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Introduc(on	
  

There	
  are	
  many	
  	
  
•  successful	
  applica(on	
  
•  experimental	
  studies	
  
of	
  Gene(c	
  Programming.	
  
	
  
We	
  want	
  to	
  
•  argue	
  in	
  a	
  rigorous	
  way	
  about	
  GP	
  algorithms	
  and	
  
•  contribute	
  to	
  their	
  theore(cal	
  understanding	
  

This	
  is	
  also	
  important	
  for	
  the	
  acceptance	
  of	
  our	
  
algorithms	
  outside	
  our	
  community.	
  

Frank	
  Neumann	
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Classical	
  Op(miza(on	
  

Classical	
  algorithm	
  analysis	
  has	
  a	
  large	
  focus	
  on	
  
run(me	
  and	
  approxima(on	
  behavior	
  of	
  
algorithms.	
  
Our	
  key	
  ques(ons:	
  
•  Which	
  op(miza(on	
  problems	
  can	
  provably	
  be	
  
solved	
  by	
  (simple)	
  EAs	
  in	
  polynomial	
  (me?	
  

•  Which	
  func(ons	
  can	
  provably	
  be	
  learned	
  by	
  
(simple)	
  GP	
  systems	
  in	
  polynomial	
  (me?	
  

	
  
	
  
	
  
Frank	
  Neumann	
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Theory	
  of	
  Evolu(onary	
  Compu(ng	
  

Solid	
  Founda(on	
  of	
  Evolu(onary	
  Compu(ng:	
  
•  Understand	
  how	
  and	
  why	
  such	
  algorithms	
  
work.	
  

•  Algorithms	
  make	
  use	
  of	
  random	
  decisions.	
  
•  Treat	
  them	
  as	
  randomized	
  algorithms.	
  
•  Consider	
  their	
  expected	
  run(me	
  and/or	
  
success	
  probability.	
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Computa(onal	
  Complexity	
  Analysis	
  

Black	
  Box	
  Scenario:	
  
•  Measure	
  the	
  run(me	
  T	
  by	
  the	
  number	
  of	
  fitness	
  
evalua(ons.	
  

•  Consider	
  (me	
  to	
  reach	
  
–  An	
  op(mal	
  solu(on.	
  
–  A	
  good	
  approxima(on.	
  

	
  
Analyze:	
  
•  Expected	
  number	
  of	
  fitness	
  evalua(on.	
  
•  Success	
  probability	
  a]er	
  a	
  fixed	
  number	
  of	
  t	
  steps.	
  



Life Impact | The University of Adelaide 
Neumann,	
  Frank	
  6	
  

Current Status 

Computational Complexity Analysis of evolutionary 
computing 
•  EAs for discrete combinatorial optimization (lots of 

results) 
•  Evolutionary Multi-Objective Optimization (many results) 
•  Ant Colony Optimization (some results) 
•  EAs for continuous optimization (initial results) 
•  Particle Swarm Optimization (initial results) 

Goal: Rigorous insights into the working 
principles of GP using this approach! 
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Methods	
  

Huge	
  set	
  of	
  methods	
  for	
  the	
  analysis	
  is	
  available:	
  
•  Fitness-­‐based	
  par((ons	
  
•  Expected	
  distance	
  decrease	
  
•  Coupon	
  Collector's	
  Theorem	
  
•  Markov,	
  Chebyshev,	
  Chernoff,	
  Hoeffding	
  bounds	
  
•  Markov	
  chain	
  theory:	
  wai(ng	
  (mes,	
  first	
  hicng	
  (mes	
  	
  
•  Rapidly	
  Mixing	
  Markov	
  Chains	
  
•  Random	
  Walks:	
  Gambler's	
  Ruin,	
  dri]	
  analysis,	
  
mar(ngale	
  theory	
  

•  Iden(fying	
  typical	
  events	
  and	
  failure	
  events	
  
•  Poten(al	
  func(ons	
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Genetic Programming (GP): 
•  High complex GP variants address challenging 

problems for example in symbolic regression. 
•  Currently, seems to be impossible to analyze 

these complex variants on complex problems. 

This talk: 
•  Analyze (still relevant) versions of GP. 
•  Give some initial computational complexity results  
•  Discuss topics for future work 
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Gene(c	
  Programming	
  

•  Type	
  of	
  evolu(onary	
  algorithm	
  
•  Evolves	
  tree	
  structures	
  for	
  a	
  given	
  problem	
  
•  O]en	
  used	
  to	
  learn	
  a	
  func(on	
  
•  Consider	
  simple	
  muta(on-­‐based	
  gene(c	
  
programming	
  algorithms	
  

Frank	
  Neumann	
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Subs(tu(on	
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  Neumann	
  

or lawnmower for GP with automatically defined functions
[6]). Each problem has a simple relation to more realistic GP
problems: ORDER requires correct ordering as in conditional
programs and MAJORITY requires the correct set of solution
components.
We proceed as follows: in section 2, we formally describe

the GP variants and the two problems, which includes de-
scribing program initialization from a primitive set and our
mutation operator which is called HVL-Prime. We then
proceed in sections 3 and 4 with our analyses of ORDER
and MAJORITY in terms of the expected number of fitness
evaluations until our algorithms have produced a globally
optimal solution for the first time. This is called the expected
optimization time of the algorithm. Our results are followed
by a discussion in section 5 and conclusions and future work
in section 6.

2. DEFINITIONS

2.1 Program Initialization
To use tree-based genetic programming [5], one must first

choose a set of primitives A, which contains a set F of
functions and a set L of terminals. Each primitive has ex-
plicitly defined semantics; for example, a primitive might
represent a Boolean condition, a branching statement such as
an IF-THEN-ELSE conditional, the value bound to an input
variable, or an arithmetic operation. Functions are parame-
terized. Terminals are either functions with no parameters,
i.e. arity equal to zero, or input variables to the program
that serve as actual parameters to the formal parameters of
functions.
In our derivations, we assume that a GP program is ini-

tialized by its parse tree construction. In general, we start
with a root node randomly drawn from A and recursively
populate the parameters of each function in the tree with
subsequent random samples from A, until the leaves of the
tree are all terminals. Functions constitute the internal nodes
of the parse tree, and terminals occupy the leaf nodes. The
exact properties of the tree generated by this procedure will
not figure into the analysis of the algorithm, so we do not
discuss them in depth.

