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Problem Definition
• Goal is to place and tune wave energy converters:
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Problem DefiniQon
• ...in a constrained area of sea:
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Problem Definition
• ...in a constrained area of sea:

GECCO '19 OpQmisaQon and LogisQcs  Group Slide 4



Problem Definition
• ...in a constrained area of sea:

• and tune each to maximise average energy output
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Wave energy complements wind and solar

• Wind and solar are now the cheapest form of new-
build power generaQon.
– Solar contracts ~US 2c/kWh

• (Saudi Arabia – 1.79c kWh (the naQonal Abu Dhabi – Jan 2018)).

– Average wind price ~US 2c/kWh
• (h`ps://emp.lbl.gov/sites/default/files/2017_wind_technologies_market_report.pdf)
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...and are growing fast...
• Growing level of investment
– Global investment totalled US $332.1 billion in 

2018
• (source BloombergNEF, Jan 2019)
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Wind energy is abundant
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  2.1 Wind turbines

Tapping wind energy through wind turbines is the most cost-effective renewable energy technology, 
apart from hydro-electric generation. Wind farms are now a familiar aspect of the environment. Because 
the power output scales approximately as the cube of the wind speed, existing wind farms in Australia 
are concentrated along the windy southern littoral districts (see Figure 2).
The economies of scale have permitted wind power to reduce the cost of delivered power by more than 
80% over the last 20 years. To quote the American Wind Energy Association:

In the early 1980s, when the first utility-scale wind turbines were installed, wind-generated 
electricity cost as much as 30 US cents per kWh. Now, state-of-the-art wind power plants at 
excellent sites are generating electricity at less than 5 cents per kWh. Costs are continuing to 
decline as more and larger plants are built and advanced technology is introduced.17

Wind turbine technology is thus a growing energy source and with modest incentives currently in place 
in Australia, is able to compete with coal-fired generators, which also benefit from public subsidies.

Globally, wind power generation more than quadrupled between 1999 and 2005 (Figure 3). In the US the 
installed capacity in 2007 was 16 gigawatt (GW). With a reasonably stimulative legislative environment, 
the annual energy outlook for 2009 produced by the US Energy Information Administration estimates 
that this capacity will increase to between 35 and 50 GW by 2020.18

The limit to the power output of wind turbines is determined by their size. Current commercial 
turbines are rated at over 3 megawatt (MW) of power and use blades that are 60 metres or longer. The 
technological push is towards larger turbines and longer blades. Most current blades are a composite 
of fibreglass embedded in petroleum-derived resin. As blade size increases there is a major push for 
stronger and lighter reinforcement such as carbon fibres. Modern blades can weigh over 20 tonnes and 
there is increasing concern that the recycling and disposal of used blades may present environmental 
problems. There is significant research underway to investigate more benign materials. It appears, for 
example, that bamboo can provide a potentially valuable composite component.

   

Figure 2: The potential for wind power generation in Australia 
Image: Australian Government Department of the Environment, Water, Heritage and the Arts, Renewable Energy Atlas , October 
2008, www.environment.gov.au/settlements/renewable/atlas/maps.html
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Solar energy is abundant
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From the viewpoint of infrastructure planning, it would be very useful to consider the co-location of any 
future solar thermal base-load plants with geothermal energy generation (such as in the Cooper Basin; 
see section 2.6). The power generated by both technologies could then be sent through HVDC power 
transmission lines to link into the national energy grid (section 3). 

Figure 5: The potential for solar power generation in Australia
Image: Australian Government Department of the Environment, Water, Heritage and the Arts, Renewable Energy Atlas , October 
2008, www.environment.gov.au/settlements/renewable/atlas/maps.html
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Solar energy is abundant
• Solar
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       Australia’s Renewable Energy Future     11

From the viewpoint of infrastructure planning, it would be very useful to consider the co-location of any 
future solar thermal base-load plants with geothermal energy generation (such as in the Cooper Basin; 
see section 2.6). The power generated by both technologies could then be sent through HVDC power 
transmission lines to link into the national energy grid (section 3). 

Figure 5: The potential for solar power generation in Australia
Image: Australian Government Department of the Environment, Water, Heritage and the Arts, Renewable Energy Atlas , October 
2008, www.environment.gov.au/settlements/renewable/atlas/maps.html

A farm this big 
would match 
world energy 
demand
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But – Wind and Solar are Intermittent
• South Australian generaQon– end of June 2019
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But – Wind and Solar are Intermittent
• South Australia electricity market – end of June 2019
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But Wave Energy was Still Good!
• Waves persist long ager winds have passed.
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02 July ’19
(same time as red 
box on previous 
chart!)

source: surf-forecast.com
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Advantages of Wave Energy
• Out of sync with sun and wind.
• High energy densities – up to 60kw per m2

• High capacity factors – predicted to get to 50%
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Our Contributions
• First opQmisaQon of both buoy parameters and 

posiQons.
– High fidelity models.
– Variety of algorithms tested – some new.
– New algorithms outperform best-published.
– Explored four different real wave scenarios.
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Wave Buoys
• One of the most efficient designs for extracting wave 

energy are three-tether wave buoys.
• These are submerged and extract energy from heave, 

pitch and surge motions.
• We model the CETO 6 wave-energy-converter (WEC)
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Wave Farms
• WECs can reinforce each other through wave 

interactions. 
• This means we can extract more energy per-buoy if 

WECs are carefully laid out in farms.
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Power-Take-Off Settings
• Each buoy has Power-Take-Off (PTO) units for 

converQng mechanical energy to electricity.
• Can be modelled as springs
• Two tunable parameters

– dPTO: damping rate – controls how fast oscillaQons are 
damped down – controls amplitude.

– kPTO: sQffness – controls oscillaQon frequency.
• We opQmise these for each buoy.
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Problem FormulaQon
• We want to maximise power output for N-buoys by 

placing them in X,Y locations in a farm with PTO 
settings of DPTO and KPTO for each buoy. 

• We use N=4 (16 parameters) and N=16 (64 
parameters)

GECCO '19 Slide 20

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

  0.075
  0.15

30

210

60

240

90270

120

300

150

330

180

0

S
ig

n
if

ic
a

n
t 

w
a

v
e

 h
e

ig
h

t 
(m

)

0

1

2

3

4

5

6

7

8
Sydney

Peak wave period, s

5 10 15S
ig

n
if

ic
a

n
t 

w
a
v

e
 h

e
ig

h
t,

 m

2

4

6

0

0.02

0.04

0.06

(a)

  0.3
  0.6

30

210

60

240

90270

120

300

150

330

180

0

S
ig

n
if

ic
a

n
t 

w
a

v
e

 h
e

ig
h

t 
(m

)

0

1

2

3

4

5

6

7

8

9
Perth

Peak wave period, s

5 10 15S
ig

n
if

ic
a

n
t 

w
a
v

e
 h

e
ig

h
t,

 m

2

4

6

0

0.02

0.04

0.06

(b)

Figure 1:Wave data for two test sites in Australia: (a) Sydney
and (b) Perth. These are: the directional wave rose (left) and
wave scatter diagram (right).

is increased the optimisation process becomes more complicated
because of the hydrodynamic interactions between buoys. In later
work Abdelkhalik et al. [1] used a version of the hidden genes
genetic algorithm (HGGA) to control PTO parameters. While this
work raised the e�ective energy harvested the algorithm was not
compared to other methods.

