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Abstract

We present a novel and highly effective approach for multi-body motion segmen-
tation. Drawing inspiration from robust statistical model fitting, we estimate pu-
tative subspace hypotheses from the data. However, instead of ranking them we
encapsulate the hypotheses in a novel Mercer kernel which elicits the potential of
two point trajectories to have emerged from the same subspace. The kernel per-
mits the application of well-established statistical learning methods for effective
outlier rejection, automatic recovery of the number of motions and accurate seg-
mentation of the point trajectories. The method operates well under severe outliers
arising from spurious trajectories or mistracks. Detailed experiments on a recent
benchmark dataset (Hopkins 155) show that our method is superior to other state-
of-the-art approaches in terms of recovering the number of motions, segmentation
accuracy, robustness against gross outliers and computational efficiency.

1 Introduction1

Multi-body motion segmentation concerns the separation of motions arising from multiple moving
objects in a video sequence. The input data is usually a set of points on the surface of the objects
which are tracked throughout the video sequence. Motion segmentation can serve as a useful pre-
processing step for many computer vision applications. In recent years the case of rigid (i.e. non-
articulated) objects for which the motions could be semi-dependent on each other has received much
attention [18, 14, 19, 21, 22, 17]. Under this domain the affine projection model is usually adopted.
Such a model implies that the point trajectories from a particular motion lie on a linear subspace
of at most four, and trajectories from different motions lie on distinct subspaces. Thus multi-body
motion segmentation is reduced to the problem of subspace segmentation or clustering.

To realize practical algorithms, motion segmentation approaches should possess four desirable at-
tributes: (1) Accuracy in classifying the point trajectories to the motions they respectively belong
to. This is crucial for success in the subsequent vision applications, e.g. object recognition, 3D
reconstruction. (2) Robustness against inlier noise (e.g. slight localization error) and gross outliers
(e.g. mistracks, spurious trajectories), since getting imperfect data is almost always unavoidable in
practical circumstances. (3) Ability to automatically deduce the number of motions in the data. This
is pivotal to accomplish fully automated vision applications. (4) Computational efficiency. This is
integral for the processing of video sequences which are usually large amounts of data.

Recent work on multi-body motion segmentation can roughly be divided into algebraic or factoriza-
tion methods [3, 19, 20], statistical methods [17, 7, 14, 6, 10] and clustering methods [22, 21, 5]. No-
table approaches include Generalized PCA (GPCA) [19, 20], an algebraic method based on the idea
that one can fit a union ofm subspaces with a set of polynomials of degreem. Statistical methods of-
ten employ concepts such random hypothesis generation [4, 17], Expectation-Maximization [14, 6]

1This work was supported by the Australian Research Council (ARC) under the project DP0878801.
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and geometric model selection [7, 8]. Clustering based methods [22, 21, 5] are also gaining atten-
tion due to their effectiveness. They usually include a dimensionality reduction step (e.g. manifold
learning [5]) followed by a clustering of the point trajectories (e.g. via spectral clustering in [21]).

A recent benchmark [18] indicated that Local Subspace Affinity (LSA) [21] gave the best per-
formance in terms of classification accuracy, although their result was subsequently surpassed
by [5, 10]. However, we argue that most of the previous approaches do not simultaneously fulfil
the qualities desirable of motion segmentation algorithms. Most notably, although some of the ap-
proaches have the means to estimate the number of motions, they are generally unreliable in this
respect and require manual input of this parameter. In fact this prior knowledge was given to all the
methods compared in [18]2. Secondly, most of the methods (e.g. [19, 5]) do not explicitly deal with
outliers. They will almost always breakdown when given corrupted data. These deficiencies reduce
the usefulness of available motion segmentation algorithms in practical circumstances.

