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Introduction

Want to maximize f : {0, 1}n → R+

(1+1)-EA(ρ)

Choose x ∈ {0, 1}n uniformly at random
while stopping criteria not met

do
y ← x
Flip each bit of y independently with prob. ρ
if f(y) ≥ f(x)

then x← y

Question: how do we choose the mutation rate ρ?
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Motivation

Early experimental evidence suggested 0.001 ≤ ρ ≤ 0.01 – De Jong
(1975), Grefenstette (1986), Schaffer (1989)

Droste et al. (1998): linear functions

ρ = 1/n =⇒ O(n log n) expected convergence

Jansen and Wegener (2000): PathToJump

ρ = 1/n =⇒ superpolynomial runtime w.h.p.
ρ = logn

n =⇒ polytime convergence

Doerr et al. (2010): monotone functions

changing ρ by a constant factor =⇒ exponential performance gap
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Expected offspring fitness under rate ρ

We will study the class of functions f : {0, 1}n → R+ whose epistasis is
bounded by a constant k.

What is the “best” mutation rate?

Maximizes probability of improvement (difficult to know in general)

Maximizes the expected fitness of the offspring

Let x ∈ {0, 1}n. We define

Mx(ρ) - the expected fitness of the offspring of x under rate ρ.
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Expected offspring fitness under rate ρ

How does one compute Mx(ρ)?
Appeal to a basis function decomposition of the fitness function

Standard and alternative bases

ex

ex

ex

ex

ey ey
f fϕi ϕj

ϕk

ey(x) = δxy

f(x) =
∑

y

vyey(x) f(x) =
∑

i

aiϕi(x)

Decomposition provides information about the relationship between the
fitness function and the mutation operator.
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Appealing to Walsh decomposition

We can write the fitness function as a Walsh polynomial

f(x) =
∑

i

wiψi(x)

Expected fitness of a point drawn uniformly at random at Hamming
distance r from x (Sutton et al. 2011)

Srx =
∑

i

γi,rwiψi(x) (∗)

From this we can obtain the expected fitness under rate ρ

Mx(ρ) =

n∑

r=0

(
n

r

)
ρr(1− ρ)n−rSrx

Mx(ρ) = A0 +A1ρ+A2ρ
2 + · · ·+Anρ

n

where each Am is a linear combination of terms from (∗).
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The expected offspring fitness polynomial

For any pseudo-Boolean function, Mx(ρ) is a degree at most n
polynomial in ρ.

Mx(ρ)

0 1ρ

opt

Maximum in the inverval [0, 1] gives the best ρ in terms of maximizing
expected fitness.

We are interested in exploring some properties of this polynomial.
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Degeneracy

Let ρ? ∈ arg max
ρ∈[0,1]

Mx(ρ).

ρ? 6= 0: there exists a mutation rate that produces an expected
improvement over f(x).

ρ? = 0: no mutation rate can produce an expected improvement
over f(x).

Suppose we insist on flipping ` > 0 bits in expectation. Then ρ = `/n.

(
1− `

n

)n
f(x) ≤Mx

(
`

n

)
< f(x)

e−`f(x) ≤Mx

(
`

n

)
< f(x).

We can conclude

ρ = 1/n minimizes expected loss in fitness.

In this case, expected fitness of offspring is bounded below by f(x)
e .
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Linear functions

Linear functions

Expressed as a sum of linear terms (epistasis is k = 1)

Walsh coefficients of order higher than 1 vanish

Mx(ρ) = A0 +A1ρ+A2ρ
2 + · · ·+Anρ

n

where Am is a linear combination of terms from Walsh series expansion
of f .

Proposition

If f is a linear function, then

Am =





f(x) if m = 0;

2
(
f̄ − f(x)

)
if m = 1;

0 otherwise.
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Linear functions

When f is linear, Mx(ρ) = f(x) + 2
(
f̄ − f(x)

)
ρ

Mx(ρ)

0 001 11ρ ρρ

f(x) < f̄ f(x) = f̄ f(x) > f̄

Degenerate when f(x) > f̄ , in this case 1/n maximizes expected
offspring s.t. ` > 0 bits flipping in expectation

This illustrates a problem with using expectation: consider when
f(x) = f̄ .
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Epistatically bounded functions

f : {0, 1}n → R+ where the epistasis is bounded by k = O(1).

Max-k-Sat

Boolean formula over a set V of n variables and m clauses consisting of
exactly k literals

m∧

i=1

(`i,1 ∨ `i,2 ∨ · · · ∨ `i,k), where `i,j ∈ {v,¬v : v ∈ V }

f : {0, 1}n → {0, . . . ,m} counts clauses satisfied under x.

NK-landscapes

f(x) =
1

n

n∑

j=1

gj

(
x[j], x[b

(j)
1 ], . . . , x[b

(j)
K ]
)
, where gj : {0, 1}K+1 → [0, 1]
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Epistatically bounded functions

Proposition

When f is epistatically bounded by k, Am = 0 for m > k.

Thus for any k-bounded pseudo-Boolean function, Mx(ρ) is a degree-k
polynomial in ρ.

E.g., for Max-2-Sat, the mutation polynomial is quadratic.

Furthermore, Am depends only on Srx for r ≤ m.

Corollary

If Srx < f(x) for all 0 < r ≤ k, then Mx(0) is maximal.
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Numerical results

Practically speaking, does solving Mx(ρ) for the best mutation rate
provide any insight?

d

dρ
Mx(ρ) = A1 + 2A2ρ+ 3A3ρ

2 + · · ·+ nAnρ
n−1,

d2

dρ2
Mx(ρ) = 2A2 + 6A3ρ+ 12A4ρ

2 + · · ·+ n(n− 1)Anρ
n−2.

Numerically finding ρ?

Find the stationary points of Mx(ρ) by numerically solving for the
real roots of d

dρMx(ρ).

Second derivative test for concavity

ρ? is maximum of this set union {0, 1}
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Numerical results

Unrestricted NK-landscape, n = 100, k = 2
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Numerical results

Unrestricted NK-landscape, n = 100, k = 2
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Numerical results

Max-3-Sat, n = 100
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Numerical results

Max-3-Sat, n = 100
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Numerical results (high epistasis)

NK-landscape, N=10, K=9
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Research directions

Analyzing wi for certain specific problems (e.g., Max-k-Sat). Provide
more precise statements about the expected fitness in general.

Working with higher moments of the random variable distribution

Connection to runtime analysis... might be possible if we can discover
bounds for the higher moments of the distribution

Generalization to broader problem classes (Fourier decomposition)
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Conclusion

As long as epistasis is bounded by k,

it is possible to efficiently compute the expected fitness of a
mutation for any rate.

it is possible to efficiently find the rate that results in the highest
possible expected fitness.

For strings with fitness higher than expectation in spheres up to radius k,
1/n yields maximal expected fitness of the offspring while imposing the
constraint that ` > 0 bits are flipped in expectation.

Andrew M Sutton, Darrell Whitley, Adele Howe 19 / 19


