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Abstract. The extension of conventional clustering to hypergraph clus-
tering, which involves higher order similarities instead of pairwise simi-
larities, is increasingly gaining attention in computer vision. This is due
to the fact that many grouping problems require an affinity measure that
must involve a subset of data of size more than two, i.e., a hyperedge. Al-
most all previous works, however, have considered the smallest possible
hyperedge size, due to a lack of study into the potential benefits of large
hyperedges and effective algorithms to generate them. In this paper, we
show that large hyperedges are better from both theoretical and empir-
ical standpoints. We then propose a novel guided sampling strategy for
large hyperedges, based on the concept of random cluster models. Our
method can generate pure large hyperedges that significantly improve
grouping accuracy without exponential increases in sampling costs. In
the important applications of face clustering and motion segmentation,
our method demonstrates substantially better accuracy and efficiency.
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1 Introduction

We follow the nomenclature of [1] in describing hypergraph clustering. A hyper-
graph H = (V,E) consists of a set of vertices V and hyperedges E. A hyperedge
e ∈ E is a subset of the vertices, i.e., e ⊆ V , and e is said to be incident with a
vertex v if v ∈ e. For a weighted hypergraph H, a weight w(e) is associated with
each hyperedge. The degree δ(e) of a hyperedge e is the number of vertices in e,
i.e., δ(e) = |e|. The degree d(v) of a vertex v is the sum of all the weights of the
hyperedges incident with v, i.e., d(v) =

∑
e∈E|v∈e w(e). If all hyperedges have

the same degree r, the hypergraph is said to be r-uniform. Clearly 2-uniform
hypergraphs are normal graphs where an edge connects only two vertices.

The concept of hypergraph clustering generalises the traditional notion of
clustering, whereby the affinity measure is now defined over more than a pair of
vertices. In the graph partitioning view, a partitioning ofH separates the vertices
V into mutually exclusive clusters. In particular, a 2-way partitioning results in
(V1, V2), where V1∪V2 = V and V1∩V2 = ∅. The “goodness” of the partitioning is
inversely proportional to the cost of the cut that separates the vertices, which in
turn is a function of the weights of the hyperedges with vertices in both clusters.
Methods have been proposed to find the best cut [1], given arbitrary H. Below,
we give examples of grouping problems based on hypergraph clustering.
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Multiple line fitting. Consider a set of points V in 2D which are known to lie
on a set of K lines. Our goal is to cluster V into K groups based on their line
membership. The traditional concept of clustering cannot be applied here, since
any two points lie exactly on a line and thus have infinite affinity. To construct
useful similarity measures, we must consider more than two points. Given a
subset e ⊂ V with |e| > 2, we can fit a line through e (e.g., via least squares)
and convert the error of the fit d into an affinity measure w(e) = exp(−d2/σ2).
A hyperedge e thus conveys the existence of a line with evidence w(e).

Subspace clustering. Consider a set of vectors V in RD, e.g., face images or
feature trajectories, where the vectors are known to lie on K p-dimensional sub-
spaces. To cluster V into K groups, we must consider affinity measures defined
over more than p vectors. Given a hyperedge e ⊂ V with |e| > p, a subspace can
be fitted (e.g., via SVD) and the fitting error converted into a weight as above.

Whilst the above examples relate to linear models, hypergraphs can also be
defined using nonlinear models, e.g., projective entities like homography. The key
requirement is a geometric model that describes the “shape” of the underlying
clusters. The order p of the model is the minimum number of data to instantiate
the model, and a valid hyperedge must thus be larger than p. Theoretically, the
total number of hyperedges is O(2|V |), which is gargantuan for even small |V |.

In practice, therefore, approximations are necessary. An overwhelming major-
ity (if not all) of the previous works that utilised the hypergraph formalism [2–8]
limited the hyperedges to size p+ 1, i.e., the smallest possible. The resulting hy-
pergraph is thus (p + 1)-uniform. Even with this limit, the number of possible

hyperedges
( |V |
p+1

)
is too large for exhaustive listing. Previous works thus sample

the set of hyperedges to construct “sparse” hypergraphs. Concurrently, limiting
to the smallest size p+1 also maximises the chance of recovering pure hyperedges,
i.e., those containing data that are likely from the same clusters.