In this paper, we develop a new hybrid Evolutionary framework
for simultaneously optimising both placement and PTO param-
eters of a wave farm. We study a broad range of meta-heuristic
approaches: (1) �ve well-known o�-the-shelf EAs, (2) four alternat-
ing optimisation ideas, and (3) three hybrid optimisation algorithms.
Additionally, two new real wave scenarios from the southern coast
of Australia (Perth and Sydney) with a high granularity of wave
direction is used to evaluate and compare the performance of the
proposed methods. According to our optimisation results, a new
hybrid search heuristic combining symmetric local search with
Nelder-Mead simplex direct search, coupled with a backtracking
strategy outperforms other proposed optimisationmethods in terms
of the power output and computational time.

The rest of this paper is arranged as follows. Section 2 formulates
the WEC model. Section 3 gives the details of the optimisation
problem. The search methods are explained in Section 4 and a brief
characterisation of the �tness landscape is given. We present our
comparative studies and experimental results in Section 5. Finally,
Section 6 concludes this paper.

2 MODEL FORWAVE ENERGY CONVERTERS
(WECS)

In this paper, we consider a fully submerged three-tether buoy
model with each tether fastened to a converter installed on the
seabed. We assume an optimal tether angle of 55 degrees, which
was previously observed to maximise the extraction of energy from
fromheave and surgemotions [17]. Other features of theWECs used
in this investigation, such as physical dimensions and submergence
depth, can be found in [15].

2.1 Power Model
In theWECmodel used here, linear wave theory is used to calculate
the system dynamics [18]. This model includes three di�erent key
forces:

(1) The wave excitation force (Fexc,p (t)) combines the incident
and di�racted waves forces from generators in a �xed loca-
tion.

(2) The radiation force (Frad,p (t)), derived by the oscillating
body due to their motion independent of incident waves.

(3) Power take-o� (PTO) force (Fpto,p (t)) is the control force
applied to the buoy from the PTO machinery.

Through these forces, the buoys can a�ect each other’s output
through hydrodynamic interactions. The complex nature of these
interactions, which can either be constructive or destructive, makes
the calculation of farm layout and PTO parameter settings a chal-
lenging optimisation problem.

The dynamic equation that describes a buoy motion in ocean
waves has the form:

Mp ‹Xp (t) = Fexc,p (t) + Frad,p (t) + Fpto,p (t) (1)

whereMp is the mass matrix of a pth buoy, Xp (t) is the buoy dis-
placement expressed as surge, heave and sway. Finally, the power
take-o� system is modeled as a linear spring-damper system. For
each mooring line two control factors are involved: the damping
Dpto and sti�ness Kpto coe�cients. Therefore, Equation (1) can be
written in a frequency domain for all WECs in a farm as:

F̂exc,� = ((M� +A� (�))j� + B� (�) �
Kpto,�

�
j + Dpto,�) ‹X� (2)

The hydrodynamic parameters (A�(�)) and B�(�) ) are calculated
from the semi-analytical model described in [20]. In addition,Kpto,�
and Dpto,� are control factors, described above, which can be ad-
justed to maximise the power output of each buoy. The total power
output of the layout is computed by Equation (3):

P� =
1
4
(F̂ ⇤exc,� ‹X� + ‹X ⇤

�F̂exc,�) �
1
2
‹X ⇤
�B ‹X ⇤

� (3)

Additionally, the q-factor (q) of the array measures the e�ciency
of a entire wave farm as compared to the power output from N
isolated WECs. For a given layout, the q-factor can be calculated
as:

q =
PÕÕN
i=1 Pi

. (4)

q > 1 indicates constructive interference between WECs. The main
purpose of this study is maximising the total power output: P� for
N buoys within a constrained farm area.

3 OPTIMISATION PROBLEM FORMULATION
The formulation of the optimisation problem in this paper can be
declared as:

P⇤� = argmaxX,Y,Kpto,Dpto
P�(X , Y ,Kpto,Dpto)

where P�(X , Y ,Kpto,Dpto) is the mean power obtained by place-
ments and PTO parameters of the buoys in a 2-D coordinate system
at x-positions: X = [x1, . . . ,xN ], �-positions: Y = [�1, . . . ,�N ] and
and corresponding Power Take-o� parameters including Kpto =
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Constraints
• Farm size is limited to a square area:

– violations fixed by re-sampling
• Buoys have to be more than 50 metres apart
– violations punished with steep penalty function.
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[k1, . . . ,kN ] and Dpto = [d1, . . . ,dN ] . In the experiments here
N 2 {4, 16}.

Constraints. All buoy locations (xi ,�i ) are constrained to a
square search space S = [xl ,xu ] ⇥ [�l ,�u ]: where xl = �l =
0 and xu = �u =

p
N ⇤ 20000m. This allocates 20000m2 of farm-

area per-buoy. Moreover, a safety distance for maintenance ves-
sels must be maintained between buoys of at least 50 meters.
For spring and damper coe�cients the boundary constraints are
dl = 5 ⇥ 104,du = 4 ⇥ 105 and kl = 1,ku = 5.5 ⇥ 105. For any array
X , Y the sum-total violations of the inter-buoy distance calculated
in meters, is:

Sumdist =
ÕN�1
i=1

ÕN
j=i+1(dist((xi ,�i ), (x j ,�j )) � 50),

if dist((xi ,�i ), (x j ,�j )) < 50 else 0

where dist((xi ,�i ), (x j ,�j )) is the Euclidean distance between
buoys i and j. The penalty function of the power output (in Watts)
is computed by (Sumdist + 1)20. The penalty strongly encourages
feasible buoy placements. This penalty is also used to handle farm-
boundary constraints. For theDpto andKpto parameters, we handle
constraint violations by setting the parameter to the nearest valid
value.

Computational Resources. In this paper, we aim to compare a
various heuristic search methods, for 4 and 16 buoy arrays, in two
realistic wave scenarios. We allocate a time budget for each opti-
mization run of three days on dedicated platform with a 2.4GHz
Intel 6148 processor running 12 processes in parallel with 128GB
of RAM. Note, that where the search heuristic allows, we tune
algorithm settings to utilise this time budget. The software environ-
ment running the function evaluations and the search algorithm is
MATLAB R2017. On this platform, parallelisation provides up to 10
times speedup.

4 OPTIMISATION METHODS
In this research, our search methods employ three broad strategies.
The �rst strategy is to optimise all decision variables at once. This
means that for a 16-buoy farm we search in 16 ⇥ 4 dimensions
simultaneously. Here, we test �ve heuristics that apply this strategy.
The second strategy is to optimise the positions and PTO parameters
of all buoys in an alternating cooperative algorithm [2]. We test
four di�erent methods that apply this strategy. Finally, the third
strategy, used in [15] is to place and optimise each buoy in sequence.
Here, we deploy this strategy for three hybrid EAs. Details of the
algorithms tested for each strategy follow.

