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Multi structure fittingMulti-structure fitting
 Contamination in data is unavoidable: Contamination in data is unavoidable:
 Sensor noise;
 Faulty feature extraction; Faulty feature extraction;
 Segmentation errors;
Multiple structures etcMultiple structures, etc.

What do we need to estimate for 
multi-structure data: 
 The number of model instances
 The scale of inlier noise of each 

model instance.
 Th t f h d l

Figure 1. Multi-structure data

 The parameters of each model 
instance.



Review of Previous WorksReview of Previous Works
Traditional robust methods (such as LMedS, ( ,

LTS, M-estimators) that cannot deal with more 
than 50% outliersthan 50% outliers.
Some robust methods (such as RANSAC, MSAC, 

HT, ALKS, RESC, MSSE, MUSE, pbM, HBM, 
MINPRAN, ASSC, etc.) can deal with > 50%  

To deal with multi-structure data the above
outliers.
To deal with multi-structure data, the above 
methods employ a sequential “fitting-and-

i ” f kremoving” framework. 



Review of Previous WorksReview of Previous Works

 P bl i h i l “fi i d i ” Problems in the sequential “fitting-and-removing” 
framework:

Th (i d l t / d i li l ) The errors (in model parameters or/and inlier scales)
can be propagated to the following step;
 It’s not computationally efficient it requires It’s not computationally efficient, it requires 
generating a large number of hypotheses in each step;
 It requires a user to specify the number of the It requires a user to specify the number of the 
structures;
 Some methods requires the user to specify the inlier Some methods requires the user to specify the inlier
scale, which may causes problems for multiple structures 
with different inlier scales.



One exampleOne example

Figure 2.  One example showing the segmentation results obtained by using the 
sequential “fitting-and-removing” framework(b). Note (c), if the 1st structure is 
wrongly fitted, it will affect the fitting of the remaining structures. 



Review of Previous WorksReview of Previous Works

Some methods use different strategies to fit multiple 
structures:
multiRANSAC, Mean Shift (MS), HT/RHT, RHA, J-

linkage, KF, AKSWH, etc.
However, most of these methods require some user-
specified thresholds whose values are crucial in spec ed es o ds ose a ues a e c uc a
determining the number of model instances and 
affecting the performance of these methods. g p



Scale Estimation and SegmentationScale Estimation and Segmentation

Scale estimation plays an important role in model 
fitting and segmentation. It can greatly affect the 
performance of many robust estimators, because: 
 It can be used to dichotomize inliers and outliers It can be used to dichotomize inliers and outliers 

(such as RANSAC, multiRANSAC, etc.);
 It b d t l t th b t h th i ( h It can be used to select the best hypothesis (such 

as  ASSC, MDPE);
 It can be used to determine the bandwidth value 

or the bin size (e.g., PBM, HT/RHT ).g



Inliers/Outliers DichotomyInliers/Outliers Dichotomy

Given the scale of inlier noise s, the residual 
corresponding to the ith data sample is ri , the p g p i ,
inliers can be dichotomized from outliers by 
using the following equation:using the following equation:

where E is a threshold (98 percent of inliers of 
a Gaussian distribution are included when E isa Gaussian distribution are included when E is 
set to 2.5).



Influence of the Scale EstimateInfluence of the Scale Estimate

Figure 3.  Influence of wrong thresholds on fitting multiple straight lines. (a) 
Correct threshold and fitted lines. (b) Thresholds that are too low encourage 
overfitting. (c) Thresholds that are too large encourage underfitting. (from 
Schindler and Suter, PAMI06)



Robust Scale EstimatorsRobust Scale Estimators
Median scale estimatorMedian scale estimator

MED
5ˆ : 1.4826 1 i is med r

n p
 

= + − 
MAD scale estimator

{ }ˆ : 1 4826 | |d d{ }MAD : 1.4826 | - |i i i is med r med r=

Let be the sorted absolute residual. The KOSELet     be the sorted absolute residual. The KOSE 
scale estimator

1-where : K / ;  ( ) is the argument of the normal nκ = Θ ; ( ) g
cumulative density function.



