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® Contamination in data is unavoidable:

+** Sensor noise;

*** Faulty feature extraction;
*** Segmentation errors;

¢ Multiple structures, etc.

What do we need to estimate for
multi-structure data:

L)

4

*  The number of model instances

1)

o0

% The scale of inlier noise of each Figure 1. Multi-structure data
model instance.

0

** The parameters of each model
Instance.
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ﬂ » Traditional robust methods (such as LMedS,

LTS, M-estimators) that cannot deal with more
than 50% outliers.

» Some robust methods (such as RANSAC, MSAC,
HT, ALKS, RESC, MSSE, MUSE, pbM, HBM,
MINPRAN, ASSC, etc.) can deal with > 50%
outliers.

To deal with multi-structure data, the above
methods employ a sequential “fitting-and-
removing’ framework.
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< @ Problemsin the sequential “fitting-and-removing’

framework:

m Theerrors(in model parameters or/and inlier scales)
can be propagated to the following step;

m It'snot computationally efficient, it requires
generating alarge number of hypotheses in each step;

= It requires auser to specify the number of the
structures,

m Some methods requires the user to specify theinlier
scale, which may causes problems for multiple structures
with different inlier scales.
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Figure 2. One example showing the segmentation results obtained by using the
sequential “fitting-and-removing” framework(b). Note (c), if the 1% structure is
wrongly fitted, it will affect the fitting of the remaining structures.
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Some methods use different strategies to fit multiple
structures:

O multiRANSAC, Mean Shift (MS), HT/RHT, RHA, J-
linkage, KF, AKSWH, etc.

However, most of these methods require some user-
specified thresholds whose values are crucial in
determining the number of model instances and
affecting the performance of these methods.
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Scale estimation plays an important role in model
fitting and segmentation. It can greatly affect the
performance of many robust estimators, because:

It can be used to dichotomize inliers and outliers
(such as RANSAC, multiRANSAC, etc.);

It can be used to select the best hypothesis (such
as ASSC, MDPE);

It can be used to determine the bandwidth value
or the bin size (e.g., PBM, HT/RHT ).
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® Given the scale of inlier noise s, the residual
corresponding to the Ith data sampleisr;, the
inliers can be dichotomized from outliers by
using the following equation:

|T'_!i{/'(.":7| < E'-.

where E is a threshold (98 percent of inliers of
a Gaussian distribution are included when E is
set to 2.5).
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Figure 3. Influence of wrong thresholds on fitting multiple straight lines. (a)
Correct threshold and fitted lines. (b) Thresholds that are too low encourage
overfitting. (c) Thresholds that are too large encourage underfitting. (from

Schindler and Suter, PAMIO6)
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5 Median scale estimator
S0 =1.4826| 1+ > med, |r;|

n—-p
MAD scale estimator

Suap = 1.4826med, {|r. - med.r, |}

Let |7i| be the sorted absolute residual. The KOSE
scale estimator

1
Si 1= |ﬁ;|/(—) : (5(1 + H}),

where x =K /n; @'1(-) IS the argument of the normal
cumulative density function.
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When data contain multiple structures, MED, MAD
and KOSE can either break down or be badly biased.

This is because :

» The breakdown is caused when the median (for
MED/MAD), or the Kth ordered absolute residual (for
KOSE), belongs to outliers;

» MED, MAD and KOSE are biased for multiple-
structure data when n (the number of whole data) is
used instead of the number of data belonging to the
structure of interest.
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“Z The IKOSE scale estimator (Wang, et al., PAMI12):

8 =|F / @1@(“ K’ )j

' =K/n’

It iteratively optimizes the estimaten”, and only use
the data points belonging to the structure of interest.

How to decide the K value?

