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Recap: Quasiconvexity

r(x) = π − θ(x)
x ∈ upper halfplane

Animation of sublevel sets.
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https://youtu.be/XANb1KUs5NU


Recap: Quasiconvexity
Let {ri}Ni=1 be a set of quasiconvex functions, where each

ri : D 7→ R≥0

and D is a convex domain.
Then, the point-wise maximum function

Q(x) = max
i

ri (x) =

∥∥∥∥∥∥∥
 r1(x)

...
rN(x)


∥∥∥∥∥∥∥
∞

is also quasiconvex for x ∈ D.48 2. APPROXIMATE ALGORITHMS
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Figure 2.16: (a) A quasiconvex function r(x) with the real line R as its domain. The s-sublevel

set Lr
s is plotted as a red line segment on the x-axis. For any s � 0, Lr

s is a convex set, i.e., a

contiguous line segment. Note that this function is not convex. (b) A non-quasiconvex function

for comparison; in this function, not all Lr
s for s � 0 are convex.

2.5 LP-TYPE PROBLEMS

This slightly lengthier section explores consensus maximisation under the framework of

LP-type problems. The motivation for including this relatively abstract topic is two-fold:

• LP-type problems are a generalisation of the Chebyshev approximation problem. As

we will see later in Section 2.5.3, the LP-type framework allows further theoretical

analysis of the outlier removal technique in Section 2.4.2.

• LP-type problems provide a unifying framework and convenient terminology to discuss

a class of “tractable” exact algorithms in Chapter 3.

We begin by defining LP-type problems and describing their common properties.

2.5.1 DEFINITION AND PROPERTIES

LP-type problems were first defined by Matoušek et al. [1996] as a generalisation of linear

programming problems. In abstract terms, an LP-type problem (S, f) consists of a set of

constraints S, each involving d variables ✓, and an objective function f that maps subsets

of S to R+ [ {0}. Further, f satisfies the following properties:

Property 2.10 (Monotonicity) For every two sets P ✓ Q ✓ S, the inequalities f(P) 
f(Q)  f(S) can be established.

Tat-Jun Chin (The University of Adelaide) Optimisation in Multiple View Geometry CVPR 2018 Tutorial 5 / 66



Quasiconvex programming

Minimising the point-wise maximum of a set of quasiconvex functions
{ri}Ni=1 defined over a convex domain D, i.e.,

min
x∈D

max
i

ri (x)

D. Eppstein. Quasiconvex programming. Combinatorial and Computational Geometry 25 (2005).
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Example: Mesh smoothing

Function ri (x) = π − θi (x)
decreases with θi (x).

Solving

min
x∈D

max
i

ri (x)

finds mesh vertex x that is as
close as possible to all sides.

Solution can only lie in D (the
convex region shaded in blue).

Amenta et al. Optimal point placement for mesh smoothing. Journal of Algorithms 30.2 (1999), pp. 302–322.
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Example: Multi-view triangulation (L-infinity)

Given camera matrix P and image point u,

r(x) =

∥∥∥∥∥P(1:2)x̃

P(3)x̃
− u

∥∥∥∥∥
2

=

∥∥[P(1:2) − uP(3)
]
x̃
∥∥

2

P(3)x̃

gives the reprojection error of 3D point x ∈ R3. If P(3)x̃ ≥ 0, then x
lies in front of the camera.

Given N 2D points {ui}Ni=1 from
N views {Pi}Ni=1, solving

min
x∈D

max
i

ri (x)

finds x that minimises the
largest reprojection error. Here

D =
{
x ∈ R3 | P(3)

i x̃ ≥ 0
}
. Figure from Kahl and Hartley, ECCV’06 Tutorial.
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Example: Minimum enclosing circle (MEC)

Given a set of points {pi}Ni=1 on the
plane, find the smallest circle that
encloses all the points:

min
x∈R2

max
i
‖x− pi‖2
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Example: Chebyshev approximation

Given a set of points {(ai , bi )}Ni=1 in (d + 1) dimensions, find the
hyperplane x ∈ Rd that minimises the largest residual

min
x∈Rd

max
i
|aTi x− bi |

Special case: Minimum enclosing slab (MES)
Setting ai = [pi 1]T and bi = qi ,
where (pi , qi ) are points on the
plane, performing Chebyshev
approximation amounts to finding
the thinnest slab that encloses all
the points.

Width of slab is measured vertically
(i.e., along the q-axis).
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Linear programming (LP)-type problems

An LP-type problem consists of
I A set of “constraints” S;
I An objective function f that measures the cost of any subset of S.

The goal is to compute f (S).

