Section 2:
Optimisation for Robust Parameter Estimation

by Tat-Jun Chin
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M-estimators



Robust norms
Recall the usage of robust norms:

N N
0" = arg minz:ri(H)2 = 0" =arg mian(ri(H))
o = o iz

To simplify the talk, lets focus on linear models:

ri(0) = %] 8 —y;

N
0" = argmin > p(x! 0 —y;
pin3 (570 -




M-estimators m

“M" for “maximum likelihood-type” (Huber, 1981) — ML
estimation is a special case of M-estimation.

Differentiating the objective function against 8 and setting to O
yields a system of simultaneous equations:

N
Z w(XlTO - yi)xi = 0,
=1

where

U(t) = p'(t)

is called the influence function. The M-estimate is the solution of
this system.

It is customary to use norms of the form

(t) = t-wit).

where w(t) is the weight function.



A short list of common p functions
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Figure adapted from [Z. Zhang, IVC 1997].



M-estimators

Define w; = w(x!' @ — y;) and rewrite
N
Z(XZTG — yi)wixi =0

=1

Rearranging we get

N N
> xiwx! 0= xwiy;
i=1 i=1
Define W = diag([w; w2 ... wy]) and rewrite in matrix form
X"WX0 = X"Wy
T T

It is vital to see that W depends on 6.




IRLS

Use iteratively reweighted least squares:
1. Initialise 8 and compute W),

2. Revise 0 as
0(t+1) — (XTW(t)X)_IXW(t)y

3. Recompute WD ysing (t+1),

4. Repeat from Step 2 until convergence.



IRLS (cont.)

Data.
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IRLS (cont.)

M-estimate with biweight function as p.




IRLS (cont.)

Non-convex p's do not guarantee unicity. Good initialition is

crucial.
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Least absolute deviation



Least absolute deviation

Focussing again on linear models, the LAD estimate is
N
: T
Orap = argmlnz i —x; 0]
0 -
=1

It is well known that this has an equivalent Linear Program

N
mein g a; + b;
i=1

st. a; >0
b; >0

yi —x; 0 =a; — b,

a; and b; are resp. the vertical deviations above and below the line.



Least absolute deviation (cont.)

By design, a; and b; cannot both be strictly positive.

4
ai>0,bi=0

— ai=0,bi>0




Least absolute deviation (cont.)
Can be converted into a simpler form.

N
min E S;
0 -
=1

st |y —x10|<s;

function [ theta ] = leastabsdev(x,y)
N = length(x);

[ zeros(2,1) ; ones(N,1) 1;

A = [ -x -ones(N,1) -1xeye(N) ; x ones(N,1) -1xeye(N) ];
L-ys5 51

= linprog(f,A,b);

theta = s01(1:2);
end




Results
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Results (cont.)
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Outline

Least maximum deviation



Least maximum deviation

Minimise the maximum deviation:
01 p = argmin [max |XZTO — yz}
0 1
O1p is also called the minimax or Chebyshev estimate.

Stacking the residuals into a vector, we can rewrite

X{G — U1
Orvp = argemin 1£(0) |00, r(0) = :
x%@ — YN

i.e., minimise the L-infinity norm of the residuals.



The LMD estimator is inherently non-robust — the maximum
deviation is primarily due to the outlier(s).

Least maximum deviation (cont.)
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The relevance of LMD will be clear later.



Least maximum deviation (cont.)
The equivalent Linear Program is
min s
0

st |x70—y| <s
s>0

function [ theta ] = leastmaxdev(x,y)
N = length(x);

f = [ zeros(2,1) ; 1 1;

A =[x -ones(N,1) ; -x -ones(N,1) 1;
b=[y; -y1;

sol = linprog(f,A,b);

theta = s01(1:2);
end




Characterising the LMD solution

We motivate with a simple example. Given points
x| 2] 4|56
y|12]21]26]31
we want to estimate the non-affine line y = 26 which solves

mgin max |z;0 — y;|
(2

A

V




Characterising the LMD solution (cont.)

We can graph the problem corresponding to the four points:

meinmax{|29 —1.2],]460 — 2.1, |50 — 2.6[, |60 — 3.1|}
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The objective function is convex but non-differentiable.



Characterising the LMD solution (cont.)
An equivalent problem is obtained by replacing each absolute

residual by two residuals of differing signs.
mein max{20 — 1.2,40 — 2.1,56 — 2.6,660 — 3.1,
—20+1.2,—-40 + 2.1, —50 4+ 2.6, —66 + 3.1}
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Characterising the LMD solution (cont.)