Whilst computational feasibility was the overriding factor in imposing the size
constraint, we nevertheless ask in this paper, is there any benefit in using large
hyperedges (size > p + 1) for higher-order grouping? This is a natural question
since the hypergraph formalism theoretically allows hyperedges of arbitrary size,
and using the smallest allowable size seems to limit the potential. We will answer
in the affirmative and provide theoretical and empirical justifications.

Secondly, how can we sample large hyperedges without expending too much
effort? Previous guided sampling approaches for hyperedges select data one-by-
one [7, 4]. Extending them to large hyperedges will inevitably expose them to
the effects of exponentially decreasing probability of sampling pure hyperedges.
We propose a novel guided sampling strategy to sample large hyperedges based
on random cluster models [9, 10]. Our method generates large pure hyperedges
accurately without exponential increases in computational effort.

In practical applications, our approach outperforms previous hypergraph
clustering methods on face clustering and motion segmentation. Notwithstanding
the usage of large hyperedges, our guided sampling strategy enables our tech-
nique to be orders of magnitude more efficient (in terms of number of hyperedges
and actual time required) than previous hypergraph clustering algorithms.
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1.1 Previous work

Hypergraph clustering has a long history in VLSI [11]. There, vertices correspond
to circuit elements and hyperedges correspond to wiring that may connect more
than two elements. Finding the minimum cost cuts allows to divide the elements
into modules with minimum interconnections. Unlike in computer vision, the
hyperedges arise from the circuit design and need not be sampled.

The introduction of hypergraph clustering to computer vision and machine
learning is relatively recent [3, 2]. Zhou et al. [12] generalised the popular Nor-
malised Cut (NCut) algorithm [13] to the hypergraph setting. A more theoretical
work by Agarwal et al. [1] analysed different existing hypergraph methods and
showed that they can all be expressed as different clique projection techniques
onto ordinary graphs. More recent works have largely followed the basic con-
cepts, with various algorithmic extensions [4–8, 14]. Applications include face
image clustering [3], motion segmentation [2, 4, 7], grouping of categorical data
[12], and plane segmentation in RGBD data [8] and two-view images [6].

As mentioned earlier, for feasibility the methods [2–8] considered only (p+1)-
uniform hypergraphs. Moreover, most of the methods either use random sam-
pling [2, 6] or spatial proximity sampling [7] to generate hyperedges. Chen and
Lerman [4] presented an incremental clustering and sampling technique which is
more accurate than random or proximity sampling. However, a naive extension to
large hyperedges is unworkable, since the probability to sample good hyperedges
vanishes quickly with successive data selection. Pham et al. [10] proposed using
random cluster models [9] to sample large clusters directly for geometric fitting,
however, they did not pose their problem as hypergraph clustering. Moreover,
they obtain intermediate clustering via graph cuts, which is relatively expensive.
Nonetheless, we will combine the ideas from [4, 10] to design our algorithm.

By attempting to linearly reconstruct a point from a sparse set of neighbours,
Sparse Subspace Clustering (SSC) [15] can be seen as generating hyperedges
for clustering (a point and its selected neighbours are in the same hyperedge).
However, SSC is tailored for linear models and is thus inapplicable in nonlin-
ear/nonsubspace models such as homography and affine plane.

1.2 Dense versus sparse sample reuse

It is crucial to reconcile the seemingly different tensor decomposition approach [2,
8] with hypergraph clustering [3, 1]. In [2, 8], subsets of V of size p are sampled.
For each p-tuple, the model is instantiated and evaluated (the affinity value is
calculated) with respect to all points in V . Each p-tuple thus generates a “row” in
the (p+ 1)-dimensional affinity tensor, or equivalently, |V | hyperedges of degree
p+1 in a hypergraph. Govindu showed how the (sampled) affinity tensor can be
flattened into a matrix and decomposed [2]. Compared to methods that directly
sample hypedges of size p+ 1 without testing them with the rest of the data [3–
7], evidently [2, 8] extract more information per sample. It was shown in [8] that
this “dense” sampling approach outperforms “sparse” sampling, given the same
sampling effort. We adopt the dense reuse idea in our paper.
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2 Why use large hyperedges?