2.2 HVL-Prime
The HVL-Prime operator is an update of O’Reilly’s HVL

mutation operator ([10, 11]) and motivated by minimal-
ity rather than inspired from a tree-edit distance metric.
HVL first selects a node at random in a copy of the current
parse tree. Let us term this the currentNode. It then, with
equiprobability, applies one of three sub-operations: inser-
tion, substitution, or deletion. Insertion takes place above
currentNode: a randomly drawn function from F becomes
the parent of currentNode and its additional parameters are
set by drawing randomly from L. Substitution changes cur-
rentNode to a randomly drawn function of F with the same
arity. Deletion replaces currentNode with its largest child
subtree, which often admits large deletion sub-operations.
The operator we consider here, HVL-Prime, functions

slightly di�erently, since we restrict it to operate on trees
where all functions take two parameters. Rather than choos-
ing a node followed by an operation, we first choose one of
the three sub-operations to perform. The operations then
proceed as shown in Figure 1. Insertion and substitution
are exactly as in HVL; however, deletion only deletes a leaf

and its parent to avoid the potentially macroscopic deletion
change of HVL that is not in the spirit of bit-flip mutation.
This change makes the algorithm more amenable to com-
plexity analysis and specifies an operator that is only as
general as our simplified problems require, contrasting with
the generality of HVL, where all sub-operations handle prim-
itives of any arity. Nevertheless, both operators respect the
nature of GP’s search among variable-length candidate solu-
tions because each generates another candidate of potentially
di�erent size, structure, and composition.

In our analysis on these particular problems, we make one
further simplification of HVL-Prime: substitution only takes
place at the leaves. This is because our two problems only
have one generic “join” function specified, so performing a
substitution anywhere above the leaves is a vacuous mutation.
Such operations only constitute one-sixth of all operations,
so this change has no impact on any of the runtime bounds
we derive.

(a) Before insertion (b) After insertion

(c) Before deletion (d) After deletion
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(e) Before substitution
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(f) After substitution

Figure 1: Example of the operators from HVL-
Prime.

2.3 Algorithms
We define two genetic programming variants called

(1+1) GP and (1+1) GP*. Both algorithms work with a
population of size one and produce in each iteration one
single o�spring. (1+1) GP is defined in Algorithm 1 and
accepts an o�spring if it is as least as fit as its parent.

Algorithm 1 ((1+1) GP).

1. Choose an initial solution X.

2. Set X � := X.

3. Mutate X � by applying HVL-Prime k times. For each
application, randomly choose to either substitute, insert,
or delete.
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or lawnmower for GP with automatically defined functions
[6]). Each problem has a simple relation to more realistic GP
problems: ORDER requires correct ordering as in conditional
programs and MAJORITY requires the correct set of solution
components.
We proceed as follows: in section 2, we formally describe

the GP variants and the two problems, which includes de-
scribing program initialization from a primitive set and our
mutation operator which is called HVL-Prime. We then
proceed in sections 3 and 4 with our analyses of ORDER
and MAJORITY in terms of the expected number of fitness
evaluations until our algorithms have produced a globally
optimal solution for the first time. This is called the expected
optimization time of the algorithm. Our results are followed
by a discussion in section 5 and conclusions and future work
in section 6.

2. DEFINITIONS

2.1 Program Initialization
To use tree-based genetic programming [5], one must first

choose a set of primitives A, which contains a set F of
functions and a set L of terminals. Each primitive has ex-
plicitly defined semantics; for example, a primitive might
represent a Boolean condition, a branching statement such as
an IF-THEN-ELSE conditional, the value bound to an input
variable, or an arithmetic operation. Functions are parame-
terized. Terminals are either functions with no parameters,
i.e. arity equal to zero, or input variables to the program
that serve as actual parameters to the formal parameters of
functions.
In our derivations, we assume that a GP program is ini-

tialized by its parse tree construction. In general, we start
with a root node randomly drawn from A and recursively
populate the parameters of each function in the tree with
subsequent random samples from A, until the leaves of the
tree are all terminals. Functions constitute the internal nodes
of the parse tree, and terminals occupy the leaf nodes. The
exact properties of the tree generated by this procedure will
not figure into the analysis of the algorithm, so we do not
discuss them in depth.

2.2 HVL-Prime
The HVL-Prime operator is an update of O’Reilly’s HVL

mutation operator ([10, 11]) and motivated by minimal-
ity rather than inspired from a tree-edit distance metric.
HVL first selects a node at random in a copy of the current
parse tree. Let us term this the currentNode. It then, with
equiprobability, applies one of three sub-operations: inser-
tion, substitution, or deletion. Insertion takes place above
currentNode: a randomly drawn function from F becomes
the parent of currentNode and its additional parameters are
set by drawing randomly from L. Substitution changes cur-
rentNode to a randomly drawn function of F with the same
arity. Deletion replaces currentNode with its largest child
subtree, which often admits large deletion sub-operations.
The operator we consider here, HVL-Prime, functions

slightly di�erently, since we restrict it to operate on trees
where all functions take two parameters. Rather than choos-
ing a node followed by an operation, we first choose one of
the three sub-operations to perform. The operations then
proceed as shown in Figure 1. Insertion and substitution
are exactly as in HVL; however, deletion only deletes a leaf

and its parent to avoid the potentially macroscopic deletion
change of HVL that is not in the spirit of bit-flip mutation.
This change makes the algorithm more amenable to com-
plexity analysis and specifies an operator that is only as
general as our simplified problems require, contrasting with
the generality of HVL, where all sub-operations handle prim-
itives of any arity. Nevertheless, both operators respect the
nature of GP’s search among variable-length candidate solu-
tions because each generates another candidate of potentially
di�erent size, structure, and composition.