In this paper we attempt to bridge the gap between experimental performance and practical usability.
Our previous work [2] indicates that robust multi-structure model fitting can be achieved effectively
with statistical learning. Here we extend this concept to motion subspace clustering. Drawing inspi-
ration from robust statistical model fitting [4], we estimate random hypotheses of motion subspaces
in the data. However, instead of ranking these hypotheses we encapsulate them in a novel Mercer
kernel. The kernel can function reliably despite overwhelming sampling imbalance, and it permits
the application of non-linear dimensionality reduction techniques to effectively identify and reject
outlying trajectories. This is then followed by Kernel PCA [11] to maximize the separation between
groups and spectral clustering [13] to recover the number of motions and clustering. Experiments
on the Hopkins 155 benchmark dataset [18] show that our method is superior to other approaches in
terms of the qualities described above, including computational efficiency.

1.1 Brief review of affine model multi-body motion segmentation

Let {tfp ∈ R
2}f=1,...,F

p=1,...,P be the set of 2D coordinates of P trajectories tracked across F frames. In

multi-body motion segmentation the tfp’s correspond to points on the surface of rigid objects which
are moving. The goal is to separate the trajectories into groups corresponding to the motion they
belong to. In other words, if we arrange the coordinates in the following data matrix

T =







t11 · · · t1P

...
. . .

...
tF1 . . . tFP






∈ R

2F×P , (1)

the goal is to find the permutation Γ ∈ R
P×P such that the columns of T ·Γ are arranged according

to the respective motions they belong to. It turns out that under affine projection [1, 16] trajectories
from the same motion lie on a distinct subspace in R

2F , and each of these motion subspaces is of
dimensions 2, 3 or 4. Thus motion segmentation can be accomplished via clustering subspaces in
R

2F . See [1, 16] for more details. Realistically actual motion sequences might contain trajectories
which do not correspond to valid objects or motions. These trajectories behave as outliers in the data
and, if not taken into account, can be seriously detrimental to subspace clustering algorithms.

2 The Ordered Residual Kernel (ORK)

First, we take a statistical model fitting point of view to motion segmentation. Let {xi}i=1,...,N be
the set ofN samples on which we want to perform model fitting. We randomly draw p-subsets from
the data and use it to fit a hypothesis of the model, where p is the number of parameters that define
the model. In motion segmentation, the xi’s are the columns of matrix T, and p = 4 since the model
is a four-dimensional subspace3. Assume that M of such random hypotheses are drawn.

For each data point xi compute its absolute residual set ri = {ri
1, . . . , r

i
M} as measured to the

M hypotheses. For motion segmentation, the residual is the orthogonal distance to a hypothesis

2As confirmed through private contact with the authors of [18].
3Ideally we should also consider degenerate motions with subspace dimensions 2 or 3, but previous

work [18] using RANSAC [4] and our results suggest this is not a pressing issue for the Hopkins 155 dataset.

2



subspace. We sort the elements in ri to obtain the sorted residual set r̃i = {ri
λi

1

, . . . , ri
λi

M

}, where

the permutation {λi
1, . . . , λ

i
M} is obtained such that ri

λi

1

≤ · · · ≤ ri
λi

M

. Define the following

θ̃i := {λi
1, . . . , λ

i
M} (2)

as the sorted hypothesis set of point xi, i.e. θ̃i depicts the order in which xi becomes the inlier of
the M hypotheses as a fictitious inlier threshold is increased from 0 to ∞. We define the Ordered
Residual Kernel (ORK) between two data points as

kr̃(xi1 , xi2 ) :=
1

Z

M/h
∑

t=1

zt · k
t
∩
(θ̃i1 , θ̃i2), (3)

where zt = 1
t are the harmonic series and Z =

∑M/h
t=1 zt is the (M/h)-th harmonic number.

