f(x) + g(z)$$

s.t. $Ax + Bz = c$

Augmented Lagrangian:

$$L_{\rho}(x, z, y) = f(x) + g(z) + y^{T}(Ax + Bz - c) + (\rho/2)||Ax + Bz - c||_{2}^{2}$$

ADMM:

$$\begin{aligned} x_{k+1} &= \arg\min_{x} L_{\rho}(x, z_{k}, y_{k}) & // \text{x-minimization} \\ z_{k+1} &= \arg\min_{z} L_{\rho}(x_{k+1}, z, y_{k}) & // \text{z-minimization} \\ y_{k+1} &= y_{k} + \rho(Ax_{k+1} + Bz_{k+1} - c) & // \text{dual update} \end{aligned}$$

Known Rotation Problem

Solve:

$$\min_{\{t,x\}\in\mathcal{C}} \max_{j,k} \left\| u_{j,k} - \underbrace{\frac{R_j^{1:2} x_k + t_j^{1:2}}{R_j^3 x_k + t_j^3}}_{\Pi_j(x_k)} \right\|_p$$
(KRot)

with
$$C = \left\{ x, t \mid R_j^3 x_k + t_j^3 > 0, \forall j, k \right\}$$

More Compact:

$$\min_{\{t,x\}\in\mathcal{C}} \|u_{j,k} - \Pi_j(x_k)\|_{p,\infty}$$
(KRot)

$$\left(Note: \min_{\{t,x\} \in \mathcal{C}} \quad \left\| u_{j,k} - \Pi_j(x_k) \right\|_2^2 \quad (\mathcal{L}_2 \to \mathsf{Bundle Adjustment})$$

Slide 33/56

QUT

Known Rotation Problem - cont.

$$\min_{\substack{\{t,x\}\in\mathcal{C}\\ \text{s.t.}}} \|Z\|_{\rho,\infty}$$
(KRot)
s.t. $Z_{j,k} = u_{j,k} - \Pi_j(x_k)$

Lagrangian:

$$L(x, Z, y) = \|Z\|_{\rho, \infty} + y^{T} (u - Z - \Pi(x)) + \frac{\rho}{2} \|u - Z - \Pi(x)\|_{2}^{2} =$$

= $\|Z\|_{\rho, \infty} + \frac{\rho}{2} \left\|\frac{1}{\rho}y + u - Z - \Pi(x)\right\|_{2}^{2}$

Known Rotation Problem - cont.

Lagrangian:

$$L(x,Z,y) = \left\|Z\right\|_{p,\infty} + \frac{\rho}{2} \left\|\left(\frac{1}{\rho}y + u - Z\right) - \Pi(x)\right\|_{2}^{2}$$

Apply ADMM:

$$\begin{cases} x_{k+1} = \arg\min_{x} L_{\rho}(x, Z_{k}, y_{k}) = \arg\min_{x} \left\| \left(\frac{1}{\rho} y_{k} + u - Z_{k} \right) - \Pi(x) \right\|_{2}^{2} = \\ = \arg\min_{x} \left\| \hat{u}_{k} - \Pi(x) \right\|_{2}^{2} // x \text{-minimization} \\ Z_{k+1} = \arg\min_{z} L_{\rho}(x_{k+1}, Z, y_{k}) = \|Z\|_{p,\infty} + \frac{\rho}{2} \| \left(\frac{1}{\rho} y_{k} + u - \Pi(x_{k+1}) \right) - Z \|_{2}^{2} = \\ = \|Z\|_{p,\infty} + \frac{\rho}{2} \| \hat{w}_{k} - Z \|_{2}^{2} // Z \text{-minimization} \\ y_{k+1} = y_{k} + \rho(u - Z_{k+1} - \Pi(x_{k+1})) // \text{ dual update} \end{cases}$$

Subproblem in x

Solve:

$$\begin{aligned} x_{k+1} &= \arg\min_{x} \left\| \hat{u}_{k} - \Pi(x) \right\|_{2}^{2} \text{ // x-minimization} \\ \hat{u}_{k} &= \left(\frac{1}{\rho} y_{k} + u - Z_{k} \right) \end{aligned}$$

- Least squares minimization.
- Solve using Bundle Adjustment ...
- ... but now with respect to the modified image points $\hat{u_k}$.
- Not necessary to solve exactly.

