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Abstract

With the rapid growth in space utilisation, the probability of collisions between space assets and orbital debris also increases substan-
tially. To support the safe utilisation of space and prevent disruptions to satellite-based services, maintaining space situational awareness
(SSA) is crucial. A vital first step in achieving SSA is detecting the man-made objects in orbit, such as space-crafts and debris. We focus
on the surveillance of Geo-stationary (GEO) orbital band, due to the prevalence of major assets in GEO. Detecting objects in GEO is
challenging, due to the objects being significantly distant (hence fainter) and slow moving relative to the observer (e.g., a ground station
or an observing satellite). In this paper, we introduce a new detection technique called GP-ICP to detect GEO objects using optical sen-
sors that is applicable for both ground and space-based observations. Our technique is based on mathematically principled methods from
computer vision (robust point set registration and line fitting) and machine learning (Gaussian process regression). We demonstrate the
superior performance of our technique in detecting objects in GEO.
� 2019 Published by Elsevier Ltd on behalf of COSPAR.
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1. Introduction

Virtually all major public and private assets, such as
transportation hubs, commercial buildings, power stations
and cultural monuments, are protected by extensive
surveillance networks. Unfortunately the same cannot be
said of space assets, such as communications satellites
and space stations. Currently there are more than a thou-
sand operating satellites and space installations, amounting
to Trillions of dollars worth of investments. Protecting
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these assets from interference and destruction is of utmost
importance. A major risk is collision with other resident
space objects (RSO), including debris and satellites, both
operational and disused. For instance, the collision
between Iridium 33 (then an operational satellite) and Cos-
mos 2251 introduced over 2000 unregistered pieces of deb-
ris into the orbit. Crucially, the collision generated even
more debris, which eventually drifted all over the globe
due to celestial mechanics (Schildknecht, 2007).

Ground-based observations have been the primary tools
for SSA. The U.S. Strategic Command (USSTRATCOM)
maintains the Space Surveillance Network (SSN), which is
a global network of facilities (mostly ground-based detec-
tors) for space surveillance (Schildknecht, 2007). A core
facility is the Space Surveillance Telescope (SST), which
is DARPA’s most advanced ground-based telescope for
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Table 1
Existing space object detection techniques.

Point-like (object tracking) Streak-like (sidereal tracking)

Yanagisawa et al. (2012, 2005), Šára et al. (2013), Kouprianov (2008), Oda
et al. (2014), Oda et al. (2014), Rutten et al. (2005), Bertin and Arnouts
(1996)

Dawson et al. (2016), Levesque and Buteau (2007), Vananti et al. (2015),
Virtanen et al. (2016), Danescu et al. (2014, 2012), Zimmer et al. (2013),
Šára and Cvrcek (2017), Tagawa et al. (2016)
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SSA, to be located in Western Australia under the US-
Australia SSA Initiative. Furthermore, in 2006, the Japa-
nese Aerospace Exploration Agency (JAXA) opened a
new observational facility at Mt. Nyukasa, Nagano in an
effort to search for un-cataloged GEO objects and orbit
determination (Yanagisawa et al., 2009).

The efficacy of ground-based observations is affected by
uncontrollable factors such as atmospheric effects, weather,
and night-time-only observational constraints. Therefore,
space-based SSA has been considered as a promising alter-
native. However, due to the much higher establishment
cost (Flohrer et al., 2005), there is a much smaller number
of fully functional space-based SSA systems up to date.
Lauched in 1996, the Midcourse Space Experiment
(MSX) satellite with a Space-based Visible (SBV) sensor
on board has been feeding observation data to the SSN
as a Contributing Sensor (Stokes et al., 1998).

Since maintaining a fleet of observatory-class spacecraft
like the MSX satellite is financially prohibitive, developing
nano-satellites, e.g., CubeSat, with equivalent observation
capacity has been an active research area. For instance, a
mission named Space-based Telescopes for Actionable
Refinement of Ephemeris (STARE) was proposed to over-
come the lack of tracking accuracy and high number of
daily false alarms in the SSN (Riot et al., 2013).
2. Survey of optical space object detection techniques

In both ground-based and space-based SSA frame-
works, a critical element is object detection, i.e., identifying
potential man-made objects in a given set of measurements
taken of the target region in space. In this section, we dis-
cuss state-of-the-art techniques for object detection using
optical sensors, i.e., the measurements are a set of images.

In general, there are two main operational modes for
optical telescopes: sidereal tracking (the telescope is re-
oriented continuously to be fixed to the stars, thus, objects
appear as streak-like regions in the images) and object
tracking (the telescope is re-oriented continuously to be
fixed to objects, thus, they appear as point-like regions).
Based on the two operational modes, recent space object
detection methods can be grouped as shown in Table 1.
1 The word ‘‘likelihood” here is used with a general meaning, which is
not necessarily likelihood in the statistical sense.
2.1. Point-like object detection

Our paper focuses on this setting. While it may seem odd
that one should still perform object detection given that the
object can already be tracked by a telescope, in reality,
‘‘object tracking” merely refers to fixating on a target
region in near space. Since the relative speed between
objects in the region and the camera is usually small, the
objects take a point-like form.

For point-like object detection, a common procedure is:
(1) capture multiple images consecutively (i.e., an image
sequence), (2) detect potential objects, which usually are
referred to as ‘‘candidates”, and finally (3) removing spuri-
ous ones by utilizing the fact that the objects move in dif-
ferent pattern with respect to the background stars
(Yanagisawa et al., 2012; Šára et al., 2013).