Without lost of generality assume that M is wholly divisible by h. Step size h is used to obtain the
Difference of Intersection Kernel (DOIK)

kt
∩
(θ̃i1 , θ̃i2) :=

1

h
(|θ̃1:αt

i1
∩ θ̃

1:αt

i2
| − |θ̃

1:αt−1

i1
∩ θ̃

1:αt−1

i2
|) (4)

where αt = t · h and αt−1 = (t − 1) · h. Symbol θ̃
a:b
i indicates the set formed by the a-th to

the b-th elements of θ̃i. Since the contents of the sorted hypotheses set are merely permutations of
{1 . . .M}, i.e. there are no repeating elements,

0 ≤ kr̃(xi1 , xi2) ≤ 1. (5)

Note that kr̃ is independent of the type of model to be fitted, thus it is applicable to generic statistical
model fitting problems. However, we concentrate on motion subspaces in this paper.

Let τ be a fictitious inlier threshold. The kernel kr̃ captures the intuition that, if τ is low, two
points arising from the same subspace will have high normalized intersection since they share many
common hypotheses which correspond to that subspace. If τ is high, implausible hypotheses fitted
on outliers start to dominate and decrease the normalized intersection. Step size h allows us to
quantify the rate of change of intersection if τ is increased from 0 to ∞, and since zt is decreasing,
kr̃ will evaluate to a high value for two points from the same subspace. In contrast, kr̃ is always low
for points not from the same subspace or that are outliers.

Proof of satisfying Mercer’s condition. Let D be a fixed domain, and P(D) be the power set of
D, i.e. the set of all subsets of D. Let S ⊆ P(D), and p, q ∈ S. If µ is a measure on D, then

k∩(p, q) = µ(p ∩ q), (6)

called the intersection kernel, is provably a valid Mercer kernel [12]. The DOIK can be rewritten as

kt
∩
(θ̃i1 , θ̃i2) =

1

h
(|θ̃

(αt−1+1):αt

i1
∩ θ̃

(αt−1+1):αt

i2
|

+|θ̃
1:(αt−1)
i1

∩ θ̃
(αt−1+1):αt

i2
| + |θ̃

(αt−1+1):αt

i1
∩ θ̃

1:(αt−1)
i2

|). (7)

If we let D = {1 . . .M} be the set of all possible hypothesis indices and µ be uniform on D, each
term in Eq. (7) is simply an intersection kernel multiplied by |D|/h. Since multiplying a kernel
with a positive constant and adding two kernels respectively produce valid Mercer kernels [12], the
DOIK and ORK are also valid Mercer kernels.•

Parameter h in kr̃ depends on the number of random hypotheses M , i.e. step size h can be set as a
ratio of M . The value of M can be determined based on the size of the p-subset and the size of the
data N (e.g. [23, 15]), and thus h is not contingent on knowledge of the true inlier noise scale or
threshold. Moreover, our experiments in Sec. 4 show that segmentation performance is relatively
insensitive to the settings of h and M .

2.1 Performance under sampling imbalance

Methods based on random sampling (e.g. RANSAC [4]) are usually affected by unbalanced datasets.
The probability of simultaneously retrieving p inliers from a particular structure is tiny if points
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from that structure represent only a small minority in the data. In an unbalanced dataset the “pure”
p-subsets in theM randomly drawn samples will be dominated by points from the majority structure
in the data. This is a pronounced problem in motion sequences, since there is usually a background
“object” whose point trajectories form a large majority in the data. In fact, for motion sequences
from the Hopkins 155 dataset [18] with typically about 300 points per sequence, M has to be raised
to about 20,000 before a pure p-subset from the non-background objects is sampled.

However, ORK can function reliably despite serious sampling imbalance. This is because points
from the same subspace are roughly equi-distance to the sampled hypotheses in their vicinity, even
though these hypotheses might not pass through that subspace. Moreover, since zt in Eq. (3) is de-
creasing only residuals/hypotheses in the vicinity of a point are heavily weighted in the intersection.
Fig. 1(a) illustrates this condition. Results in Sec. 4 show that ORK excelled even with M = 1, 000.

(a) Data in R
2F . (b) Data in RKHS Fkr̃

.

