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Structure from Motion Pipeline
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Typical Structure-from-Motion Pipeline.
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Estimate Camera
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The L., formulation can solve core subproblems in the
Structure-from-Motion (SfM) pipeline.

® Estimate Camera Pose
(ell)}

e Estimate 3D points
e Rotation Averaging + Known Rotation Problem




Estimate Camera Orientation

@ Estimate relative (pairwise) rotation (Epipolar Geometry)
@ Find absolute rotations (Rotation Averaging)
©® Solve the Known Rotation Problem

QUT
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Estimating Relative Rotation

e

e Use epipolar geometry estimate relative rotations between
all camera pairs

QUT
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Rotation Averaging

e Centroid:
. il N 2
mjn 31—
mean (or average) of the points
e (Single) Rotation Averaging

-
T ZHR’ A v\\

ReSO(3) L

e (Multiple) Rotation Averaging

min RiRji — Ri||?
i )U21||,,, il

(Also known as Rotation Synchronization)
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Rotation Averaging
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Determine absolute camera rotations from pairwise relative
measurements.

RiRj=R;, V(i,j) e N

Slide 7/56



Rotation Averaging

Reference 3 Reference 1

s Ny
H -

M.
M, _ Reference 2
s —>
Reference World«
v reference
system
Moy . Reference 3
M,, Reference n \ ‘

M
Reference 2 " Referencen

L

K“;

Determine absolute camera rotations from pairwise relative

measurements.
argmin Z d(R,-.T?,j,Rj)p,
RiverRo (i) el
where p >1and d(-,-) is a distance function.

Slide 7/56



Rotation Averaging

Reference 3 Reference 1

s Ny
H -

M.
M, _ Reference 2
s —>
Reference World«
v reference
system
Moy . Reference 3
M,, Reference n \ ‘

M
Reference 2 " Referencen

L

K“;

Determine absolute camera rotations from pairwise relative
measurements.

(P) argmin Y [|RR;j—R||z, (chordal distance)
R,ESO(3)(,'J)6N

(P) is @a non-convex problem.
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Rotation Averaging

Reference 3 Reference 1

N ey
H -
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Reference World
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A number of methods exist for solving this problem:
o efficiently [8]
® robustly [6]
e globally [1]*

“Rotation Averaging and Strong Duality
Anders Eriksson, Carl Olsson, Fredrik Kahl and Tat-Jun Chin. CVPR 2018.

Oral Session Tues 8:50am Room 255

QUT
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L. Known Rotation Problem

Solve:

R}:Zxk + tj’_liz
H (KRot)

min max Hu;kfi
/ R}3Xk+t'/3 P

{txtec  jk

with € = {x,t R3¢+ 83 > o, Vj,k}

e Directly solvable in using L., formulation

® Potentially a large-scale problem, (no. cameras and
3D-points)

QUT
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Estimate Camera
Poses

Structure from Motion Pipeline

Image Matching
e P
i

Input Images Feature Extraction
. — b i
, EL !l

Triangulate 3D
points

Bundle Adjustment

Uttersy

Nonlinear
optimization with
Ceres Solver

The L., formulation can solve core subproblems in the
Structure-from-Motion (SfM) pipeline.

® Rotation Averaging
e [.. Known Rotation Problem, R3(™*+") (m:cams and
(ell)}
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n:3D-pts)
How to solve this potentially Large-Scale problems in practise?
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Quasi-Convexity - recap

Quasiconvex Function

A function f is quasiconvex if its sub-
level sets S (f) = {x [f(x) < a} are
convex for all .

144

o] f@)? + g(an)2
. . . : Az)
Geometric Projection Error !
The Geometric Projection Error is a feo 3:
quasiconvex function. 041

024
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Quasi-Convexity - recap

® The sum of quasiconvex functions is not necessarily a
convex or quasiconvex function.

® The pointwise maximum of quasiconvex functions is a
quasiconvex function.

Proof:

If f(x) = max;fi(x) then So.(f) = N; Sa(fi)-

e (F) —,

Intersection of convex sets is convex.

QUT
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Quasi-Convexity - recap

® |nstead of minimizing the sum of the squared reprojection

error
mln Zfl(x +8i(X)?
Ai(X)?
® minimize the largest reprojection error
. [i(x).8: ()]
$d mf“x x(x H
® also written as
[fi(X).&X)]
min
X ‘ 7\4(X) p,oo

QUT
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Quasi-Convexity - recap

Solve:
mXin miaxﬁ(x)
Alternatively:
min S

X,S

st filx)<s, Vi

e A convex problem for fixed s.

