>

School of Computer Science, University of Adelaide

A Parameterized Runtime Analysis of Evolutionary Algorithms for MAX-2-SAT

Jareth Day, Andrew M. Sutton and Frank Neumann

School of Computer Science University of Adelaide, Australia

Genetic and Evolutionary Computational Conference July 2012

Introduction

- Introduce MAX-2-SAT and FPT
- Parameterized complexity analysis on MAX-2-SAT
 - Identify fitness landscape of MAX-2-SAT
 - Produce parameterized algorithms for MAX-(2,3)-SAT.

MAX-2-SAT

- Maximum 2-Satisfiability Problem
- $\mathcal{C} = \{ (\ell_{1,1} \vee \ell_{1,2}), (\ell_{2,1} \vee \ell_{2,2}), \ldots, (\ell_{m,1} \vee \ell_{m,2}) \}$
- eg $\mathcal{C} = \{(\neg \upsilon_1 \lor \upsilon_2), (\upsilon_1 \lor \upsilon_3), \ldots, (\upsilon_6 \lor \upsilon_n)\}$
- m clauses, $\mathcal{C}_i = \{\ell_1, \dots, \ell_m\}$
- *n* Boolean variables $v_i = true/false$

MAX-2-SAT

- $\mathcal{C} = \{ (\neg \upsilon_1 \lor \upsilon_2), (\upsilon_1 \lor \upsilon_3), \ldots, (\upsilon_6 \lor \upsilon_n) \}$
- Given $x \in \{0,1\}^n$, $x_i = 1$ corresponds to $v_i = true$, $x_i = 0$ corresponds to $v_i = false$
- We want to maximize $f: \{0,1\}^n \rightarrow \{0\} \cup [m]$
- f(x) = number of clauses satisfied by x

Parameterized Complexity

- MAX-2-SAT is NP-Hard.
- Standard algorithms: $\exp(|x|)$
- Parameterized complexity: parameterization *K*
- XP algorithms: $|x|^{g(K(x))}$ eg n^k
- Fixed-parameter tractable (FPT) algorithms: $g(K(x)) \cdot |x|^{O(1)}$ eg n·2^k

MAX-2-SAT Algorithm

⇒

• We analyze the runtime of the (1+1) EA:

Algorithm 1: The (1+1) EA.

1 Choose x uniformly at random from $\{0,1\}^n$;

2 repeat forever

$$\mathbf{3} \quad | \quad x' \leftarrow \mathtt{mutate}(x);$$

4 if
$$f(x') \ge f(x)$$
 then $x \leftarrow x'$

• where mutate() negates some elements of *x*

Uniform-Complement Mutation

⇒

- Traditional uniform mutation creates offspring by flipping each bit of x with probability 1/n
- Uniform-complement may, with uniform probability, produce the complement of x with probability $\Theta(1)$.
 - Complement under uniform mutation: probability O(*n*^{-*n*})

⇒

Uniform-Complement Mutation: Fitness Landscape

- MAX-2-SAT fitness function and uniform-complement operator corresponds to an elementary landscape.
- Can reach solutions of certain quality in polynomial time by making local improvements.

Uniform-Complement Mutation: Fitness Landscape

- Let N(x) be union of the Hamming neighbors of x and the complement of x
- If the *i*-th clause is not satisfied by *x*, it is satisfied for three neighbors $y \in N(x)$:
 - The two Hamming neighbors of *x* that have the variables in the *i*-th clause negated, and
 - The complement of *x*.
- If the *i*-th clause is satisfied by *x*, at least one of its literals evaluates to true under x.
 - If only one true, clause is satisfied for all $y \in N(x)$ except for the negation of variable involved in the true literal.
 - If both true, clause is satisfied for all $y \in N(x)$ except for the complement.