Figure 1: (a) ORK under sampling imbalance. (b) Data in RKHS induced by ORK.

3 Multi-Body Motion Segmentation using ORK

In this section, we describe how ORK is used for multi-body motion segmentation.

3.1 Outlier rejection via non-linear dimensionality reduction

Denote by Fkr̃
the Reproducing Kernel Hilbert Space (RKHS) induced by kr̃. Let matrix A =

[φ(x1) . . . φ(xN )] contain the input data after it is mapped to Fkr̃
. The kernel matrix K = AT A is

computed using the kernel function kr̃ as

Kp,q = 〈φ(xp), φ(xq)〉 = kr̃(xp, xq), p, q ∈ {1 . . .N}. (8)

Since kr̃ is a valid Mercer kernel, K is guaranteed to be positive semi-definite [12]. Let K =
Q∆QT be the eigenvalue decomposition (EVD) of K. Then the rank-n Kernel Singular Value
Decomposition (Kernel SVD) [12] of A is

An = [AQn(∆n)−
1

2 ][(∆n)
1

2 ][(Qn)T ] ≡ UnΣn(Vn)T . (9)

Via the Matlab notation, Qn = Q:,1:n and ∆n = ∆1:n,1:n. The left singular vectors Un is an
orthonormal basis for the n-dimensional principal subspace of the whole dataset in Fkr̃

. Projecting
the data onto the principal subspace yields

B = [AQn(∆n)−
1

2 ]T A = (∆n)
1

2 (Qn)T , (10)

where B = [b1 . . . bN ] ∈ R
n×N is the reduced dimension version of A. Directions of the principal

subspace are dominated by inlier points, since kr̃ evaluates to a high value generally for them, but
always to a low value for gross outliers. Moreover the kernel ensures that points from the same
subspace are mapped to the same cluster and vice versa. Fig. 1(b) illustrates this condition.

Fig. 2(a)(left) shows the first frame of sequence “Cars10” from the Hopkins 155 dataset [18] with
100 false trajectories of Brownian motion added to the original data (297 points). The corresponing
RKHS norm histogram for n = 3 is displayed in Fig. 2(b). The existence of two distinct modes,
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(a) (left) Before and (right) after outlier removal. Blue
dots are inliers while red dots are added outliers.
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(b) Actual norm histogram of “cars10”.

Figure 2: Demonstration of outlier rejection on sequence “cars10” from Hopkins 155.

corresponding respectively to inliers and outliers, is evident. We exploit this observation for outlier
rejection by discarding data with low norms in the principal subspace.

The cut-off threshold ψ can be determined by analyzing the shape of the distribution. For instance
we can fit a 1D Gaussian Mixture Model (GMM) with two components and set ψ as the point of
equal Mahalanobis distance between the two components. However, our experimentation shows that
an effective threshold can be obtained by simply setting ψ as the average value of all the norms, i.e.

ψ =
1

N

N
∑

i=1

‖bi‖. (11)

This method was applied uniformly on all the sequences in our experiments in Sec. 4. Fig. 2(a)(right)
shows an actual result of the method on Fig. 2(a)(left).

3.2 Recovering the number of motions and subspace clustering

After outlier rejection, we further take advantage of the mapping induced by ORK for recovering the
number of motions and subspace clustering. On the remaining data, we perform Kernel PCA [11]
to seek the principal components which maximize the variance of the data in the RKHS, as Fig. 1(b)
illustrates. Let {yi}i=1,...,N ′ be the N ′-point subset of the input data that remains after outlier
removal, where N ′ < N . Denote by C = [φ(y1) . . . φ(yN ′)] the data matrix after mapping the data

to Fkr̃
, and by symbol C̃ the result of adjusting C with the empirical mean of {φ(y1), . . . , φ(yN ′)}.