In our analysis on these particular problems, we make one
further simplification of HVL-Prime: substitution only takes
place at the leaves. This is because our two problems only
have one generic “join” function specified, so performing a
substitution anywhere above the leaves is a vacuous mutation.
Such operations only constitute one-sixth of all operations,
so this change has no impact on any of the runtime bounds
we derive.
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(b) After insertion

(c) Before deletion (d) After deletion

(e) Before substitution (f) After substitution

Figure 1: Example of the operators from HVL-
Prime.

2.3 Algorithms
We define two genetic programming variants called

(1+1) GP and (1+1) GP*. Both algorithms work with a
population of size one and produce in each iteration one
single o�spring. (1+1) GP is defined in Algorithm 1 and
accepts an o�spring if it is as least as fit as its parent.

Algorithm 1 ((1+1) GP).

1. Choose an initial solution X.

2. Set X � := X.

3. Mutate X � by applying HVL-Prime k times. For each
application, randomly choose to either substitute, insert,
or delete.
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or lawnmower for GP with automatically defined functions
[6]). Each problem has a simple relation to more realistic GP
problems: ORDER requires correct ordering as in conditional
programs and MAJORITY requires the correct set of solution
components.
We proceed as follows: in section 2, we formally describe

the GP variants and the two problems, which includes de-
scribing program initialization from a primitive set and our
mutation operator which is called HVL-Prime. We then
proceed in sections 3 and 4 with our analyses of ORDER
and MAJORITY in terms of the expected number of fitness
evaluations until our algorithms have produced a globally
optimal solution for the first time. This is called the expected
optimization time of the algorithm. Our results are followed
by a discussion in section 5 and conclusions and future work
in section 6.

2. DEFINITIONS

2.1 Program Initialization
To use tree-based genetic programming [5], one must first

choose a set of primitives A, which contains a set F of
functions and a set L of terminals. Each primitive has ex-
plicitly defined semantics; for example, a primitive might
represent a Boolean condition, a branching statement such as
an IF-THEN-ELSE conditional, the value bound to an input
variable, or an arithmetic operation. Functions are parame-
terized. Terminals are either functions with no parameters,
i.e. arity equal to zero, or input variables to the program
that serve as actual parameters to the formal parameters of
functions.
In our derivations, we assume that a GP program is ini-

tialized by its parse tree construction. In general, we start
with a root node randomly drawn from A and recursively
populate the parameters of each function in the tree with
subsequent random samples from A, until the leaves of the
tree are all terminals. Functions constitute the internal nodes
of the parse tree, and terminals occupy the leaf nodes. The
exact properties of the tree generated by this procedure will
not figure into the analysis of the algorithm, so we do not
discuss them in depth.

2.2 HVL-Prime
The HVL-Prime operator is an update of O’Reilly’s HVL

mutation operator ([10, 11]) and motivated by minimal-
ity rather than inspired from a tree-edit distance metric.
HVL first selects a node at random in a copy of the current
parse tree. Let us term this the currentNode. It then, with
equiprobability, applies one of three sub-operations: inser-
tion, substitution, or deletion. Insertion takes place above
currentNode: a randomly drawn function from F becomes
the parent of currentNode and its additional parameters are
set by drawing randomly from L. Substitution changes cur-
rentNode to a randomly drawn function of F with the same
arity. Deletion replaces currentNode with its largest child
subtree, which often admits large deletion sub-operations.
The operator we consider here, HVL-Prime, functions

slightly di�erently, since we restrict it to operate on trees
where all functions take two parameters. Rather than choos-
ing a node followed by an operation, we first choose one of
the three sub-operations to perform. The operations then
proceed as shown in Figure 1. Insertion and substitution
are exactly as in HVL; however, deletion only deletes a leaf

and its parent to avoid the potentially macroscopic deletion
change of HVL that is not in the spirit of bit-flip mutation.
This change makes the algorithm more amenable to com-
plexity analysis and specifies an operator that is only as
general as our simplified problems require, contrasting with
the generality of HVL, where all sub-operations handle prim-
itives of any arity. Nevertheless, both operators respect the
nature of GP’s search among variable-length candidate solu-
tions because each generates another candidate of potentially
di�erent size, structure, and composition.

In our analysis on these particular problems, we make one
further simplification of HVL-Prime: substitution only takes
place at the leaves. This is because our two problems only
have one generic “join” function specified, so performing a
substitution anywhere above the leaves is a vacuous mutation.
Such operations only constitute one-sixth of all operations,
so this change has no impact on any of the runtime bounds
we derive.

(a) Before insertion (b) After insertion
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(c) Before deletion
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Figure 1: Example of the operators from HVL-
Prime.

2.3 Algorithms
We define two genetic programming variants called

(1+1) GP and (1+1) GP*. Both algorithms work with a
population of size one and produce in each iteration one
single o�spring. (1+1) GP is defined in Algorithm 1 and
accepts an o�spring if it is as least as fit as its parent.

Algorithm 1 ((1+1) GP).

1. Choose an initial solution X.

2. Set X � := X.

3. Mutate X � by applying HVL-Prime k times. For each
application, randomly choose to either substitute, insert,
or delete.
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Simple GP Algorithm 

Algorithms:	
  	
  
	
  k=1	
  called	
  (1+1)	
  GP-­‐single	
  
	
  k-­‐1	
  according	
  to	
  Pois(1)	
  called	
  (1+1)	
  GP-­‐mul(	
  

one single o�spring. (1+1) GP is defined in Algorithm 1 and accepts an o�spring
if it is as least as fit as its parent.

Algorithm 1 ((1+1) GP).

1. Choose an initial solution X.

2. Set X � := X.

3. Mutate X � by applying HVL-Mutate� k times. For each application, ran-
domly choose to either substitute, insert, or delete.