2.1 Theoretical justifications

We will motivate using NCut [13], which is arguably one of the most well known
clustering techniques in computer vision. Zhou et al. [12] have generalised NCut
to the hypergraph setting. Let (S, Sc) be a partitioning of the vertices V in
H, where S ∪ Sc = V . The corresponding cut has the cut set c(S, Sc) = {e ∈
E|e ∩ S 6= ∅, e ∩ Sc 6= ∅}, i.e., the removal of the hyperedges in c(S, Sc) yields
the disjoint sets (S, Sc). Following [12], the volume or cost of the cut is

vol(S, Sc) =
∑

e∈c(S,Sc)

w(e)
|e ∩ S||e ∩ Sc|

δ(e)
. (1)

If the hypergraph is 2-uniform, |e ∩ S| = |e ∩ Sc| = 1 and δ(e) = 2 for all e,
and (1) reduces to the cut cost on a normal graph. The volume of cluster S is

vol(S) =
∑
v∈S

d(v). (2)

The normalized cut criterion for partitioning V into (S, Sc) is

ncut(S, Sc) = vol(S, Sc)

(
1

vol(S)
+

1

vol(Sc)

)
. (3)

Similar to [13], Zhou et al. [12] showed how a relaxed version of the cost func-
tion (3), which involves continuous membership labels, can be minimised globally
by an eigendecomposition of an affinity matrix; see [12] for details.

Define α(e|S, Sc) := |e∩S||e∩Sc|/δ(e). The existence of multiplier α(e|S, Sc)
on the weight w(e) differentiates NCut on hypergraphs from normal graphs.
Further, α(e|S, Sc) can be understood as arising from the projection of the hy-
pergraph to a normal graph [1], where each hyperedge e is replaced by a fully
connected subgraph with vertices e, and each edge in the subgraph has the weight
w(e)/δ(e). The cut cost (1) is exactly the cut cost on the projected graph.

We can rewrite α(e|S, Sc) = α(e|η) := η(1−η)δ(e), where η := |e∩S|/δ(e) is
a size ratio of the partitioning of e based on the cut (S, Sc). Trivially, the range

1

δ(e)
≤ η ≤ δ(e)− 1

δ(e)
(4)

can be established. Fig. 1(a) plots α(e|η) against η for e’s of different degrees.
First, it is clear that the cost of cutting a hyperedge e is the highest if e is divided
into equal halves (i.e., η = 0.5). More crucially, given the same η, the multiplier
α(e|η) is always higher for larger hyperedges, since the numerator in α(e|η) in-
creases quadratically while the denominator increases linearly. Hence, given two
hyperedges of the same weight w(e) and the same η, NCut will inherently favour
preserving the larger hyperedge and cutting the smaller hyperedge.
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Fig. 1. (a) Plot of α(e|η) against η for e’s of different degrees. (b–c) NCut segmentation
(first cluster only) on a 4-uniform and 8-uniform hypergraph, respectively. (d–e) Aver-
age misclassification rate plotted against number of samples and size of hyperedges on
Yale Face Database B and the 3-motion checkerboard sequences from Hopkins 155.

Effectively, the algorithm trusts larger hyperedges more than smaller hyper-
edges. Despite the purely algebraic motivation, the preference can be rationalised
since larger hyperedges convey more evidence on the existence of a cluster than
smaller hyperedges, even if the model is fitted equally well in both cases. Fur-
ther, a larger data subset statistically constrains the model better and can more
confidently estimate the parameters under noise. Figs. 1(b) and 1(c) show NCut
segmentation results (only the first cluster is shown) for circle fitting (p = 3) on
a 4-uniform hygergraph and a 8-uniform hypergraph. Four points cannot con-
strain a circle well, especially if they are spatially close, thus the result is poor.
In contrast, using large hyperedges fits the circle accurately.

The algebraic derivations above were based on NCut [12]. Can we generalise
the result to other hypergraph clustering algorithms? The source of the inherent
bias in NCut is the hypergraph projection style that converts a hyperedge to a
fully connected subgraph. Any algorithm that conducts such a projection (either
implicitly or explicitly) contains this intrinsic bias. For example, it can be shown
that clique averaging [3] and max projection [7] also have this property.

2.2 Empirical justifications

The dominant factor for using the smallest allowable hyperedges previously is
the lack of algorithms that can sample large hyperedges; to tackle this issue,
we will propose a guided sampling algorithm in Sec. 3. In this subsection, we
demonstrate the benefits of using large hyperedges via an “oracle sampler” that
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produces hyperedges based on ground truth cluster labels. This serves to preclude
the effects of inaccuracies in an imperfect sampling technique. Any differences
in the results is thus largely due to using hyperedges of different degrees.

