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Multiple View Geometry and
Geometric Reconstruction Problems

o
-
I ™
\ 9 Unknown camera

N positions

« Glven images, reconstruct:
— Scene geometry (structure)
— Camera positions (motion)



Benchmarking Long-Term Localization

Seasonal changes, (sub)urban

Seanal changes, urban; Low-quality night-time images

Sattler, Maddern, Toft, Torii, Hammarstrand, Stenborg, Safari, Okutomi, Pollefeys, Sivic, Kahl, Pajdla
Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions, CVPR 2018






Multi-view optimization methods

- Algebraic cost-functions
Example: 8-point algorithm by Longuet-Higgins
Example: DLT for absolute pose

+ Simple and fast
- Unstable. Cost function makes no sense.

- Minimal solvers
Example: 5-point algorithm by Nister

+ Fast and good for robust estimation (RANSAC)
- Only small dimensional problems



Multi-view optimization methods, cont'd

- Bundle adjustment

+ Good for refinement. ML estimate.
- Requires good initial solution.

- L _.-optimization and convex optimization

+ Computes globally optimal solutions
+ Cost function based on reprojection errors
+ Good for detecting outliers

- Bad with outliers



Lo Optimization
and
Quasi-convex Optimization



T he triangulation problem

e Given known camera positions and matched points

e Find the 3D point X that maps to these points.

X

ol | e
S \ e




Triangulation

Triangulation :

e Knowing P and P’/
e Knowing x and x/

e Compute X such that

x=Px : x=Px




Triangulation in presence of noise

e In the presence of noise, back-projected lines do not
intersect.

image 2

Measured points do not lie on corresponding epipolar lines



Problem formulation

Cost function:
Geometrically &

statistically meaningful

- — measured
vl image point
min ||| d(X,x) |
reprojected
Image point

Lyp



Perspective cameras
X

P

measured image point



Do local minima occur?

Consider the following three-view triangulation problem
in the plane.

T hree local
>< _ minima
X3|

Contour plot of
the Lo-error function



Two-view triangulation
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Cost function

C(X) = d(x,%)? + d(x/,%)?



Multiple local minima

e Cost function may have local minima.

e Shows that gradient-descent minimization may fail.

AN

Left : Example of a cost function with three minima.

Right : Cost function for a perfect point match with
two minima.



Projective Projection

Camera matrix — 3 x 4 matrix
plT
P = pQT
p3T
3D point represented in homogeneous coordinates

X‘ — (X7 y? Z? 1)—|_

Projected image point is given by

()= (R



Geometric Projection Error

Given point X that should map to image point x, error is
plTx 2 p2Tx 2
T 03T T {v- p3TX

2 2

d(x, PX)?

F(X)2 + g(x)?
A(X)?2

e All of f, g and X are linear in (X,vy,2)

Error to be minimized is

jZV: £i(X)2 + g;(x)?

Al >
d(x,P;X)c =
z; Z i=1 Ai(X)?




T he main difficulty

e Function

£i(X)2 + 9;(x)?
Ai(X)?

IS not convex.

e Sum of non-convex functions can have several minima.



Triangulation cost — cross-section
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Convex Optimization

— convex and quasi-convex functions, convex cones



Convex set

A set D C R"™ is convex if the line joining points xg and
x4 lies inside D.

Intersection of convex sets in convex.




Convex function
D — a domain in R".

A convex function f: D — R is one that satisfies, for any
xg and x7 in D:

FOL = XN)xo + Ax1) < (1 —=XN)f(xo) + Af(x1) .

Line joining (xq, f(xg))
and (xq, f(xq1)) lies
above the function graph.

OR‘“‘"”
W=

(1-o) %+ o2 x,



Convex optimization

The generic convex
optimization problem is:

Minimize the convex function f(x)
over a convex set D.

Properties:

1. Alocal minimum is also a global minimum

2. The sum of convex functions Is also convex




Quasi-convex function

Definition: Given a function f: R"™ — IR, the a-sublevel set of
f is the set

Sa(f) = {x e R"|f(x) < o}

\ 4(x)

‘Aé:t: j(x)s;}

A function is quasi-convex if all its sublevel sets are convex

e A convex function is quasi-convex, but not conversely.



Quasi-convex optimization problem

Minimize  f(x)
subject to  ¢;(x) <0

where

e f IS quasi-convex.

e g, is convex for all s.
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Sublevel Sets: S5(f) = {9]|f(©) <4}
Ss(f)
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Functions
Sublevel Sets: S5(f) = {9]|f(©) <4}
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f is quasiconvex if its sublevel sets Ss5(f) are convex V4.

fa fp







Quasiconvex

147 f(x)? 4 g()?
1.2 A(w)?
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Sublevel set is convex — function is quasi-convex



Maximum of quasi-convex functions

If functions f;, «+ = 1,...,r are quasi-convex, then the
function

FG0) = max f,(x)

IS quasi-convex.