• If substitute, replace a randomly chosen leaf of X � with a new leaf
u ⇤ L selected uniformly at random.

• If insert, randomly choose a node v in X � and select u ⇤ L uniformly
at random. Replace v with a join node whose children are u and v,
with the order of the children chosen randomly.

• If delete, randomly choose a leaf node v of X �, with parent p and
sibling u. Replace p with u and delete p and v.

4. If f(X �) ⇥ f(X), set X := X �.

5. Go to 2.

(1+1) GP* di�ers from (1+1) GP by accepting only solution that are strict
improvements (see Algorithm 2).

Algorithm 2 (Acceptance for (1+1) GP*).

4’. If f(X �) > f(X), set X := X �.

For each of (1+1) GP and (1+1) GP* we consider two further variants which
di�er in using one application of HVL-Mutate� (“single”) or in using more than
one (“multi”). For (1+1) GP-single and (1+1) GP*-single, we set k = 1, so that
we perform one mutation at a time according to the HVL-Mutate� framework.
For (1+1) GP-multi and (1+1) GP*-multi, we choose k = 1 + Pois(1), so that
the number of mutations at a time varies randomly according to the Poisson
distribution.

We will analyze these four algorithms in terms of the expected number of
fitness evaluations to produce an optimal solution for the first time. This is
called the expected optimization time of the algorithm.

2.4 The ORDER problem

We consider two separable problems called ORDER and MAJORITY that have
an independent, additive fitness structure. They both admit multiple solutions
on their objective function, which we feel is a key property of a model GP
problem because it holds generally for all real GP problems. They also both use
the same primitive set:

5

Subs(tute	
  

Insert	
  

Delete	
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one single o�spring. (1+1) GP is defined in Algorithm 1 and accepts an o�spring
if it is as least as fit as its parent.

Algorithm 1 ((1+1) GP).

1. Choose an initial solution X.

2. Set X � := X.

3. Mutate X � by applying HVL-Mutate� k times. For each application, ran-
domly choose to either substitute, insert, or delete.

• If substitute, replace a randomly chosen leaf of X � with a new leaf
u ⇤ L selected uniformly at random.

• If insert, randomly choose a node v in X � and select u ⇤ L uniformly
at random. Replace v with a join node whose children are u and v,
with the order of the children chosen randomly.

• If delete, randomly choose a leaf node v of X �, with parent p and
sibling u. Replace p with u and delete p and v.

4. If f(X �) ⇥ f(X), set X := X �.

5. Go to 2.

(1+1) GP* di�ers from (1+1) GP by accepting only solution that are strict
improvements (see Algorithm 2).

Algorithm 2 (Acceptance for (1+1) GP*).

4’. If f(X �) > f(X), set X := X �.

For each of (1+1) GP and (1+1) GP* we consider two further variants which
di�er in using one application of HVL-Mutate� (“single”) or in using more than
one (“multi”). For (1+1) GP-single and (1+1) GP*-single, we set k = 1, so that
we perform one mutation at a time according to the HVL-Mutate� framework.
For (1+1) GP-multi and (1+1) GP*-multi, we choose k = 1 + Pois(1), so that
the number of mutations at a time varies randomly according to the Poisson
distribution.

We will analyze these four algorithms in terms of the expected number of
fitness evaluations to produce an optimal solution for the first time. This is
called the expected optimization time of the algorithm.

2.4 The ORDER problem

We consider two separable problems called ORDER and MAJORITY that have
an independent, additive fitness structure. They both admit multiple solutions
on their objective function, which we feel is a key property of a model GP
problem because it holds generally for all real GP problems. They also both use
the same primitive set:

5
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Simple Functions 

ORDER and MAJORITY (Goldberg/O’Reilly 1998) 
 
 
 
Properties of functions 
•  Separable 
•  Admit multiple solutions 

• If substitute, replace a randomly chosen leaf of
X � with a new leaf u ⌅ L selected uniformly at
random.

• If insert, randomly choose a node v in X � and
select u ⌅ L uniformly at random. Replace v with
a join node whose children are u and v, with the
order of the children chosen randomly.

• If delete, randomly choose a leaf node v of X �,
with parent p and sibling u. Replace p with u and
delete p and v.

4. If f(X �) ⇤ f(X), set X := X �.

5. Go to 2.

(1+1) GP* di�ers from (1+1) GP by accepting only solu-
tion that are strict improvements (see Algorithm 2).

Algorithm 2 (Acceptance for (1+1) GP*).

4’. If f(X �) > f(X), set X := X �.

For each of (1+1) GP and (1+1) GP* we consider two
further variants which di�er in using one application of HVL-
Prime (“single”) or in using more than one (“multi”). For
(1+1) GP-single and (1+1) GP*-single, we set k = 1, so that
we perform one mutation at a time according to the HVL-
Prime framework. For (1+1) GP-multi and (1+1) GP*-multi,
we choose k = 1+Pois(1), so that the number of mutations at
a time varies randomly according to the Poisson distribution.
We will analyze these four algorithms in terms of the

expected number of fitness evaluations to produce an opti-
mal solution for the first time. This is called the expected
optimization time of the algorithm.

2.4 The ORDER problem
We consider two separable problems called ORDER and

MAJORITY that have an independent, additive fitness struc-
ture. They both have multiple solutions, which we feel is
a key property of a model GP problem because it holds
generally for all real GP problems. They also both use the
same primitive set, where x̄i is the complement of xi:

• F := {J}, J has arity 2.