The centered kernel matrix K̃′ = C̃T C̃ [11] can be obtained as

K̃′ = ν
TK′

ν, ν = [IN ′ −
1

N ′
1N ′,N ′ ], (12)

where K′ = CTC is the uncentered kernel matrix, Is and 1s,s are respectively the s × s identity

matrix and a matrix of ones. If K̃′ = RΩRT is the EVD of K̃′, then we obtain first-m kernel
principal components Pm of C as the first-m left singular vectors of C̃ , i.e.

Pm = C̃Rm(Ωm)−
1

2 , (13)

where Rm = R:,1:m and Ω1:m,1:m; see Eq. (9). Projecting the data on the principal components
yields

D = [d1 . . . dN ′ ] = (Ωm)
1

2 (Rm)T , (14)

where D ∈ R
m×N ′

. The affine subspace span(Pm) maximizes the spread of the centered data in
the RKHS, and the projection D offers an effective representation for clustering. Fig. 3(a) shows
the Kernel PCA projection results for m = 3 on the sequence in Fig. 2(a).

The number of clusters in D is recovered via spectral clustering. More specifically we apply the
Normalized Cut (Ncut) [13] algorithm. A fully connected graph is first derived from the data, where

its weighted adjacency matrix W ∈ R
N ′

×N ′

is obtained as

Wp,q = exp(−‖dp − dq‖
2/2δ2), (15)

and δ is taken as the average nearest neighbour distance in the Euclidean sense among the vectors
in D. The Laplacian matrix [13] is then derived from W and eigendecomposed. Under Ncut,
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(a) Kernel PCA and Ncut results. (b) W matrix. (c) Final result for “cars10”.

Figure 3: Actual results on the motion sequence in Fig. 2(a)(left).

the number of clusters is revealed as the number of eigenvalues of the Laplacian that are zero or
numerically insignificant. With this knowledge, a subsequent k-means step is then performed to
cluster the points. Fig. 3(b) shows W for the input data in Fig. 2(a)(left) after outlier removal. It
can be seen that strong affinity exists between points from the same cluster, thus allowing accurate
clustering. Figs. 3(a) and 3(c) illustrate the final clustering result for the data in Fig. 2(a)(left).

There are several reasons why spectral clustering under our framework is more successful than
previous methods. Firstly, we perform an effective outlier rejection step that removes bad trajectories
that can potentially mislead the clustering. Secondly, the mapping induced by ORK deliberately
separates the trajectories based on their cluster membership. Finally, we perform Kernel PCA to
maximize the variance of the data. Effectively this also improves the separation of clusters, thus
facilitating an accurate recovery of the number of clusters and also the subsequent segmentation.
This distinguishes our work from previous clustering based methods [21, 5] which tend to operate
without maximizing the between-class scatter. Results in Sec. 4 validate our claims.

4 Results

Henceforth we indicate the proposed method as “ORK”. We leverage on a recently published bench-
mark on affine model motion segmentation [18] as a basis of comparison. The benchmark was eval-
uated on the Hopkins 155 dataset4 which contains 155 sequences with tracked point trajectories.
A total of 120 sequences have two motions while 35 have three motions. The sequences contain
degenerate and non-degenerate motions, independent and partially dependent motions, articulated
motions, nonrigid motions etc. In terms of video content three categories exist: Checkerboard se-
quences, traffic sequences (moving cars, trucks) and articulated motions (moving faces, people).

4.1 Details on benchmarking

Four major algorithms were compared in [18]: Generalized PCA (GPCA) [19], Local Subspace
Affinity (LSA) [21], Multi-Stage Learning (MSL) [14] and RANSAC [17]. Here we extend the
benchmark with newly reported results from Locally Linear Manifold Clustering (LLMC) [5] and
Agglomerative Lossy Compression (ALC) [10, 9]. We also compare our method against Kanatani
and Matsunaga’s [8] algorithm (henceforth, the “KM” method) in estimating the number of indepen-
dent motions in the video sequences. Note that KM per se does not perform motion segmentation.
For the sake of objective comparisons we use only implementations available publicly5.