» When the percentage of outliersin the datais not
known, one should set K to be asmall valueto
avold breakdown:;

» When the percentage of outliersis (approximately)
known, one should set the K value aslarge as
possible to achieve better statistical efficiency.
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< @ The Adaptive Least Kth order Squares (ALKS)
algorithm optimizes the K value of KOSE by
minimizing the variance of the normalized errors:

2 ﬂ’f«:
(j ‘= arg min
K 8§

1 ~ o
= arg min© (2 (1 + h}) ZT;/{I& — p)|7TK|,

K
h i=1

where o, is the variance of the first K smallest
absolute residuals. S, is the estimated scale by
KOSE.
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® The Modified Selective Statistical Estimator
(MSSE) finds the K value which satisfies:
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Fig. 4. Both sides of the inequality are plotted. The intersection of these two graphs
provides the unbiased scale estimate. (from Bab-Hadiashar and Suter, Robotica99)
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g The Two-Step Scale Estimator (TSSE):

» Step 1: Using MS, with initial center zero, to find the
local peak (Pk), and then using the MSV to find the
valley next to the peak.

» Step 2: Estimating the scale of the inliers by the
median scale estimator on the points within the
obtained band centered at P«.
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Figure 5. Simultaneous scale estimation and outlier detection with the TSSE-
estimator. (from Schindler and Suter, PAMI06)



ACCV 2012

ey

T

ol £ ‘r.___‘;-' | R ._._,:'__!._'...1: Wi .'I-..- o
i e ""._r g b -
ol Sl P
ol el oy T Bt TR e £ gy
0 1
il Tr.oy
= = S E - - 3 W o w
(a) (&)
[~ Adediam g | = KOSE | ]
§ = ALATE . 1 5 ALKS
o || KOosE & o AISHE n
E ALKS &~ E - EAL
| ASSE rd 2 TS5E "
£ || EMm d £ = IRASE | f"f
[+ = TESE r 1 g = oy
i i 5 _"’_‘—"'—'—‘- Fi
-] » -]
a s 5 L et ——
s ol jow SRR B s
8
I-'. .'-'. l:'. - -

= a5 ) a1 s o = = -1
Parcentage of ouillers Percentage of outliers
(c) (d)

L mosE |
ALK

Acdian |
ALAT

- KOS E J
ALKS S i
iSRS i
- N y }
- THREE : g
ol == IKOSE | ) ir

L. .

!

MISSE
b = EN

B4

Mazimurm scale estimation error
-]
Mazimum scale estimation error
o =
|
T
-
3
=
i

__m
11 Ead ke ™ - - N 8 L L= [® . -

= (] [r > 2 ™ =
Percantags of cutlisrs Percantags of cutlisrs

(e) (f)
Figure 6. (a) and (b) Two snapshots respectively showing the “two-line” data and the
“two-plane” data with 90% outliers. (c) and (d) are respectively the error plots of the
scale estimation. (e) and (f) show the maximum errors in scale estimation.
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TABLE 1
QUANTITATIVE EVALUATION OF THE DIFFERENT SCALE ESTIMA-
TORS ON THE TWO-LINE DATASETAND THE TWO-PLANE DATASET.

Two-line dataset Two-plane dataset
Mean |5td.Var. |Max. Err.| Mean |5td.Var. |Max. Err.
Median| 11.1 129 39.8 35.7 2.32 40.8
MAD 11.0 12.8 399 27.3 1.33 36.7
KOSE 1.70 1.88 11.5 3.02 2.04 11.0
ALKS 1.27 0.71 241 1.40 1.02 23.2
MSSE 0.31 1.30 38.1 0.38 1.31 323
EM 0.33 0.52 26.6 1.57 2.70 87.4
TSS5E 0.13 0.25 129 0.15 0.17 2.7D
IKOSE| 0.11 0.05 0.58 0.12 0.06 0.58

{A (S,s)= max(; % j
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&© Hough Transform (HT) and Randomized Hough Transform
(RHT, XU, et al, PRL90)

v’ Both use a random sampling scheme
v’ Both work in parameter space.

v’ Both assume that multiple model instances correspond
to the multiple significant modes in parameter space.