• L := {x1, x̄1, . . . , xn, x̄n}

ORDER represents problems where the primitive sets in-
clude conditional functions, which gives rise to conditional
execution paths. GP classification problems, for example,
often employ a numerical comparison function (e.g. greater
than X, less than X, or equal to X). This sort of function has
two arguments (subtrees), one branch which will be executed
only when the comparison returns true, the other only when
it returns false [5]. Thus, a conditional function results in a
branching or conditional execution path, so the GP algorithm
must identify and appropriately position the conditional func-
tions to achieve the correct conditional execution behavior
for all inputs.
ORDER is an abstracted simplification of this challenge:

the conditional execution paths of a program are determined
by tree inspection rather than execution. Instead of evalu-
ating a condition test and then executing the appropriate
condition body explicitly, an ORDER program’s conditional

execution path is determined by simply inspecting whether
a primitive or its complement occurs first in an in-order
leaf parse. Correct programs for the ORDER problem must
express each positive primitive xi before its corresponding
complement x̄i. This correctness requirement is intended to
reflect a property commonly found in the GP solutions to
problems where conditional functions are used: there exist
multiple solutions, each with a set of di�erent conditional
paths.

Algorithm 3 (f(X) for ORDER).

1. Derive conditional execution path P of X:

Init: l an empty leaf list, P an empty conditional exe-
cution path

1.1 Parse X inorder and insert each leaf at the rear
of l as it is visited.

1.2 Generate P by parsing l front to rear and adding
(“expressing”) a leaf to P only if it or its com-
plement are not yet in P (i.e. have not yet been
expressed).

2. f(X) = |{xi ⌅ P}|.

For example, for a tree X, with (after the inorder parse) l =
(x1, x̄4, x2, x̄1, x3, x̄6), P = (x1, x̄4, x2, x3, x̄6) and f(X) = 3
because x1, x2, x3 ⌅ P .

2.5 The MAJORITY problem
MAJORITY is a GP equivalent of the GA OneMax prob-

lem [3]. MAJORITY reflects a general (and thus weak)
property required of GP solutions: a solution must have
correct functionality and no incorrect functionality. Like
ORDER, MAJORITY is a simplification that uses tree in-
spection rather than program execution. A correct program
in MAJORITY must exhibit at least as many occurrences
of a primitive as of its complement and it must exhibit all
the positive primitives of its terminal (leaf) set. Both the
independent sub-solution fitness structure and inspection
property of MAJORITY are necessary to make our analysis
tractable.

Algorithm 4 (f(X) for MAJORITY).

1. Derive the combined execution statements S of X:

Init: l an empty leaf list, S is an empty statement list.

1.1 Parse X inorder and insert each leaf at the rear
of l as it is visited.

1.2 For i ⇥ n: if count(xi ⌅ l) ⇤ count(x̄i ⌅ l) and
count(xi ⌅ l) ⇤ 1, add xi to S

2. f(X) = |S|.

For example, for a tree X, with (after the inorder parse) l =
(x1, x̄4, x2, x̄1, x̄3, x̄6, x1, x4), S = (x1, x2, x4) and f(X) = 3.

3. ANALYSIS FOR ORDER
Here we present bounds for ORDER on the number of

runtime evaluations needed in the execution of (1+1) GP
and (1+1) GP*.
We will analyze this GP problem using fitness-based par-

titions [2]. This requires us to compute the probability of
improving the fitness from k to k + 1 for each value of k
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ORDER 

•  Imitate semantics of a conditional execution path 
•  Output depends on the order of leaves in an in-order 

parse of a program tree 

 
 

Example:	
  X	
  	
  

• If substitute, replace a randomly chosen leaf of
X � with a new leaf u ⌅ L selected uniformly at
random.

• If insert, randomly choose a node v in X � and
select u ⌅ L uniformly at random. Replace v with
a join node whose children are u and v, with the
order of the children chosen randomly.

• If delete, randomly choose a leaf node v of X �,
with parent p and sibling u. Replace p with u and
delete p and v.

4. If f(X �) ⇤ f(X), set X := X �.

5. Go to 2.

(1+1) GP* di�ers from (1+1) GP by accepting only solu-
tion that are strict improvements (see Algorithm 2).

Algorithm 2 (Acceptance for (1+1) GP*).

4’. If f(X �) > f(X), set X := X �.

For each of (1+1) GP and (1+1) GP* we consider two
further variants which di�er in using one application of HVL-
Prime (“single”) or in using more than one (“multi”). For
(1+1) GP-single and (1+1) GP*-single, we set k = 1, so that
we perform one mutation at a time according to the HVL-
Prime framework. For (1+1) GP-multi and (1+1) GP*-multi,
we choose k = 1+Pois(1), so that the number of mutations at
a time varies randomly according to the Poisson distribution.
We will analyze these four algorithms in terms of the

expected number of fitness evaluations to produce an opti-
mal solution for the first time. This is called the expected
optimization time of the algorithm.

2.4 The ORDER problem
We consider two separable problems called ORDER and

MAJORITY that have an independent, additive fitness struc-
ture. They both have multiple solutions, which we feel is
a key property of a model GP problem because it holds
generally for all real GP problems. They also both use the
same primitive set, where x̄i is the complement of xi:

• F := {J}, J has arity 2.

• L := {x1, x̄1, . . . , xn, x̄n}

ORDER represents problems where the primitive sets in-
clude conditional functions, which gives rise to conditional
execution paths. GP classification problems, for example,
often employ a numerical comparison function (e.g. greater
than X, less than X, or equal to X). This sort of function has
two arguments (subtrees), one branch which will be executed
only when the comparison returns true, the other only when
it returns false [5]. Thus, a conditional function results in a
branching or conditional execution path, so the GP algorithm
must identify and appropriately position the conditional func-
tions to achieve the correct conditional execution behavior
for all inputs.
ORDER is an abstracted simplification of this challenge:

the conditional execution paths of a program are determined
by tree inspection rather than execution. Instead of evalu-
ating a condition test and then executing the appropriate
condition body explicitly, an ORDER program’s conditional

execution path is determined by simply inspecting whether
a primitive or its complement occurs first in an in-order
leaf parse. Correct programs for the ORDER problem must
express each positive primitive xi before its corresponding
complement x̄i. This correctness requirement is intended to
reflect a property commonly found in the GP solutions to
problems where conditional functions are used: there exist
multiple solutions, each with a set of di�erent conditional
paths.