Problems with MED/MAD/KOSEProblems with MED/MAD/KOSE

h d i l i lWhen data contain multiple structures, MED, MAD 
and KOSE can either break down or be badly biased.
This is because : 
 The breakdown is caused when the median (for (
MED/MAD), or the Kth ordered absolute residual (for 
KOSE), belongs to outliers; 
MED, MAD and KOSE are biased for multiple-
structure data when n (the number of whole data) is ( )
used instead of the number of data belonging to the 
structure of interest.



The IKOSE scale estimator (Wang, et al., PAMI12): ( g, , )
( )1 1ˆ : | | 1

2
J J J
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: K /J Jnκ =

It iteratively optimizes the estimate and only useJnIt iteratively optimizes the estimate    , and only use 
the data points belonging to the structure of interest.

Jn

How to decide the K value?
When the percentage of outliers in the data is not p g

known, one should set K to be a small value to 
avoid breakdown;avoid breakdown;
When the percentage of outliers is (approximately) 

k h ld t th K l lknown, one should set the K value as large as 
possible to achieve better statistical efficiency.



ALKS (Lee et al PAMI98)ALKS (Lee, et al., PAMI98)

 h d i h d S ( S) The Adaptive Least Kth order Squares (ALKS) 
algorithm optimizes the K value of KOSE by 

i i i i th i f th li dminimizing the variance of the normalized errors: 

where      is the variance of the first K smallest 
absolute residuals is the estimated scale by

ˆ Kσ
ŝabsolute residuals.      is the estimated scale by 

KOSE. 
Ks



MSSE (Bab Hadiashar et al ROBOTICA99)MSSE (Bab-Hadiashar, et al, ROBOTICA99)

The Modified Selective Statistical EstimatorThe Modified Selective Statistical Estimator 
(MSSE) finds the K value which satisfies:

Fig. 4. Both sides of the inequality are plotted. The intersection of these two graphs 
provides the unbiased scale estimate. (from Bab-Hadiashar and Suter, Robotica99)



TSSE (Wang and Suter PAMI04)TSSE (Wang and Suter, PAMI04)

The Two-Step Scale Estimator (TSSE):
 Step 1: Using MS with initial center zero to find the Step 1: Using MS, with initial center zero, to find the
local peak (Pk), and then using the MSV to find the
valley next to the peakvalley next to the peak.

 Step 2: Estimating the scale of the inliers by thep g y
median scale estimator on the points within the
obtained band centered at Pk.



Original data distribution Residuals

Sorted absolute residuals Found peak and valley

Figure 5. Simultaneous scale estimation and outlier detection with the TSSE-
estimator. (from Schindler and Suter, PAMI06)



ExperimentsExperiments

Fi 6 ( ) d (b) T h i l h i h “ li ” d d hFigure 6. (a) and (b) Two snapshots respectively showing the “two-line” data and the
“two-plane” data with 90% outliers. (c) and (d) are respectively the error plots of the
scale estimation. (e) and (f) show the maximum errors in scale estimation.



ExperimentsExperiments
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Multi Structure Fitting (HT/RHT)Multi-Structure Fitting (HT/RHT)
Hough Transform (HT) and Randomized Hough TransformHough Transform (HT) and Randomized Hough Transform 
(RHT, XU, et al, PRL90)
 Both use a random sampling schemeBoth use a random sampling scheme 
 Both work in parameter space.
 Both assume that multiple model instances correspond p p

to the multiple significant modes in parameter space. 
The main differences are: 
HT discretizes the parameter space and computes the 

number of hypotheses in each bin, which is used to 
derive significant modesderive significant modes.

RHT accumulates the number of the hypotheses whose 
distances are within a given tolerance, and detects g ,
significant modes based on the accumulated number. 



Multi Structure Fitting (HT/RHT)Multi-Structure Fitting (HT/RHT)
Th d t f RHT HTThe advantages of RHT over HT are: 
 RHT can observe infinite parameter space while HT can 

only observe finite parameter spaceonly observe finite parameter space. 
 RHT requires less storage space.
 It has higher computational speed.It has higher computational speed. 
However, 
 RHT needs more user-specified thresholds than HT. p
 It is not trivial to find a global optimal bin size for both 

HT and RHT. 
 It is hard to both achieve accurate results and correctly 

localize multiple significant peaks in parameter space.