The main differences are:

HT discretizes the parameter space and computes the
number of hypotheses in each bin, which is used to
derive significant modes.

RHT accumulates the number of the hypotheses whose
distances are within a given tolerance, and detects
significant modes based on the accumulated number.
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© The advantages of RHT over HT are:

v RHT can observe infinite parameter space while HT can
only observe finite parameter space.

v RHT requires less storage space.
v" It has higher computational speed.
However,
RHT needs more user-specified thresholds than HT.

It is not trivial to find a global optimal bin size for both
HT and RHT.

It is hard to both achieve accurate results and correctly
localize multiple significant peaks in parameter space.
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R Mean-Shift (MS) based methods

<. The MS-based methods (e.g., Tuzel, et al. CVPROS5,
Subbarao and Meer, IJCV09) also assume that
dominant modes represent multiple structures and

W s - H’“\
3”|<'\_\ P A S \\j;;, Figure 7. One example
2] \ by, o S B I|| showing that each of the
1“‘| ; W, B | significant modes means one
" 1 = L ® . | motion group. (from Tuzel, et
T e i . . | al.cvPros)
™ sl AR \"\\ |
. - P i
5 ?\ e 'd" ¥ P x?
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Some good results have been obtained by MS

(a) (b)

(c) (d)

Figure 8. 2D image data. (a, b) Original and transformed scenes. (c) The
boundaries of the bodies. (d) Transformed boundaries with the estimated
motion parameters. (from Tuzel, et al. CVPRO5)
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M- 51 (0.040
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Figure 9. Multibody Factorization. The left figure shows the 15t frame with all
the points which are tracked. The right image shows the 5t (i.e., last) frame
with only the inliers. The table contains the properties of the first four modes.
(from Subbarao and Meer, 1JCV09)
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® However, how to determine significant modes is
not an easy task.

® One way to select significant modes is to check if
the first N modes clearly dominate the (N+1)th
mode.

® But it is hard that how to judge when the Nth
mode dominates the (N+1)th mode.

® \We also found that the task becomes much more
difficult for MS when the inlier noise scale is high
or the percentage of outliers is high.
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© @ The J-linkage method (Toldo and Fusiello, ECCV08)
generates M model hypothesis by random
sampling.

® The Preference Set (PS) of each model hypothesis
is computed, as in RANSAC.

® Then it builds a N X M matrix where entry (i, j) is
1 if the distance of a pointi to a model j is less
than a threshold; otherwise the entry (i, j) is O.

® Each column of the matrix is the PS of a model
hypothesis. Each row indicates which model a
point prefers.
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Figure 10. Left: the data consist of 250 points on 5 lines. Right: The NxM
matrix. The rows are points (ordered by cluster), the columns are models
(ordered by cluster size). (from Toldo and Fusiello, ECCV08)
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® Given two preference sets A and B, which
correspond to two model hypotheses, the
Jaccard distance between the two sets is:

AUB|—|ANB

44 B) = AU B|

® The Jaccard distance measures the degree of
overlap of the two sets and ranges from O
(identical sets) to 1 (disjoint sets).
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® The cut-off value is set to 1. It means that the
algorithm will only link together elements
whose preference sets overlap.

® Each cluster of points defines (at least) one
model.

® The final model for each cluster of points is
estimated by least squares fitting.
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Figure 11. Some results obtained by J-linkage (from Toldo and Fusiello,
ECCV08)



ACCV 2012

.-l

3
0o
L

S Advantages:
v" It can fit multiple structures simultaneously.

v It can estimate both the number of model instances and
the parameters of the model instances.

Disadvantages:

! It dichotomizes inliers/outliers by using a user-specified
inlier scale.

] Like RANSAC, the performance of J-linkage greatly
depends on the specified inlier scale.