Subproblem in Z

To solve the subproblem in Z we will solve problems on the form

$$Z_{k+1} = \|Z\|_{\rho,\infty} + \frac{\rho}{2} \left\| \hat{w}_k - Z \right\|_2^2 // \text{Z-minimization}$$
$$\hat{w}_k = \frac{1}{\rho} y_k + u - \Pi(x_{k+1})$$

A convex problem in $Z \Rightarrow$ solve the problem in the dual

$$\begin{array}{ll} \underset{S}{\operatorname{argmax}} & -\frac{1}{2}||S||_{F}^{2}+< S, w_{k}>,\\ \text{s.t.} & ||S||_{q,1}\leq \frac{1}{\rho}. \end{array}$$

where $||\cdot||_q$ is the dual norm of $||\cdot||_p$, i.e. $\frac{1}{p} + \frac{1}{q} = 1$.

Subproblem in Z - cont.

// Z-minimization ($Z_{k+1} = w_k - S^*$)

$$egin{array}{lll} S^* = rgmin_S & rac{1}{2}||S-w_k||_F^2 \ ext{ s.t. } & ||S||_{q,1} \leq rac{1}{
ho} \end{array}$$

The related (regularized) problem

$$S_{\theta}^{*} = \arg\min_{S} \frac{1}{2} ||S - W_{k}||_{F}^{2} + \theta(||S||_{q,1} - \frac{1}{\rho}) = \arg\min_{S} \frac{1}{2} ||S - W_{k}||_{F}^{2} + \theta||S||_{q,1}$$

- We know that there must exist a θ such that $S^*_\theta \leq \frac{1}{\rho}$ and hence $S^* = S^*_\theta$
- How do we find it?

Turns out that S^*_{θ} has a very simple closed form solution...

Subproblem in Z - cont.

It can be shown that for p = 2 the solution is obtained by

$$S_{\theta}^* = \max(1 - \frac{\theta}{||w_k||_F}, 0) \odot w_k$$

A similar expressions also exists for p = 1, and $p = \infty$

- θ a scalar
- Find the θ for which $S_{\theta}^* = \frac{1}{\rho}$ \Leftrightarrow find a root of $g(\theta) = S_{\theta}^* - \frac{1}{\rho}$
- Very simple and efficient root-finding algorithm exists
- Solution is then given by $(Z_{k+1} = w_k S_{\theta}^*)$

Pseudo-Convex Proximal Splitting

Initialize:
$$x^{0}, y^{0}, Z^{0}, k = 0$$

Repeat
• $\hat{u}_{k} = \left(\frac{1}{\rho}y_{k} + u - Z_{k}\right)$
• $x_{k+1} = \arg\min_{x} \left\|\hat{u}_{k} - \Pi(x)\right\|_{2}^{2}$ // x-update (n steps of BA)
• $\hat{w}_{k} = \frac{1}{\rho}y_{k} + u - \Pi(x_{k+1})$
• $Z_{k+1} = \|Z\|_{\rho,\infty} + \frac{\rho}{2} \left\|\hat{w}_{k} - Z\right\|_{2}^{2}$ // Z-update (solve $S_{\theta} - \frac{1}{\rho} = 0$)
• $y_{k+1} = y_{k} + \rho(u - Z_{k+1} - \Pi(x_{k+1}))$ // dual update
• update ρ
• $k=k+1$

Until convergence

Input: u, R

(note: add 2 lines of code to Bundle Adjustment)