Multi Structure Fitting (MS)Multi-Structure Fitting (MS)
Mean-Shift (MS) based methods
• The MS-based methods (e.g., Tuzel, et al. CVPR05, 

Subbarao and Meer, IJCV09) also assume that 
dominant modes represent multiple structures anddominant modes represent multiple structures and 
the positions of the modes correspond to the 
parameters of the multiple structures .

Figure 7. One exampleFigure 7. One example 
showing that each of the 
significant modes means one 
motion group. (from Tuzel, et g p ( ,
al. CVPR05)



Some good results have been obtained by MS

Figure 8. 2D image data. (a, b) Original and transformed scenes. (c) The 
b d i f th b di (d) T f d b d i ith th ti t dboundaries of the bodies. (d) Transformed boundaries with the estimated 
motion parameters. (from Tuzel, et al. CVPR05)



Figure 9. Multibody Factorization. The left figure shows the 1st frame with all 
th i t hi h t k d Th i ht i h th 5th (i l t) fthe points which are tracked. The right image shows the 5th (i.e., last) frame 
with only the inliers. The table contains the properties of the first four modes. 
(from Subbarao and Meer, IJCV09)



Multi Structure Fitting (MS)Multi-Structure Fitting (MS)

 h d i i ifi d iHowever, how to determine significant modes is 
not an easy task. 

One way to select significant modes is to check if 
the first N modes clearly dominate the (N+1)th
mode.

But it is hard that how to judge when the Nth 
mode dominates the (N+1)th mode. 

We also found that the task becomes much more 
difficult for MS when the inlier noise scale is high 
or the percentage of outliers is high. p g g



Multi Structure Fitting (J linkage)Multi-Structure Fitting (J-linkage)
 Th J li k th d (T ld d F i ll ECCV08) The J-linkage method (Toldo and Fusiello, ECCV08) 

generates M model hypothesis by random 
samplingsampling. 

 The Preference Set (PS) of each model hypothesis 
is computed as in RANSACis computed, as in RANSAC.

 Then it builds a N ×M matrix where entry (i, j) is 
1 if the distance of a point i to a model j is less1 if the distance of a point i to a model j is less 
than a threshold; otherwise the entry (i, j) is 0. 

 Each column of the matrix is the PS of a model 
hypothesis. Each row indicates which model a 
point prefers.



Multi Structure Fitting (J linkage)Multi-Structure Fitting (J-linkage)

Figure 10. Left: the data consist of 250 points on 5 lines. Right: The NxM
matrix. The rows are points (ordered by cluster), the columns are models 
(ordered by cluster size). (from Toldo and Fusiello, ECCV08)



Multi Structure Fitting (J linkage)Multi-Structure Fitting (J-linkage)

Given two preference sets A and B, which 
correspond to two model hypotheses , the p yp
Jaccard distance between the two sets is: 

The Jaccard distance measures the degree of 
overlap of the two sets and ranges from 0overlap of the two sets and ranges from 0 
(identical sets) to 1 (disjoint sets).



Multi Structure Fitting (J linkage)Multi-Structure Fitting (J-linkage)

The cut-off value is set to 1. It means that the 
algorithm will only link together elements g y g
whose preference sets overlap.
Each cluster of points defines (at least) oneEach cluster of points defines (at least) one 

model. 
The final model for each cluster of points is 

estimated by least squares fitting.estimated by least squares fitting.



Multi Structure Fitting (J linkage)Multi-Structure Fitting (J-linkage)

Figure 11.  Some results obtained by J-linkage (from Toldo and Fusiello, 
ECCV08)



Multi Structure Fitting (J linkage)
Ad t

Multi-Structure Fitting (J-linkage)
Advantages: 
 It can fit multiple structures simultaneously.
 It can estimate both the number of model instances and It can estimate both the number of model instances and 

the parameters of the model instances. 

Disadvantages:Disadvantages: 
 It dichotomizes inliers/outliers by using a user-specified 

inlier scale. 
 Like RANSAC, the performance of J-linkage greatly 

depends on the specified inlier scale.
 The estimated number of model instances is heavily The estimated number of model instances is heavily 

affected by a threshold which is used in selecting 
significant bins of the hypothesis histogram.