4.1 Evolutionary Algorithms (All-at-once)
For the �rst strategy, �ve well-known o�-the-shelf EAs are de-
ployed to simultaneously optimise all problem dimensions. (Po-
sitions+PTOs). These EAs are: (1) covariance matrix adaptation
evolutionary-strategy (CMA-ES) [10] with the default � = 12, for
4-buoy layouts and and � = 16 for 16-buoy layouts; (2) Di�eren-
tial Evolution (DE) [19], with parameter settings of � = 50, 30,
respectively for 4 and 16-buoy layouts, and F = 0.5, Pcr = 0.5;
(3) a (1+1)EA [8] that mutates buoys’ location and PTO parame-
ters with a probability of 1/N using a normal distribution (� =
0.1 ⇥ (Ub � Lb )); (4) Particle Swarm optimisation (PSO) [7], with

�= DE settings, c1 = 1.5, c2 = 2,� = 1 (linearly decreased); (5)
Nelder-Mead simplex direct search (NM) [12] is combined with a
mutation operator (Nelder-Mead+Mutation or NM-M). The muta-
tion operation is applied when the NM has converged to a solution
before exhausting its computational budget, so that it can explore
other parts of the solution-space.

4.2 Alternating optimisation methods
(Cooperative ideas)

Optimising both positions and PTO parameters of a WEC array
simultaneously can be challenging because of the high number of
dimensions and heterogeneous kinds of variables. There is a natural
division of variables into two subsets which might, at least in part,
be optimised separately. In this section, we describe a set of alter-
nating optimisation techniques which combine one evolutionary
algorithm idea such as CMA-ES, DE, and 1+1EA, with Nelder-Mead.
In addition, a cooperative, Dual-DE (DE+DE), algorithm is also
described. The details of each are given next.

4.2.1 (2+2)CMA-ES + Nelder-Mead. This alternating strategy
applies CMA-ES with µ = � = 2 for iter = 25 iterations to optimise
buoy positions. Then the best solution is selected and NM is applied
to PTO settings for iter ⇤ � iterations. This improved setting is then
given to the CMA-ES population for another round of optimisation.
The CMA-ES and NM optimisation processes are alternated until
the time budget expires.

4.2.2 DE + Nelder-Mead. (DE-NM) This method alternates DE,
for buoy-positions, and NM for PTO parameters, using the same
iteration settings as above until the time budget runs out.

4.2.3 1+1EA + Nelder-Mead. (1+1EA-NM) This method alter-
nates a 1+1 EA, for buoy positions, and NM, for PTO parameters
until the time budget runs out. The iteration settings for the 1+1EA
are, respectively, 200 and 50 times, for 4 and 16-buoy layouts. The
same limits are also used for the NM optimisation rounds.

4.2.4 Dual-DE. This method uses the same parameter settings
as described for DE in subsection 4.1 to optimise both buoy positions
and PTO parameters in parallel. After iter iterations the improved
values from the positional and PTO optimisations are exchanged.
This iterative pattern continues until the time budget runs out.

4.3 Hybrid optimisation algorithms
In otherWEC-related research [15], it was found that applying local
search around the neighborhood of previously placed buoys could
help exploit constructive interactions between buoys. The following
methods exploit this observation by placing and optimising the
position and PTO parameters of one buoy at a time.

4.3.1 Local Search + Nelder-Mead(LS-NM). This method places
buoys sequentially. The position of each buoy placement is opti-
mised by sampling at a normally-distributed random o�set (� =
70m) from the previous buoy position. The sampled location giving
the highest output is chosen. In our experiments we try three di�er-
ent numbers of samples: (Ns = 24, 25 and 26). After the best position
is selected, we optimise the PTO parameters of the last placed buoy
using Ns iterations of Nelder-Mead search. This process is repeated
until all buoys are placed. Note that, the Eval function of LS-NM is



Real Wave Scenarios
• Four real wave scenarios
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Real Wave Scenarios
• Modelled as distribuQons
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Figure 1:Wave data for two test sites in Australia: (a) Sydney
and (b) Perth. These are: the directional wave rose (left) and
wave scatter diagram (right).

is increased the optimisation process becomes more complicated
because of the hydrodynamic interactions between buoys. In later
work Abdelkhalik et al. [1] used a version of the hidden genes
genetic algorithm (HGGA) to control PTO parameters. While this
work raised the e�ective energy harvested the algorithm was not
compared to other methods.

In this paper, we develop a new hybrid Evolutionary framework
for simultaneously optimising both placement and PTO param-
eters of a wave farm. We study a broad range of meta-heuristic
approaches: (1) �ve well-known o�-the-shelf EAs, (2) four alternat-
ing optimisation ideas, and (3) three hybrid optimisation algorithms.
Additionally, two new real wave scenarios from the southern coast
of Australia (Perth and Sydney) with a high granularity of wave
direction is used to evaluate and compare the performance of the
proposed methods. According to our optimisation results, a new
hybrid search heuristic combining symmetric local search with
Nelder-Mead simplex direct search, coupled with a backtracking
strategy outperforms other proposed optimisationmethods in terms
of the power output and computational time.

The rest of this paper is arranged as follows. Section 2 formulates
the WEC model. Section 3 gives the details of the optimisation
problem. The search methods are explained in Section 4 and a brief
characterisation of the �tness landscape is given. We present our
comparative studies and experimental results in Section 5. Finally,
Section 6 concludes this paper.

2 MODEL FORWAVE ENERGY CONVERTERS
(WECS)

In this paper, we consider a fully submerged three-tether buoy
model with each tether fastened to a converter installed on the
seabed. We assume an optimal tether angle of 55 degrees, which
was previously observed to maximise the extraction of energy from
fromheave and surgemotions [17]. Other features of theWECs used
in this investigation, such as physical dimensions and submergence
depth, can be found in [15].

2.1 Power Model
In theWECmodel used here, linear wave theory is used to calculate
the system dynamics [18]. This model includes three di�erent key
forces:

(1) The wave excitation force (Fexc,p (t)) combines the incident
and di�racted waves forces from generators in a �xed loca-
tion.

(2) The radiation force (Frad,p (t)), derived by the oscillating
body due to their motion independent of incident waves.

(3) Power take-o� (PTO) force (Fpto,p (t)) is the control force
applied to the buoy from the PTO machinery.

Through these forces, the buoys can a�ect each other’s output
through hydrodynamic interactions. The complex nature of these
interactions, which can either be constructive or destructive, makes
the calculation of farm layout and PTO parameter settings a chal-
lenging optimisation problem.