Following [18], motion segmentation performance is evaluated in terms of the labelling error of the
point trajectories, where each point in a sequence has a ground truth label, i.e.

classification error =
number of mislabeled points

total number of points
. (16)

Unlike [18], we also emphasize on the ability of the methods in recovering the number of motions.
However, although the methods compared in [18] (except RANSAC) theoretically have the means to

4Available at http://www.vision.jhu.edu/data/hopkins155/.
5For MSL and KM, see http://www.suri.cs.okayama-u.ac.jp/e-program-separate.html/. For GPCA, LSA

and RANSAC, refer to the url for the Hopkins 155 dataset.
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do so, their estimation of the number of motions is generally unrealiable and the benchmark results
in [18] were obtained by revealing the actual number of motions to the algorithms. A similar initial-
ization exists in [5, 10] where the results were obtained by giving LLMC and ALC this knowledge
a priori (for LLMC, this was given at least to the variant LLMC 4m during dimensionality reduc-
tion [5], where m is the true number of motions). In the following subsections, where variants exist
for the compared algorithms we use results from the best performing variant.

In the following the number of random hypothesesM and step size h for ORK are fixed at 1000 and
300 respectively, and unlike the others, ORK is not given knowledge of the number of motions.

4.2 Data without gross outliers

We apply ORK on the Hopkins 155 dataset. Since ORK uses random sampling we repeat it 100
times for each sequence and average the results. Table 1 depicts the obtained classification error
among those from previously proposed methods. ORK (column 9) gives comparable results to the
other methods for sequences with 2 motions (mean = 7.83%, median = 0.41%). For sequences
with 3 motions, ORK (mean = 12.62%, median = 4.75%) outperforms GPCA and RANSAC, but is
slightly less accurate than the others. However, bear in mind that unlike the other methods ORK is
not given prior knowledge of the true number of motions and has to estimate this independently.

Column 1 2 3 4 5 6 8 9 10
Method REF GPCA LSA MSL RANSAC LLMC ALC ORK ORK∗

Sequences with 2 motions
Mean 2.03 4.59 3.45 4.14 5.56 3.62 3.03 7.83 1.27

Median 0.00 0.38 0.59 0.00 1.18 0.00 0.00 0.41 0.00

Sequences with 3 motions

Mean 5.08 28.66 9.73 8.23 22.94 8.85 6.26 12.62 2.09

Median 2.40 28.26 2.33 1.76 22.03 3.19 1.02 4.75 0.05

Table 1: Classification error (%) on Hopkins 155 sequences. REF represents the reference/control
method which operates based on knowledge of ground truth segmentation. Refer to [18] for details.

We also separately investigate the accuracy of ORK in estimating the number of motions, and com-
pare it against KM [8] which was proposed for this purpose. Note that such an experiment was
not attempted in [18] since approaches compared therein generally do not perform reliably in esti-
mating the number of motions. The results in Table 2 (columns 1–2) show that for sequences with
two motions, KM (80.83%) outperforms ORK (67.37%) by ≈ 15 percentage points. However, for
sequences with three motions, ORK (49.66%) vastly outperforms KM (14.29%) by more than dou-
bling the percentage points of accuracy. The overall accuracy of KM (65.81%) is slightly better than
ORK (63.37%), but this is mostly because sequences with two motions form the majority in the
dataset (120 out of 155). This leads us to conclude that ORK is actually the superior method here.

Dataset Hopkins 155 Hopkins 155 + Outliers

Column 1 2 3 4

Method KM ORK KM ORK

2 motions 80.83% 67.37% 00.00% 47.58%

3 motions 14.29% 49.66% 100.00% 50.00%

Overall 65.81% 63.37% 22.58% 48.13%

Table 2: Accuracy in determining the number of motions in a sequence. Note that in the experiment
with outliers (columns 3–4), KM returns a constant number of 3 motions for all sequences.