Proof: So(f) = N;Salfi)-

Intersection of convex sets is convex.




Minimax Optimization

Find mXin max f;(x)
(4
Such that XxeD
Alternatively:
Find min s
X,S
Subject to filx) <s Vi

and xeD




Second Order Cone Constraints

Consider the function C(x):

(), 9G]
A(x)

C(x)
with
A(x) >0

Quasi-convex function: Arises naturally in Vision problems.



Second Order Cone Programs (SOCP)

Convex problems with constraint functions
|A;x + byl| < ¢; 'x + d
are called SOCP.

More general than LP, but less general than SDP.

SOCP is easily solvable by off-the-shelf software.




Bisection

Finding the minimum s so that all
cone constraints are satisfied.



T he minimax solution

. The Ly solution to the triangulation problem is to
find

minx max; d(x;, P;X)

. Function is quasi-convex on domain in front of cam-
eras.

. Method of solution: Second Order Cone Program-
ming and bisection.



Do local minima occur?

Consider the following three-view triangulation problem

in the plane.
One global
minimum

Contour plot of
the L~o-error function



Problem 2: partial structure and motion

e Assume calibrated cameras.
e Assume rotations are known.

e Given points x;, in several views, find the positions of
points X and cameras C that minimize the projection
errors.



Direction (unit) vectors from cameras (blue) to
points (black) are given : Find the positions of
the cameras and points.



Problem 3: Homographies
Given known 3D points u; on a plane and correspond-

ing image points u.

Find the homography that maps corresponding points,

i.e., u, ~ Hu,.
° 3 \
( ]
/. . /




Problem 4: SfM using a Reference Plane

e (Given a reference plane and corresponding image points.
e Find

1. Interimage homographies

2. Cameras and 3D points that map to corresponding
image points.
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Dinosaur Reconstruction




Example on a Real Sequence

Algorithm (reference plane):
1. Track image points

2. Compute interimage homographies

3. Compute cameras and 3D points



Dinosaur Reconstruction




Flexible object tracking

M. Salzman, R. Hartley, P. Fua, ICCV 2007



Other Problems

Camera resection.
Projections from P — P
Minimax vanishing point estimation.

Estimate with uncertainty (Sim-Hartley: CVPR 2006,
Ke-Kanade: CVPR 2006).

Projective triangulation.

N

o o

. Projective SfM given plane correspondence. (Hartley-
Kahl)

Problem: How to incorporate rotations into this method-
ology?



Implemention

Convex optimization based on SeDuMi
Convex feasibility problem:
— 0.05s for 3-view triangulation

— 1s for 2270 cone constraints with 36 views and 328
points

Improved Bisection method

Typically 5-10 iterations required to reach optimum
within 1072 pixels

MATLAB Toolbox available on my homepage
See also: Pierre Moulon, PhD Thesis, 2013




Outliers

— detection/removal of outliers



Problem??
B

Problem: Find line of best fit

Measurements: X; = (z;,9;)
Parameters: © = {a,b}
Error functions: f;(©) = (y; — ax; — b)?

Lo optimization:

mingp ¥ (y; — az; — b)?
Lo optimization:

min, , max;(y; — az; — b)?

Xg Is an OUTLIER.
We need to remove it!

4




Overview

When the Lo-idea was first introduced, it was considered
a major drawback its sensitivity to outliers.

Now, one of its strengths.

Many different ideas and approaches for detection and
removal introduced last few years.

- Qutlier detection [Sim-Hartley].

- Abstract LP-approach [Li].

- Minimize infeasibility [Seo and Ke-Kanade].
- Verification strategy [Olsson-Enqgvist-Kahl].



outlier?
B 00

L maxier fi(©) Suppose only two error functions
\ =~ 11(©) f1(©) and f2(©).

f2(©) Choose a threshold §;,.

—————— Then either f1(©) or f2(©) has to be
removed such that

ming max;cr. fi(©) < dip
where [;,, = {1} or I;;, = {2}. But which one?

> It is inherently AMBIGUOUS.

4



Outlier

We have error functions f;(©) indexed
A by 72 in an index set I.

Choose a threshold §;,.

Choose largest subset I;,, (the inlier set)
that satisfies
ming max;er, fi(©) < i,

An inlier is any measurement in [,
An outlier is any measurement not in I;,.

Index set I is made up of two subsets -
I, (inlier set) and I,,+ (outlier set).
I = 1I;p U oyt

Lin, = {3,4} and I, = {1,2}

4



e Outliers?

e Method 1: RANSAC

- Relies on random sampling to find a set of measurements containing only
inliers.

- Can only be used on problems where solution can be computed quickly and
from only a small number of measurements.

e Method 2: Throw out measurements with largest residual

- Solve optimization problem.
- Remove measurements with largest residual.

- Repeat first two steps until an acceptable max residual is achieved.