¢ Find the smallest s such that the intersection fj(x) < s is not
empty.

QUT
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Quasi-Convexity - recap

Solve:
min S a
X,S |/

st filx)<s, Vi [/

® A convex problem for fixed s.
® Find the smallest s such that the intersection is not empty.

® Solve using i.e. bisection (more clever algorithms for
updating s can be applied, Brent's method, Dinkelbach's
algorithm, Gugat's algorithm)

Root-Finding is guaranteed to find the global minima.
- Need to solve a feasibility problem at each iteration.

QUT
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Quasi-Convexity

min S
X,S

y

st. filx)<s, Vi

A quasiconvex with several stationary points.

Guaranteed to find global minima.
- Need to solve a feasibility problem at each iteration.
- Slow

- Can have several local minima and saddlepoints (Vf = 0)
= Using standard optimization algorithms will not
guarantee global optimality

QUT
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Other types of Convexity

’—‘ Strict Convexity }—l

Strict Pseudoconvexity

Strong Quasiconvexity

Comvesity |

Pseudoconvexity

Strict Quasiconvexity

Quasiconvexity

Definition (Pseudo-Convexity)

f is called pseudoconvex if f is differentiable and whenever
Vf(X)(x —X) > o we also have that f(x) > f(x).

(Pseudoconvex = Quasiconvex)

Lemma
If f is pseudoconvex, then Vf(x) = o if and only if f(x) > f(x) for all x.

QUT
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Quasiconvex vs Pseudoconvex

1 2 3 4 5

A quasiconvex (but not pseudoconvex)
function
- Can not be solved using a local solver

1 2 3 4 s

A pseudoconvex function.
+ Can be solved using a local solver
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L. and Pseudoconvexity

1.4
L F(@)2 + g(x)?
’ A(x)?
.
f(x) 0.8
0.6
0.4
0.2+
2 4 6 8 10

In [13] it was shown that

2

H[a[erbha;erbz]

) (alx+bs)?

is in fact a pseudoconvex function on S = {x|ajx + b3 > o}.

QUT
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max; of Pseudoconvex Functions

Theorem (see [13])
If fi(x) are pseudoconvex functions then a stationary (or KKT) point of

min S
min (G001,
st fi(x)<s, Vi

will also be a global minima.

Opens up L., problems to a whole world of non-linear solvers.

QUT
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Solving L. using Local Methods

LOQO an interior point algorithm for general non-convex problems.

bisection LOQO
Triangulation:

5 cameras 1.23 .00281
10 cameras 1.38 .00358
20 cameras 1.29 .00645
30 cameras 1.36 .00969

Homography:

10 points 1.05 .00816

20 points 117 .0128

30 points 1.22 .0193

Resectioning:

10 points .823 .0128

20 points .994 .0287

30 points 1.04 .0418

Average execution times (s).

® | OQO 50-100 times faster than bisection on smaller problems QUT
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Pseudo-Convexity - Summary

1.41
1.2

f(x) 0.8
0.6

0.4
025

f(@)2 4 g(x)?

A(z)2

® [, problems are pseudoconvex.

¢ Stationary points of pseudoconvex functions are global minima.

® Local methods can be used to solve our L.-problems.

QUT
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Overview

© Large-Scale Methods for L.
Interior-Point Methods
Proximal Splitting Methods
Resection-Intersection
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Three Algorithms for Large-Scale L.
Optimization

© Interior-Point method
® Pseudo-Convex Proximal Splitting
® Block Coordinate Descent

QUT
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Overview

© L. and the Structure from Motion Pipeline

@ Pseudo-Convexity

© Large-Scale Methods for L.
Interior-Point Methods

QUT
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1 - Interior-Point Methods

min f(x)
s.t. ¢i(x) <o,
i€,....m

® A class of algorithms for non-linear constrained
optimization problems

e A standard formulation using barrier functions and
Newton'’s algorithm

QUT
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1 - Interior-Point Methods

min f(x)
s.t. ¢i(x) <o,
i€e1,...m

Recall our L.-problem:
min s
X
s.t. filx)—s<o,
i€e1,...m

QUT
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1 - Interior-Point Methods cont.

min  f(x)

X

s.t. ¢(x)—w=o,
w > o,
i€1,..,m

QUT
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1 - Interior-Point Methods

m
mXin f(x)f,uZ|ogW
i=1
s.t. ci(x) 0,

7W:
i€1,...,m

Letu—o0

plog(w)