Two main properties:

Monotonicity

For any two subsets A and B of S, if A ⊂ B then f (A) ≤ f (B).

Locality

For any A ⊆ S, p ∈ S and q ∈ S, if f (A) = f (A ∪ {p}) = f (A ∪ {q}),
then f (A) = f (A ∪ {p, q}).

D. Eppstein. Quasiconvex programming. Combinatorial and Computational Geometry 25 (2005).
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Examples: MEC and MES

Minimum enclosing circle (MEC):

S = {pi}Ni=1 and f (S) gives the radius of MEC(S).

Monotonicity

If A ⊂ B ⊆ S, then MEC(A) cannot be larger than MEC(B).

Locality

If f (A) = f (A ∪ {pi}), then point pi lies in MEC(A).
If f (A) = f (A ∪ {qi}), then point qi also lies in MEC(A).
Clearly {pi ,qi} also lie in MEC(A), hence f (A) = f (A ∪ {pi ,qi}).

Minimum enclosing slab (MES):

S = {(ai , bi )}Ni=1 and f (S) gives the width of MES(S).

Replace MEC with MES in the arguments above.
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Basis

A basis of an LP-type problem (S, f ) is a subset B ⊆ S such that
f (A) < f (B) for every A ⊂ B.
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Examples: MEC and MES
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Support set

The support set K of an LP-type problem (S, f ) is a basis of the problem
such that f (S) = f (K).

Further properties:

Solving an LP-type problem amounts to finding its support set.

The cost/residual of all items in K are equal w.r.t. the estimate.

Items not in the support set (the subset S \ K) can be ignored.
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Example: MEC
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Example: MES

Points in the support set K have equal (maximum) distance to the
Chebyshev fit.
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Combinatorial dimension

The upper bound on the size of a basis in an LP-type problem (S, f ).

Any quasiconvex program forms an LP-type problem of combinatorial
dimension is 2d + 1.

If each component ri is continuously shrinking, then the combinatorial
dimension is d + 1.

Sim and Harley showed that functions of the form

r(x) =
‖Ax + b‖2

pTx + q

are continuously shrinking for pTx + q > 0. Call problems of this
form quasiconvex geometric problems.

Amenta et al. Optimal point placement for mesh smoothing. Journal of Algorithms 30.2 (1999), pp. 302–322.

K. Sim and R. Hartley. Removing outliers using the l-infinity norm. CVPR 2006.
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Example: L-infinity triangulation
S = {(Pi ,ui )}Ni=1 is a set of N camera matrices and image points, and

f (S) = min
x∈D

max
i∈S

∥∥∥[P(1:2)
i − uiP

(3)
i

]
x̃
∥∥∥

2

P
(3)
i x̃
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Solving LP-type problems

function solve lptype(S,f ,C):

1: if S = C then
2: return C.
3: end if
4: c ← A random item from S \ C.
5: B ← solve lptype(S \ {c}, f , C).
6: if f (B) 6= f (B ∪ {c}) then
7: B ← basis(B ∪ {c}).
8: B ← solve lptype(S,f ,B).
9: end if

10: return B

// Core 1: violation test
// Core 2: basis updating

Matoušek et al. A subexponential bound for linear programming. Algorithmica 16 (1996), pp. 498–516.
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Solving LP-type problems

function solve lptype(S,f ,C):

1: if S = C then
2: return C.
3: end if
4: c ← A random item from S \ C.
5: B ← solve lptype(S \ {c}, f , C).
6: if f (B) 6= f (B ∪ {c}) then
7: B ← basis(B ∪ {c}).
8: B ← solve lptype(S,f ,B).
9: end if

10: return B

H. Li. Efficient reduction of L-infinity geometry problems. CVPR 2009.
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Another algorithm

Keep expanding C and updating x̂C using the point with the largest
residual until all points are covered.

function solve lptype mv(S,f ):

1: C ← Randomly select one item from S.
2: while true do
3: x̂C ← arg minx∈D maxi∈C ri (x). // Solve on current coreset C.
4: i∗ ← arg maxi∈S ri (x̂C). // Find most violating point.
5: if ri∗(x̂C) ≤ f (C) then
6: Break. // Most violating point already covered; done.
7: end if
8: C ← C ∪ {i∗}. // Insert one point.
9: end while

10: return x̂C

Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. SODA 2008.

Seo and Hartley. A Fast Method to Minimize L Error Norm for Geometric Vision Problems. ICCV 2007.
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Another algorithm

Keep expanding C and updating x̂C using the point with the largest
residual until all points are covered.

function solve lptype mv(S,f ):

1: C ← Randomly select one item from S.
2: while true do
3: x̂C ← arg minx∈D maxi∈C ri (x). // Warm start using prev. x̂C .
4: i∗ ← arg maxi∈S ri (x̂C). // Find most violating point.
5: if ri∗(x̂C) ≤ f (C) then
6: Break. // Most violating point already covered; done.
7: end if
8: C ← C ∪ {i∗}. // Insert one point.
9: end while

10: return x̂C

Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. SODA 2008.