Given data (vertices) V , we wish to cluster them into K groups, where each
group lies on a model of order p. Given a fixed hyperedge degree D > p, we
sample M subsets of size D − 1 from V . Half of the samples are chosen purely
within true clusters (evenly among K groups), while the other half is chosen
randomly to simulate sampling inaccuracies. The model is fitted on each sample
via SVD and evaluated against V . Each sample thus produces |V | hyperedges
of degree D; recall that we adopt Govindu’s [2, 8] dense sample reuse approach.
We obtain an affinity matrix from all the hyperedges and conduct K-way par-
titioning [12]. The average misclassification rate is then obtained by comparing
with the ground truth. The steps are repeated by varying D and M . Note that
the model complexity is fixed at p, whereas the hyperedge degree varies with D.

We performed the above on Yale Face Database B [16] and the 26 checker-
board sequences with 3 motions from the Hopkins 155 dataset [17]. We used
the frontal face images of K = 10 persons under 64 illumination conditions
from Yale Face Database B. Under the Lambertian assumption, the images of
the same face lie on a low-dimensional subspace; we chose this dimension to
be p = 4 since this gives the best results. Each checkerboard sequence contains
K = 3 distinct rigid motions. Under the affine camera model, the trajectories
on these distinct motions can be grouped into 4-dimensional subspaces (p = 4).
Results are presented in Figs. 1(d) and 1(e). Clearly, there is an improvement in
accuracy as the degree of the hyperedges is increased.

We have shown that large hyperedges are better from both theoretical and
empirical standpoints; a straightforward question that arises is how large should
the hyperedges be? Our answer is “reasonably large but not too large”. Very large
hyperedges require more effort for fitting, and may not significantly improve the
accuracy further (the trends in Figs. 1(d) and 1(e) show diminishing increases
in accuracy). In all our experiments we have used hyperdeges of degrees 10–20;
these numbers are significantly larger than the p+ 1 used in previous works.

3 Guided sampling for large hyperedges

Guided sampling for data subsets has primarily been used in robust model fit-
ting [18–20]. However, following the RANSAC tradition only minimal subsets
(of size p) have generally been considered. An exception is Pham et al. [10] who
used the concept of random cluster models (RCM) [9] to sample large data sub-
sets. However, they did not pose their work as hypergraph clustering, and their
method requires graph cuts and Delaunay triangulation to produce intermediate
clustering, which are relatively expensive. To construct our novel algorithm, we
will draw from RCM and ISS [4]. Note that [4] considered only the smallest possi-
ble hyperedge (size p+1), which is only one larger than minimal subsets [18–20].
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3.1 Generating auxiliary graph

RCM requires a spatial neighbourhood structure which is represented as a graph
G(0) = (V,E(0)); whilst G(0) shares the same vertices V as the hypergraph
H, G(0) is a normal graph that encodes spatial proximity and not affinity to
the geometric structures. To create G(0), we first perform PCA on the data
V = {vi}Ni=1. This is obtained from the SVD of the mean-subtracted data matrix

V̂ = [v̂1 v̂2 . . . v̂N ], where v̂i = vi − µ, and µ = (1/N)
∑

i vi. Let U l be the

first-l left singular vectors of V̂ . The reduced-dimension version of V is thus
Y = (U l)T V̂ . We create E(0) using k-nearest neighbours (knn) on Y = {yi}Ni=1.
Two vertices vi and vj are connected by an edge e =< i, j >∈ E0 if yi is a knn
of yj or vice versa, i.e., the edges are undirected. The weight pe of the edge e is

pe = exp

(
−‖yi − yj‖

2

2σ2
e

)
, (5)

where σe is a scale factor. The weight pe for the edge e indicates how likely xi
and xj are from the same structure, based purely on spatial proximity.

The parameters l, k and σe required for this step are as follows: l = pK
(model complexity times number of clusters), k = 3 for all experiments, and σe
is obtained as the standard deviation of the nearest neighbour distances in Y .