The candidate detection process is essentially a matter of
thresholding segmentation per frame where the threshold
value is treated as a tunable parameter. The main difference
between the methods is the quantity being thresholded.
Thresholding directly on raw image intensity is simplistic
and prone to include a high number of spurious candidates
even after image reduction. Therefore, an intermediate pro-
cessing step to suppress noise and to intensify the true
object’s signal is required. For instance, Šára et al. (2013)
calculate a quantity named event score, which shows how
likely an object pixel is an outlier given a temporal statisti-
cal model for the background pixel. Another common
practice is to threshold on the correlation map of a
point-source PSF and the input image (Kouprianov,
2008). The intensified object signal, however, still depends
on its original signal-to-noise ratio (SNR) to some extent,
thus, the detectable apparent magnitude of this family of
methods is generally limited by the observable magnitude
of the hardware’s CCD sensor (Uetsuhara et al., 2010)
leading to its incapability in detecting faint objects.

In order to deal with objects of low visual magnitudes,
there is another family of methods that is called track-
before-detect (TBD). The central principle in all TBD
detection methods is to accumulate the ‘‘likelihood”1 of
an object’s existence given the measurements without any
assumption about the object’s shape or its trajectory. In
other words, given a sufficiently long period of observation,
different measurements of a weak signal can be gathered up
to the level of being detectable.

In the context of point-like detection, particle filter (PF)
is a natural TBD solution framework (Salmond and Birch,
2001), in which the ‘‘accumulation” effect is accomplished
through the particle re-sampling step where the probability
of choosing a particle, i.e., its normalized weight, is set to
be the evaluated value of the likelihood function. As a
result, the particles are gradually driven toward the region
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with high likelihood value throughout the iterations. The
pivotal factor in PF-based methods is the design of the like-
lihood function such that it is able to assign higher
response to the object than the background noise after each
iteration, even by a small amount. For example, the likeli-
hood function can be a hand-crafted function of image
intensity within a Region of Interest (ROI) (Uetsuhara
and Ikoma, 2014). Alternatively, a more complete treat-
ment can be achieved by conditioning the likelihood on
an additional variable that indicates existence of object
on each particle (Rutten et al., 2005). Apart from PF, a
more ‘‘direct” approach was developed by Yanagisawa
et al. (2005), which is called Stacking Image. In brief,
star-registered frames are stacked and a cropping sub-
window is defined for each frame. The sub-window’s loca-
tion in one frame is set to be shifted from the previous
frame’s sub-window by a shift value, and one shift value
is shared by the whole stack. Finally, a median image is
obtained from the shifted sub-windows. The process is
repeated for different shift values. Fundamentally, each
shift value can be interpreted as one hypothesis about the
movement of the object and the correct shift shall have
all the object’s observations in the same location across
sub-images yielding a high value in the final median image.

2.2. Streak-like object detection

For streak-like object detection, matched filters are
widely applied as primary tools to detect objects
(Dawson et al., 2016; Levesque and Buteau, 2007;
Vananti et al., 2015; Pohlig, 1989). Filters are often con-
structed by a convolution between the Point Spread Func-
tion (PSF) and a source with pre-defined shape such as a
line segment. An object then can be detected as the image
region that shows high response to the filter. Additionally,
the TBD framework can also be applied to find streak-like
objects. A common strategy in the literature is to accumu-
late a quantity, e.g., pixel intensity value, along the direc-
tion of the streak to intensify the final response.
Therefore, the problem essentially amounts to efficiently
searching for the streak’s direction. Tagawa et al. (2016)
proposed a pipeline that consists of horizontal image shear-
ing with different angles followed by a vertical compression
step. Thus, the shearing angle that aligns with the streak’s
direction will yield the highest response in the compressed
image. Alternatively, Šára and Cvrcek (2017) proposed a
TBD-based single-frame streak detection method using
Bayesian inference on image spatial domain instead of time
domain. The authors design two parametric statistical
models of pixel values of an image: with and without the
existence of a streak. The models are joint distributions
of pixel values, the shearing angle /, and other line-
descriptive parameters. The merit of the method arises
from the aspect that instead of doing exhaustive search
for /, it uses a branch-and-bound scheme to find the opti-
mal / that maximizes its joint distribution with the pixel
values. The method yields remarkably high detection accu-
racy (97%) even for faint and short simulated streaks on
images in the TAOS data set.

2.3. Our contributions

In this work, we develop a novel technique named GP-
ICP to detect point-like GEO objects under object tracking
mode (see Section 2.1). Though our method is designed
with a foresight to be integrated into a vision processing
unit on a CubeSat, it is applicable to both ground-based
and space-based situations. We focus on two major
requirements when designing the detection algorithm: (1)
high recall and precision rates and (2) low computational
cost.

We describe our pipeline in detail in Section 3 and vali-
date it on a number of real and synthetic data sets in Sec-
tion 7. The closest techniques to our work are Stacking
Image (Yanagisawa et al., 2012) and RANSACing Image
Sequence (Šára et al., 2013), which we will compare in
Section 7.