Multi Structure Fitting (KF)Multi-Structure Fitting (KF)

For each data point  xi, KF (Chin, et al, ICCV09) 
computes its absolute residual set                        p
as measured to the M hypotheses. 
 It sorts the absolute residual set to obtain the It sorts the absolute residual set to obtain the 

sorted residual set                       , where the 
b hpermutation                  is obtained so that

Define the sorted hypothesis set of point xi as 



Multi Structure Fitting (KF)Multi-Structure Fitting (KF)

The Ordered Residual Kernel (ORK) between 
two data points can be defined as:p

where             are the harmonic series and is Z 1/tz t=
the (M/h)-th harmonic number.

t



Multi Structure Fitting (KF)Multi-Structure Fitting (KF)

Step size h is used to obtain the Difference of 
Intersection Kernel (DOIK)( )

where     = th and       = (t-1)h.tα 1tα − ( )t 1t



Multi Structure Fitting (KF)Multi-Structure Fitting (KF)

A kernel matrix K is constructed by mapping the 
input data to a reproducing Kernel Hilbert Space 
(RKHS), which can be computed by using the 
kernel function     .

 Through the eigenvalue decomposition (EVD) and 
Singular Value Decomposition (SVD) the data canSingular Value Decomposition (SVD), the data can 
be projected onto the principal subspace.  

 i i f h i i l bDirections of the principal subspace are 
dominated by inlier points.



(a) Original data

(b) (c)

Figure 12. (b) Gross outlier removal with Kernel SVD and structure discovery 
with Kernel PCA. (c) The histogram is obtained from the actual input data.



Multi Structure Fitting (KF)Multi-Structure Fitting (KF)

The cutoff threshold can be set by employing 
the Gaussian Mixture Model (GMM) with two ( )
components to find the threshold.
The outlier removal scheme is more tractableThe outlier removal scheme is more tractable 

than the mode seeking-based method (for the 
k b f ) kunknown number of structures), as it is known 

beforehand that there are at most two modes 
in the norm distribution.



Multi Structure Fitting (KF)Multi-Structure Fitting (KF)

To fit multiple model instances, it is based on 
the idea that points from the same structure p
concentrate at a location in RKHS.
The Normalized Cut method is used to clusterThe Normalized Cut method is used to cluster 

the data. 



Multi Structure Fitting (KF)Multi-Structure Fitting (KF)

Figure 13. (a) Weighted adjacency matrix for the data (i.e., the five lines with 
92% outliers).  (b) Normalized Cut clustering results on for the data.



Multi Structure Fitting (KF)Multi-Structure Fitting (KF)

To deal with the “overclustering” problem

A structure pruning scheme is operated to fit theA structure pruning scheme is operated to fit the 
data with the least number of structures. 
A d l i i fi i d f h iA model instance is first estimated from each point 

cluster with LMedS. 
 h l h h llThe algorithm then sequentially removes structures 

by testing if a structure is removed, whether the 
remaining str ct res can “e plain” the dataremaining structures can “explain” the data. 
This proceeds until the condition of satisfactory 

l ti i i l t dexplanation is violated.



Experimental Results (KF)Experimental Results (KF)

Figure 15. 1st row: Homography estimation results. 2nd row: Motion segmentation 
results Yellow crosses indicate gross outliers determined by KFresults . Yellow crosses indicate gross outliers determined by KF.



Multi Structure Fitting (KF)Multi-Structure Fitting (KF)
Ad tAdvantages:
The KF method can effectively remove gross 

outliers in the data and in parallel discover theoutliers in the data and in parallel discover the 
multiple structures.

 It does not require a user to specify the inlier scale It does not require a user to specify the inlier scale.
Disadvantages: 
It i t ti ll lIt is computationally slow. 
The value of the step size h and the weighting ratio 

used in KF has a significant influence onused in KF has a significant influence on 
determining the number of model instances.



Multi Structure Fitting (AKSWH)
AKSWH (Wang et al PAMI12) generates a set

Multi-Structure Fitting (AKSWH)
AKSWH (Wang, et al, PAMI12) generates a set 

of  p-subsets, and compute the model 
hypotheses using the p subsetshypotheses using the p-subsets. 
 It assigns each hypothesis a weight. 

If we know some weighted hypotheses are
1,2 ,... 1,2 ,...