Seo and Hartley. A Fast Method to Minimize L Error Norm for Geometric Vision Problems. ICCV 2007.
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Example: MEC

Input data S: Initial C:
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Example: MEC

Found most violating point: Insert into C and update MEC:
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Example: MEC

Found most violating point: Insert into C and update MEC:
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Example: MEC

Found most violating point: Insert into C and update MEC:
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Example: MEC

Found most violating point: Insert into C and update MEC:

No more violating points—done.
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Coresets

Red circle = MEC on current C.
Blue circle = MEC on S.

errorC := maxi∈S ri (x̂C).

errorS := f (S) = maxi∈S ri (x̂S).

By construction errorC ≥ errorS , but we can also guarantee that

errorC
errorS

≤ (1 + ε), where ε =
2

|S|
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Coresets

Blue = Theoretical bound
Red = Actual error ratios

Q. Zhang and T.-J. Chin. Coresets for triangulation. IEEE TPAMI (2017). doi: 10.1109/TPAMI.2017.2750672.
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Coresets

Q. Zhang and T.-J. Chin. Coresets for triangulation. IEEE TPAMI (2017). doi: 10.1109/TPAMI.2017.2750672.
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Coresets

Q. Zhang and T.-J. Chin. Coresets for triangulation. IEEE TPAMI (2017). doi: 10.1109/TPAMI.2017.2750672.
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Sensitivity to outliers

Minimising the largest residual amounts to fitting on the outliers.
Hence, L-infinity estimation is not robust.

Nonetheless, the L-infinity approach provides a good framework to
analyse and develop robust estimation algorithms.
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Robust estimation

Let (S, f ) be an LP-type problem with quasiconvex geometric
residuals {ri}Ni=1, where some of the residuals correspond to outliers.

Solve for x by ignoring residuals that are greater than ε:

max
x∈D, I⊆S

|I|

s.t. ri (x) ≤ ε, i ∈ I.
(Consensus maximisation)

Let I∗ be the maximum consensus set. Observe that

min
x∈D

max
i∈I∗

ri (x)

is the LP-type problem (I∗, f ), and by construction

f (I∗) ≤ ε.
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Simple algorithm (enumeration)

Let K be the support set of (I∗, f ). Since I∗ ⊆ S, K is also a basis
of (S, f ). =⇒ Find K by enumerating all bases of (S, f ).

Require: LP-type problem (S, f ), inlier threshold ε.
1: ψ ← 0, K ← ∅.
2: for all (d + 1)-subsets B of S do
3: if f (B) ≤ ε then
4: if coverage(B)> ψ then
5: ψ ← coverage(B). // Needs a bit of explanation.
6: K ← B.
7: end if
8: end if
9: end for

10: return K.

Number of iterations =
( N
d+1

)
. Including checking coverage, runtime

is O(Nd+2T (d)), where T (d) is time to solve f (B).

Olsson et al. A polynomial-time bound for matching and registration with outliers. CVPR 2008.

Enqvist et al. Robust fitting for multiple view geometry. ECCV 2012.
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Computational hardness

NP-hardness

Consensus maximisation is NP-hard.

Proof: Turing reduction from Least Median Squares.
=⇒ There are no polynomial time algorithms.

XP (slice-wise polynomial)

Consensus maximisation is XP in the dimension d .

Proof: Use enumeration method to get runtime of O(Nd+2T (d)).
=⇒ For a fixed d , can get polynomial time in N.

W[1]-hardness

Consensus maximisation is W[1]-hard in the dimension d .

Proof: FPT reduction from K-clique.
=⇒ There are no algorithms that are faster than O(N f (d)).

Chin et al. Robust Fitting in Computer Vision: Easy or Hard? CoRR abs/1802.06464 (2018).
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The model is fitted to the outliers...
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Recursive support set removal

For any instance (S, f ), if f (S) > ε, then there are outliers.

Since f (K) = f (S) > ε, where K is the support set, it is reasonable to
suspect that K contains outliers.

Idea: Recursively remove support sets of S until f (S) ≤ ε.
Require: LP-type problem (S, f ), inlier threshold ε.

1: while true do
2: K ← Support set of S.
3: if f (K) > ε then
4: S ← S \ K.
5: else
6: Break.
7: end if
8: end while
9: return K.