Ll The estimated number of model instances is heavily
affected by a threshold which is used in selecting
significant bins of the hypothesis histogram.
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® For each data point X, KF (Chin, et al, ICCV09)
computes its absolute residual set r. = {#{.....7i,}
as measured to the M hypotheses.

® It sorts the absolute residual set to obtain the
sorted residual set ©:=1{r};.---.\. }, where the
permutation {i..... Ay} is obtained so that

® Define the sorted hypothesis set of point X as
;== (XL, ... )\, 0,
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® The Ordered Residual Kernel (ORK) between
two data points can be defined as:

M/h
A .
L:?-';(Iil :Iiz} = ? Z Zt JI{;’[i](Qh ,912),
t=1

where z =1/t are the harmonic series and is Z
the (M/h)-th harmonic number.
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® Step size h is used to obtain the Difference of
Intersection Kernel (DOIK)

(|91 oy - I 91 L'Eg| o |91 (o | N 9_111'11—1”

L

'IECI?'I (éil ? éi’é) f

where ¢, =th and «._, = (t-1)h.
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® A kernel matrix K is constructed by mapping the
input data to a reproducing Kernel Hilbert Space
(RKHS), which can be computed by using the
kernel function ks.

® Through the eigenvalue decomposition (EVD) and

Singular Value Decomposition (SVD), the data can

be projected onto the principal subspace.

® Directions of the principal subspace are
dominated by inlier points.
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(b) Input data mapped to the RKHS Fj,_ (c) Histogram of vector norms in the kernel principal subspace

Figure 12. (b) Gross outlier removal with Kernel SVD and structure discovery
with Kernel PCA. (c) The histogram is obtained from the actual input data.
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® The cutoff threshold can be set by employing

re Model (GMM) with two
the threshold.

scheme is more tractable

than the mode see

King-based method (for the

unknown number of structures), as it is known
beforehand that there are at most two modes
in the norm distribution.
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® To fit multiple model instances, it is based on
the idea that points from the same structure
concentrate at a location in RKHS.

® The Normalized Cut method is used to cluster
the data.
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Figure 13. (a) Weighted adjacency matrix for the data (i.e., the five lines with
92% outliers). (b) Normalized Cut clustering results on for the data.
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To deal with the “overclustering” problem

® A structure pruning scheme is operated to fit the
data with the least number of structures.

» A model instance is first estimated from each point
cluster with LMedS.

» The algorithm then sequentially removes structures
by testing if a structure is removed, whether the
remaining structures can “explain” the data.

» This proceeds until the condition of satisfactory
explanation is violated.
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Figure 15. 15t row: Homography estimation results. 2" row: Motion segmentation
results . Yellow crosses indicate gross outliers determined by KF.
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© Advantages:

v’ The KF method can effectively remove gross
outliers in the data and in parallel discover the
multiple structures.

v It does not require a user to specify the inlier scale.
Disadvantages:
It is computationally slow.

The value of the step size h and the weighting ratio
used in KF has a significant influence on
determining the number of model instances.
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g ® AKSWH (Wang, et al, PAMI12) generates a set

of p-subsets, and compute the model
hypotheses using the p-subsets.

® |t assigns each hypothesis a weight.

® |If we know some weghted hypotheses are
assoclated with the Jth structure, we can
estimate the parameters of the Jth structure by
using:

7 =6 i) = agmax(a’ |9°}|
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5 Weighting function:

It uses a which can

be written as:

e

fKN,é,- (0) _13 KN(ri (éj)/h(éj))
&) nfE &(6)N6)

Vay

r3 ,
—(1- <1
where KN, ()= & el

o Ji>2
The fixed-scale weight Is written as:

. -
W, ocH;KN(ri(ej)/h)
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Multi-Structure Fitting (AKSWH)

R Selecting significant hypotheses: it employs the
entropy thresholding approach, which can
adaptlvely determines the threshold value.

we define: 2
¥ =] agmaxWw | - W’

The prior probability of component w Is:

)= /3%,
The significant hypotheséé can be selected which
satisfy the following condition:

9" ={4110gp(¥,) - Y p(¥,)logp(¥) <
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Given a set of residuals{r. (éj )}._, , for a model hypothesiséj )

it formulates the consensus set of residuals as:

1If |r|<ES
0 Otherwise

The J-distance between two consensus sets
(corresponding to two hypotheses) Is given by:

C(6)NC(@,)
c6,)Uc@,)

J(e@,).c@,))=1
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< To solve the over-clustering problem, it uses
Mutual Information Theory (MIT) to fuse
clusters belonging to the same model instance.