ˆ ˆ: { } {( , )}i i i i iw= == =P θP

If we know some weighted hypotheses are 
associated with the Jth structure, we can 

ti t th t f th Jth t t bestimate the parameters of the Jth structure by 
using:

{ }ˆˆ ˆ ˆ ˆ ) { | }J J J J J J(θ{ }ˆ, ) = arg max{ | }
i

J J J J J J
iw

w= (P = P P P Pθ



Multi Structure Fitting (AKSWH)Multi-Structure Fitting (AKSWH)
Weighting function:Weighting function: 
It uses a variable-scale weight function which can 
be written as:be written as: 

( )ˆ
ˆ ˆ ˆ( ) ( ) ( )1ˆ : ˆ ˆ ˆˆ ˆ( ) ( ) ( )

j
n i j j
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   KNwhere

The fixed-scale weight is written as: 
1 n

( )
1

1 ˆˆ ( )
n

j i j
i

w r h
n =
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Multi-Structure Fitting (AKSWH)Multi Structure Fitting (AKSWH)
Selecting significant hypotheses: it employs the 
entropy thresholding approach, which can 
adaptively determines the threshold value. 

1,...,ˆ: { }i i nw ==W
2

 

Given a set of hypotheses with weights , 
we define: 2

ˆ
ˆ: arg max

i
j j

w
w Ψ =  

 
W -

The prior probability of component is:Ψ

we define:

The prior probability of component     is:jΨ

1
p( ):

n

i i j
j=

Ψ = Ψ Ψ
The significant hypotheses can be selected which 
satisfy the following condition: y g

* { | log p( ) p( ) log p( ) 0}
n

i i i i
i=1

= Ψ − Ψ Ψ <P P



Multi Structure Fitting (AKSWH)Multi-Structure Fitting (AKSWH)
ˆGiven a set of residuals                  for a model hypothesis    , 

it formulates the consensus set of residuals as: 
1,...,

ˆ{ ( )}i j i nr =θ ˆ
jθ

1

ˆ1  If Eˆ ˆ( ) : { ( ( ))} ,where ( ) i
j i j i i

r s
r r

 ≤= = θ θC L L

The J distance between two consensus sets

1,...,( ) : { ( ( ))} ,where ( )
0  Otherwisej i j i n ir r= 


θ θC L L

The J-distance between two consensus sets 
(corresponding to two hypotheses) is given by:

( )
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Multi Structure Fitting (AKSWH)Multi-Structure Fitting (AKSWH)
To solve the over clustering problem it usesTo solve the over-clustering problem, it uses 
Mutual Information Theory (MIT) to fuse 
clusters belonging to the same model instanceclusters belonging to the same model instance. 
 The mutual information between two 
hypotheses can be written as:

† †p( )i jθ θ† † † † † †
† †
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i j
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Multi Structure Fitting (AKSWH)Multi-Structure Fitting (AKSWH)

Th diff b AKSWH d J li kThe differences between AKSWH and J-linkage:
 A consensus set in J-linkage is a set of classifications of 

th t h th i ith t t d tthe parameter hypothesis with respect to one data 
point. The J-distances of all possible pairs of the data 
points must be calculatedpoints must be calculated. 

 In contrast, the consensus set in AKSWH is the 
inlier/outlier binary classification of all data points withinlier/outlier binary classification of all data points with 
respect to one model hypothesis. One can calculate the 
J-distances only for the significant hypotheses, by 
which the computational efficiency can be greatly 
improved.



Multi Structure Fitting (AKSWH)Multi-Structure Fitting (AKSWH)

The differences between AKSWH and J-linkage:
 J-linkage clusters the pairs of data points, and g p p ,

selects as the inliers the data points belonging to 
one cluster when the number of the data pointsone cluster when the number of the data points 
is larger than a user-specified threshold. 

AKSWH di tl l t th i f h thAKSWH directly clusters the pairs of hypotheses 
in parameter space and does not use any 
h h ld d i h b f lthreshold to determine the number of clusters.



Multi Structure Fitting (AKSWH)Multi-Structure Fitting (AKSWH)

Figure 16. An example illustrating the main steps of the AKSWH method. (a) and (b) The input 
image pair with the matched SIFT feature points (c) to (g) some results obtained by AKSWH2image pair with the matched SIFT feature points. (c) to (g) some results obtained by AKSWH2 
(using the variable-scale weight function ). (h) to (j) some results obtained by AKSWH1 (using 
the fixed-scale weight function). 384 /806 significant hypotheses are selected from 5000 
hypotheses  and 19 /45 clusters are obtained  by AKSWH2/AKSWH1, respectively. 