The dynamic equation that describes a buoy motion in ocean
waves has the form:

Mp ‹Xp (t) = Fexc,p (t) + Frad,p (t) + Fpto,p (t) (1)

whereMp is the mass matrix of a pth buoy, Xp (t) is the buoy dis-
placement expressed as surge, heave and sway. Finally, the power
take-o� system is modeled as a linear spring-damper system. For
each mooring line two control factors are involved: the damping
Dpto and sti�ness Kpto coe�cients. Therefore, Equation (1) can be
written in a frequency domain for all WECs in a farm as:

F̂exc,� = ((M� +A� (�))j� + B� (�) �
Kpto,�

�
j + Dpto,�) ‹X� (2)

The hydrodynamic parameters (A�(�)) and B�(�) ) are calculated
from the semi-analytical model described in [20]. In addition,Kpto,�
and Dpto,� are control factors, described above, which can be ad-
justed to maximise the power output of each buoy. The total power
output of the layout is computed by Equation (3):

P� =
1
4
(F̂ ⇤exc,� ‹X� + ‹X ⇤

�F̂exc,�) �
1
2
‹X ⇤
�B ‹X ⇤

� (3)

Additionally, the q-factor (q) of the array measures the e�ciency
of a entire wave farm as compared to the power output from N
isolated WECs. For a given layout, the q-factor can be calculated
as:

q =
PÕÕN
i=1 Pi

. (4)

q > 1 indicates constructive interference between WECs. The main
purpose of this study is maximising the total power output: P� for
N buoys within a constrained farm area.

3 OPTIMISATION PROBLEM FORMULATION
The formulation of the optimisation problem in this paper can be
declared as:

P⇤� = argmaxX,Y,Kpto,Dpto
P�(X , Y ,Kpto,Dpto)

where P�(X , Y ,Kpto,Dpto) is the mean power obtained by place-
ments and PTO parameters of the buoys in a 2-D coordinate system
at x-positions: X = [x1, . . . ,xN ], �-positions: Y = [�1, . . . ,�N ] and
and corresponding Power Take-o� parameters including Kpto =
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Figure 1:Wave data for two test sites in Australia: (a) Sydney
and (b) Perth. These are: the directional wave rose (left) and
wave scatter diagram (right).

is increased the optimisation process becomes more complicated
because of the hydrodynamic interactions between buoys. In later
work Abdelkhalik et al. [1] used a version of the hidden genes
genetic algorithm (HGGA) to control PTO parameters. While this
work raised the e�ective energy harvested the algorithm was not
compared to other methods.

In this paper, we develop a new hybrid Evolutionary framework
for simultaneously optimising both placement and PTO param-
eters of a wave farm. We study a broad range of meta-heuristic
approaches: (1) �ve well-known o�-the-shelf EAs, (2) four alternat-
ing optimisation ideas, and (3) three hybrid optimisation algorithms.
Additionally, two new real wave scenarios from the southern coast
of Australia (Perth and Sydney) with a high granularity of wave
direction is used to evaluate and compare the performance of the
proposed methods. According to our optimisation results, a new
hybrid search heuristic combining symmetric local search with
Nelder-Mead simplex direct search, coupled with a backtracking
strategy outperforms other proposed optimisationmethods in terms
of the power output and computational time.

The rest of this paper is arranged as follows. Section 2 formulates
the WEC model. Section 3 gives the details of the optimisation
problem. The search methods are explained in Section 4 and a brief
characterisation of the �tness landscape is given. We present our
comparative studies and experimental results in Section 5. Finally,
Section 6 concludes this paper.

2 MODEL FOR WAVE ENERGY CONVERTERS
(WECS)

In this paper, we consider a fully submerged three-tether buoy
model with each tether fastened to a converter installed on the
seabed. We assume an optimal tether angle of 55 degrees, which
was previously observed to maximise the extraction of energy from
fromheave and surgemotions [17]. Other features of theWECs used
in this investigation, such as physical dimensions and submergence
depth, can be found in [15].

2.1 Power Model
In theWECmodel used here, linear wave theory is used to calculate
the system dynamics [18]. This model includes three di�erent key
forces:

(1) The wave excitation force (Fexc,p (t)) combines the incident
and di�racted waves forces from generators in a �xed loca-
tion.

(2) The radiation force (Frad,p (t)), derived by the oscillating
body due to their motion independent of incident waves.

(3) Power take-o� (PTO) force (Fpto,p (t)) is the control force
applied to the buoy from the PTO machinery.

Through these forces, the buoys can a�ect each other’s output
through hydrodynamic interactions. The complex nature of these
interactions, which can either be constructive or destructive, makes
the calculation of farm layout and PTO parameter settings a chal-
lenging optimisation problem.

The dynamic equation that describes a buoy motion in ocean
waves has the form:

Mp ‹Xp (t) = Fexc,p (t) + Frad,p (t) + Fpto,p (t) (1)

whereMp is the mass matrix of a pth buoy, Xp (t) is the buoy dis-
placement expressed as surge, heave and sway. Finally, the power
take-o� system is modeled as a linear spring-damper system. For
each mooring line two control factors are involved: the damping
Dpto and sti�ness Kpto coe�cients. Therefore, Equation (1) can be
written in a frequency domain for all WECs in a farm as:

F̂exc,� = ((M� +A� (�))j� + B� (�) �
Kpto,�

�
j + Dpto,�) ‹X� (2)

The hydrodynamic parameters (A�(�)) and B�(�) ) are calculated
from the semi-analytical model described in [20]. In addition,Kpto,�
and Dpto,� are control factors, described above, which can be ad-
justed to maximise the power output of each buoy. The total power
output of the layout is computed by Equation (3):

P� =
1
4
(F̂ ⇤exc,� ‹X� + ‹X ⇤

�F̂exc,�) �
1
2
‹X ⇤
�B ‹X ⇤

� (3)

Additionally, the q-factor (q) of the array measures the e�ciency
of a entire wave farm as compared to the power output from N
isolated WECs. For a given layout, the q-factor can be calculated
as:

q =
PÕÕN
i=1 Pi

. (4)

q > 1 indicates constructive interference between WECs. The main
purpose of this study is maximising the total power output: P� for
N buoys within a constrained farm area.

3 OPTIMISATION PROBLEM FORMULATION
The formulation of the optimisation problem in this paper can be
declared as:

P⇤� = argmaxX,Y,Kpto,Dpto
P�(X , Y ,Kpto,Dpto)

where P�(X , Y ,Kpto,Dpto) is the mean power obtained by place-
ments and PTO parameters of the buoys in a 2-D coordinate system
at x-positions: X = [x1, . . . ,xN ], �-positions: Y = [�1, . . . ,�N ] and
and corresponding Power Take-o� parameters including Kpto =
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Landscape - PosiQon
• Landscape for buoy positions is complex and multi-

modal. 
– Primarily due to inter-buoy interactions.
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Landscape – PTO parameters
• Landscape for for PTO parameters is simpler
– but evolves for each buoy as more buoys are 

added.
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Algorithm 2 Backtracking optimisation Algorithm (BOA)
1: procedure BOA (Position, PTOs, Energy )
2: Initialization
3: S1 = { hx1, �1 i, . . . , hxN , �N i } = Position . Positions
4: S2 = { hk1, d1 i, . . . , hkN , dN i } = PTOs . PTO parameters
5: energy = ([E1, E2, . . . , EN ]) = Energy . Buoys energy
6: Nw = N /4
7: (WIndex)=FindWorst(energy, Nw ) . Find worst buoys power
8: for i in [1, .., Nw ] do
9: PTO optimisation
10: (S2WIndex(i ), energyWIndex(i ))=NM(S2WIndex(i ), MaxEN )
11: Position optimisation
12: (S1WIndex(i ), energyWIndex(i ))=NM(S1WIndex(i), MaxEN )
13: return S1, S2, energy . Final Layout
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Figure 2: Power landscape analysis of both real wave sce-
narios ((a,b) Perth, (c,d) Sydney) for the best discovered 4-
buoy layouts. The spring-damping PTO con�guration step
size is 10000. The black circle shows themanufacturer’s PTO
defaults for the predominant wave frequency and the star,
cross, circle, and Pentagon markers present the k and dPTO
settings of the best-discovered 4 buoys layout. Note that the
search space for buoy positions ismulti-modal [15], and that
we only visualise a 2D slice of the 8DPTOoptimisation space
herewithout considering interactionswith buoys’ positions.