⇒

Uniform-Complement Mutation: Fitness Landscape

- If clause *i* unsatisfied by *x*, clause satisfied by three neighbors.
- If clause *i* satisfied by *x*, clause satisfied by | N(x) | 1 neighbors.
- Let $c_i : \{0,1\}^n \rightarrow \{0,1\}$ if clause *i* is satisfied by *x*.

$$\sum_{y \in N(x)} c_i(y) = 3(1 - c_i(x)) + (|N(x)| - 1)c_i(x) = 3 + (n - 3)c_i(x)$$

Since f(x) is the sum of the clauses satisfied in x

$$\sum_{y \in N(x)} f(y) = \sum_{i=1}^{m} (3 + (n-3)c_i(x)) = 3m + (n-3)f(x)$$

Uniform-Complement Mutation: Fitness Landscape

- Until no further improvements can be made, there are two cases in which an improvement is generated.
 - Complement is improving state. Probability 1/2 to choose.

→

- Hamming neighbor is improving state. Probability $\frac{1}{2}(n^{-1}(1 - n^{-1})^{n-1}) \ge (2en)^{-1} = \Omega(n^{-1})$
- Number of improvements bounded by number of clauses.
- Reaches state with no improvements in expected time bounded by O(*mn*)

Uniform-Complement Mutation: Fitness Landscape

- Reached solution x' s.t. f(x') has best fitness in neighborhood
- Current state x = x'

≯

$$\begin{aligned} \frac{1}{|N(x')|} &\sum_{y \in N(x)} f(y) \le f(x') \\ \frac{1}{|N(x')|} &\sum_{y \in N(x)} (3m + (n - 3)f(x')) \le f(x') \\ \frac{3m}{(n + 1)} + \frac{(n - 3)}{(n + 1)} f(x') \le f(x') \\ f(x') \ge \frac{3}{4}m \end{aligned}$$
Life Impact | The University of Adelaide

MAX-(2,3)-SAT

- Restricted problem: MAX-(2,3)-SAT
- Each variable may only appear in at most 3 clauses
- eg $\mathcal{C} = \{(\neg \upsilon_1 \lor \upsilon_2), (\upsilon_1 \lor \neg \upsilon_3), (\neg \upsilon_1 \lor \neg \upsilon_5), \ldots\}$
- Still NP-hard

MAX-(2,3)-SAT

• Graph: *G*(*V*,*E*)

|V| = n $E = \{\{u, v\} \subset V \mid u \text{ and } v \text{ appear together in a clause}\}$

• As long as there are two variables in a clause, there's an edge.

- Diameter of G: maximum shortest-path distance in any of the connected components
- Parameter: diameter of G is bounded by k

MAX-(2,3)-SAT

⇒

- C(v) is a connected component containing node v
- With diameter bounded by *k*, the number of nodes in *C*(*v*) is bound by:

$$1 + \sum_{i=0}^{k-1} 3 \cdot 2^{i} = 3 \cdot 2^{k} - 2 \ge |C(v)|$$

Basic FPT Algorithm

- Select v_i uniformly at random.
- Flip all bits in x associated with Boolean variables in $C(v_i)$ with probability 1/2

≯

Modified FPT Algorithm

- Select *v*_i uniformly at random.
- Flip all bits in *x* associated with Boolean variables in $C(v_i)$ with decreasing probability the further the distance from v_i

Propagation FPT Algorithm

- Select *v*_i uniformly at random.
- Flip all bits in *x* associated with Boolean variables in $C(v_i)$ with decreasing probability the further the distance from v_i . Only propagates to next bit if current bit flipped.

≯

Modified Propagation FPT Algorithm

- Select *v*_i uniformly at random.
- Flip all bits in *x* associated with Boolean variables in $C(v_i)$ with decreasing probability the further the distance from v_i . Only propagates to next bit if current bit flipped. Only visits bits at increasing distance from v_i .

≯

Expected Time to Completion

≯

• Number of nodes in connected component bound by $g(k)=3\cdot 2^k-2$

XP (in paper)	$O(n^{g(k)})$
Simple FPT	$O(n \log n \cdot 2^{g(k)})$
Modified FPT	$O(n \log n \cdot 2^{k \cdot g(k)})$
Propagation FPT	$O(n \log n \cdot 2^{g(k)^2})$
Modified Propagation FPT	$O(n \log n \cdot 2^{k \cdot g(k)})$

Conclusion

- We analyzed MAX-2-SAT and MAX-(2,3)-SAT and determined:
 - Elementary landscape of MAX-2-SAT
 - XP evolutionary algorithm for MAX-(2,3)-SAT
 - FPT evolutionary algorithms for MAX-(2,3)-SAT