3.2 RCM

Given G(0) = (V,E(0)), the Potts model is defined as the factor graph

P (f) =
1

Z

∏
e=<i,j>∈E(0)

exp(βe1(fi = fj)) (6)

where Z is the partition function and 1(.) returns 1 if its argument is true and
0 otherwise. The vector f = {fi}Ni=1 represents labels of the vertices V , where
fi ∈ {1, 2, . . . ,K}. If βe > 0, P (f) will assign higher probabilities to labellings
f that contain large clusters. The relationship between βe and pe is given by

pe = 1− exp(−βe); (7)

see [9, 10] for details. The Swendsen-Wang method [9] introduces the binary
“bond” variables d = {de} for each edge e to yield the extended Potts model

P (f, d) =
1

Z ′

∏
e=<i,j>∈E(0)

g(fi, fj , de), (8)

where the factor g is defined as

g(fi, fj , de) =

1− pe if de = 0,
pe if de = 1 and fi = fj ,
0 if de = 1 and fi 6= fj .

(9)
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A realisation of (f, d) effectively partitions the vertices into a set of connected
components. Each connected component is a subset of V such that all the bond
variables between vertices in the component are turned on. Further, according
to (9), vertices in a connected component must have the same labels.

Marginalising d in (8) returns the Potts model (6), while marginalising f
in (8) yields the RCM P (d). Let c(d) be the number of connected components
implied by a realisation of d. Then the RCM is

P (d) =
1

Z ′′

∏
e∈E(0)

(pde
e (1− pe)1−de)Kc(d) (10)

where K is the number of clusters. Simulating the RCM (10) is difficult. Instead,
the Swendsen-Wang method simulates the extended Potts model (8) by observ-
ing that given f , the bond variables d are independent of each other and can be
sampled independently. We take advantage of this characteristic to sample large
clusters from V which will form large hyperedges for the hypergraph H.

Note that each vertex vi in G(0) is on average incident with k edges, i.e.,
G(0) is sparse. Hence the total number of edges (bond variables) is O(k|V |), i.e.,
linear with |V |. This enables highly efficient sampling for large clusters.

3.3 Simulating the RCM for large hyperedges

Our method alternatingly updates f and samples d. Given f , we generate a
number of samples of d, which give us a set of hyperedges. Given the hyperedges,
we update f by carrying out NCut [12]. Details are as follows.

At iteration t, given the current labelling f (t), the vertices V can be par-

titioned into clusters C(t) = (C(t)1 , . . . , C(t)K ) with a label f
(t)
i for each vertex for

vi ∈ V , where f
(t)
i ∈ 1, 2, . . . ,K. The clustering above can be summarised by the

graph G(t) = (V,E(t)) with E(t) = {e =< i, j > |f (t)i = f
(t)
j }. Up to this stage,

the bond variables in d that straddle two vertices with different labels have been
turned off (set to zero) deterministically, cf. (9). The remaining bond variables in
d, i.e., those that straddle two vertices with the same labels, are then sampled by
turning them on/off probabilistically. Specifically, a bond variable de is turned
on (set to one) with probability pe. After this step, d is fully realised.

By sampling in the above manner, a cluster C(t)k is partitioned into a number

of subclusters (C(t)k,1, C
(t)
k,2, . . . , C

(t)
k,Rk

). Specifically, each subcluster is a set of ver-
tices connected by bond variables that have been turned on. We then collect all
the subclusters into the set CP = {P1,P2, . . . ,PKRK

}. The clusters in CP have
varying sizes, as one would expect from a random cluster model. In our algo-
rithm, however, we fix the degree of the hyperedges to be generated to D, where
D > p. To do so, we sample a component from CP based on the probability

q(Ps|CP) ∝
∑
e∈Ps

pe, ∀Ps ∈ CP. (11)
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Given the chosen Ps, we randomly sample a (D − 1)-tuple from Ps and fit the
geometric model of interest. The model is then evaluated against all the data in
V , thus yielding |V | hyperedges of degree D. One can envision a scheme where
D ∈ Z is also randomly sampled. However, since we wish to more thoroughly
test the effects of large hyperedges, we fix D to a constant. Of course, in the
experiments, we will vary D across different instances of the sampling algorithm.

At iteration t, the above steps are repeated to produce a number of hy-
peredges. The newly generated hyperedges are then added to the set of hyper-
edges sampled thus far, and NCut [12] is executed to obtain the labelling f (t+1)

for the next iteration. The process is terminated when either the labels f do
not change significantly, or the maximum number of iterations is reached. Our
method (Swendsen-Wang sampling) is summarised in Algorithm 1.