5.1 Landscape analysis
For visualising the impact of PTO parameter optimisation, a simple
experiment was done. First of all, we optimised the buoy positions
for a 4-buoy layout using a manufacturer’s PTOs defaults (k =
407510 and d = 97412) for all converters for both the Perth and
Sydney test sites. The black circle in Figure 2 marks this default
PTO con�guration. The energy produced by this layout is 402 kW
and 703 kW, respectively, for the Sydney and Perth wave climates.
Next, this obtained layout is evaluated where the buoy positions are
�xed and we grid-sample the energy produced when all four buoys
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Figure 3: The comparison of the proposed algorithms per-
formances for 16-buoy layout in Perth wave model. The op-
timisation results present the best solution per experiment.
(10 independent runs per each method)

are assigned the same PTO parameters. This process produces the
contoured backgrounds shown in Figure 2. Finally, we optimise the
PTO parameters for each buoy independently and plot a marker
for each of the four buoys. These markers are roughly, but not
completely, coincident with the peak in the background power
landscape produced by optimising buoys’ PTO parameters in unison.
These markers are also at a di�erent point to that produced by the
default setting. The best energy produced after optimisation has
improved to 420 kW and 720 kW respectively for Sydney and Perth.

5.2 Layout evaluations
In order to evaluate the e�ectiveness the proposed algorithms in
Sections 4.1, 4.2, and 4.3, we performed a systematic comparison
of the best layouts produced by each in two di�erent real wave
scenarios (Perth and Sydney), and for two di�erent numbers of
buoys (N = 4 and N = 16). Ten runs were performed for each
optimisation method and the best solutions were collected for each.

Figure 3 shows the box-and-whiskers plot for the power output
of the best solution per run for all search heuristics, for 16-buoy
layouts for the Perth wave scenario. The corresponding summary
statistics are presented in Table 1, and we illustrate the search
process for three cases in Figure 4. It can be seen that the best mean
layout performance is produced by both SLS-NM-B1 and SLS-NM-
B2. Additionally, the average optimisation results of SLS-NM with
various �rst buoy locations are also competitive. Among these, the
best results arise from placing the �rst buoy in the bottom right
corner of the search space. This results in more total power output
because the farm layout this placement enables a greater number
of constructive buoy interactions. Of the standard EAs, CMA-ES
performs best. Interestingly, the performance of the alternating
approaches is not competitive compared with other methods.

Perth Sydney
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Fitness FuncQon
• Our Fitness function is a detailed simulation 

modelling hydrodynamic interactions for a given 
environment and PTO settings.

• Runtime scales quadratically with number of buoys.
– 2 buoys – Fast!
– 16 buoys – 9 minutes!

• For fairness – all optimisation runs given up to 3 days 
on 12 cores. 
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Optimisation Frameworks (1)
• All-at-once frameworks:
– Random Search
– CMA-ES (pop=12)
– Differential Evolution (DE)
– (1+1)EA
– Particle Swarm Otpimisation (PSO)
– Nelder-Mead (NM) (plus mutation)
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Optimisation Frameworks (2)
• Cooperative approaches
– Alternate CMA-ES for buoy pos and NM for PTOs
– Alternate DE for buoy pos and NM for PTOs. 
– Alternate (1+1)EA for buoy pos and NM for PTOs. 
– Parallel DE optimisation of buoy pos and PTOs + 

exchange of values. 
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Optimisation Frameworks (3)
• Hybrid Approaches
– LS-NM  Local search to sequenQally place buoys 

with NM phase for each placement and PTO (Neshat, 
GECCO 2018)

– SLS-NM(2D) as above but idenQfy search sectors 
for be`er local sampling.

– SLS-NM-B as above inherit last PTO setngs as 
start for next buoy and backtrack to reopQmise
worst previous buoy posiQons and PTO using NM.

– SLS-NM-B2 as above but simultaneous opt of PTO 
and pos in backtracking stage. 
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Algorithm 2 Backtracking optimisation Algorithm (BOA)
1: procedure BOA (Position, PTOs, Energy )
2: Initialization
3: S1 = { hx1, �1 i, . . . , hxN , �N i } = Position . Positions
4: S2 = { hk1, d1 i, . . . , hkN , dN i } = PTOs . PTO parameters
5: energy = ([E1, E2, . . . , EN ]) = Energy . Buoys energy
6: Nw = N /4
7: (WIndex)=FindWorst(energy, Nw ) . Find worst buoys power
8: for i in [1, .., Nw ] do
9: PTO optimisation
10: (S2WIndex(i ), energyWIndex(i ))=NM(S2WIndex(i ), MaxEN )
11: Position optimisation
12: (S1WIndex(i ), energyWIndex(i ))=NM(S1WIndex(i), MaxEN )
13: return S1, S2, energy . Final Layout
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Figure 2: Power landscape analysis of both real wave sce-
narios ((a,b) Perth, (c,d) Sydney) for the best discovered 4-
buoy layouts. The spring-damping PTO con�guration step
size is 10000. The black circle shows themanufacturer’s PTO
defaults for the predominant wave frequency and the star,
cross, circle, and Pentagon markers present the k and dPTO
settings of the best-discovered 4 buoys layout. Note that the
search space for buoy positions ismulti-modal [15], and that
we only visualise a 2D slice of the 8DPTOoptimisation space
herewithout considering interactionswith buoys’ positions.

5.1 Landscape analysis
For visualising the impact of PTO parameter optimisation, a simple
experiment was done. First of all, we optimised the buoy positions
for a 4-buoy layout using a manufacturer’s PTOs defaults (k =
407510 and d = 97412) for all converters for both the Perth and
Sydney test sites. The black circle in Figure 2 marks this default
PTO con�guration. The energy produced by this layout is 402 kW
and 703 kW, respectively, for the Sydney and Perth wave climates.
Next, this obtained layout is evaluated where the buoy positions are
�xed and we grid-sample the energy produced when all four buoys
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Figure 3: The comparison of the proposed algorithms per-
formances for 16-buoy layout in Perth wave model. The op-
timisation results present the best solution per experiment.
(10 independent runs per each method)

are assigned the same PTO parameters. This process produces the
contoured backgrounds shown in Figure 2. Finally, we optimise the
PTO parameters for each buoy independently and plot a marker
for each of the four buoys. These markers are roughly, but not
completely, coincident with the peak in the background power
landscape produced by optimising buoys’ PTO parameters in unison.
These markers are also at a di�erent point to that produced by the
default setting. The best energy produced after optimisation has
improved to 420 kW and 720 kW respectively for Sydney and Perth.

