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Robust norms
Recall the usage of robust norms:

θ∗ = argmin
θ

N∑
i=1

ri(θ)
2 =⇒ θ∗ = argmin

θ

N∑
i=1

ρ(ri(θ))

To simplify the talk, lets focus on linear models:

ri(θ) = xTi θ − yi

θ∗ = argmin
θ

N∑
i=1

ρ(xTi θ − yi)



M-estimators
“M” for “maximum likelihood-type” (Huber, 1981) — ML
estimation is a special case of M-estimation.

Differentiating the objective function against θ and setting to 0
yields a system of simultaneous equations:

N∑
i=1

ψ(xTi θ − yi)xi = 0,

where

ψ(t) = ρ′(t)

is called the influence function. The M-estimate is the solution of
this system.

It is customary to use norms of the form

ψ(t) = t · w(t).

where w(t) is the weight function.



A short list of common ρ functions

Figure adapted from [Z. Zhang, IVC 1997].



M-estimators

Define wi = w(xTi θ − yi) and rewrite

N∑
i=1

(xTi θ − yi)wixi = 0

Rearranging we get

N∑
i=1

xiwix
T
i θ =

N∑
i=1

xiwiyi

Define W = diag([w1 w2 . . . wN ]) and rewrite in matrix form

XTW
↑
Xθ
↑
= XTW

↑
y

It is vital to see that W depends on θ.



IRLS

Use iteratively reweighted least squares:

1. Initialise θ(0) and compute W(0).

2. Revise θ as

θ(t+1) = (XTW(t)X)−1XW(t)y

3. Recompute W(t+1) using θ(t+1).

4. Repeat from Step 2 until convergence.



IRLS (cont.)

Data.



IRLS (cont.)

M-estimate with biweight function as ρ.



IRLS (cont.)

Non-convex ρ’s do not guarantee unicity. Good initialition is
crucial.
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Least absolute deviation

Focussing again on linear models, the LAD estimate is

θLAD = argmin
θ

N∑
i=1

|yi − xTi θ|

It is well known that this has an equivalent Linear Program

min
θ

N∑
i=1

ai + bi

s.t. ai ≥ 0

bi ≥ 0

yi − xTi θ = ai − bi

ai and bi are resp. the vertical deviations above and below the line.



Least absolute deviation (cont.)

By design, ai and bi cannot both be strictly positive.



Least absolute deviation (cont.)

Can be converted into a simpler form.

min
θ

N∑
i=1

si

s.t. |yi − xTi θ| ≤ si

function [ theta ] = leastabsdev(x,y)

N = length(x);

f = [ zeros(2,1) ; ones(N,1) ];

A = [ -x -ones(N,1) -1*eye(N) ; x ones(N,1) -1*eye(N) ];

b = [ -y ; y ];

sol = linprog(f,A,b);

theta = sol(1:2);

end



Results



Results (cont.)
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Least maximum deviation

Minimise the maximum deviation:

θLMD = argmin
θ

[
max
i
|xTi θ − yi|

]
θLMD is also called the minimax or Chebyshev estimate.

Stacking the residuals into a vector, we can rewrite

θLMD = argmin
θ

‖r(θ)‖∞, r(θ) =

 xT1 θ − y1
...

xTNθ − yN


i.e., minimise the L-infinity norm of the residuals.



Least maximum deviation (cont.)

The LMD estimator is inherently non-robust — the maximum
deviation is primarily due to the outlier(s).

The relevance of LMD will be clear later.



Least maximum deviation (cont.)

The equivalent Linear Program is

min
θ

s

s.t. |xTi θ − yi| ≤ s
s ≥ 0

function [ theta ] = leastmaxdev(x,y)

N = length(x);

f = [ zeros(2,1) ; 1 ];

A = [ x -ones(N,1) ; -x -ones(N,1) ];

b = [ y ; -y ];

sol = linprog(f,A,b);

theta = sol(1:2);

end



Characterising the LMD solution

We motivate with a simple example. Given points
x 2 4 5 6

y 1.2 2.1 2.6 3.1
we want to estimate the non-affine line y = xθ which solves

min
θ

max
i
|xiθ − yi|



Characterising the LMD solution (cont.)

We can graph the problem corresponding to the four points:

min
θ

max {|2θ − 1.2|, |4θ − 2.1|, |5θ − 2.6|, |6θ − 3.1|}

The objective function is convex but non-differentiable.



Characterising the LMD solution (cont.)
An equivalent problem is obtained by replacing each absolute
residual by two residuals of differing signs.

min
θ

max{2θ − 1.2, 4θ − 2.1, 5θ − 2.6, 6θ − 3.1,

− 2θ + 1.2,−4θ + 2.1,−5θ + 2.6,−6θ + 3.1}



Characterising the LMD solution (cont.)