Algorithm 1 Swendsen-Wang sampling

Input: Data V , num clusters K, hyperedge degree D, iter count T and M , threshold ε.
Output: A set of hyperedges E of degree D for hypergraph H = (V,E).

1. Obtain auxiliary graph G(0) = (V,E(0)) (Sec. 3.1).
2. Initialise f (1) to a constant value.
3. For t = 1, 2, . . . , T

(a) From f (t), obtain clustering C(t) and corresponding graph G(t) = (V,E(t)).
(b) Repeat M times

i. For all e ∈ E(t), turn off de with probability 1− pe. This divides each C(t)k

into a set of subclusters.
ii. Collect all subclusters from {C(t)k }

K
k=1 into CP.

iii. Remove from CP all components of size less than D − 1.
iv. Select a component Ps from CP with probability q(Ps|CP) (11), then

randomly select a (D − 1)-subset s from Ps.
v. Fit the model onto s and evaluate it against all data in V . Add the newly

generated hyperedges to the set of all hyperedges.
(c) Apply NCut [12] on the current hypergraph H to obtain labels f (t+1).
(d) If the difference between f (t) and f (t+1) is smaller than ε, terminate sampling.

4 Results

We conduct experiments on real datasets to verify the effectiveness and efficiency
of the proposed large hyperedge sampling method. Since we use Govindu’s dense
sample reuse approach, a D-degree hyperedge e is composed of e = {s ∪ v},
where s is a sampled (D− 1)-tuple, and v is an arbitrary vertex in V . In all the
experiments, the weight w(e) of a hyperedge e is calculated as

w(e) =

{
exp(−r2(v, φs)/2σ

2) if v /∈ s;
0 otherwise,

(12)
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where φs is the model fitted in a least squares manner on s, and r(v, φs) is the
residual of v with respect to φs. The parameter σ is problem dependent, and a
similar parameter needs to be tuned for all hypergraph clustering methods [3, 4].
We calculate σ following [4], i.e., choose the sigma that gives the lowest subspace
approximation error after segmentation by Ncut; see [4] for details.

4.1 Face clustering

It has been established that a set of images of a the same face subjected to differ-
ent illumination conditions can be modelled by a low-dimensional subspace [16].
Given a set of images of K different faces V , we wish to cluster them into K sub-
spaces. We used the Yale Face Database B [16] in our experiment, which contains
images of K = 10 faces under 64 different lighting conditions. As in Sec. 2.2, the
dimensionality of the face subspace is chosen to be p = 2. Before clustering, we
first reduce the dimensionality of V to 4K to construct the auxiliary graph G(0).

Sampling accuracy and effects of large hyperedges. We have tested with degree
D in the range {6, 8, . . . , 20}. Unlike in Sec. 2.2, here we sample without ground
truth labels. Three methods were compared: random sampling (RS), iterative
spectral sampling (ISS) [4], and Swendsen-Wang sampling (SWS). We extended
ISS to sample large hyperedges by using the intermediate clustering information
to successively select data. Here, NCut [12] was used for hypergraph clustering
for all sampling methods. The average misclassification rate is plotted against
the number of samples in Figs. 2(a)–(c). The sampling accuracy (% hyperedges
containing data from the same cluster) is displayed in Fig. 2(d). For RS and ISS
in Figs. 2(a)(b), as D is increased, the misclassification rate also increases; this
reflects the inability of these methods to sample large pure hyperedges, and not
because large hyperedges are ineffective; see Sec. 2.2. In contrast, SWS not only
samples large hyperedges more accurately, the hypergraph clustering accuracy
also improves as the hyperedge degree is increased; see Fig. 2(c).

In terms of computational effort, our method does not require discernibly
higher run time than RS and ISS. Sec. 4.3 will examine run time more closely.

Benchmark against state-of-the-art. For our method (SWS followed by NCut),
we chose degree D = 20 and 300 samples. We varied K from 2 to 10 and re-
peated our algorithm on 100 randomly chosen subpopulations of K persons. We
compared against well-known methods for subspace segmentation: Generalised
PCA (GPCA) [21], SCC [4], Sparse Subspace Clustering SSC [15], Spectral Lo-
cal Best-fit Flat (SLBF) [22] and Agglomerative Lossy Compression (ALC) [23];
these methods have also recently been applied on Yale Face Database B. The
mean percentage of misclassification along with the run time are shown in Ta-
ble 1. The proposed method is on par with ALC which correctly clustered all
the faces for all K. Moreover, our method is much faster than ALC.