Pseudo-Convex Proximal Splitting

- A Meta-Algorithm
- Simple to implement
- Seamlessly transition between different residual norms
- Converges to a global minima
- Efficient

Overview

1 L_{∞} and the Structure from Motion Pipeline

Rotation Averaging L_{∞} Known Rotation Problem

2 Pseudo-Convexity

Quasi-Convexity recap Other types of Convexity L_{∞} and Pseudoconvexity

3 Large-Scale Methods for L_{∞}

Interior-Point Methods Proximal Splitting Methods Resection-Intersection

3 - Resection-Intersection [14]

[14] A Fast Resection-Intersection Method for the Known Rotation Problem. Q. Zhang, T.-J. Chin, H. Le. CVPR 2018.

- A fast algorithm for solving the L_{∞} Known Rotation Problem.
- A first order method (Gradient descent)
- Parallelizable

Known Rotation Problem

Solve:

$$\min_{\{t,x\}\in\mathcal{C}} \max_{j,k} \left\| u_{j,k} - \frac{R_j^{1:2}x_k + t_j^{1:2}}{R_j^3 x_k + t_j^3} \right\|_p$$
(KRot with $\mathcal{C} = \left\{ x, t \mid R_j^3 x_k + t_j^3 > 0, \forall j, k \right\}$ Observation:

• For fixed *x_k* (KRot) is separable, i.e. we can solve for *t_j* (Resectioning) separately for each camera

$$\min_{t_j} \max_{k} \left\| u_{j,k} - \frac{R_j^{1:2} x_k + t_j^{1:2}}{R_j^3 x_k + t_j^3} \right\|_p$$
(Resectioning)

• For fixed *t_j* (KRot) is separable, i.e. we can solve for *x_k* (Intersection) separately for each 3D point,

$$\min_{x_k} \quad \max_{j} \left\| u_{j,k} - \frac{R_j^{1:2} x_k + t_j^{1:2}}{R_j^3 x_k + t_j^3} \right\|_p \tag{Intersection}$$

Resection-Intersection - Subproblems

Known-Rotation problem

$$\min_{\{t,x\}\in\mathcal{C}} \max_{j,k} \left\| u_{j,k} - \frac{R_j^{1:2} x_k + t_j^{1:2}}{R_j^3 x_k + t_j^3} \right\|_p$$
(KRot)

Resulting (separable) subproblems on the form:

$$\begin{array}{ll} \min_{y \in \mathbb{R}^3} & \max_i r_i(y) \\ \text{s.t.} & c_i^T y + d_i > 0 \ \forall i, \end{array}$$
 (sub)

$$r_i(y) = \frac{\|A_iy + b_i\|_p}{c_i^T y + d_i}$$

note: subproblems in \mathbb{R}^3

Solving Subproblems

$$\min_{y \in \mathbb{R}^3} \quad \max_i \frac{\|A_i y + b_i\|_p}{c_i^T y + d_i}$$
 (sub)
s.t. $c_i^T y + d_i > o \quad \forall i,$

[SolveSub]

Input: $\{A_i, b_i, c_i, d_i\}_{i=1}^N$, initial solution \hat{y} .

Repeat

- $\lambda \leftarrow$ Find descent direction using data and \hat{y} (minimum closing ball (MEB))
- $\alpha \leftarrow$ Find step size using data, \hat{y} and λ
- Update estimate: $\hat{y} \leftarrow \hat{y} + \alpha \lambda$

Until convergence

Resection-Intersection

[Main Algorithm]

Input: $\{R_j\}_{j=1}^{L}, \{u_{j,k}\}_{j=1,k=1}^{L,M}$. Initialise: $\{t_j\}_{j=1}^{L}$ and $\{x_k\}_{k=1}^{M}$. Repeat

- For each k = 1, ..., M, update x_k via [SolveSub].
- For each j = 1, ..., L, update t_j via [SolveSub].