QUT
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1 - Interior-Point Methods

min f(x) —,uilogW—!—?»T(C/(X) —w)

i=1

A Lagrangian multipliers

QUT
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1 - Interior-Point Methods

min f(x) —,uilogW—!—?uT(C/(X) —w)

i=1

A Lagrangian multipliers

Set gradient to o

Vf(x)—Vc(x) =0
—uW'e+A =0
cx)—w=o

QUT
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1 - Interior-Point Methods

Set gradient to o

Vf(x)—Vc(x) =0
—uWle+A=0
cx)—w=o

Solve using Newton’s method

Alocal method
Well-studied and understood method
LOQO has numerical issues for large problems

® Specialized Interior Point Methods for L., problems has
been proposed [3]

e Faster than bisection QUT
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Overview

© L. and the Structure from Motion Pipeline

@ Pseudo-Convexity

© Large-Scale Methods for L.

Proximal Splitting Methods
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2 - Proximal Splitting Methods [4]

e Approach based on Proximal Splitting methods (ADMM)
® Very simple to implement
e Efficient for Large-Scale problems

QUT
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Alternating Direction Method of Multipliers -
(ADMM)

Solve:

min f(x) +g(2)
st. Ax+Bz=c

Augmented Lagrangian:

Lo(x,2.y) =f(x) +&(2) +y" (Ax+ Bz — ) +(p/2)||Ax+ Bz —c|f3

ADMM:
Xk = argminy Lo(X, 2k, ,Yk) // x-minimization
Zypa = argmin, Lo(Xksq,2,Yk) // z-minimization
Vi1 =Yk + P(AXyyr + BZjy1 — C) // dual update

QUT
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Known Rotation Problem

Solve:
1:2 1:2
Rj Xk + tj

RJ-SXk + tj3 HP
—_————
M (xk)

min maxHWk——
{tx}eC Ji.k ’

with C = {x,t IR+ >0, Vj,k}
More Compact:

(nin s = 5000 e

(KRot)

(KRot)

(Note . min l|ujk— I‘Ij(xk)Hz (L, — Bundle Adjustment) )

{tx}eC

QUT
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Known Rotation Problem - cont.

min  [|Z]|,.
{txtec (KRot)
s.t. Zj,k =Ujk— I‘Ij(xk)

Lagrangian:

L ZY) =12+ (=2 =100 + 2 lu = Z= (0|3 =

2

}
= 12+ 2 pr+u—2— n(x)

2

QUT
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Known Rotation Problem - cont.

Lagrangian:
pll/1
L(X7Z?y):HZ||p7oo+£ BJH‘U—Z —N(x)

Apply ADMM:

2

2

Uk

—_—~
2
<;yk+u—Zk> N

// Xx-minimization

2

Xiir = argmin, Ly(x,Zy.yk) = arg min,

2

=argmin, ||y —MN(x)
2

Wy

Zi = argmin, Ly Z0) = 20+ 2| (St u=n)) 2] =

ZH // Z-minimization

=12l +
yk—i—p(u—ZkJr1 —M(xks4)) // dual update

QUT
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Subproblem in x

Solve:

2
// X-minimization
2

Xk1q = argminy

’Lfk—”(x)
= <1y +u—Z>
k ok k

® Least squares minimization.

® Solve using Bundle Adjustment ...
e ... but now with respect to the modified image points d.
® Not necessary to solve exactly.

QUT

Slide 36/56



Subproblemin Z

To solve the subproblem in Z we will solve problems on the
form

Zkpr = [1Z|p o0+ ZH /! Z-minimization
Wy = EYk+U—”(Xk+1)

A convex problem in Z = solve the problem in the dual
1 2
argmax — £||S||,_-+ < S,wg >,
s

1
Sllga < —.
[1Sllga = 3

where || -]|4 is the dual norm of || ||, i.e. %—ké =1

QUT
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Subproblem in Z - cont.

/! Z-minimization (Zx,, = wy — S%)

1
S* = argming £||S—Wk||,2_-

1

st |IS]lga < =

The related (regularized) problem

o1 1 o1
Sp = argmins _[|S — w7 +6([[Sllq. — 5) = argming 2 [[S — W| [t + 8IS g,

* We know that there must exist a 6 such that S5 < & and
hence §* = 5§
® How do we find it?

Turns out that Sy has a very simple closed form solution...

QUT
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Subproblem in Z - cont.