Algorithm 3 (f(X) for ORDER).

1. Derive conditional execution path P of X:

Init: l an empty leaf list, P an empty conditional exe-
cution path

1.1 Parse X inorder and insert each leaf at the rear
of l as it is visited.

1.2 Generate P by parsing l front to rear and adding
(“expressing”) a leaf to P only if it or its com-
plement are not yet in P (i.e. have not yet been
expressed).

2. f(X) = |{xi ⌅ P}|.

For example, for a tree X, with (after the inorder parse) l =
(x1, x̄4, x2, x̄1, x3, x̄6), P = (x1, x̄4, x2, x3, x̄6) and f(X) = 3
because x1, x2, x3 ⌅ P .

2.5 The MAJORITY problem
MAJORITY is a GP equivalent of the GA OneMax prob-

lem [3]. MAJORITY reflects a general (and thus weak)
property required of GP solutions: a solution must have
correct functionality and no incorrect functionality. Like
ORDER, MAJORITY is a simplification that uses tree in-
spection rather than program execution. A correct program
in MAJORITY must exhibit at least as many occurrences
of a primitive as of its complement and it must exhibit all
the positive primitives of its terminal (leaf) set. Both the
independent sub-solution fitness structure and inspection
property of MAJORITY are necessary to make our analysis
tractable.

Algorithm 4 (f(X) for MAJORITY).

1. Derive the combined execution statements S of X:

Init: l an empty leaf list, S is an empty statement list.

1.1 Parse X inorder and insert each leaf at the rear
of l as it is visited.

1.2 For i ⇥ n: if count(xi ⌅ l) ⇤ count(x̄i ⌅ l) and
count(xi ⌅ l) ⇤ 1, add xi to S

2. f(X) = |S|.

For example, for a tree X, with (after the inorder parse) l =
(x1, x̄4, x2, x̄1, x̄3, x̄6, x1, x4), S = (x1, x2, x4) and f(X) = 3.

3. ANALYSIS FOR ORDER
Here we present bounds for ORDER on the number of

runtime evaluations needed in the execution of (1+1) GP
and (1+1) GP*.
We will analyze this GP problem using fitness-based par-

titions [2]. This requires us to compute the probability of
improving the fitness from k to k + 1 for each value of k

• F := {J}, J has arity 2.

• L := {x1, x̄1, . . . , xn, x̄n}

xi is the complement of x̄i.
ORDER represents problems where the primitive sets include conditional
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than X, less than X, or equal to X). This sort of function has two arguments
(subtrees), one which will be executed only when the comparison returns true,
the other only when it returns false [5]. Thus, a conditional function results
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execution behavior for all inputs.

ORDER is an abstracted simplification of this challenge in that it determines
the conditional path execution of a program by tree inspection rather than exe-
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1.1 Parse X inorder and insert each leaf at the rear of l as it is visited.

1.2 Generate P by parsing l front to rear and adding (“expressing”) a
leaf to P only if it or its complement are not yet in P (i.e. have not
yet been expressed).

2. f(X) = |{xi ⇥ P}|.
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MAJORITY is a simplification that uses tree inspection rather than program
execution. A correct program in MAJORITY must exhibit at least as many
occurrences of a primitive as of its complement and it must exhibit all the
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Analysis for ORDER: 
•  Use fitness-based partitions 
•  Let current fitness be k and current tree size T then 

probability for an improvement is 

 
•  Summing up waiting times, the expected optimization 

time is upper bounded by   O ( n T m a x ) 

Algorithm 4 (f(X) for MAJORITY).

1. Derive the combined execution statements S of X:

Init: l an empty leaf list, S is an empty statement list.

1.1 Parse X inorder and insert each leaf at the rear of l as it is visited.

1.2 For i  n: if count(xi 2 l) � count(x̄i 2 l) and count(xi 2 l) � 1,
add xi to S

2. f(X) = |S|.

For example, for a tree X, with (after the inorder parse) l = (x
1
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S = (x
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, x
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) and f(X) = 3.

3 Analysis for ORDER

Here we present bounds for ORDER on the number of runtime evaluations
needed in the execution of (1+1) GP and (1+1) GP*.

We will analyze this GP problem using fitness-based partitions [2]. This
requires us to compute the probability of improving the fitness from k to k + 1
for each value of k between 0 and n� 1, inclusive. Although our HVL-Mutate0

operator is complex, we can obtain a lower bound on the probability of making
an improvement by considering fitness improvements that arise from insertions.
This is described in the following lemma.

Lemma 1. Define pk to be the probability that we perform an insertion that
improves the fitness value of the GP tree from k to k + 1. For the single- and
multi-operation variants of (1+1) GP and (1+1) GP* applied to the ORDER
problem,

pk = ⌦

✓
(n� k)2

nmax{T, n}

◆

where n is the number of variables and T is the number of leaves in the GP tree
at the particular iteration.

Proof. When the fitness value is k, it must be the case that k di↵erent xi appear
before their corresponding x̄i. To improve the fitness, we must insert one of the
n � k unexpressed xi as a leaf that will be visited before a leaf containing the
corresponding x̄i. Assume for notational ease that these unexpressed xi are
indexed by {x

1

, ..., xn�k}. Define Ai to be the event that we insert xi into
the tree with our mutation operation, and define Bi to be the event that xi is
inserted before the corresponding x̄i. Given this, we can write out pk as follows.

pk =
n�kX

i=1

Pr(Ai)Pr(Bi|Ai)

With a single operation, the probability of choosing to insert a particular xi is
1

6n , since we choose to insert with probability 1

3

and select the variable uniformly

7
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MAJORITY 

•  Imitate semantics of multiple statements 
•  Output depends on the number of leaves in an in-order 

parse of a program tree 

 

Example:	
  X	
  

• If substitute, replace a randomly chosen leaf of
X � with a new leaf u ⌅ L selected uniformly at
random.