Experimental ResultsExperimental Results

Figure 17. Examples for line fitting and segmentation. 1st to 4th rows respectively fit 
three four five and six lines The corresponding outlier percentages are respectivelythree, four, five and six lines. The corresponding outlier percentages are respectively 
85%, 85%, 87% and 90%. The inlier scale is 1.5. (a) The original data. (b) to (g) The 
results obtained by RHT, MS, RHA, J-linkage, KF and AKSWH2, respectively. 



Experimental ResultsExperimental Results
TABLE 2TABLE 2



Experimental ResultsExperimental Results

Figure 18. The average results obtained by the eight approaches. (a-c) respectively 
shows the influence of inlier scale, outlier percentage, and the relative cardinalityshows the influence of inlier scale, outlier percentage, and the relative cardinality 
radio of outliers to inliers.



Experimental ResultsExperimental Results



Experimental ResultsExperimental Results

Figure 19. Examples for line fitting with real images. 1st (“tennis court”) and 2th (“tracks”) 
rows respectively fit six and seven lines (a) The original images; (b) to (g) are the resultsrows respectively fit six and seven lines. (a) The original images; (b) to (g) are the results 
obtained by RHT, ASKC, MS, RHA, J-linkage, KF and AKSWH2, respectively.  



Experimental ResultsExperimental Results

Figure 20. Examples for circle fitting. 1st (“cups”) to 2th (“coins”) rows respectively fit 
four and six circles.  (a) The original images; (b) to (h) The results obtained by RHT, 
ASKC MS RHA J li k KF d AKSWH2 ti lASKC, MS, RHA, J-linkage, KF and AKSWH2, respectively.  



Experimental ResultsExperimental Results

Figure 21. The segmentation results by ALKS and AKSWH2.



Experimental ResultsExperimental Results

Figure 21. Examples for range image segmentation. 1st (“five planes” including 10842 
data points) to 2th (“block” having 12069 data points) rows fit five planes. (a) The da a po s) o ( b oc a g 069 da a po s) o s e p a es (a) e
original images; (b) to (g) The segmentation results obtained by RHT, ASKC, MS, RHA, 
J-linkage, KF and AKSWH2, respectively. 

F h i l ffi i AKSWH1/2 h d f h JFor the computational efficiency, AKSWH1/2 are more than one order faster than J-
linkage, and more than two order faster than KF !



Experimental ResultsExperimental Results



Experimental ResultsExperimental Results

Figure 22. Estimating homographies and segmenting multiple-structure data with the image pairs of 
“Model House” (“MH”), four books (“4B”) and five books (“5B”). (a1), (b1) and (c1) show the left images ( ), ( ) ( ) ( ), ( ) ( ) g
with the ground truth segmentation results superimposed. The yellow dots are the outliers. (a2), (b2) and 
(c2) show the right images with the disparities of corresponding points superimposed. 2nd to 4th rows are 
the segmentation results obtained by RHT, ASKC, MS, RHA, J-linkage, KF and AKSWH2, respectively. 



Experimental ResultsExperimental Results



Experimental ResultsExperimental Results

Figure 23. The segmentation results obtained by AKSWH2 for the image pairs of “Box-Car” 
(“BC”) and “Box-Car-Dinosaur” (“BCD”) respectively. (a) shows the left image with the ground ( ) ( ) p y ( ) g g
truth segmentation superimposed.  (b) shows the right image with the disparities of 
corresponding points superimposed. (c) shows the results obtained by AKSWH2. 



Experimental ResultsExperimental Results



Multi Structure Fitting (AKSWH)Multi-Structure Fitting (AKSWH)
Ad tAdvantages:
 It can simultaneously estimate not only the parameters 

of and the scales of model instances in data but alsoof and the scales of model instances in data, but also 
the number of model instances in the data.

 It does not require to specify the inlier scale, which is q p y
adaptively estimated.

 It is computationally efficient.
Disadvantages: 
 It uses a fixed K value. 
Th IKOSE l i i h id l fThe IKOSE scale estimator requires the residuals of 

inliers are Gaussian-like distributed. 



Higher Order Constraints for Multi-
Structure Fitting (PEARL)

 I k d Y i [IJCV12] f l t t i Isack and Yuri [IJCV12] formulate geometric 
multi-model fitting as an optimal labeling 
problemproblem.