® The mutual information between two
hypotheses can be written as:

JCACA
M(2T 2N =M(8",8") =p(@",0)lo el
(%°,9)=M(6,6,)=p(@ ,0,) gp(HiT)wa
o' gn  N2.P(x16)p(x 16)) oy
p(6, J) _ 1= and p(X, |9)°C§9Xp£_|:()2(15’20) j

p6)P(6) > p(x 163 p(x 16)
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® The differences between AKSWH and J-linkage:

® A consensus set in J-linkage is a set of classifications of
the parameter hypothesis with respect to one data
point. The J-distances of all possible pairs of the data
points must be calculated.

® |n contrast, the consensus set in AKSWH is the
mlmr/mn‘llpr binary classification of all data points with

respect to one model hypothesis. One can calculate the
J-distances only for the significant hypotheses, by
which the computational efficiency can be greatly
improved.
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The differences between AKSWH and J-linkage:

® J-linkage clusters the pairs of data points, and
selects as the inliers the data points belonging to
one cluster when the number of the data points
is larger than a user-specified threshold.

® AKSWH directly clusters the pairs of hypotheses
in parameter space and does not use any
threshold to determine the number of clusters.
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Figure 16. An example illustrating the main steps of the AKSWH method. (a) and (b) The input
image pair with the matched SIFT feature points. (c) to (g) some results obtained by AKSWH?2
(using the variable-scale weight function ). (h) to (j) some results obtained by AKSWH1 (using
the fixed-scale weight function). 384 /806 significant hypotheses are selected from 5000
hypotheses and 19 /45 clusters are obtained by AKSWH2/AKSWH1, respectively.
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(a) Data (b) RHT | (d) RHA (e) J-linkage (f) KF (g) AKSWHZ2

Figure 17. Examples for line fitting and segmentation. 15t to 4% rows respectively fit
three, four, five and six lines. The corresponding outlier percentages are respectively
85%, 85%, 87% and 90%. The inlier scale is 1.5. (a) The original data. (b) to (g) The
results obtained by RHT, MS, RHA, J-linkage, KF and AKSWH?2, respectively.
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TABLE 2

THE FITTING ERRORS IN PARAMETER ESTIMATION (AND THE CPU
TIME IN SECONDS).

Ml | M2 | M3 | M4 | M5 | M6 | M7 | M8
128 | 121 [ 237 | 251 | 117 | 099 | 1.18 | 1.13
(0.80) | (6.72) | (7.56) | (8.12) | (25.2) | (177) |(15.4) | (4.52)
133 | 1.16 | 242 | 485 | 867 | 1.06 | 1.16 | 1.12
(0.84) | (8.10) | (5.87) | (7.31) | (19.5) | (223) |(17.7) | (4.02)
199 | 140 | 735 | 116 | 109 | 9.27 | 1.25 | 1.29
(0.79) | (8.46) | (7.26) | (7.86) | (23.7) | (116) | (14.2) | (4.12)
157 | 121 [ 470 | 178 | 276 | 1.20 | 1.17 | 1.15
(1.21) | (11.0) | (5.53) | (9.06) | (23.2) | (685) |(20.2) | (3.43)
(M1-RHT; M2-ASKC; M3-MS; M4-RHA; M5-J-LINKAGE; M6-KF; M7-
AKS5WHI1; M8-AKS5WH?2. WE RUN THE APPAROACHES ON A LAPTOP WITH
ANTY 2.66GHZ CPU IN WINDOW 7 PLATFDRM)

3 lines

4 lines

5 lines

6 lines
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Figure 18. The average results obtained by the eight approaches. (a-c) respectively
shows the influence of inlier scale, outlier percentage, and the relative cardinality

radio of outliers to inliers.
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TABLE 3
THE FITTING ERRORS IN PARAMETER ESTIMATION.

