A Parameterized Runtime Analysis of Evolutionary Algorithms for MAX-2-SAT

Jareth Day, Andrew M. Sutton and Frank Neumann

School of Computer Science
University of Adelaide, Australia

Genetic and Evolutionary Computational Conference
July 2012
Introduction

• Introduce MAX-2-SAT and FPT
• Parameterized complexity analysis on MAX-2-SAT
 • Identify fitness landscape of MAX-2-SAT
 • Produce parameterized algorithms for MAX-(2,3)-SAT.
MAX-2-SAT

- Maximum 2-Satisfiability Problem
- \(\mathcal{C} = \{ (l_{1,1} \lor l_{1,2}), (l_{2,1} \lor l_{2,2}), \ldots, (l_{m,1} \lor l_{m,2}) \} \)
- eg \(\mathcal{C} = \{ (\neg v_{1} \lor v_{2}), (v_{1} \lor v_{3}), \ldots, (v_{6} \lor v_{n}) \} \)
- \(m \) clauses, \(\mathcal{C}_{i} = \{ l_{1}, \ldots, l_{m} \} \)
- \(n \) Boolean variables \(v_{i} = \text{true/false} \)
MAX-2-SAT

- \(C = \{ (\neg v_1 \lor v_2), (v_1 \lor v_3), \ldots, (v_6 \lor v_n) \} \)
- Given \(x \in \{0,1\}^n \),
 \(x_i = 1 \) corresponds to \(v_i = \text{true} \),
 \(x_i = 0 \) corresponds to \(v_i = \text{false} \)
- We want to maximize \(f : \{0,1\}^n \to \{0\} \cup [m] \)
- \(f(x) = \) number of clauses satisfied by \(x \)
Parameterized Complexity

- **MAX-2-SAT** is NP-Hard.
- Standard algorithms: \(\exp(\|x\|) \)
- Parameterized complexity: parameterization \(K \)
- **XP algorithms**: \(|x|^{g(K(x))} \)
 - eg \(n^k \)
- Fixed-parameter tractable (FPT) algorithms: \(g(K(x)) \cdot |x|^O(1) \)
 - eg \(n \cdot 2^k \)
MAX-2-SAT Algorithm

• We analyze the runtime of the (1+1) EA:

Algorithm 1: The (1+1) EA.

1. Choose \(x \) uniformly at random from \(\{0, 1\}^n \);
2. repeat forever
3. \(x' \leftarrow \text{mutate}(x) \);
4. if \(f(x') \geq f(x) \) then \(x \leftarrow x' \)

• where \(\text{mutate}() \) negates some elements of \(x \)
Uniform-Complement Mutation

- Traditional uniform mutation creates offspring by flipping each bit of x with probability $1/n$
- Uniform-complement may, with uniform probability, produce the complement of x with probability $\Theta(1)$.
- Complement under uniform mutation: probability $O(n^{-n})$
Uniform-Complement Mutation: Fitness Landscape

- MAX-2-SAT fitness function and uniform-complement operator corresponds to an elementary landscape.
- Can reach solutions of certain quality in polynomial time by making local improvements.
Uniform-Complement Mutation: Fitness Landscape

• Let $N(x)$ be union of the Hamming neighbors of x and the complement of x

• If the i-th clause is not satisfied by x, it is satisfied for three neighbors $y \in N(x)$:
 • The two Hamming neighbors of x that have the variables in the i-th clause negated, and
 • The complement of x.

• If the i-th clause is satisfied by x, at least one of its literals evaluates to true under x.
 • If only one true, clause is satisfied for all $y \in N(x)$ except for the negation of variable involved in the true literal.
 • If both true, clause is satisfied for all $y \in N(x)$ except for the complement.
Uniform-Complement Mutation: Fitness Landscape

- If clause \(i \) unsatisfied by \(x \), clause satisfied by three neighbors.
- If clause \(i \) satisfied by \(x \), clause satisfied by \(|N(x)| - 1\) neighbors.
- Let \(c_i : \{0,1\}^n \rightarrow \{0,1\} \) if clause \(i \) is satisfied by \(x \).

\[
\sum_{y \in N(x)} c_i(y) = 3(1 - c_i(x)) + (|N(x)| - 1)c_i(x) = 3 + (n - 3)c_i(x)
\]