Theorem: Every solution of the problem

min
θ

max
i
|xTi θ − yi|

for N points {xi, yi}Ni=1 with xi ∈ Rp, is a solution of an
appropriate subproblem of p+ 1 points

min
θ

max
i∈J
|xTi θ − yi|,

where J ⊂ {1, 2, . . . , N} and |J | = p+ 1.



LMD Algorithm 2 - vertex to vertex

Define C(θ) = maxi xiθ − yi. Starting with any θ, define
M = {j|xjθ − yj = C(θ)}. If M contains two elements k and l
such that xkxl < 0, then θ is the solution. Else, select m ∈M for
which |xm| is minimum. Then move θ along the right (resp. left) if
xm < 0 (resp. xm > 0) until there is a n for which
xmθ − ym = xnθ − yn. Stop if θ is optimal, else repeat.



LMD Algorithm 3 - bisection

Define C(θ) = maxi xiθ − yi. Start with two estimates θ0 and θ1
on opposite sides of the solution. Let xiθ0 − yi = C(θ0) and
xjθ1 − yj = C(θj). If xi = 0, then θ0 is a solution. If xj = 0, then
θ1 is a solution. Else, set θ2 = 0.5(θ0 + θ1). Let xkθ2 = C(θ2). If
xk < 0, replace θ0 by θ2 and i by k. If xk > 0, replace θ1 by θ2
and j by k. Repeat until desired level of accuracy.
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Least median and least k-th order deviation

Least median squares (LMedS) solves for

min
θ

med
i

(xiθ − yi)2.

Robustness can also be achieved by minimising the median
absolute deviation

min
θ

med
i
|xiθ − yi|.

We can generalise to least k-th order absolute deviation

min
θ
{|xiθ − yi|}k:N .

where k : N indicates the k largest among N numbers.



Least median and least k-th order deviation (cont.)
For k = N , least k-th order becomes least maximum deviation.

For k < N the objective function is non-convex.

Example: N = 4 points, set k = 3.



Least median and least k-th order deviation (cont.)

Example: N = 4 points, set k = 2.



Characterising the LKO solution

Theorem: Every solution of the problem

min
θ
{|xTi θ − yi|}k:N

for N points {xi, yi}Ni=1 with xi ∈ Rp, is a solution of an
appropriate subproblem of p+ 1 points

min
θ

max
i∈J
|xTi θ − yi|,

where J ⊂ {1, 2, . . . , N} and |J | = p+ 1.



Characterising the LKO solution (cont.)

Example: N = 4 points, p = 1, set k = 3. Use J = {2, 4}
corresponding to residuals |6θ − 3.1| and |4θ − 2.1|.

(a) LKO with k = 3. (b) LMD with J = {2, 4}.



Algorithm: Exhaustive sampling

Given {xi, yi}Ni=1, where xi ∈ Rp, and k ≤ N , do

1. Sample a (p+ 1)-tuple J .

2. Solve θ∗ = argminθ maxi∈J |xTi θ − yi|.
3. Compute residuals rj = |xTj θ∗ − yj | for all j = {1, 2, . . . , N}.
4. Seek k-th largest residual r[k].

5. If r[k] is smallest so far, record θ∗ and r[k].

until all (p+ 1)-tuples of {1, 2, . . . , N} have been sampled.

How many (p+ 1)-tuples need to be tested?(
N

p+ 1

)
=

N !

(p+ 1)!(N − p− 1)!
=
N(N − 1) . . . (N − p)

(p+ 1)!

which scales as O(Np+1) — doable, even for moderate N .



Solving LMD for (p+ 1)-tuples

Step 2 of the algorithm requires solving the least maximum
deviation problem

θ∗ = argmin
θ

max
i∈J
|xTi θ − yi|, |J | = p+ 1.

We can always solve this by linear programming (see MATLAB
code for LMD), but this may be slow...



Solving LMD for (p+ 1)-tuples (cont.)

Fortunately analytic solutions also exist.

Without loss of generality, let J = {1, 2, . . . , p+ 1}. Let

X =

 xT1
...

xTp+1

 ∈ R(p+1)×p, y =

 y1
...

yp+1

 ∈ Rp+1

First, we find the least squares fit for the (p+ 1)-tuple is

θLS = (XTX)−1XTy.

Let the LS residual of the i-th point in the (p+ 1)-tuple be

ri = yi − xTi θLS .



Solving LMD for (p+ 1)-tuples (cont.)

The LMD criterion can be obtained from the LS residuals

ω = min
θ

max
i∈J
|xTi θ − yi|

=

0 if
∑p+1

i=1 r
2
i = 0,∑p+1

i=1 r
2
i∑p+1

i=1 |ri|
otherwise.

Defining the sign vector

s = [sgn(r1) sgn(r2) . . . sgn(rp+1)]
T ,

the LMD estimate is then

θ∗ = θLS − ω(XTX)−1XT s.
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