Sim and Hartley. Removing Outliers Using The L-infty Norm. CVPR 2006.

Olsson et al. Outlier removal using duality. CVPR 2010.

Yu et al. An adversarial optimization approach to efficient outlier removal. ICCV 2011.
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Recursive support set removal

Chin and Suter. The maximum consensus problem: recent algorithmic advances. Morgan & Claypool Publishers, Feb. 2017.
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Recursive support set removal

Chin and Suter. The maximum consensus problem: recent algorithmic advances. Morgan & Claypool Publishers, Feb. 2017.
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Recursive support set removal

Chin and Suter. The maximum consensus problem: recent algorithmic advances. Morgan & Claypool Publishers, Feb. 2017.
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Recursive support set removal (bad case)

Chin and Suter. The maximum consensus problem: recent algorithmic advances. Morgan & Claypool Publishers, Feb. 2017.

Tat-Jun Chin (The University of Adelaide) Optimisation in Multiple View Geometry CVPR 2018 Tutorial 45 / 66



“True” inliers and outliers

Call items in I∗ the “true” inliers, and items in O∗ = S \ I∗ the
“true” outliers.

Existence of true outliers

Let C be a subset of S. If

f (C) > ε,

then C contains at least one item from O∗.
The LP-type properties allow us to prove the above easily: if
f (C) > ε, then by monotonicity

f (I∗ ∪ C) ≥ f (C) > ε. (1)

If C is a subset of I∗, then by locality

f (I∗ ∪ C) = f (I∗) ≤ ε (2)

which violates (1). =⇒ C contains at least one item from O∗.
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“True” inliers and outliers

Recursively removing support sets is sort of justified, but it also
removes true inliers in each iteration.

For combinatorial dimension d + 1, in the worst case, d true inliers
are removed in each iteration.

To avoid losing too many inliers, the inlier proportion should be
greater than

d

d + 1
.

=⇒ Method is not advisable for high-dimensional or high-outlier
rate problems.
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Running example: Robust subspace fitting (1D)
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In parameter space
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In parameter space
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Bases for LP-type problem
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Bases for LP-type problem (closeup)

Every basis can be reached from the support set via a directed path.

Matoušek. On geometric optimization with few violated constraints. Discrete comput. geom. 14.1 (1995), pp. 365–384.

H. Li. A practical algorithm for l-infinity triangulation with outliers. CVPR 2007.
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Tree structure
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Level of basis
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Consensus maximisation

Chin et al. Efficient globally optimal consensus maximisation with tree search. CVPR 2015.
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Tree search

Breadth first search (BFS) and A* search.

Chin et al. Efficient globally optimal consensus maximisation with tree search. CVPR 2015.
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A* search

A* search prioritises the bases to expand by

eval(B) = level(B) + h(B),

where h is a heuristic function.

h estimates (but cannot overestimate) number of levels remaining.

Performing recursive support set removal with B as the initial support
set, and counting the number of removals, gives a valid heuristic.

Chin et al. Efficient globally optimal consensus maximisation with tree search. CVPR 2015.
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Fixed parameter tractability

Fixed parameter tractability

Consensus maximisation is FPT in the dimension d and number of outliers
|O∗|.

Proof: Use BFS to search the basis tree to get runtime of
O((d + 1)|O

∗|L(N, d)), where L(N, d) is time to solve LP-type problem.

Chin et al. Robust Fitting in Computer Vision: Easy or Hard? CoRR abs/1802.06464 (2018).
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Monte Carlo Tree Search

Use randomisation to explore the tree quickly.

Leads to asymmetric tree
growth (tends to explore
more promising branches).

Browne et al. A survey of Monte Carlo tree search methods. IEEE Trans. Computational Intelligence and AI in Games, 2012.

Le et al. RATSAC - Random Tree Sampling for Maximum Consensus Estimation. DICTA 2017.
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Approximability

APX-hardness

Consensus maximisation is APX-hard.

Proof: L-reduction from MAX-2SAT.
=⇒ There are no polynomial time algorithms that can solve consensus

maximisation up to (1− δ)|I∗| for any pre-determined δ.

Chin et al. Robust Fitting in Computer Vision: Easy or Hard? CoRR abs/1802.06464 (2018).
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So what can be done?
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So what can be done?

RANSAC and variants (no guarantees, not necessarily efficient).

Use M-estimators and IRLS.

Deterministic refinement methods:
I Penalty formulation + bilinear programming (Le et al.).
I Iteratively reweighted L1 (Purkait et al.).

Le et al. An exact penalty method for locally convergent maximum consensus. CVPR 2017.

Purkait et al. Maximum consensus parameter estimation by reweighted L1 methods. EMMCVPR 2017.
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