It can be shown that for p = 2 the solution is obtained by

Se = max(1 0) © Wy

Wil [

A similar expressions also exists for p=1,and p = o

® 0 ascalar
Find the 6 for which S5 = %
& find a root of g(6) = S5 — %

Very simple and efficient root-finding algorithm exists
® Solution is then given by (Zx, = wy — 5§)

QUT
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Pseudo-Convex Proximal Splitting

Input: u, R
Initialize: x°,y°, 2% k=0
Repeat
N 1
® U= (ka-Hl—Zk)

~ 2
Uy — N(x)

2

® Xy, =argmin, /1 x-update (n steps of BA)

~ 1
* W= By/ﬁru— N(Xk44)

2
® Zyi1= ||Z||p7w+g W —ZH2 /] Z-update (solve Sg — % =0)

® Yierr = Y+ P(U — Zsr — M(x2r)) 7/ dual update
e update p
® k=k+1

Until convergence

QUT

(note: add 2 lines of code to Bundle Adjustment)

Slide 40/56



Pseudo-Convex Proximal Splitting

A Meta-Algorithm

Simple to implement

Seamlessly transition between different residual norms
e Converges to a global minima

Efficient

QUT
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Overview

© L. and the Structure from Motion Pipeline

@ Pseudo-Convexity

© Large-Scale Methods for L.

Resection-Intersection

QUT
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3 - Resection-Intersection [14]

[14] A Fast Resection-Intersection Method for the Known Rotation Problem.
Q. Zhang, T.-J. Chin, H. Le. CVPR 2018.

® Afast algorithm for solving the L., Known Rotation Problem.
® Afirst order method (Gradient descent)
® Parallelizable

QUT
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Known Rotation Problem

Solve:
1.2 1:2
Rj Xk + tj

S -1 KRot
Rox+t? Hp (KReD

min  max Huj‘k -
{txtec  jk :

with € = {x,t |R3x+8 > o, Vj,k}
Observation:

® For fixed x4 (KRot) is separable, i.e. we can solve for ¢
(Resectioning) separately for each camera

1.2 1.2
Rj Xk -H'j

— Resectionin
RN Hp ( )

min maxHu- —
t P 'j.k

® For fixed ¢ (KRot) is separable, i.e. we can solve for x
(Intersection) separately for each 3D point,

1:2 12
Rj Xk +tj

— (Intersection)
Roxy+t? Hp

min  max Hu-k —
% A

QUT
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Resection-Intersection - Subproblems

Known-Rotation problem

1:2 1:2
Rj Xk thj

—— (KRot)
R;’Xk + t]?’ Hp

min  max ||Ujx —

{txtec  jk H Tk

Resulting (separable) subproblems on the form:
min  max ri(y)

yeR3 i (sub)
st. cy+di>oVi

Ay +bil
I’,‘(y): T 'P
¢ y+d

note: subproblems in R3

QUT
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Solving Subproblems

. Ay + bil|,
min = max ————
y€eR3 i Gy+d; (sub)
st. cy+d>oVi,

[SolveSub]
Input:  {A;,b;,c;, i}, initial solution j.
Repeat

® )+ Find descent direction using data and y
(minimum closing ball (MEB))

® o« Find step size using data, y and A
e Update estimate: y < y+ ol
Until convergence

QUT
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Resection-Intersection

[Main Algorithm]
. LM
Input: {Rj}}:v {uf-,k}j:1,k:1'
Initialise: {t;}7_, and {x}}L,.
Repeat
® For each k=1,...,M, update x, via [SolveSub].

® Foreachj=n1,...,L, update ¢t via [SolveSub].

Until convergence

QUT
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Resection-Intersection - Summary

First-order method (Block Gradient Descent)
Problem is separable in t and x
Subproblems small R3

Efficient methods for finding descent directions and
step-sizes

Very fast

QUT
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Algorithms - Summary

e |nterior-Point methods
e Pseudo-Convex Splitting
e Resection-Intersection

QUT
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Algorithms - Convergence Rate

© Interior-Point methods
® Pseudo-Convex Splitting
® Resection-Intersection

QUT
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Algorithms - Simplicity

© Pseudo-Convex Splitting
® Resection-Intersection
® Interior-Point methods

QUT
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Algorithms - Speed

© Resection-Intersection
® Interior-Point methods
© Pseudo-Convex Splitting

QUT
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Conclusions

® [, and the Structure from Motion Pipeline

¢ Rotation Averaging & the Known Rotation
Problem

e Pseudo-Convexity of L., formulations
¢ Three methods for large-scale L., optimization

QUT
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