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Introduction 

•  Introduce MAX-2-SAT and FPT 

•  Parameterized complexity analysis on MAX-2-SAT 

•  Identify fitness landscape of MAX-2-SAT 

•  Produce parameterized algorithms for MAX-(2,3)-SAT. 
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MAX-2-SAT 

•  Maximum 2-Satisfiability Problem 

•  C = {(l1,1 ∨ l1,2), (l2,1 ∨ l2,2), . . . , (lm,1 ∨ lm,2)} 

•  eg C = {(¬v1 ∨ v2), (v1 ∨ v3), . . . , (v6 ∨ vn)} 

•  m clauses, Ci = {l1, ... , lm} 

•  n Boolean variables vi = true/false 
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MAX-2-SAT 

•  C = {(¬v1 ∨ v2), (v1 ∨ v3), . . . , (v6 ∨ vn)} 

•  Given x ∈ {0,1}n, 
xi = 1 corresponds to vi = true, 
xi = 0 corresponds to vi = false 

•  We want to maximize f : {0,1}n  → {0} ∪ [m] 

•  f(x) = number of clauses satisfied by x 
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Parameterized Complexity 

•  MAX-2-SAT is NP-Hard. 

•  Standard algorithms: exp(|x|) 

•  Parameterized complexity: parameterization K 

•  XP algorithms: |x|g(K(x)) 
eg nk 

•  Fixed-parameter tractable (FPT) algorithms: g(K(x)) .|x|O(1) 
eg n.2k 
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MAX-2-SAT Algorithm 

•  where mutate() negates some elements of x 

•  We analyze the runtime of the (1+1) EA: 
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Uniform-Complement Mutation 

•  Traditional uniform mutation creates offspring by flipping 
each bit of x with probability 1/n 

•  Uniform-complement may, with uniform probability, 
produce the complement of x with probability Θ(1). 

•  Complement under uniform mutation: probability O(n-n) 
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Uniform-Complement Mutation: Fitness Landscape 

•  MAX-2-SAT fitness function and uniform-complement 
operator corresponds to an elementary landscape. 

•  Can reach solutions of certain quality in polynomial time by 
making local improvements. 



School of Computer Science, University of Adelaide 

Life Impact | The University of Adelaide 

Uniform-Complement Mutation: Fitness Landscape 

•  Let N(x) be union of the Hamming neighbors of x and the 
complement of x 

•  If the i-th clause is not satisfied by x, it is satisfied for three 
neighbors y ∈ N(x): 

•  The two Hamming neighbors of x that have the variables 
in the i-th clause negated, and 

•  The complement of x. 

•  If the i-th clause is satisfied by x, at least one of its literals 
evaluates to true under x. 

•  If only one true, clause is satisfied for all y ∈ N(x) except 
for the negation of variable involved in the true literal. 

•  If both true, clause is satisfied for all y ∈ N(x) except for 
the complement. 
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Uniform-Complement Mutation: Fitness Landscape 

•  If clause i unsatisfied by x, clause satisfied by three 
neighbors. 

•  If clause i satisfied by x, clause satisfied by |N(x)| - 1 
neighbors. 

•  Let ci : {0,1}n → {0,1} if clause i is satisfied by x. 

€ 

ci(y) =
y∈N (x )
∑ 3(1− ci(x)) + (|N(x) | −1)ci(x) = 3+ (n − 3)ci(x)

€ 

f (y) =
y∈N (x )
∑ (3+ (n − 3)ci(x))

i=1

m

∑ = 3m + (n − 3) f (x)

•  Since f(x) is the sum of the clauses satisfied in x 
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Uniform-Complement Mutation: Fitness Landscape 

•  Until no further improvements can be made, there are two 
cases in which an improvement is generated. 

•  Complement is improving state. 
Probability ½ to choose. 

•  Hamming neighbor is improving state. 
Probability ½(n-1(1 - n-1)n-1) ≥ (2en)-1 = Ω(n-1) 

•  Number of improvements bounded by number of clauses. 

•  Reaches state with no improvements in expected time 
bounded by O(mn) 
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Uniform-Complement Mutation: Fitness Landscape 

•  Reached solution x’ s.t. f(x’) has best fitness in neighborhood 

•  Current state x = x’ 

€ 

1
|N(x') |

f (y) ≤ f (x')
y∈N (x )
∑

€ 

1
|N(x') |

(3m + (n − 3) f (x')) ≤ f (x ')
y∈N (x )
∑

€ 

3m
(n +1)

+
(n − 3)
(n +1)

f (x') ≤ f (x ')

€ 

f (x') ≥ 3
4
m
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MAX-(2,3)-SAT 

•  Restricted problem: MAX-(2,3)-SAT 

•  Each variable may only appear in at most 3 clauses 

•  eg C = {(¬v1 ∨ v2), (v1 ∨ ¬v3), (¬v1 ∨ ¬v5), . . .} 

•  Still NP-hard 
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MAX-(2,3)-SAT 

•  Graph: G(V,E) 

|V| = n 
E = {{u,v} ⊂ V | u and v appear together in a clause} 

•  As long as there are two variables in a clause, there’s an 
edge. 

•  Diameter of G: maximum shortest-path distance in any of 
the connected components 

•  Parameter: diameter of G is bounded by k 
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MAX-(2,3)-SAT 

•  C(v) is a connected component containing node v 

•  With diameter bounded by k, the number of nodes in C(v) is 
bound by: 

€ 

1 + 3 ⋅ 2i  
i=0

k -1

∑ = 3 ⋅ 2k - 2 ≥ C(v)
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Basic FPT Algorithm 

•  Select vi uniformly at random. 

•  Flip all bits in x associated with Boolean variables in C(vi) 
with probability 1/2 
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Modified FPT Algorithm 

•  Select vi uniformly at random. 

•  Flip all bits in x associated with Boolean variables in C(vi) with 
decreasing probability the further the distance from vi 
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Propagation FPT Algorithm 

•  Select vi uniformly at random. 

•  Flip all bits in x associated with Boolean variables in C(vi) with 
decreasing probability the further the distance from vi. Only 
propagates to next bit if current bit flipped. 
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Modified Propagation FPT Algorithm 

•  Select vi uniformly at random. 

•  Flip all bits in x associated with Boolean variables in C(vi) with 
decreasing probability the further the distance from vi. Only 
propagates to next bit if current bit flipped. Only visits bits at 
increasing distance from vi. 
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Expected Time to Completion 

•  Number of nodes in connected component bound by 
g(k)= 3.2k - 2 

XP (in paper) O(ng(k)) 

Simple FPT O(n log n . 2g(k)) 

Modified FPT O(n log n . 2k.g(k)) 

Propagation FPT O(n log n . 2g(k)2) 

Modified Propagation FPT O(n log n . 2k.g(k)) 
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Conclusion 

•  We analyzed MAX-2-SAT and MAX-(2,3)-SAT and determined: 

•  Elementary landscape of MAX-2-SAT 

•  XP evolutionary algorithm for MAX-(2,3)-SAT 

•  FPT evolutionary algorithms for MAX-(2,3)-SAT 