3. Overall pipeline of proposed detection algorithm

The input to our detection pipeline is a consecutive set

of images I tf gTt¼1 that were captured by focussing on a
small GEO region under object tracking mode. Relative
motion exists between RSOs and the background stars,
regardless of observational modes (sidereal or object track-
ing). Furthermore, due to short observing intervals and
hyper-velocity movement of space objects, the rotational
motion caused by either the Earth’s rotation or the RSO’s
changes of course in the images is negligible, leaving only
translational motion, i.e., the positions of a RSO in

I tf gTt¼1 form a line.
Our overall pipeline, summarised in Fig. 1, employs the

strategy of first detecting candidates by foreground/back-
ground (FG/BG) segmentation, then eliminating spurious
candidates by using the fact that genuine ones lie close to
a line. Details of the important modules in our method
are described in the following sections. We keep description
of the algorithm generic and not tied to a target sensor/tele-
scope specification. Later in Section 7, we will provide the
details of our actual imaging setup.

4. FG/BG segmentation using GPR

In our pipeline, each image I t in the sequence I tf gTt¼1 is
first subject to our novel FG/BG segmentation algorithm
based on Gaussian process regression (GPR) (Rasmussen
and Williams, 2006).

4.1. Why is FG/BG segmentation difficult?

The challenge in segmenting the foreground pixels
(belonging to stars and objects) from the background pixels
(belonging to the space void) in a star field image is due to



Fig. 1. GP-ICP overall pipeline: image-wise processing steps are shown in
solid rectangles and processing steps that are applied on stack of images or
a collapsed image are shown in dashed rectangles.
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the faintness of the object pixels relative to the noise arte-
facts in the image, which could arise due to unexpected
celestial phenomena or inherent flaws in the imaging pipe-
line. Fig. 2(a) shows an image from the TAOS dataset (to
be described in Section 7.1) that has been used in the
SSA literature, while Fig. 2(b) plots in scaled colours the
subimage outlined by the green rectangle in the input
image. A simple thresholding on the image intensity gives
the FG/BG segmentation in Fig. 2(c), which is evidently
noisy, especially near the bottom left corner of the subim-
age. By examining the intensities along a cross section of
the image (indicated by the red line) as shown in Fig. 2
(d), the reason behind the undesirable outcomes of direct
thresholding is clear; the background intensities are not
only noisy, they also vary as a function of the location in
the image. In fact, this example shows that no single thresh-
old will cleanly separate the FG/BG, since there are back-
ground pixels that are as bright as the target object along
the cross section (indicated by the single peak in Fig. 2(d)).

In the literature, simple foreground object models such
as PSF (Pohlig, 1989) or local statistical approaches such
as median filtering (Bertin and Arnouts, 1996), have been
used for FG/BG segmentation — these do not fully exam-
ine the structure of the object relative to the background
distribution. On the other hand, Yanagisawa et al. (2012)
and Šára et al. (2013) use relatively complex hand-crafted
foreground models to perform the FG/BG segmentation.
We develop a non-parametric technique based on GPR
(Rasmussen and Williams, 2006) that is more capable of
adapting to the data.

Another idea is to increase the detectability/magnitude
of faint RSOs via image deconvolution (Nunez et al.,
2015). We see this as complementary to our work, since
deconvolution can be performed on our images first prior
to FG/BG segmentation.

4.2. Problem formulation

Let X ¼ xif gNi¼1 indicate a 2D image grid, i.e., each xi is
a pixel location in the input image I t. The image can be
interpreted as a function y that gives the observed (noisy)
intensity value y xið Þ over each xi 2 X . Define y� as the
noiseless image, where

y xið Þ ¼ y� xið Þ þ �i; ð1Þ
and �i � N 0; r2

n

� �
is i.i.d. Normally distributed noise, for

all i ¼ 1; . . . ;N . Define m� as the ideal foreground mask,
where

m� xið Þ ¼
1 if xi corresponds to a foreground object;

0 otherwise:

�
ð2Þ

Our overarching aim is to estimate m� given y.

4.3. GPR basics

Our method begins by using GPR to reconstruct y�.
Fundamentally, we impose a Gaussian process prior over
y�. Focussing on our problem context, this implies that
the vector of noiseless intensity values

y� ¼ y� x1ð Þ y� x2ð Þ � � � y� xNð Þ½ �T 2 RN ð3Þ
distributes according to the multivariate Gaussian
distribution

y� � N 0;Kð Þ; ð4Þ
where the covariance matrix K 2 RN�N is defined as

Ki;j ¼ j xi; xj

� �
: ð5Þ

Here, j is called the kernel function (hence, K is called the
kernel matrix in the machine learning literature). Roughly,

j xi; xj

� �
computes the inner product between xi and xj in a

higher-dimensional embedding space (defined by the form
of j; more details later) (Shawe-Taylor and Cristianini,
2004).

Conceptually, the Gaussian process prior (4) induces a
distribution of functions over the domain X , where the
specific form of j and the setting of its internal parameters
define this distribution of functions. Combining (1) and (4),
the marginal distribution of the observed intensities

y ¼ y x1ð Þ y x2ð Þ � � � y xNð Þ½ �T 2 RN ð6Þ
can be established as



Fig. 2. (a) An image from the TAOS data set (see Section 7.1). (b) Subimage from the green rectangle, plotted in scaled colours. (c) FG/BG segmentation
obtained by directly thresholding the intensities in the subimage. (d) Normalised intensities along the cross section indicated by the red line. The peak
between horizontal coordinates 1200 and 1400 corresponds to a target object. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

H.N. Do et al. / Advances in Space Research 64 (2019) 733–746 737
y �N 0;Kþ r2
nI

� �
; ð7Þ

see Section 2.2 in Rasmussen and Williams (2006) for
detailed derivations.