We re-evaluate the performance of ORK by considering only results on sequences where the number
of motions is estimated correctly by ORK (there are about 98 ≡ 63.37% of such cases). The results
are tabulated under ORK∗ (column 10) in Table 1. It can be seen that when ORK estimates the
number of motions correctly, it is significantly more accurate than the other methods.

Finally, we compare the speed of the methods in Table 3. ORK was implemented and run in Matlab
on a Dual Core Pentium 3.00GHz machine with 4GB of main memory (this is much less powerful
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than the 8 Core Xeon 3.66GHz with 32GB memory used in [18] for the other methods in Table 3).
The results show that ORK is comparable to LSA, much faster than MSL and ALC, but slower than
GPCA and RANSAC. Timing results of LLMC are not available in the literature.

Method GPCA LSA MSL RANSAC ALC ORK

2 motions 324ms 7.584s 11h 4m 175ms 10m 32s 4.249s

3 motions 738ms 15.956s 1d 23h 258ms 10m 32s 8.479s

Table 3: Average computation time on Hopkins 155 sequences.

4.3 Data with gross outliers

We next examine the ability of the proposed method in dealing with gross outliers in motion data.
For each sequence in Hopkins 155, we add 100 gross outliers by creating trajectories corresponding
to mistracks or spuriously occuring points. These are created by randomly initializing 100 locations
in the first frame and allowing them to drift throughout the sequence according to Brownian motion.
The corrupted sequences are then subjected to the algorithms for motion segmentation. Since only
ORK is capable of rejecting outliers, the classification error of Eq. (16) is evaluated on the inlier
points only. The results in Table 4 illustrate that ORK (column 4) is the most accurate method by a
large margin. Despite being given the true number of motions a priori, GPCA, LSA and RANSAC
are unable to provide satisfactory segmentation results.

Column 1 2 3 4 5

Method GPCA LSA RANSAC ORK ORK∗

Sequences with 2 motions

Mean 28.66 24.25 30.64 16.50 1.62

Median 30.96 26.51 32.36 10.54 0.00

Sequences with 3 motions
Mean 40.61 30.94 42.24 19.99 2.68

Median 41.30 27.68 43.43 8.49 0.09

Table 4: Classification error (%) on Hopkins 155 sequences with 100 gross outliers per sequence.

In terms of estimating the number of motions, as shown in column 4 in Table 2 the overall accu-
racy of ORK is reduced to 48.13%. This is contributed mainly by the deterioration in accuracy on
sequences with two motions (47.58%), although the accuracy on sequences with three motions are
maintained (50.00%). This is not a surprising result, since sequences with three motions generally
have more (inlying) point trajectories than sequences with two motions, thus the outlier rates for se-
quences with three motions are lower (recall that a fixed number of 100 false trajectories are added).
On the other hand, the KM method (column 3) is completely overwhelmed by the outliers— for all
the sequences with outliers it returned a constant “3” as the number of motions.

We again re-evaluate ORK by considering results from sequences (now with gross outliers) where
the number of motions is correctly estimated (there are about 75 ≡ 48.13% of such cases). The
results tabulated under ORK∗ (column 5) in Table 4 show that the proposed method can accurately
segment the point trajectories without being influenced by the gross outliers.

5 Conclusions

In this paper we propose a novel and highly effective approach for multi-body motion segmenta-
tion. Our idea is based on encapsulating random hypotheses in a novel Mercel kernel and statistical
learning. We evaluated our method on the Hopkins 155 dataset with results showing that the idea is
superior other state-of-the-art approaches. It is by far the most accurate in terms of estimating the
number of motions, and it excels in segmentation accuracy despite lacking prior knowledge of the
number of motions. The proposed idea is also highly robust towards outliers in the input data.

Acknowledgements. We are grateful to the authors of [18] especially René Vidal for discussions
and insights which have been immensely helpful.
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