4.2 Motion segmentation with sparse trajectories

Under the affine camera model, the trajectories corresponding to the same rigid
motion can be described by a subspace of dimension p = 4. Given a set of
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Fig. 2. (a)–(c) Misclassification rate of three methods on Yale Face Database B as
hyperedge degree D is increased. (d) Sampling accuracy for different degree D.

trajectories V containing K distinct motions, we can separate the motions by
subspace clustering. Here we used the Hopkins 155 dataset. The dataset consists
of 155 video sequences with 2 or 3 independent rigid motions which are sub-
categorised into three types: checkerboard, traffic and articulated.

For our approach (SWS followed by NCut), we used D = 10 and 50 sam-
ples. To compute the auxiliary graph G(0) and edge weights (5), we reduce the
dimension of the data in each sequence to l = 4K. For our method, across all se-
quences we observe that on average 98.34% the hyperedges generated are clean,
i.e., contain trajectories from the same motion.

Table 2 presents the misclassification rates of proposed method along with the
other recent methods for comparison. We also additionally compared with Local
Subspace Affinity (LSA) [24] and the recent method of [25] which uses discrete
cosine transform (DCT). Unlike our method, these state-of-the-art techniques
are dedicated to motion segmentation. It is clear that our approach can achieve
similar or better results than the other methods.

Comparing run time is nontrivial, since the methods are based on very dif-
ferent principles. Our approach typically takes less than 5 minutes to execute.
The following subsection will examine the run time of our method more closely.

4.3 Motion segmentation with dense trajectories

Recently there is a surge of interest in conducting video-based object segmenta-
tion by clustering the dense feature trajectories V = {vi}Ni=1 on the objects. The
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Table 1. Mean percentage of misclassification on clustering Yale face B dataset.

K 2 3 4 5 6 7 8 9 10 time(s)

GPCA 0.0 49.5 0.0 26.6 9.9 25.2 28.5 30.6 19.8 ≈ 106

SCC 0.0 0.0 0.0 1.1 2.7 2.1 2.2 5.7 6.6 4.93
SSC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 4.6 6.12
SLBF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.9 1.72
ALC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1878.56
Ours 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.74

Table 2. Percent misclassification error on Hopkins 155 dataset.

Two Motions Three Motions

Method Chck.(78) Trfc.(31) Artc.(11) Chck.(26) Trfc.(7) Artc.(2) all(155)

MN MD MN MD MN MD MN MD MN MD MN MD MN MD
GPCA 6.09 1.03 1.41 0.00 2.88 0.00 31.95 32.93 19.83 19.55 16.85 16.85 10.34 2.54
LSA 2.57 0.27 5.43 1.48 4.10 1.22 5.80 1.77 25.07 23.79 7.25 7.25 4.94 0.90
ALC 1.55 0.29 1.59 1.17 10.70 0.95 5.20 0.67 7.75 0.49 21.08 21.08 3.56 0.50
SCC 1.31 0.06 1.02 0.26 3.21 0.76 6.31 1.97 3.31 3.31 9.58 9.58 2.42 NA
SSC 1.12 0.00 0.02 0.00 0.62 0.00 2.97 0.27 0.58 0.00 1.42 1.42 1.24 0.00
DCT 0.71 0.00 0.05 0.00 0.96 0.00 2.44 1.29 0.05 0.00 1.60 1.60 0.87 NA
Ours 1.86 0.00 0.08 0.00 1.13 0.00 2.72 0.00 0.00 0.00 1.06 1.06 1.50 0.00

MN: mean, MD: median, NA: not available

original proposal by Brox and Malik (BM) [26] achieves this via a conventional
clustering approach, which constructs an affinity measure to compare pairs of
trajectories. Using pairwise affinities restricts the motions to be 2D translations.

Ochs and Brox (OB) [7] later argued that the approach of [26] fails if the
objects undertake more complex motions, which occur quite often in the videos
used in [26]. Thus the affinity measure must include more than two trajectories to
allow richer motion models. OB used 2D similarities (rotation, translation, and
scaling) and posed motion segmentation as hypergraph clustering. Hyperedges
of degree 3 are used (the hypergraph is 3-uniform). Recall that a minimum of
two trajectories are needed to instantiate a 2D similarity (p = 2), thus D = 3 is
the smallest possible hyperedge degree.