Now, let xH be an image coordinate for which we wish
to ‘‘predict” the value of y� xHð Þ, given (1) and (4). It can
be established that the distribution of the extended vector

y y xHð Þ½ �T 2 RNþ1 ð8Þ
is again a Gaussian of the form

y

y xHð Þ

� �
� N 0;

Kþ r2
nI k xHð Þ

k xHð ÞT j xH; xHð Þ þ r2
n

" # !
; ð9Þ

where k xHð Þ is the vector of kernel evaluations

k xHð Þ ¼ j x1; xHð Þ j x2; xHð Þ � � � j xN ; xHð Þ½ �T 2 RN :

ð10Þ
Since we observed y and wish to predict y� xHð Þ, we obtain
the posterior distribution

p y xHð Þjyð Þ; ð11Þ
which is a univariate Gaussian with mean and variance

l xHð Þ ¼k xHð ÞT Kþ rnIð Þ�1y; ð12Þ
r2 xHð Þ ¼j xH; xHð Þ þ r2

n � k xHð ÞT Kþ r2
nI

� ��1
k xHð Þ: ð13Þ
Again, we refer the interested reader to the Section 2.2 in
Rasmussen and Williams (2006) for detailed derivations.

Of immediate practical interest here is that the maximum

a posteriori (MAP) estimate for y� xHð Þ is l xHð Þ, i.e., l xHð Þ
is the most probable guess for the unknown function value
y� xHð Þ. Further, in our application, xH is taken from the
original grid X , i.e., xH is always a pixel location, thus
l xHð Þ for all xH 2 X is actually a reconstruction of y� over
the grid X .

Fig. 3(a) and (b) show (in scaled colours) two GPR
reconstructions lBG and lFG over the subimage in Fig. 2
(b) (for reasons that will be explained in the next section,
the reconstructions are named ‘‘foreground/FG” and
‘‘background/BG”). Both cases employed the squared

exponential (SE) kernel

j x; x0ð Þ ¼ r2
f exp � 1

2
x� x0ð ÞTK�2 x� x0ð Þ

� �
; ð14Þ

where rf is the scale factor, and K ¼ diag r2
1; r

2
2

� �
with

r1; r2 being the spatial bandwidths (Section 4.5 will discuss
other choices of kernel functions). The reconstructions lBG

and lFG in Fig. 3 use the same noise rn and scale rf mag-
nitudes, but different spatial bandwidths r1; r2 (the band-
widths for lBG are larger than the bandwidths for lFG).
Observe that in both results, the noise in the raw data is
suppressed (though with different strengths). Section 4.5



Fig. 3. (a)(b) Two different GPR reconstructions lBG xHð Þ and lFG xHð Þ over the subimage in Fig. 2(b). (c) The GPR reconstructions along the cross section
in Fig. 2(d).
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will discuss the tuning of the hyperparameters rn; rf ; r1,
and r2.

4.4. Estimating the foreground mask

Recall from Section 4.2 that our aim is to approximate
the ideal foreground mask m�. Using GPR, we estimate
the mask as

m xið Þ ¼ lFG xið Þ � lBG xið Þ; ð15Þ
where lFG and lBG are ‘‘foreground” and ‘‘background”
GPR reconstructions; see Fig. 3. Intuitively, while both
reconstructions perform denoising of the original signal,
lFG is more sensitive to foreground intensities (e.g., small
spikes from faint target objects), while lBG adapts more
strongly to general trend of the background intensities.
Section 4.5 will describe hyperparameter tuning for lFG

and lBG to achieve these effects.
Fig. 4. (a)(c) Estimated foreground mask m xið Þ ¼ lFG xið Þ � lBG xið Þ over the s
Fig. 3. (b) FG/BG segmentation obtained by thresholding the estimated foreg
Fig. 4(a)(c) shows the estimated foreground mask m xið Þ
over the subimage and cross section for the input in Fig. 2
based on the lFG and lBG in Fig. 3. Evidently m xið Þ is more
amenable to direct thresholding for FG/BG segmentation,
since the effects of noise and non-stationary background
intensities have been suppressed, while the faint target
object remains apparent in m xið Þ. Fig. 4(b) shows the out-
put of thresholding m xið Þ, which is much cleaner than the
result in Fig. 2(c). In Section 7 we will compare our tech-
nique against previous methods.

4.5. Kernel selection and hyperparameter tuning

As mentioned in Section 4.3, the kernel function corre-
sponds to an inner product in a higher-dimensional embed-

ding space of X ¼ xif gNi¼1. This requires K to be positive
semidefinite for any X , which imposes certain conditions
on j. It is beyond the scope of this paper to discuss these
ubimage and cross section in the input in Fig. 2, using the lFG and lBG in
round mask.



Fig. 5. (a) The dark blue curve is the FFT (magnitude only) of the intensities along the cross section shown in Fig. 2(d). To build the foreground mask
(15), we would like to construct two low-pass filters with respectively low and medium cut-off frequencies. (b) Superimposed on the original signal are the
FFT of the lBG and lFG estimated from the data, as shown in Fig. 3. The vertical dashed lines indicate the cut-off frequencies. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

2 Note that this information is also derivable from the metadata of any
data set, such as field of view or exposure time.
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conditions, and the interested reader is referred to
Rasmussen and Williams (2006).