Inlier scale Outlier percentage | Cardinality ratio

Std.Var. |Max.Err. | Std.Var. |Max.Err. | Std.Var. [Max.Err.
RIIT 4.75 36.1 0.36 31.2 2.90 26.7
ASKC 0.06 3.01 0.10 6.23 2.30 18.5
MS 5.03 46.3 7.70 49.6 3.85 32.8

RHA 19.3 333 27.0 334 14.3 143

J-linkage | 5.60 41.0 2.06 45.6 2.95 22.6

KF 0.19 8.14 0.11 6.41 1.07 20.4

AKSWH1| 0.04 2.88 0.09 6.01 0.02 0.86

AKSWH2| 0.06 2.75 0.09 6.09 0.03 0.86
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e) RHA

f) J-linkage h) AKSWH2

Figure 19. Examples for line fitting with real images. 15t (“tennis court”) and 2t (“tracks”)
rows respectively fit six and seven lines. (a) The original images; (b) to (g) are the results
obtained by RHT, ASKC, MS, RHA, J-linkage, KF and AKSWH?2, respectively.
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Figure 20. Examples for circle fitting. 1t (“cups”) to 2t (“coins”) rows respectively fit
four and six circles. (a) The original images; (b) to (h) The results obtained by RHT,
ASKC, MS, RHA, J-linkage, KF and AKSWH2, respectively.
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Segmentation results by ALKS mnhmrﬁlﬁ-?j ﬂ_ﬁm
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Figure 21. The segmentation results by ALKS and AKSWH2.
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Figure 21. Examples for range image segmentation. 15t (“five planes” including 10842
data points) to 2t (“block” having 12069 data points) rows fit five planes. (a) The
original images; (b) to (g) The segmentation results obtained by RHT, ASKC, MS, RHA,

J-linkage, KF and AKSWH2, respectively.

For the computational efficiency, AKSWH1/2 are more than one order faster than J-
linkage, and more than two order faster than KF !
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TABLE 4
THE CPU TIME USED BY THE APPROACHES(IN SECONDS)

M1 M2 | M3 | M4 | Mb | M6 | M7 | M8
court | 0.74 | 18.3 | 798 | 152 | 273 [4600* | 22.1 | 10.8
tracks| 0.85 | 992 | 657 | 225 | 31.2 | 167 | 245 | 4.23
cups | 2.19 | 149 | 11.1 | 10.8 | 20.2 | 514 | 9.86 | 3.27
coins | 1.25 | 26.7 | 391 | 125 | 28.8 | 1272 | 6.59 | 4.10
Splanes 3.40 | 164 | 10.1 | 29.6 | 295* |5931*| 119 | 15.1
blocks| 3.12 | 164 | 19.7 | 27.0 | 310* |3445% | 11.3 | 19.8
(M1-RHT; M2-ASKC; M3-MS; M4-RHA; M5-]-LINKAGE; M6-KF; M7-
AKSWHI1; M8-AKSWH2.”*" MEANS THE APPROACH USES THE RE-SAMPLED
DATA POINTS)
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Figure 22. Estimating homographies and segmenting multiple-structure data with the image pairs of
“Model House” (“MH”), four books (“4B”) and five books (“5B”). (al), (b1) and (c1) show the left images
with the ground truth segmentation results superimposed. The yellow dots are the outliers. (a2), (b2) and
(c2) show the right images with the disparities of corresponding points superimposed. 2" to 4" rows are
the segmentation results obtained by RHT, ASKC, MS, RHA, J-linkage, KF and AKSWH?2, respectively.
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R TABLE 5
©  THEFITTING ERRORS OBTAINED BY THE EIGHT APPROACHES AND
THE CPU TIME USED (IN SECONDS).