5.2 Layout evaluations
In order to evaluate the e�ectiveness the proposed algorithms in
Sections 4.1, 4.2, and 4.3, we performed a systematic comparison
of the best layouts produced by each in two di�erent real wave
scenarios (Perth and Sydney), and for two di�erent numbers of
buoys (N = 4 and N = 16). Ten runs were performed for each
optimisation method and the best solutions were collected for each.

Figure 3 shows the box-and-whiskers plot for the power output
of the best solution per run for all search heuristics, for 16-buoy
layouts for the Perth wave scenario. The corresponding summary
statistics are presented in Table 1, and we illustrate the search
process for three cases in Figure 4. It can be seen that the best mean
layout performance is produced by both SLS-NM-B1 and SLS-NM-
B2. Additionally, the average optimisation results of SLS-NM with
various �rst buoy locations are also competitive. Among these, the
best results arise from placing the �rst buoy in the bottom right
corner of the search space. This results in more total power output
because the farm layout this placement enables a greater number
of constructive buoy interactions. Of the standard EAs, CMA-ES
performs best. Interestingly, the performance of the alternating
approaches is not competitive compared with other methods.

Perth – 16 buoys
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Table 1: The performance comparison of various heuristics for the 16-buoy case, based onmaximum,median andmean power
output layout of the best solution per experiment.

Perth wave scenario (16-buoy)
Methods DE CMA-ES 1+1EA PSO NM-M DE-NM CMAES-NM 1+1EA-NM Dual-DE LS-NM16s LS-NM32s LS-NM64s SLS-NM(BR) SLS-NM(r) SLS-NM(C) SLS-NM-B1 SLS-NM-B2
Max 2652393 2680843 2644987 2289764 1893411 1845065 2059607 2125726 2453857 2554865 2613619 2626506 2723676 2716463 2709385 2739658 2741489
Min 2582793 2603920 2263180 1935340 1561609 1829109 1816940 1790521 2399372 2384981 2481663 2482512 2669097 2540090 2635628 2723886 2723470
Mean 2613938 2657924 2476649 2034625 1709664 1839680 1917947 1930481 2442276 2449269 2547633 2570651 2708267 2677821 2691542 2733105 2735345
Median 2609441 2661285 2476649 2011311 1696728 1840299 1902074 1902254 2453857 2442901 2545870 2584010 2711875 2692056 2701771 2733962 2736453
Std 21601.36 20844.29 109986.19 90666.26 96667.21 4261.50 76927.84 96648.77 20511.38 53689.15 40651.08 49948.44 14434.14 48718.95 24252.10 4426.12 4986.80

Sydney wave scenario (16-buoy)
Methods DE CMA-ES 1+1EA PSO NM-M DE-NM CMAES-NM 1+1EA-NM Dual-DE LS-NM16s LS-NM32s LS-NM64s SLS-NM(BR) SLS-NM(r) SLS-NM(C) SLS-NM-B1 SLS-NM-B2
Max 1544911 1551852 1550820 1498996 1393383 1372431 1524002 1541064 1488451 1525789 1542636 1551640 1556956 1550054 1534157 1559578 1564334
Min 1525043 1533453 1461996 1396223 1256857 1363834 1392057 1414872 1420995 1507479 1523444 1518276 1526266 1489493 1465638 1546369 1529929
Mean 1536324 1547951 1526867 1438377 1337175 1367502 1454505 1467659 1462382 1514404 1532215 1535923 1544706 1525152 1512476 1553629 1556447
Median 1538708 1549616 1531683 1435726 1338054 1367767 1441785 1467420 1465419 1513593 1528728 1535516 1548100 1523762 1518423 1553779 1558319
Std 6559.22 4996.61 25962.37 31262 41794.00 2508.76 47091.11 32623.75 14999.60 5125.37 7224.27 12944.20 10965.95 17681.23 18379.27 3293.68 8931.08

Figure 4: Three illustrations of the local search process for the placement of 16 buoys using LS-NM (part (a)) and SLS-NM-B2
(parts (b) and (c)). Small yellow circles represent the �nal buoy positions. The coloured radial lines represent the neighbour-
hood sampling process. The black diamonds in parts (b) and (c) represent the positions sampled by the backtracking algorithm.
Part (a) (Power=1525780W, q-factor=0.89) and (b) (Power= 1562138W, q-factor=0.91), optimise for the Sydney wave model; and
part (c)(Power=2741489W, q-factor=0.972) is for Perth.
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Figure 5: The comparison of the proposed algorithms’ per-
formance for 16-buoy layouts in Sydney wave model. The
optimization results present the best solution per experi-
ment. (10 independent runs per each method)

Looking more closely at Table 1, in both wave scenarios, the SLS-
NM-B2 method signi�cantly outperforms all but the SLS-NM-B1
method using the Wilcoxon rank-sum test (p < 0.01). The SLS-NM
performs better than CMA-ES for the Perth wave model, but is
no better than CMA-ES or DE for the, more challenging, Sydney
scenario. This can be seen in the box-plots for the Sydney scenario
shown in Figure 5. As a last observation, there appears to be some
positive impact from increasing the number of samples in the LS-
NM heuristic from 32 samples to 64.

Figure 6 shows the convergence of average �tness of the best
layout over time for all of the heuristics. Part (a) shows this conver-
gence for N =4 for the Perth model, part (b) is for N = 16 for Perth,
and part (c) is for N = 16 for Sydney. In all con�gurations, SLS-NM-B
converges very fast and still outperforms the other methods. To
sum up, the experimental results in Table 1 and Figure 6 reveal that
SLS-NM-B succeeds in attaining higher absorbed power as well as
faster convergence speed. A second important remark about Fig-
ure 6 is that the alternating optimisation methods perform worse
than the standard EAs, where both positions and PTO settings are
mixed as an all-in-one problem. One possible path to improving
these alternating methods in the future could be to shift some of
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Figure 6: The convergence rate comparison for all proposed algorithms in both real wave scenarios(mean best layouts per
generation).
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Figure 7: The convergence of spring-damping PTOs of 16
buoys by CMA-ES (All-in-one) and Dual-DE (alternating
style) methods in Perth wave scenario. The black line shows
the 16thbuoy PTO settings.

the budget for PTO optimisation to positional optimisation, which
appears to be more challenging.

Figure 7 tracks the convergence of just the PTO parameters
for each buoy during a run for CMA-ES (graphs on the left) and
Dual-DE optimisation (graphs on the right). It can be seen that
both methods are able to optimise power output over time and the
phased nature of the search in Dual-DE is visible in the graphs of the
parameter values. It can also be observed that the parameter values
for each buoy change non-monotonically as the best PTO settings
interact with buoy positions over the course of optimisation.

Figure 8 presents the most productive 4 and 16-buoy layouts
attained from all the runs in the two scenarios. The best 16-buoy
layouts are built by SLS-NM-B2 from the x-axis upwards with buoys
labelled, in the �gure, by order of placement. In all layouts, the �rst
buoy is placed at the bottom right. The best 4-buoy layout of the
Perth wave model slopes diagonally upwards from right to left.