In our problem, X is always a uniform 2D grid, thus it
makes sense to use homogenous kernels, such as the SE ker-
nel (14), where the value j x; x0ð Þ is a function of only the
distance kx� x0k. Other homogeneous kernels include the
radial basis function (RBF) kernel

j x; x0ð Þ ¼ r2
f exp � 1

2

kx� x0k2
2r2

1

 !
ð16Þ

and the Ornstein-Uhlenbeck (OU) kernel

j x; x0ð Þ ¼ exp �kx� x0k
r1

� �
: ð17Þ

A main distinguishing factor between the RBF and OU
kernels and the SE kernel, is that the former two are isotro-
pic. This implies that RBF and OU assume that the rate of
intensity change in the horizontal and vertical directions to
be the same, which may not be hold in practical settings.
For this reason, we mainly use the SE kernel.

As mentioned in Section 4.3, the hyperparameters for

the SE kernel are h ¼ rnrfr1r2

	 
T
. Generally speaking,

the GPR reconstruction behaves as a low-pass filter that
denoises the image. To achieve the specific effects required
for estimating the foreground mask (15), we would like lBG

to allow only low frequency (background) signals to pass
through, while lFG to admit both low (background) and
medium (stars and RSOs) frequency signals.

To illustrate the above requirements in the frequency
domain, we take the FFT of the intensities along the cross
section of the sample image, as shown in Fig. 2(d) (assum-
ing the sampling frequency to be 1000). The FFT (magni-
tude only) is plotted in Fig. 5(a), where we superimpose
two low-pass filters that we would like to construct.
Fig. 5(b) shows the FFT of the GPR reconstructions lBG

and lFG in Fig. 3. Evidently, both reconstructions have
attenuated much of the noise, while lFG still retains some
medium frequency components, including the target object
signal.
We developed a procedure to find the hyperparameters
hBG and hFG, respectively for lBG and lFG, that can achieve
the above effects for a given input image. Note that in prac-
tice, the tuning procedure need only be carried for proto-
typical images in a data set, and the optimised
hyperparameters can then be reused for other images that
were captured in the same setting.

Define the loss function

L hFG;hBGð Þ¼
F FG fð Þ�F BG fð Þð Þ2 for 06 f < f 1 Hzð Þ;
� F FG fð Þ�F BG fð Þð Þ2 for f 1 6 f < f 2 Hzð Þ;
F 2

FG fð ÞþF 2
BG fð Þ for f > f 2 Hzð Þ;

8><>:
ð18Þ

where F BG fð Þ ¼ FFT lBG xð Þð Þ is the FFT of GPR recon-
struction lBG using the hyperparameters hBG (similarly for
F FG fð Þ), and f 1 and f 2 are cut-off frequencies that are ass-
sumed known in L hFG; hBGð Þ (to be described later). The
desired hyperparameters are then optimised as

h�FG; h
�
BG ¼ argmin

hFG;hBG

L hFG; hBGð Þ: ð19Þ

Intuitively, problem (19) minimises the difference between
lBG and lFG in 0; f 1½ Þ (preserving the background signals),
maximises the difference between lBG and lFG in f 1; f 2½ Þ
(separating background signal from object signal), and
minimises both lBG and lFG in f 2;1ð Þ (eliminating noise).

The setting of f 1 and f 2 depends on the appearance of
objects of interest (e.g., RSOs, stars) in an image. For
example, in our data sets, the sizes of foreground objects
range from 6 to 100 pixels,2 which correspond to
f 1 ¼ 10 Hz and f 2 ¼ 150 Hz, using an FFT sampling fre-
quency of 1000 Hz.

To solve problem (19), a simple grid search over the
domain hBG and hFG. As alluded to above, since hyperpa-
rameter tuning is done only on a few prototypical images
from a dataset, this procedure is sufficient.
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4.6. Computational considerations

In the posterior mean (12), since the domain X is the
same 2D grid as long as the input image is of the same size,
the matrix Kþ rnIð Þ can be pre-computed and pre-inverted
before calculating the reconstruction l xHð Þ. Moreover,
across different xH, the input intensity values y does not

change, hence Kþ rnIð Þ�1y can also be precomputed. The
main effort is thus to calculate k xHð Þ (linear in the number

of pixels) and multiply it with Kþ rnIð Þ�1y (quadratic in
the number of pixels). This unfortunately still represents
a costly procedure. To speed up computations, we take
the simple approach of subdividing the input image into
100 pixel by 100 pixel blocks, and perform the GPR recon-
struction on each subimage individually. This speeds up the
reconstruction process without sacrificing accuracy, as we
will demonstrate in Section 7.

5. Image registration

Once we have converted the input image sequence

I tf gTt¼1 into foreground images bI tn oT

t¼1
, we estimate planar

perspective transforms or homographies (Szeliski, 2005) that
bring the images into geometric alignment in a common
image coordinate frame. In the common coordinate frame,
different observations of the same star will converge to the
same pixels, while the observations of an RSO will form a
line (see Section 3 for the rationale).

First, a reference frame bI r is chosen, where typically
r ¼ round T=2ð Þ. For each t – r, we estimate the 2D
homography, which is defined by the 3� 3 matrix Hr

t , that

warps bI t to align with bI r. The warping of an image point p

(a 2D coordinate) in bI t is calculated as

w pjHr
t

� � ¼ Hr
t 1 : 2½ � p

1

� �
Hr

t 3½ �
p

1

� � ð20Þ

where Hr
t 1 : 2½ � is the first-2 rows of Hr

t , and Hr
t 3½ � is the 3rd

row of Hr
t . See Szeliski (2005) for the rationale of using a

homography for image alignment.