For this to work, the set of measurements with largest residual
must contain outliers. BUT THIS IS NOT ALWAYS THE CASE!

4



Strategy

Outlier removal strategy:
— Solve optimization problem
— Remove measurements with largest residual




Strategy

Outlier removal strategy:
— Solve optimization problem
— Remove measurements with largest residual

Why does strategy fail for general

Lo or Lo, problems?

For general Lo or Lo problems, the set of
measurements with largest residual does
not necessarily contain outliers.

BUT strategy works for certain L

problems!

We show that, under certain conditions,

the measurements with largest residual
9 are guaranteed to contain outliers.

4




e Needed?

Theorem: (Under certain conditions)
Consider a minimax problem with solution ming max;ecs fi(®) = dopt-
Suppose there exists I, C I for which ming maX;ez,, fi(©) < in < dopt-
Then I, must contain at least one index 7 not in I;,.

In English: The support set must contain at least one outlier.

Condition A: (Under certain conditions)

If fo is a function not in the support set for a minimax problem,

then we can remove fp without decreasing the Lo, €rror dop:.

That is, if O ¢ Isupp. then ming maxig_{o} f@(@) = MiNg MaX;cy fz(@) = 5Opt-

In English: If fo & I, then fo should not be constraining our solution.
So we can remove fo without affecting the Ly, error dop.

4



ondition A To Hold

e A, B,C are the sublevel sets of 3 error
functions f; ., fig: fic-
° fic is QC = (C'is a convex set
fiys fig @are not QC = A, B are nonconvex sets
° eopt = ANnBNC

® Oupt € bd(C) = fir, & Isupp = {ia,ip}
e Suppose we remove f;,.

4



We need convex sublevel sets.
Quasiconvexity is needed!

Condition A To Hold
B

e A, B,C are the sublevel sets of 3 error
functions f; ., fig: fic-
° fic is QC = (C'is a convex set

fiys fig @are not QC = A, B are nonconvex sets
e Oyt = ANBNC

® Oupt € bd(C) = fir, & Isupp = {ia,ip}
e Suppose we remove f;,.

e Since A, B are not convex, the solution may
jump to © where f; ,(©') < §opt and
fiB(@/) < 50pt-

e That is, because A, B are not convex, it is
possible to remove fic ¢ Isupp and obtain a
lower Lo error & at @',

4



We need convex sublevel sets.
Quasiconvexity is needed!

ndition A To Hold

E : 35()1),;(fic)

—55(fi ) S5,y (i)

€ > >55’(fiA) S(Sop[.(f?:A)

4



IS Insufficient

If {©}sn IS @ single point, then QC is necessary and sufficient.
If {©}s0n contains more than a single point, then QC is necessary but insufficient.

.y max; fi(©)_.

e f1, f> are quasiconvex
e Ming Max;—1 2 fi(©) = dopt

71(S) e {O}soin = Ni=1,255,,,(fi) = la,b]
f2(©) e But bisection algorithm only returns

a single point Oyt € {O}suin

L fl(eopt) < 5opt = f1 g ISUPP - {2}
e Suppose we remove fq.

e Bisection algorithm will find a new solution

Tsupp = {ﬂf-i(eopt) - 5opt} - {2}

©' with a lower Lo error §'.
= Quasiconvexity is insufficient

Need smoothness condition on sublevel sets.
Strict Quasiconvexity is needed!

4



vexity
T

Strict quasiconvexity: As § decreases, the sublevel sets Ss(f) must shrink smoothly.
That is, no plateaus allowed.

Definition: f is strictly QC if U,«s Su(f) =1Int Ss(f) V¢




fficient

Theorem:

Consider a minimax problem with solution ming max;er fi(©) = dopt
where error functions f;(©) are all strictly quasiconvex.

Suppose there exists I, C I for which ming maX;er,, fi(©) < in < dopt.
Then Iy, must contain at least one index ¢ not in I;,.

In English: If our error functions f;(©) are all strictly quasiconvex,
then the support set must contain at least one outlier.

For a detailed proof, see:

o K. Sim, R. Hartley. Removing Outliers Using the Lo, Norm. CVPR. 2006.

4



S All Mean?

If we can write a geometric vision problem as an L., optimization problem
where the error functions f;(©) are strictly quasiconvex
then I, must contain at least one outlier.

So by repeatedly throwing out part or all of Iy, it should be
possible to eventually remove outliers from a given problem.




e 4402 image points x;; used to recover 36
camera locations C; and 1381 scene points X;.
e Gaussian noise added to 5% of the 4402

truct
B

ion

image points x;; (i.e. 220 outliers).

Max Size of | Remaining
Cycle ) ,
Residual Tsupp Outliers
1 0.0390 10 210
2 0.0277 43 168
3 0.0196 54 123
4 0.0140 100 57
5 0.0080 72 23
6 0.0035 60 7
7 0.0019 36 4