- Since \(f(x) \) is the sum of the clauses satisfied in \(x \)

\[
\sum_{y \in N(x)} f(y) = \sum_{i=1}^{m} (3 + (n - 3)c_i(x)) = 3m + (n - 3)f(x)
\]
Uniform-Complement Mutation: Fitness Landscape

- Until no further improvements can be made, there are two cases in which an improvement is generated.
 - Complement is improving state. Probability $\frac{1}{2}$ to choose.
 - Hamming neighbor is improving state. Probability $\frac{1}{2}(n^{-1}(1 - n^{-1})^{n^{-1}}) \geq (2en^{-1})^{-1} = \Omega(n^{-1})$
- Number of improvements bounded by number of clauses.
- Reaches state with no improvements in expected time bounded by $O(mn)$
Uniform-Complement Mutation: Fitness Landscape

- Reached solution \(x' \) s.t. \(f(x') \) has best fitness in neighborhood
- Current state \(x = x' \)

\[
\frac{1}{|N(x')|} \sum_{y \in N(x)} f(y) \leq f(x')
\]

\[
\frac{1}{|N(x')|} \sum_{y \in N(x)} (3m + (n - 3)f(x')) \leq f(x')
\]

\[
\frac{3m}{(n+1)} + \frac{(n-3)}{(n+1)} f(x') \leq f(x')
\]

\[
f(x') \geq \frac{3}{4} m
\]
MAX-(2,3)-SAT

- Restricted problem: MAX-(2,3)-SAT
- Each variable may only appear in at most 3 clauses
- eg \(\mathcal{C} = \{ (\neg v_1 \lor v_2), (v_1 \lor \neg v_3), (\neg v_1 \lor \neg v_5), \ldots \} \)
- Still NP-hard
MAX-(2,3)-SAT

- Graph: $G(V,E)$

 $|V| = n$

 $E = \{\{u,v\} \subset V \mid u$ and v appear together in a clause\}$

- As long as there are two variables in a clause, there’s an edge.

- Diameter of G: maximum shortest-path distance in any of the connected components

- Parameter: diameter of G is bounded by k
MAX-(2,3)-SAT

- $C(v)$ is a connected component containing node v
- With diameter bounded by k, the number of nodes in $C(v)$ is bound by:

$$1 + \sum_{i=0}^{k-1} 3 \cdot 2^i = 3 \cdot 2^k - 2 \geq |C(v)|$$
Basic FPT Algorithm

- Select v_i uniformly at random.
- Flip all bits in x associated with Boolean variables in $C(v_i)$ with probability $1/2$
Modified FPT Algorithm

- Select v_i uniformly at random.
- Flip all bits in x associated with Boolean variables in $C(v_i)$ with decreasing probability the further the distance from v_i
Propagation FPT Algorithm

- Select v_i uniformly at random.
- Flip all bits in x associated with Boolean variables in $C(v_i)$ with decreasing probability the further the distance from v_i. Only propagates to next bit if current bit flipped.
Modified Propagation FPT Algorithm

- Select v_i uniformly at random.
- Flip all bits in x associated with Boolean variables in $C(v_i)$ with decreasing probability the further the distance from v_i. Only propagates to next bit if current bit flipped. Only visits bits at increasing distance from v_i.
Expected Time to Completion

- Number of nodes in connected component bound by
 \(g(k) = 3 \cdot 2^k - 2 \)

<table>
<thead>
<tr>
<th>Type</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>XP (in paper)</td>
<td>(O(n^{g(k)}))</td>
</tr>
<tr>
<td>Simple FPT</td>
<td>(O(n \log n \cdot 2^{g(k)}))</td>
</tr>
<tr>
<td>Modified FPT</td>
<td>(O(n \log n \cdot 2^{k \cdot g(k)}))</td>
</tr>
<tr>
<td>Propagation FPT</td>
<td>(O(n \log n \cdot 2^{g(k)^2}))</td>
</tr>
<tr>
<td>Modified Propagation FPT</td>
<td>(O(n \log n \cdot 2^{k \cdot g(k)}))</td>
</tr>
</tbody>
</table>
Conclusion

- We analyzed MAX-2-SAT and MAX-(2,3)-SAT and determined:
 - Elementary landscape of MAX-2-SAT
 - XP evolutionary algorithm for MAX-(2,3)-SAT
 - FPT evolutionary algorithms for MAX-(2,3)-SAT