To estimate Hr
t , we first reduce bI t and bI r into discrete

point sets pif gNt
i¼1 and qj

� �Nr

j¼1, by using a standard con-

nected component analysis to extract centroids of the con-

nected foreground regions in bI t and bI r. If the two point sets
fully overlap, i.e., each pi has a genuine matching point in
qj (implying also that Nt ¼ Nr), the standard iterative clos-

est points (ICP) algorithm (Besl and McKay, 1992) will be
effective in estimating Hr

t . However, in our setting, the
point sets will only partially overlap due to the apparent
motion of the background stars. This produces non-
matching points, which act as outliers that can bias ICP.
To deal with outliers, we utilize a robust registration
algorithm called Trimmed Iterative Closest Point (T-ICP)
(Chetverikov et al., 2002). To set the scene, given a candi-
date Hr

t , define

di H
r
t

� � ¼ min
j

w pijHr
t

� �� qj
 

2
ð21Þ

as the residual of the i-th point pi. Intuitively, di H
r
t

� �
is the

distance of the point in qj
� �Nr

j¼1 that is closest to the warped

version of pi. Also, let

d ið Þ H
r
t

� � ð22Þ
indicate the i-th largest residual amongst

d1 Hr
t

� �
; d2 Hr

t

� �
; . . . ; dNt Hr

t

� �
for the candidate homography

Hr
t . The goal of T-ICP is to minimise the following trimmed

sum of squared residualsXn
i¼1

d ið Þ H
r
t

� � ð23Þ

over the unknown homography Hr
t , where 1 6 n 6 Nt.

The conventional ICP method (Besl and McKay, 1992)
is obtained by setting n ¼ Nt, i.e., all the closest point dis-
tances are considered. In contrast, T-ICP only minimises
the n < Nt smallest residuals, which enables outliers
(non-matching points) to be ignored. To minimise the
T-ICP cost, an alternating point-to-point assignment
and transformation estimation (using only the n-best
assignments) technique is used, as summarised in
Algorithm 1.

Algorithm 1. T-ICP for image registration.

Require: Point sets pif gNt
i¼1 and qj

n oNr

j¼1
, trimming

parameter n with 1 6 n 6 Nt, convergence threshold �.
1: H I (identity matrix).
2: dold  1.
3: while true do

4: for i ¼ 1; . . . ;Nt do
5: ci  argmin

j
w pijHð Þ � qj
 

2
.

6: di Hð Þ  w pijHð Þ � qci

 
2
. /*Calculate current

residuals.*/
7: end for

8: if jd nð Þ � dold j 6 � do
9: Break./*Stop if residuals have converged.*/
10: end if

11: I  i 2 1; . . . ;Ntf gjdi Hð Þ 6 d nð Þ Hð Þ
� �

.
12: C pi; qci

� �� �
i2C./

*Create n-best correspondence
set.*/

13: H Estimate homography from C./*See
Section 4.1 of Hartley and Zisserman (2004).*/

14: dold  d nð Þ Hð Þ.
15: end while

16: Hr
t  H.

17: return Hr
t .
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Fig. 6 compares ICP and T-ICP on point sets obtained
by our FG/BG segmentation technique on two overlapping
star field images. True and false correspondences are
marked by green and red lines, respectively. Observe that
the non-matching points have biased the ICP result; on
the other hand, T-ICP successfully ignored the non-
matching points. In the same figure, we also show the final
registered images that were obtained by applying the esti-
mated homographies and composited using the max oper-
ator. Observe that the background star streaks are much
sharper in the T-ICP composite, due to much more accu-
rate registration.
6. Track detection

Once the homographies Hr
t

� �t¼1;...;T
t–r

are estimated, we

use them to register the foreground images bI tn o
t–r

to the
Fig. 6. This figure is best viewed in color. First row: Example of image registr
point clouds (red and blue). True and false correspondences are marked by gr
correspondences in this particular example. Second row: The resulting registere
the max operator. (For interpretation of the references to colour in this figure
foreground reference frame bI r. In the common coordinate
frame, we remove background stars by eliminating any
overlapping binary regions over the temporal dimension.
After this step, the foreground images contain only RSOs
and false foreground pixels. We collapse the stack by the
max operator. Finally, we extract the centroids of the bin-
ary connected regions to obtain a set of spatial coordinates;
see Fig. 13 for a sample outcome. Also, each coordinate is
associated with the index t that it belongs to before the col-
lapsing step.

We utilize a simple and straightforward procedure to
detect tracks:

1. Choose an arbitrary initial pair of two coordinates with
different time frame.

2. Create a line that passes through the two coordinates.
3. Find hypothetical spatial coordinates and time frames of

other points on the proposal track.
ation process using (a) regular ICP and (b) Trimmed ICP to register two
een and red lines, respectively. Note that the Trimmed ICP yields no false
d 5 images using (c) regular ICP and (d) Trimmed ICP, composited using
legend, the reader is referred to the web version of this article.)
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4. Count the number of supports and return qualified
tracks.

We define the supports of a track as follows. When there
is an actual centroid exists within the vicinity of a proposal
coordinate with the same time frame, we count it as one
support for this proposal track. The eventual detected
tracks are determined by thresholding the proposal tracks
in terms of their support size; see Fig. 7 for an illustration.

7. Experimental study

The closest work to ours is RANSACing Image
Sequence (Šára et al., 2013) and Stacking Image
(Yanagisawa et al., 2012). Unfortunately, Stacking Image
is feasible on an FPGA platform only, hence, an in-depth
comparison was done only with RANSACing Image
Sequence. Nonetheless, we also provide a final ‘‘pipeline-t
o-pipeline” comparison against Stacking Image.