Theorem: Every solution of the problem
min max [x7 6 — ;|
(7] 7
for N points {xi,yi}fvzl with x; € RP, is a solution of an

appropriate subproblem of p + 1 points

. T o
min max Ix; 0 — yil,

where 7 C {1,2,...,N} and |J|=p+ 1.



LMD Algorithm 2 - vertex to vertex

0y A 0, 0y
Define C(0) = max; x;60 — y;. Starting with any 0, define
M = {jlz;60 —y; = C(6)}. If M contains two elements k and !
such that x,x; < 0, then @ is the solution. Else, select m € M for
which |z,,| is minimum. Then move 6 along the right (resp. left) if
T < 0 (resp. x,, > 0) until there is a n for which
Tmb — Yym = 0 — yn. Stop if 0 is optimal, else repeat.



LMD Algorithm 3 - bisection

/

o 02 = 0.5(00 + 01 7

Define C(#) = max; x;60 — y;. Start with two estimates 6y and 6,
on opposite sides of the solution. Let x;609 — y; = C(0y) and

zjbh —y; = C(0;). If 2; =0, then §y is a solution. If z; = 0, then
61 is a solution. Else, set 2 = 0.5(0g + 01). Let xpf = C(62). If
x < 0, replace 6y by 02 and ¢ by k. If x; > 0, replace 61 by 6,
and j by k. Repeat until desired level of accuracy.
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Least median and least k-th order



Least median and least k-th order deviation

Least median squares (LMedS) solves for
min med(z;0 — ;)%
2

Robustness can also be achieved by minimising the median
absolute deviation

min med |z;0 — y;|.
0 i
We can generalise to least k-th order absolute deviation
Hbin{\l’i@ — il brv

where k : N indicates the k largest among N numbers.



Least median and least k-th order deviation (cont.)

For k = N, least k-th order becomes least maximum deviation.

For k < N the objective function is non-convex.

Example: N =4 points, set k = 3.

G — 3.1
5 — 2.6

40— 2.1




Least median and least k-th order deviation (cont.)

Example: N =4 points, set k = 2.

G — 3.1
oft — 2.4

i — 2.1

28— 1.2




Characterising the LKO solution

Theorem: Every solution of the problem
- T
min{[x; 6 — yil}:v

for N points {xi,yi}f\;l with x; € RP, is a solution of an
appropriate subproblem of p + 1 points

: T
T'o _ u
Hgnr}g}}dxz yil,

where 7 C {1,2,...,N} and |J| =p+ 1.



Characterising the LKO solution (cont.)

Example: N =4 points, p=1, set k = 3. Use J = {2,4}
corresponding to residuals |66 — 3.1| and |46 — 2.1]|.
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(a) LKO with k = 3. (b) LMD with J = {2,4}.



Algorithm: Exhaustive sampling

Given {xi,yi}f\il, where x; € RP, and kK < N, do
1. Sample a (p + 1)-tuple J.
2. Solve 8" = arg ming max;c 7 [x2 0 — ;.
3. Compute residuals r; = ]x;‘-FH* —y;| forall j ={1,2,...,N}.
4. Seek k-th largest residual 7.
5. If 73 is smallest so far, record 6 and 7.
until all (p + 1)-tuples of {1,2,..., N} have been sampled.

How many (p + 1)-tuples need to be tested?

(]J\:1>_ NI _ N(N-1)...(N-p)
p

(p—I—l)!(N‘—p—l)! (p+1)!

which scales as O(NP+1) — doable, even for moderate V.




Solving LMD for (p + 1)-tuples

Step 2 of the algorithm requires solving the least maximum
deviation problem

0* = argminmax |x! 0 —y;|, |J|=p+ 1L
[’ ieJ

We can always solve this by linear programming (see MATLAB
code for LMD), but this may be slow...



Solving LMD for (p + 1)-tuples (cont.)

Fortunately analytic solutions also exist.

Without loss of generality, let 7 = {1,2,...,p+ 1}. Let

xi Y1
X = : e RetDxp v — : c RPH1

First, we find the least squares fit for the (p + 1)-tuple is
015 = (XIX)"1XTy.
Let the LS residual of the i-th point in the (p + 1)-tuple be

T
=Y — X OLS-




Solving LMD for (p + 1)-tuples (cont.)

The LMD criterion can be obtained from the LS residuals

w= minms\m;c Ix7'6 — gl

0 ic
. 1
0 if P2 =0,
= p+1 2
i .
Zg;i . otherwise.
2oty Imal

Defining the sign vector
s = [sgn(r1) sgn(ra) ... sgn(rps1)]”,
the LMD estimate is then

0" =015 — w(XTX) ' XTs.
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