At
L

Al DAaciil+e
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MinNMaxN| TN | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8
1.89 1.24 |44.6|4.47|1.29|1.87 |1.29|1.28
(14.8)(30.8)(147)((9.02)((15.4) (302)((28.3)((16.8)
1.36[0.49 | 507 | 361 | 0.66 | 0.66 |0.52|0.50
(16.0)(54.7) (121)((13.7)((26.5)(85.8)|(29.6)(12.5)
39.5|1.57 | 365 | 151 |2.43|15.6 | 1.85|1.56
(39.5)(55.3)(136)|(11.6){(29.0)(64.5)|(29.3)|(15.1)
1.790.86 | 467 | 350 |0.95 |2.11 |0.92 | 0.87
(33.0)(123)((189)((17.8)((33.6) (989)((20.7)|(14.9)
1.270.43 | 132 | 244 |0.85 | 0.62 | 0.50 | 0.44
(27.4)(168)|(187)((29.4)((157)|(8996)(36.0)|(24.3)

(M1-RHT, M2-ASKC; M3-MS; M4-RHA; M5-J-linkage; M6-KF; M7-
AKSWH1; M8-AKSWH2.)

MC2| 131 | 200 | 347

MC3| 136 | 303 | 799

MH | 105 | 294 | 702

4B | 122 | 231 | 777

5B | 257 | 577 |2394
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(b)

Figure 23. The segmentation results obtained by AKSWH2 for the image pairs of “Box-Car”
(“BC”) and “Box-Car-Dinosaur” (“BCD”) respectively. (a) shows the left image with the ground
truth segmentation superimposed. (b) shows the right image with the disparities of
corresponding points superimposed. (c) shows the results obtained by AKSWH?2.
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TABLE 6

THE FITTING ERRORS OBTAINED BY THE EIGHT APPROACHES AND
THE CPU TIME USED (IN SECONDS).

)

p)

MinN

MaxN]|

IN

M1

M2

M3

M4

M5

M6

M7

M8

BC

378

500

1116

0.39
(12.6)

0.17
(145)

5.92
(139)

145
(149)

0.27
(116)

0.15
(626)

0.14

(198)

0.15
(64.5)

BCD

232

460

1227

297

0.53

(13.4)

(197)

26.5
(229)

36.4
(168)

27.6
(123)

0.51
(519)

0. 51
(274)

0.26
(61.5)

(M1-RHT, M2-ASKC; M3-MS; M4-RHA; M5-J-linkage; M6-KF; M7-
AKSWH1; M8-AKSWH?2)
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< Advantages:

v" It can simultaneously estimate not only the parameters
of and the scales of model instances in data, but also
the number of model instances in the data.

v It does not require to specify the inlier scale, which is
adaptively estimated.

v It is computationally efficient.
Disadvantages:
It uses a fixed K value.

The IKOSE scale estimator requires the residuals of
inliers are Gaussian-like distributed.
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< Higher Order Constraints for Multi-
Structure Fitting (PEARL)

A

< @ Isack and Yuri [IJCV12] formulate geometric
multi-model fitting as an optimal labeling
problem.

® |t optimizes the labels of the data with a global
energy function, which balances geometric errors
and regularity of inlier clusters.

® Regularization is based on spatial coherence (on
some near-neighbor graph).