• If insert, randomly choose a node v in X � and
select u ⌅ L uniformly at random. Replace v with
a join node whose children are u and v, with the
order of the children chosen randomly.

• If delete, randomly choose a leaf node v of X �,
with parent p and sibling u. Replace p with u and
delete p and v.

4. If f(X �) ⇤ f(X), set X := X �.

5. Go to 2.

(1+1) GP* di�ers from (1+1) GP by accepting only solu-
tion that are strict improvements (see Algorithm 2).

Algorithm 2 (Acceptance for (1+1) GP*).

4’. If f(X �) > f(X), set X := X �.

For each of (1+1) GP and (1+1) GP* we consider two
further variants which di�er in using one application of HVL-
Prime (“single”) or in using more than one (“multi”). For
(1+1) GP-single and (1+1) GP*-single, we set k = 1, so that
we perform one mutation at a time according to the HVL-
Prime framework. For (1+1) GP-multi and (1+1) GP*-multi,
we choose k = 1+Pois(1), so that the number of mutations at
a time varies randomly according to the Poisson distribution.
We will analyze these four algorithms in terms of the

expected number of fitness evaluations to produce an opti-
mal solution for the first time. This is called the expected
optimization time of the algorithm.

2.4 The ORDER problem
We consider two separable problems called ORDER and

MAJORITY that have an independent, additive fitness struc-
ture. They both have multiple solutions, which we feel is
a key property of a model GP problem because it holds
generally for all real GP problems. They also both use the
same primitive set, where x̄i is the complement of xi:

• F := {J}, J has arity 2.

• L := {x1, x̄1, . . . , xn, x̄n}

ORDER represents problems where the primitive sets in-
clude conditional functions, which gives rise to conditional
execution paths. GP classification problems, for example,
often employ a numerical comparison function (e.g. greater
than X, less than X, or equal to X). This sort of function has
two arguments (subtrees), one branch which will be executed
only when the comparison returns true, the other only when
it returns false [5]. Thus, a conditional function results in a
branching or conditional execution path, so the GP algorithm
must identify and appropriately position the conditional func-
tions to achieve the correct conditional execution behavior
for all inputs.
ORDER is an abstracted simplification of this challenge:

the conditional execution paths of a program are determined
by tree inspection rather than execution. Instead of evalu-
ating a condition test and then executing the appropriate
condition body explicitly, an ORDER program’s conditional

execution path is determined by simply inspecting whether
a primitive or its complement occurs first in an in-order
leaf parse. Correct programs for the ORDER problem must
express each positive primitive xi before its corresponding
complement x̄i. This correctness requirement is intended to
reflect a property commonly found in the GP solutions to
problems where conditional functions are used: there exist
multiple solutions, each with a set of di�erent conditional
paths.

Algorithm 3 (f(X) for ORDER).

1. Derive conditional execution path P of X:

Init: l an empty leaf list, P an empty conditional exe-
cution path

1.1 Parse X inorder and insert each leaf at the rear
of l as it is visited.

1.2 Generate P by parsing l front to rear and adding
(“expressing”) a leaf to P only if it or its com-
plement are not yet in P (i.e. have not yet been
expressed).

2. f(X) = |{xi ⌅ P}|.

For example, for a tree X, with (after the inorder parse) l =
(x1, x̄4, x2, x̄1, x3, x̄6), P = (x1, x̄4, x2, x3, x̄6) and f(X) = 3
because x1, x2, x3 ⌅ P .

2.5 The MAJORITY problem
MAJORITY is a GP equivalent of the GA OneMax prob-

lem [3]. MAJORITY reflects a general (and thus weak)
property required of GP solutions: a solution must have
correct functionality and no incorrect functionality. Like
ORDER, MAJORITY is a simplification that uses tree in-
spection rather than program execution. A correct program
in MAJORITY must exhibit at least as many occurrences
of a primitive as of its complement and it must exhibit all
the positive primitives of its terminal (leaf) set. Both the
independent sub-solution fitness structure and inspection
property of MAJORITY are necessary to make our analysis
tractable.

Algorithm 4 (f(X) for MAJORITY).

1. Derive the combined execution statements S of X:

Init: l an empty leaf list, S is an empty statement list.

1.1 Parse X inorder and insert each leaf at the rear
of l as it is visited.

1.2 For i ⇥ n: if count(xi ⌅ l) ⇤ count(x̄i ⌅ l) and
count(xi ⌅ l) ⇤ 1, add xi to S

2. f(X) = |S|.

For example, for a tree X, with (after the inorder parse) l =
(x1, x̄4, x2, x̄1, x̄3, x̄6, x1, x4), S = (x1, x2, x4) and f(X) = 3.

3. ANALYSIS FOR ORDER
Here we present bounds for ORDER on the number of

runtime evaluations needed in the execution of (1+1) GP
and (1+1) GP*.
We will analyze this GP problem using fitness-based par-

titions [2]. This requires us to compute the probability of
improving the fitness from k to k + 1 for each value of k

positive primitives of its terminal (leaf) set. Both the independent sub-solution
fitness structure and inspection property of MAJORITY are necessary to make
our analysis tractable.

Algorithm 4 (f(X) for MAJORITY).

1. Derive the combined execution statements S of X:

Init: l an empty leaf list, S is an empty statement list.

1.1 Parse X inorder and insert each leaf at the rear of l as it is visited.
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2. f(X) = |S|.

For example, for a tree X, with (after the inorder parse) l = (x1, x̄4, x2, x̄1, x̄3, x̄6, x1, x4),
S = (x1, x2, x4) and f(X) = 3.

3 Analysis for ORDER

Here we present bounds for ORDER on the number of runtime evaluations
needed in the execution of (1+1) GP and (1+1) GP*.