 It optimizes the labels of the data with a global 
energy function which balances geometric errorsenergy function, which balances geometric errors 
and regularity of inlier clusters.

Regularization is based on spatial coherence (onRegularization is based on spatial coherence (on 
some near-neighbor graph).

PEARL converges to a local minimum of the g
energy and automatically selects a small number 
of models that best explain the whole data set.



Higher Order Constraints for Multi-
Structure Fitting (PEARL)

Figure 24. In multi-model cases, the criteria of maximizing the number of inliers may 
work for low levels of noise (a). However, higher noise levels may cause a failure case as 
some random model (red) may have more inliers than the true model (green) (fromsome random model (red) may have more inliers than the true model (green). (from 
Isack and Yuri, IJCV12)



Higher Order Constraints for Multi-
Structure Fitting (PEARL)

The energy-based interpretation of the basic 
RANSAC algorithm is represented as the g p
minimization of energy:

where



Higher Order Constraints for Multi-
Structure Fitting (PEARL)

 b h l b li f i iLet                       be the labeling of points in 
data set P. Model fitting could be formulated 
as minimization of energy E(L) over labeling L.
 If the goal is only to minimize the fitting errors, g y g ,

the energy function is written as: 

(1)

This function corresponds to overfitting as 
every point is assigned some perfectly fit 
model and there are no outliers.



Higher Order Constraints for Multi-
Structure Fitting (PEARL)

 h b i d f iThe above-mentioned energy function must 
be combined with some energy term to 
regularize the labeling. 
One form of regularization is to combine g

geometric errors with the label count penalty: 

(2)

where      is the set of distinct models (labels) 
assigned to points.



Higher Order Constraints for Multi-
Structure Fitting (PEARL)

C id i th ti l l i ti thConsidering the spatial regularization, the energy 
function (3) can be written as: 

(3)

where N is some neighborhood (e.g. edges on 
i hb h)some near-neighbor graph). 

 The second term is a smoothness prior. Weights  
t di ti it lti f h i fset discontinuity penalties for each pair of 

“neighboring” data points.



Higher Order Constraints for Multi-
Structure Fitting (PEARL)

Figure 25. One example of fitting homographies. It motivates spatial regularization in 
geometric model fitting. (from Isack and Yuri, IJCV12)



Higher Order Constraints for Multi-
Structure Fitting (PEARL)

The optimal solution for the energy function (3) 
can not merge two models with very similar g y
parameters: 

Figure 26. Optimization of energy (3) may leave spatially isolated groups of inliers
assigned to 2 models even if their parameters are infinitesimally close (b) Per-label

(4)

assigned to 2 models even if their parameters are infinitesimally close (b). Per label 
costs in energy (4) solves this problem (c). (from Isack and Yuri, IJCV12)



Higher Order Constraints for Multi-
Structure Fitting (PEARL)

Considering a more general combination of 
spatial smoothness with label counts, the p
energy function (4) can be written as: 

(4)



Some ResultsSome Results

Figure 27. Representative PEARL’s results. (from Isack and Yuri, IJCV12)



Higher Order Constraints for Multi-
Structure Fitting (PEARL)

 It provides an effective way to handle multi-
structure fitting from the minimization ofstructure fitting from the minimization of 
energy point of view. 

 However, it requires some thresholds in the 
energy function and in classifying weak modelsenergy function and in classifying weak models 
(e.g. those with small number of inliers).  



Opening QuestionsOpening Questions

 How many structures do data exactly contain?
 H t b tl ti t th i li l f How to robustly estimate the inlier scale of a 
model if the inliers do not satisfy a Gaussian-
like distribution?
 How to effectively guide sampling data ? How to effectively guide sampling data ?
 etc……



Some Source Codes and DatasetsSome Source Codes and Datasets

 Kernel Fitting (KF): 
http://cs.adelaide.edu.au/~tjchin/doku.php?id=cop // / j / p p
de
 J-Linkage: J Linkage:
http://www.diegm.uniud.it/fusiello/demo/jlk/
 AKSWH (some datasets ith gro nd tr th) AKSWH (some datasets with ground truth):  
http://cs.adelaide.edu.au/~dsuter/code_and_data/i

d h lndex.html
……
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