® PEARL converges to a local minimum of the
energy and automatically selects a small number
of models that best explain the whole data set.
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< Higher Order Constraints for Multi-
Structure Fitting (PEARL)
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(a) low noise (b) high noise

Figure 24. In multi-model cases, the criteria of maximizing the number of inliers may
work for low levels of noise (a). However, higher noise levels may cause a failure case as
some random model (red) may have more inliers than the true model (green). (from
Isack and Yuri, JCV12)
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< Higher Order Constraints for Multi-
Structure Fitting (PEARL)

® The energy-based interpretation of the basic
RANSAC algorithm is represented as the
minimization of energy:

E(L)=Yllp—L|
i

where

O1f dist(p, L) <T
Ip— 2= { o

1 otherwise
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Higher Order Constraints for Multi-
Structure Fitting (PEARL)

® et L = {L,p € P} be the labeling of points in
data set P. Model fitting could be formulated
as minimization of energy E(L) over labeling L.

® If the goal is only to minimize the fitting errors,
the energy function is written as:

L LS

L '
ﬁ-,.n‘l‘_"«
foe — >
'w e \w
s\ hedl)z)
)
s g

EL)=) |lp— Lyl (1)
P

This function corresponds to overfitting as
every point is assigned some perfectly fit
model and there are no outliers.
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< Higher Order Constraints for Multi-
Structure Fitting (PEARL)

® The above-mentioned energy function must
be combined with some energy term to
regularize the labeling.

® One form of regularization is to combine
geometric errors with the label count penalty:

E(L)=> llp— Lyl +8-LL]  (2)
P

where ¢, is the set of distinct models (labels)
assigned to points.
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Higher Order Constraints for Multi-
Structure Fitting (PEARL)

< @ Considering the spatial regularization, the energy
function (3) can be written as:

E{L):ZHP—LH_)‘“ Z Wpq - 0(Lp # Lg), (3)
p

(p.g)EN

where N is some neighborhood (e.g. edges on
some near-neighbor graph).

® The second term is a smoothness prior. Weights
set discontinuity penalties for each pair of
“neighboring” data points.
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Figure 25. One example of fitting homographies. It motivates spatial regularization in
geometric model fitting. (from Isack and Yuri, 1JCV12)
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& Higher Order Constraints for Multi-
Structure Fitting (PEARL)

® The optimal solution for the energy function (3)
can not merge two models with very similar

parameters:
ST Y :'S :_ - o o
. i.“bﬁ_' Do ff;i} S B . ,u:'_'y . ,,;'_'y
.4; . :,; - ‘Ej*;:‘ffi;?:.‘f - ; - _ - _
+: o ',‘1;' .1h := . . .‘ = , =
A 51."‘.’*; S e h\\ e
(a) data (300 outliers) (b) minimum of energy (3) (c) merging, energy (4)

Figure 26. Optimization of energy (3) may leave spatially isolated groups of inliers
assigned to 2 models even if their parameters are infinitesimally close (b). Per-label
costs in energy (4) solves this problem (c). (from Isack and Yuri, 1JCV12)
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< Higher Order Constraints for Multi-
Structure Fitting (PEARL)

® Considering a more general combination of
spatial smoothness with label counts, the
energy function (4) can be written as:

BE(L) =) llp—Lpll+A- }  wpq-8(Ly #Lq)+B-|L0l. (4)
r

(p,a)EN
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Figure 27. Representative PEARL’s results. (from Isack and Yuri, IJCV12)
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Higher Order Constraints for Multi-
Structure Fitting (PEARL)

v It provides an effective way to handle multi-
structure fitting from the minimization of
energy point of view.

However, it requires some thresholds in the
energy function and in classifying weak models
(e.g. those with small number of inliers).
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[0 How many structures do data exactly contain?

[J How to robustly estimate the inlier scale of a
model if the inliers do not satisfy a Gaussian-
like distribution?

1 How to effectively guide sampling data 7
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[0 Kernel Fitting (KF):
http://cs.adelaide.edu.au/~tjchin/doku.php?id=co
de

O J-Linkage:
http://www.diegm.uniud.it/fusiello/demo/jlk/

0 AKSWH (some datasets with ground truth):
http://cs.adelaide.edu.au/~dsuter/code and data/i
ndex.htm|
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