Since the full source code of Šára et al. (2013) was not
available, we implemented (parts of) the method ourselves.
Two datasets were used in our experiments: the TAOS
dataset (Lehner et al., 2006) and our own dataset which
was provided by Defence Science and Technology (DST)
Group of Australia.

7.1. TAOS data set

The images were captured in the 2nd day of a 3-day
campaign to observe the 1968-081E fragments at the Lulin
observatory in Taiwan. The FOV of the telescope was
1:3� � 1:3�, image size was 2049� 2047, and the data pixel
was 16-bit gray-scale. There were 66 observations, where
each observation contains 29 images captured at 5:9s expo-
sure time and 2:9s between two shots. The pointing direc-
tion of the telescope was fixed during each observation
(object-tracking mode).
Fig. 7. Example of a detected track: The image shows a close-up look of 5 obs
max operator. The frame indices of actual observations and proposed coordin
coordinates from frames 3 and 4 are chosen as the initial pair (marked with red d
the neighbourhoods of locations of the remaining observations are marked
particular proposal track has a support of 4. (This figure should be viewed in c
the reader is referred to the web version of this article.)
To our knowledge, the two best performing methods for
RSO detection on the TAOS dataset are Yanagisawa et al.
(2012) and Šára et al. (2013).
7.1.1. Image registration comparison

In this section, we compared our image registration
module with the one developed by Šára et al. (2013). In
brief, their image registration is done as follows: from
raw images, stars coordinates are found by a procedure
of 2-D Gaussian convolution, thresholding, and standard
connected component analysis. For each coordinate of a
bright star, a descriptive feature is formed as two 2-D vec-
tors pointing from that star to the two nearest stars of
lower relative magnitudes. Based on this descriptor, stars
in the fixed and moving images are matched using nearest
neighborhood algorithm. Since this matching is prone to
contain outliers, Random Sample Consensus (RANSAC)
algorithm is used to find inliers using homography warping
and Sampson registration error. Finally, the output
homography warping is estimated based on the inlier set
using a standard gradient descent minimization.

We designed an experiment to compare this registration
scheme with ours as follows: we fed the same pair of binary

foreground images, I f and Im, to both methods. Then, we
applied the resulting homography transformation matrices

T f
m to warp binary image Im into I f . The registration error

is defined as:

err ¼ SUM XOR I f ; T f
mI

m
� �� �

SUM I f
� �þ SUM T f

mI
m

� � ; ð24Þ

where XOR is the exclusive-OR operator and SUM is the
numerical pixel-wise summation of a binary image. err
ranges from 0 (the two images are perfectly aligned) to 1
(the two images are completely misaligned). Essentially

the better estimated T f
m makes the binary star blobs overlap

more, hence yields smaller error. We ignored the contribu-
ervations of an object in the registered foreground images collapsed by the
ates are shown in white and blue, respectively. In this particular example,
ots). A track proposal is formed by the line connecting the two points, and
with green (validly activated) and red (invalidly activated) circles. This
olor.). (For interpretation of the references to colour in this figure legend,
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tion of objects and noise in the error since their appear-
ances and areas are negligible with respect to the stars.

We tested the two methods on a set of raw image pairs
obtained from the whole data set. For each pair of raw
images, we obtained different FG binary images using var-
ious thresholding values. Fig. 8 shows the performance of
the two methods on different thresholding values. For each
thresholding value, we computed the error for the two
methods over 66 observations and show the statistics
(mean and standard deviation). As shown in Fig. 8(a),
our method yielded lower registration error and more
stable performance (smaller standard deviation across
observations). In addition, our method was faster by an
order of magnitude, as shown in Fig. 8(b).
7.1.2. FG/BG segmentation comparison

In Šára et al. (2013), FG/BG segmentation (also called
‘‘primitive event detection”) is done as follows: once the
raw images are registered, they are stacked to create a 3D
data set. Next, they are convoluted by a 3D Gaussian ker-
nel function, then normalized by local variance to form
what is called a feature map. Finally, each pixel is assigned
with an event score, which indicates how likely its feature
map value is outlying over the temporal dimension.
Finally, the binary foreground image is determined by
thresholding the event score map.

We compared our FG/BG segmentation technique with
the one in Šára et al. (2013) in terms of their ability to
retain objects with different signal strengths in the output
foreground images. In particular, we added synthesized
objects with different Signal-to-Noise Ratio (SNR) (range
from 19 dB to 26 dB) to the original images and fed the
images to the respective FG/BG segmentation modules.
The synthesized objects are formed as follows: first, we cre-
ated a layer image with zero-valued background and point
source pixels that have intensities corresponding to the
assigned SNRs. The locations of the point sources are
placed randomly in the image. Then, we applied Gaussian
Fig. 8. Comparison of registration modules in the proposed pipeline and Šára
Note that this result is based on our own reimplementation of Šára et al. (201
smoothing to this layer image, before adding it to a real
astronomical image.

The true positives are counted as the number of con-
nected regions that contain coordinates of synthesized
objects in the final binary foreground images, and the false
positives are the remaining otherwise. Note that we would
prefer a high Recall rate for the FG/BG segmentation since
even the Precision rate is low, the false positives shall be
eliminated by the next track detection step.