This layout was found by DE. For 16-buoys, the best SLS-NM-B2
con�guration produces a maximum power output that is 2.26%
higher than the best CMA-ES con�guration. Another observation
is that the layouts for Sydney place buoys far from each other. This
is likely to be due to the fact that the more diverse wave direc-
tions in Sydney make it harder to consistently exploit constructive
interactions from having buoys in closer proximity.

5.3 Hydrodynamic interpretation
Figure 9 demonstrates how the ocean wave power propagates
through the farm for each best-discovered solutions (4 and 16 buoy
layouts) for the Sydney and Perth sites. These landscapes model
interactions at the single dominant wave direction and frequency.

The wave resource at the Sydney and Perth sites is 30 and
35 kW/m, respectively. While these waves propagate through the
farm, the wave �eld is modi�ed by the buoys and we can see that
the wave energy across the farm varies between 10 and 60 kW/m. It
can be seen that, in both sites, the best layout succeeds in extracting
much of the energy from the surrounding environment and, in the
case of Perth, the impact of extraction extends far out to sea beyond
the farm. The red areas near buoys are produced by interactions
of buoys with their local environment. It should be noted that,
though these areas might appear to be good candidate positions
for further buoy placements, destructive interference with other
buoys would produce sub-optimal results from such a placement.
Another observation is that at both sites at least one row of buoys
is perpendicular to the dominant wave direction (232.5 deg for the
Perth site, and 172.5 deg for the Sydney site). This indicates that
this wave direction can inform the initialisation of buoy positions
in optimising wave farm settings.

6 CONCLUSIONS
In this paper, we have described, evaluated, and systematically
compared twelve di�erent heuristic methods for optimising layout
and PTO parameters for wave energy converter arrays. This study
included four alternating hybrid algorithms and three new methods
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Figure 6: The convergence rate comparison for all proposed algorithms in both real wave scenarios(mean best layouts per
generation).

0.5 1 1.5 2 2.5

105

2

4

6

k
P

T
O

 (
N

/m
/s

)

105 16-buoy, Perth, CMA-ES

0.5 1 1.5 2 2.5

105

2

4

6

d
P

T
O

 (
N

/m
)

105

0.5 1 1.5 2 2.5

Computational Budget (s) 105

1.5

2

2.5

P
o

w
e
r 

(W
a
tt

)

106

0.5 1 1.5 2 2.5

105

2

4

6

k
P

T
O

 (
N

/m
/s

)

105 16-buoy, Perth, Dual-DE

0.5 1 1.5 2 2.5

105

2

4

d
P

T
O

 (
N

/m
)

105

0.5 1 1.5 2 2.5

105

1.5

2

2.5

P
o

w
e
r 

(W
a
tt

)

106

Figure 7: The convergence of spring-damping PTOs of 16
buoys by CMA-ES (All-in-one) and Dual-DE (alternating
style) methods in Perth wave scenario. The black line shows
the 16thbuoy PTO settings.

the budget for PTO optimisation to positional optimisation, which
appears to be more challenging.

Figure 7 tracks the convergence of just the PTO parameters
for each buoy during a run for CMA-ES (graphs on the left) and
Dual-DE optimisation (graphs on the right). It can be seen that
both methods are able to optimise power output over time and the
phased nature of the search in Dual-DE is visible in the graphs of the
parameter values. It can also be observed that the parameter values
for each buoy change non-monotonically as the best PTO settings
interact with buoy positions over the course of optimisation.

Figure 8 presents the most productive 4 and 16-buoy layouts
attained from all the runs in the two scenarios. The best 16-buoy
layouts are built by SLS-NM-B2 from the x-axis upwards with buoys
labelled, in the �gure, by order of placement. In all layouts, the �rst
buoy is placed at the bottom right. The best 4-buoy layout of the
Perth wave model slopes diagonally upwards from right to left.

This layout was found by DE. For 16-buoys, the best SLS-NM-B2
con�guration produces a maximum power output that is 2.26%
higher than the best CMA-ES con�guration. Another observation
is that the layouts for Sydney place buoys far from each other. This
is likely to be due to the fact that the more diverse wave direc-
tions in Sydney make it harder to consistently exploit constructive
interactions from having buoys in closer proximity.

5.3 Hydrodynamic interpretation
Figure 9 demonstrates how the ocean wave power propagates
through the farm for each best-discovered solutions (4 and 16 buoy
layouts) for the Sydney and Perth sites. These landscapes model
interactions at the single dominant wave direction and frequency.

The wave resource at the Sydney and Perth sites is 30 and
35 kW/m, respectively. While these waves propagate through the
farm, the wave �eld is modi�ed by the buoys and we can see that
the wave energy across the farm varies between 10 and 60 kW/m. It
can be seen that, in both sites, the best layout succeeds in extracting
much of the energy from the surrounding environment and, in the
case of Perth, the impact of extraction extends far out to sea beyond
the farm. The red areas near buoys are produced by interactions
of buoys with their local environment. It should be noted that,
though these areas might appear to be good candidate positions
for further buoy placements, destructive interference with other
buoys would produce sub-optimal results from such a placement.
Another observation is that at both sites at least one row of buoys
is perpendicular to the dominant wave direction (232.5 deg for the
Perth site, and 172.5 deg for the Sydney site). This indicates that
this wave direction can inform the initialisation of buoy positions
in optimising wave farm settings.

6 CONCLUSIONS
In this paper, we have described, evaluated, and systematically
compared twelve di�erent heuristic methods for optimising layout
and PTO parameters for wave energy converter arrays. This study
included four alternating hybrid algorithms and three new methods

Best methods converge fast!

Neshat et al., Optimisation and Logistics  Group



Convergence PTO

GECCO '19 34

A Hybrid Evolutionary Algorithm Framework for Optimising PTO-Position of WECsGECCO ’19, July 13–17, 2019, Prague, Czech Republic

5000 10000 15000

Computational Budget (s)

5

5.5

6

6.5

7

P
o

w
e

r 
(W

a
tt

)

105 4-buoy, Perth

CMA-ES

DE

NM-M

1+1EA

DE-NM

CMAES-NM

1+1EA-NM

Dual-DE

LS-NM(64s)

SLS-NM(BR)

SLS-NM-B1

PSO

0.5 1 1.5 2 2.5

105

1.5

2

2.5

106 16-buoy, Perth

0.5 1 1.5 2 2.5

105

1

1.1

1.2

1.3

1.4

1.5

1.6
106 16-buoy, Sydney

Figure 6: The convergence rate comparison for all proposed algorithms in both real wave scenarios(mean best layouts per
generation).
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Figure 7: The convergence of spring-damping PTOs of 16
buoys by CMA-ES (All-in-one) and Dual-DE (alternating
style) methods in Perth wave scenario. The black line shows
the 16thbuoy PTO settings.

the budget for PTO optimisation to positional optimisation, which
appears to be more challenging.

Figure 7 tracks the convergence of just the PTO parameters
for each buoy during a run for CMA-ES (graphs on the left) and
Dual-DE optimisation (graphs on the right). It can be seen that
both methods are able to optimise power output over time and the
phased nature of the search in Dual-DE is visible in the graphs of the
parameter values. It can also be observed that the parameter values
for each buoy change non-monotonically as the best PTO settings
interact with buoy positions over the course of optimisation.