Until convergence

Resection-Intersection - Summary

- First-order method (Block Gradient Descent)
- Problem is separable in *t* and *x*
- Subproblems small \mathbb{R}^3
- Efficient methods for finding descent directions and step-sizes
- Very fast

Algorithms - Summary

- Interior-Point methods
- Pseudo-Convex Splitting
- Resection-Intersection

Algorithms - Convergence Rate

- Interior-Point methods
- Pseudo-Convex Splitting
- Resection-Intersection

Algorithms - Simplicity

- Pseudo-Convex Splitting
- Resection-Intersection
- Interior-Point methods

Algorithms - Speed

- Resection-Intersection
- Interior-Point methods
- Pseudo-Convex Splitting

Conclusions

- L_{∞} and the Structure from Motion Pipeline
- Rotation Averaging & the Known Rotation Problem
- Pseudo-Convexity of L_{∞} formulations
- Three methods for large-scale L_{∞} optimization

References I

- F. K. Anders Eriksson, Carl Olsson and T.-J. Chin. Rotation averaging and strong duality. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
- [2] K. Åström, O. Enqvist, C. Olsson, F. Kahl, and R. Hartley. An I_∞ approach to structure and motion problems in 1d-vision. In International Conference on Computer Vision, 2007.
- [3] Z. Dai, Y. Wu, F. Zhang, and H. Wang.
 A novel fast method for I_∞ problems in multiview geometry.
 In Computer Vision ECCV 2012 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V, pages 116–129, 2012.
- [4] A. Eriksson and M. Isaksson.
 Pseudoconvex proximal splitting for I_∞ problems in multiview geometry.
 In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4066–4073, June 2014.
- M. Farenzena, A. Fusiello, and A. Dovier. Reconstruction with interval constraints propagation. In Proc. Conf. Computer Vision and Pattern Recognition, pages 1185–1190. New York City, USA, 2006.
- [6] R. Hartley, K. Aftab, and J. Trumpf. L1 rotation averaging using the weiszfeld algorithm. In CVPR 2011(CVPR), volume 00, pages 3041–3048, 06 2011.

References II

- [7] R. Hartley and F. Schaffalitzky. L_{∞} minimization in geometric reconstruction problems. pages 504–509, 2004.
- [8] R. Hartley, J. Trumpf, Y. Dai, and H. Li. Rotation averaging. International Journal of Computer Vision, 103(3):267–305, Jul 2013.
- [9] F. Kahl and R. I. Hartley. Multiple-view geometry under the I∞-norm. IEEE Trans. Pattern Anal. Mach. Intell., 30(9):1603–1617, 2008.
- Q. Ke and T. Kanade.
 Uncertainty models in quasiconvex optimization for geometric reconstruction.
 In Proc. Conf. Computer Vision and Pattern Recognition, pages 1199 1205. New York City, USA, 2006.
- [11] Q. Ke and T. Kanade. Quasiconvex optimization for robust geometric reconstruction. *IEEE Trans. Pattern Anal. Mach. Intell.*, 29(10):1834–1847, 2007.
- [12] H. Li. A practical algorithm for I_∞ triangulation with outliers. In Proc. Conf. Computer Vision and Pattern Recognition. Minneapolis, USA, 2007.
- [13] C. Olsson, A. Eriksson, and F. Kahl. Efficient optimization for I_∞ problems using pseudoconvexity. In *IEEE International Conference on Computer Vision (ICCV)*, Rio de Janeiro, Brazil, 2007.

References III

[14] H. L. Q. Zhang, T.-J. Chin.

A fast resection-intersection method for the known rotation problem.

In Proc. Conf. Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018.

[15] K. Sim and R. Hartley.
 Recovering camera motion using the L_∞-norm.
 In Proc. Conf. Computer Vision and Pattern Recognition, pages 1230–1237. New York City, USA, 2006.

[16] K. Sim and R. Hartley. Removing outliers using the L∞-norm. In Proc. Conf. Computer Vision and Pattern Recognition, pages 485–492. New York City,

USA, 2006.