We vary the threshold values (thresholding on the fore-
ground mask (15) calculated using GPR reconstructions,
and on the event score map in Šára et al. (2013)) and plot
the Precision-Recall curve as shown in Fig. 9. The Precision
and Recall rates are defined as

Precision ¼ TP

TPþ FP
; ð25Þ

Recall ¼ TP

TPþ FN
; ð26Þ

where TP, FP, and FN stand for True Positive, False Pos-
itive, and False Negative, respectively. When raising the
threshold, both methods show the same level of increase
in Precision rate, however, our method yields better Recall
rate when the threshold value is decreased. Hence, com-
pared to Šára et al. (2013), our FG/BG segmentation mod-
ule is more capable of detecting dimmer objects.
7.1.3. RSO detection results

We also report our final detection results for RSOs in
the TAOS data set. Fig. 10 shows the final detection results
of our method, along with the ones reported in Šára et al.
(2013) and Yanagisawa et al. (2012). In summary, our
method detected 41 verified tracks, while Šára et al.
(2013) and Yanagisawa et al. (2012) detected 42 and 51
tracks respectively (see Fig. 11).

Overall we detected almost the same objects that were
found by Šára et al. (2013). While both GP-ICP and RAN-
SACing Image Sequence seem to be less accurate/sensitive
et al. (2013) in terms of (a) registration error and (b) registration run time.
3).



Fig. 9. FG/BG segmentation module comparison: the Precision-Recall
curve.

Fig. 11. A Officina Stellare RH200 telescope.
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than Image Stacking based on the final result in Fig. 10,
this difference needs to be put into context:

	 It was difficult to pinpoint the reasons behind the lower
accuracy of GP-ICP and RANSACing Image Sequence,
since the result of Image Stacking was available in the
form of Fig. 10 only, i.e., for an object that was missed,
it was difficult to identify the source image and pixel
coordinates from which the object was detected.
	 Image Stacking is feasible only on an FPGA, whereas
GP-ICP and RANSACing Image Sequence are feasible
on a general purpose processor.
7.1.4. Runtime information

We implemented GP-ICP in MATLAB on a standard core
i7, 8G RAM PC. On average, our method requires a pro-
Fig. 10. RSO detection results (displayed using object attitude) for TAOS dat
et al. (2012) (blue lines) (the image is taken from Šára et al. (2013)). (b) Detect
colour in this figure legend, the reader is referred to the web version of this a
cessing time of 1:638 seconds/image, which is less than
Šára et al. (2013) (3:406 seconds/image).

7.2. Adelaide-DST data set

This is a homegrown dataset that consists of two obser-
vation campaigns done in two different dates, hence the
names 150826 and 160403. 150826 has 10 observations
and 160403 has 15 observations.

The electro-optical sensor is a pair of an Officina Stellare
RH200 telescope and an FLI Proline PL4240 camera. This
sensor operates in the visible wavelength and has a field of
view of approximately 2.6 degrees with 4.6 arcseconds per
pixel. The sensor is mounted to a Software Bisque Para-
mount MEII robotic mount, inside an Aphelion Domes
7ft clamshell dome.

Each observation contains 5 images, captured at 5s
exposure time, 10s between two shots. The image is 16-
bit and has the size of 2048� 2048. Since the image
sequence contains only 5 frames, detection would be more
challenging than the TAOS data set. The ground truth
objects are manually labels by an individual who was not
involved in this research.
a set: (a) Detection results of Šára et al. (2013) (red dots) and Yanagisawa
ion results of our method GP-ICP. (For interpretation of the references to
rticle.)
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As part of our contributions, we will publicly release this
dataset with ground truth detection coordinates to the
community. Please visit the homepage of Dr. Tat-Jun Chin
for further information.
7.2.1. RSO detection results

We achieved good accuracty on this data set as shown in
the Precision-Recall curve in Fig. 12. The maximum Recall
Fig. 12. Precision-Recall curves for RSO detection on the Adelaide-DST
dataset.

Fig. 13. Example of detected objects in the first observation of 150826
data set: 5 registered binary FG frames (with stars removed) are collapsed
by a max operator. The ground truth and detected coordinates are marked
in red dots and green circles, respectively (Only the ground truth
coordinates that are not occluded by stars are shown). (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
rates for 150826 and 160403 are 98% and 93%, respec-
tively. Fig. 13 shows an example of detection result from
150826 data set. The image is obtained by applying a
max operator, which returns the maximum value of a pixel
over the temporal dimension, on registered binary fore-
ground images. A false positive can be seen near the left
lower corner where three spurious FG regions line up.
Additionally, two instances of an object are undetected
near the left edge due to the fact that the other instances
are occluded by stars, hence being eliminated during the
star removal procedure. Our track detection automatically
excludes proposal tracks with supports fewer than 3, since
any two points can form a line. Therefore, inevitably our
method would miss any object that has fewer than 3
appearances in the image sequence (because of being
occluded by stars or moving out of sight). Nevertheless,
our pipeline does not have this shortcoming with long
image sequence data sets such as TAOS.

8. Conclusion

We introduced GP-ICP, a novel pipeline for optical
detection of RSOs in the GEO band. We tested our method
on several realistic data sets, where we showed that our
method outperformed RANSACing Image Sequence
(Šára et al., 2013) in two critical modules: image registra-
tion and FG/BG segmentation. On the whole GP-ICP
yields similar accuracy as Šára et al. (2013) while requiring
less computational resource. Overall, our approach is accu-
rate (above 90% recall and precision) on real-world data
sets.
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