Even with such small hyperedges, enumerating them is not feasible since
their number scales as O(|V |3); recall that a short video can have thousands
of dense trajectories. OB samples the hyperedges as follows: all |V | × |V | pairs
of trajectories are generated. For each pair of trajectories, 12 hyperedges are
created by including in the pair a third trajectory from the 12 nearest spatial
neighbours of the pair. An additional 30 hyperedges are produced by randomly
including a third trajectory. As an example, the car1 sequence (which is one of
the shortest in the dataset with 19 frames) contains 4850 trajectories. OB thus
generates 4850×4850×(30+12) = 987, 945, 000 (≈ 109) hyperedges. To compute
the weight of a hyperedge, the max-error fit is obtained as follows: all three pairs
of trajectories in a hyperedge are used to instantiate 2D similarities which are
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then evaluated with the third trajectory. The highest error is converted to an
affinity value via a negative exponential. The massive number of hyperedges used
contribute to significant computational expense. For example, OB requires 48
minutes to compute the affinity matrix of car1.

We demonstrate how our approach significantly improves the run time of
hypergraph clustering for motion segmentation. Hyperedges of degree of D = 10
were used in our hypergraphs. Based on SWS, we generated 1000 samples of
(D − 1)-tuples from the trajectories V of a given sequence. A 2D similarity
motion was fitted on each (D − 1)-tuple and evaluated against the rest of the
trajectories. There were thus a total of (just) 1000|V | hyperedges in each hyper-
graph. This reduces run time enormously. Moreover, as we will show later, since
SWS can generate pure hyperedges accurately, these relatively few hyperedges
were sufficient to produce good segmentation. Since we used large hyperedges,
OB’s max-error fit procedure which tests all pairs is too costly to be applied. We
simply estimated the 2D similarity on each (D − 1)-tuple using least squares.
Under these settings, we computed the affinity matrix of car1 within 10 seconds.

Due to the significant difference in computational requirements, any compar-
isons must thus take run time into account. To compare against OB, we reduce
a given sequence by taking just the first-10 frames of the video. We ran the im-
plementation of BM and OB1 on a linux 64-bit desktop. Note that the provided
binaries conduct dense feature tracking from scratch; approximately 4 minutes
are needed for dense tracking over 10 frames. Comparing just the clustering step,
OB takes ≈ 1 hour and BM takes ≈ 1 minute. Using the trajectories output by
OB, our method requires a relatively tiny ≈ 15 seconds for clustering.

Fig. 3 provides qualitative comparisons on car5, marple8, marple13 and duck
sequences (all reduced to 10 frames). Despite the much smaller computational
expense, our method provides similar segmentation quality as OB. Note also
that BM fails in duck due to the more complex motions (as reported in [7]).
Quantitative comparison based on the criteria in BM and OB is also made using
the evaluation code provided with the dataset. See Table 3.

The reader may suggest that our speed is due to using least squares instead
of max-error fit. Note that when applied to a subset of size 3, the max-error fit is
similar with least squares in time, since there are only 3 pairs to test. Thus, the
major factor in the computational burden of OB is the number of hyperedges.

Table 3. Results on Berkeley motion segmentation benchmark for first 10 frames.

Density
overall average over extracted
error error segmentation objects

BM 0.81% 7.86% 28.76% 0.35 22
OB 0.79% 7.44% 28.01% 0.38 23

Ours 0.79% 8.05% 27.84% 0.23 22

1 Available at http://http://lmb.informatik.uni-freiburg.de/Publications/2012/OB12/
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(a) Brox and Malik [26]. (b) Ochs and Brox [7]. (c) Our method.

Fig. 3. Segmentation results in sample frames of sequences car5, marple8, marple13
and duck from the Berkeley motion segmentation dataset [26].

5 Conclusion

We have established theoretically the benefits of using large hyperedges in hyper-
graph clustering. Our theoretical analysis is then supported by comprehensive
experiments. In particular, the experimental results clearly show that using large
hyperedges yields better clustering accuracy - this departs from previous meth-
ods that have exclusively used the smallest possible hyperedge. We have also
proposed a novel algorithm for accurately sampling large hyperedges. Notwith-
standing the usage of large hyperedges, our method is very efficient to compute.

Acknowledgment: This work was supported by ARC grant DP130102524.
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