Figure 8 presents the most productive 4 and 16-buoy layouts
attained from all the runs in the two scenarios. The best 16-buoy
layouts are built by SLS-NM-B2 from the x-axis upwards with buoys
labelled, in the �gure, by order of placement. In all layouts, the �rst
buoy is placed at the bottom right. The best 4-buoy layout of the
Perth wave model slopes diagonally upwards from right to left.

This layout was found by DE. For 16-buoys, the best SLS-NM-B2
con�guration produces a maximum power output that is 2.26%
higher than the best CMA-ES con�guration. Another observation
is that the layouts for Sydney place buoys far from each other. This
is likely to be due to the fact that the more diverse wave direc-
tions in Sydney make it harder to consistently exploit constructive
interactions from having buoys in closer proximity.

5.3 Hydrodynamic interpretation
Figure 9 demonstrates how the ocean wave power propagates
through the farm for each best-discovered solutions (4 and 16 buoy
layouts) for the Sydney and Perth sites. These landscapes model
interactions at the single dominant wave direction and frequency.

The wave resource at the Sydney and Perth sites is 30 and
35 kW/m, respectively. While these waves propagate through the
farm, the wave �eld is modi�ed by the buoys and we can see that
the wave energy across the farm varies between 10 and 60 kW/m. It
can be seen that, in both sites, the best layout succeeds in extracting
much of the energy from the surrounding environment and, in the
case of Perth, the impact of extraction extends far out to sea beyond
the farm. The red areas near buoys are produced by interactions
of buoys with their local environment. It should be noted that,
though these areas might appear to be good candidate positions
for further buoy placements, destructive interference with other
buoys would produce sub-optimal results from such a placement.
Another observation is that at both sites at least one row of buoys
is perpendicular to the dominant wave direction (232.5 deg for the
Perth site, and 172.5 deg for the Sydney site). This indicates that
this wave direction can inform the initialisation of buoy positions
in optimising wave farm settings.

6 CONCLUSIONS
In this paper, we have described, evaluated, and systematically
compared twelve di�erent heuristic methods for optimising layout
and PTO parameters for wave energy converter arrays. This study
included four alternating hybrid algorithms and three new methods
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Figure 8: The best-obtained 4 and 16-buoy layouts: (a) 4-buoy, Perth wave model, Power=719978.29(Watt), q-factor=1.013
by DE; (b) 4-buoy, Sydney wave model, Power=423898.52(Watt), q-factor=0.98 by DE; (c) 16-buoy, Sydney, Power= 1559605,
q-factor=0.903 by SLS-NM-B1; (d) 16-buoy, Sydney, Power=1564334.59, q-factor=0.916 by SLS-NM-B2; (e) 16-buoy, Perth,
Power=2739657.74, q-factor=0.966 by SLS-NM-B1; (f) 16-buoy, Perth, Power=2741489.18, q-factor=0.972 by SLS-NM-B2 (2.26%
more power than CMA-ES best layout).

Figure 9: The wave power around the best-founded 4 and
16-buoy layouts by SLS-NM-B2; (a) 16 buoys, Perth wave sce-
nario; (b) 4 buoys, Perth; (c) 16 buoys, Sydney, and (d) 4 buoys,
Sydney wave scenario. Black circles and squares show the
buoys placement and the search space.

that are specialised to this domain. The results in this study indi-
cate that the search problem is challenging, with buoys inducing
changes in the local power landscape and hydro-dynamic interac-
tions occurring between buoys. The PTO optimisation results, also,
indicate at least some interaction between buoy placement and
optimal PTO settings for each buoy. Moreover, the hydrodynamic
modelling required for larger buoy layouts is expensive, which
constrains optimisation to take place with a limited number of
evaluations.

The best performing method is a new hybrid of a symmetric
local search combined with Nelder-Mead search and a backtracking
strategy. In our experiments, this method out-performed other
state-of-the-art algorithms, for 16-buoy layouts, in terms of power
production and in terms of speed-of-convergence.

Future work can further improve the �delity of the environment
including considering a mix of buoy designs, tethering con�gu-
rations, farm-boundaries and sea-�oor shapes. These additional
factors also create a more complex cost landscape, which opens the
way for multi-objective optimisation.
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Figure 8: The best-obtained 4 and 16-buoy layouts: (a) 4-buoy, Perth wave model, Power=719978.29(Watt), q-factor=1.013
by DE; (b) 4-buoy, Sydney wave model, Power=423898.52(Watt), q-factor=0.98 by DE; (c) 16-buoy, Sydney, Power= 1559605,
q-factor=0.903 by SLS-NM-B1; (d) 16-buoy, Sydney, Power=1564334.59, q-factor=0.916 by SLS-NM-B2; (e) 16-buoy, Perth,
Power=2739657.74, q-factor=0.966 by SLS-NM-B1; (f) 16-buoy, Perth, Power=2741489.18, q-factor=0.972 by SLS-NM-B2 (2.26%
more power than CMA-ES best layout).

Figure 9: The wave power around the best-founded 4 and
16-buoy layouts by SLS-NM-B2; (a) 16 buoys, Perth wave sce-
nario; (b) 4 buoys, Perth; (c) 16 buoys, Sydney, and (d) 4 buoys,
Sydney wave scenario. Black circles and squares show the
buoys placement and the search space.

that are specialised to this domain. The results in this study indi-
cate that the search problem is challenging, with buoys inducing
changes in the local power landscape and hydro-dynamic interac-
tions occurring between buoys. The PTO optimisation results, also,
indicate at least some interaction between buoy placement and
optimal PTO settings for each buoy. Moreover, the hydrodynamic
modelling required for larger buoy layouts is expensive, which
constrains optimisation to take place with a limited number of
evaluations.

The best performing method is a new hybrid of a symmetric
local search combined with Nelder-Mead search and a backtracking
strategy. In our experiments, this method out-performed other
state-of-the-art algorithms, for 16-buoy layouts, in terms of power
production and in terms of speed-of-convergence.

Future work can further improve the �delity of the environment
including considering a mix of buoy designs, tethering con�gu-
rations, farm-boundaries and sea-�oor shapes. These additional
factors also create a more complex cost landscape, which opens the
way for multi-objective optimisation.
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much calmer seas!



Future Work
• Finding smart ways to learn and integrate surrogate 

functions to speed up search
– Very challenging!

• Look for better ways to backtrack globally 
– Sacrifice some power in front row to minimise

losses from having buoys in back row. 
• Optimise buoy sizes
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Code at: h`ps://Qnyurl.com/geccowaves

https://tinyurl.com/geccowaves


Zoomed out
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Figure 6: The convergence of spring-damping PTOs of 16
buoys by CMA-ES (All-in-one) and Dual-DE (alternating
style) methods in Perth wave scenario. The black line shows
the 16thbuoy PTO settings.

Figure 7: Interpolated real wave power landscapes for the
best-founded 4 and 16-buoy layouts by SLS-NM-B2; (a) 16
buoys, Perth wave scenario; (b) 4 buoys, Perth; (c) 16 buoys,
Sydney, and (d) 4 buoys, Sydneywave scenario.White circles
and squares show the buoys placement and the search space.
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