We will analyze this GP problem using fitness-based partitions [2]. This
requires us to compute the probability of improving the fitness from k to k + 1
for each value of k between 0 and n� 1, inclusive. Although our HVL-Mutate⇥

operator is complex, we can obtain a lower bound on the probability of making
an improvement by considering fitness improvements that arise from insertions.
This is described in the following lemma.

Lemma 1. Define pk to be the probability that we perform an insertion that
improves the fitness value of the GP tree from k to k + 1. For the single- and
multi-operation variants of (1+1) GP and (1+1) GP* applied to the ORDER
problem,

pk = �

�
(n� k)2

nmax{T, n}

⇥

where n is the number of variables and T is the number of leaves in the GP tree
at the particular iteration.

Proof. When the fitness value is k, it must be the case that k di⇥erent xi appear
before their corresponding x̄i. To improve the fitness, we must insert one of the
n � k unexpressed xi as a leaf that will be visited before a leaf containing the
corresponding x̄i. Assume for notational ease that these unexpressed xi are
indexed by {x1, ..., xn�k}. Define Ai to be the event that we insert xi into
the tree with our mutation operation, and define Bi to be the event that xi is
inserted before the corresponding x̄i. Given this, we can write out pk as follows.

pk =
n�k⇤

i=1

Pr(Ai)Pr(Bi|Ai)
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Analysis for MAJORITY: 
Observation: 
•  Plateaus in the search space. 
•  Inserts are uniform. 
•  Probability for deletion of a certain type of 

variable depends on its fraction in the current 
tree. 

•  Enables to use random walk arguments. 
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Can not move on plateau: 
•  (1+1) GP*-single expected optimization time is infinite 
•  (1+1) GP*-multi expected optimization time is 

exponential. 

(1+1) GP-single 
•  Worst case bound:  
•  Average case for uniform initialization:  

case, so unless k can be bounded at a constant, we will have an expected runtime
that is superpolynomial.

5 Summary and Discussion

Table 1 aggregates our expected optimization time results for all algorithm
variants and each problem.

ORDER
(1+1) GP (1+1) GP*

single O(nT
max

) w.c. † O(n2) w.c.
multi O(nT

max

) w.c. † O(nT
max

) w.c. †

MAJORITY
(1+1) GP (1+1) GP*

single O(n2T
max

log n) w.c. † ⌦(1) a.c.
O(nT

max

log n) a.c.

multi ? ⌦
⇣�

n
2e

�n
2

⌘
w.c.

Table 1: Results of the computational complexity analysis for our sample prob-
lem. We use w.c. to denote a worst-case bound and a.c. to denote an average-case
bound. The daggers indicate where we conjecture that better bounds exist.

From the perspective of a GP practitioner, the insights provided by this
rigorous analysis may be more valuable than the complexity results themselves.
In 5.1 we discuss how our treatment sheds light upon the important but sub-
tle interactions between a problem, the acceptance criterion, and the genetic
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2.4 The SORTING Problem

Given a set of n elements from a totally ordered set, sorting is the problem of
ordering these elements. We will identify the given elements by 1, . . . , n.

The goal is to find a permutation �opt of 1, . . . , n such that

�opt(1) < �opt(2) < . . . < �opt(n)

holds, where < is the order on the totally ordered set. W. l. o. g. we assume
�opt = id, i. e. �opt(i) = i for all i, throughout this paper.

The set of all permutations � of 1, . . . , n forms a search space that has already
been investigated in [12] for the analysis of permutation-based evolutionary
algorithms. The authors of this paper, investigate sorting as an optimization
problem whose goal is to maximize the sortedness of a given permutation. The
following fitness functions measuring the sortedness of a given permutation �
have been analyzed in [12] .

• INV (�), measuring the number of pairs in correct order,1 which is the
number of pairs (i, j), 1 ⇤ i < j ⇤ n, such that �(i) < �(j),

• HAM(�), measuring the number of elements at correct position, which is
the number indices i such that �(i) = i,

• RUN(�), measuring the number of maximal sorted blocks, which is the
number of indices i such that �(i+ 1) < �(i) plus one,

• LAS(�), measuring the length of the longest ascending subsequence, which
is the largest k such that �(i1) < . . . < �(ik) for some i1 < . . . < ik,

• EXC(�), measuring the minimal number of pairwise exchanges in �, in
order to sort the sequence.

Note that EXC(�) can be computed in linear time, based on the cycle
structure of permutations. If the sequence is sorted, it has n cycles. Otherwise,
it is always possible to increase the number of cycles by exchanging an element
that is not sitting at its correct position with the element that is currently sitting
there. For any given permutation � consisting of n� k cycles, EXC(�) = k.

We want to investigate sorting in the context of genetic programming. Note,
that the fitness functions encounter several interactions between the elements of
the permutation. Initial investigations on the computational complexity anal-
ysis of genetic programming considered isolated problem semantics [3] and an
important step is to investigate what happens if dependencies are involved.
Therefore, the sorting problem modeled as an optimization problem seems to
be ideal to get further rigorous insight into the optimization behavior of genetic
programming.

Considering tree-based genetic programming, we have to deal with the fact
that certain elements are not present in a current tree. We extend our notation

1Originally, INV measures the numbers of pairs in wrong order. Our interpretation has
the advantage that we need no special treatment of incompletely defined permutations.
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We proceed as follows. Section 2 introduces the problem
and the algorithms that are subject to our analysis. We
point out how the difference in the quality of solutions can
be observed by random sampling in Section 3. These in-
sights are used in Sections 4 and 5 to analyze the compu-
tational complexity for learning exact functions as well as
good approximations. Finally, we finish with some conclud-
ing remarks.

2. PROBLEM AND ALGORITHMS
We want to study simple genetic programming models in

the PAC learning framework. In contrast to simple evo-
lutionary algorithms whose computational complexity has
been studied, we have to deal with two sources of random-
ness. The first source is due to the algorithm itself which is
based on random decisions. The second source of random-
ness is due to the PAC learning framework which returns the
quality of a potential solution based on random sampling.

Our goal is to learn a linear function on bit strings x ∈
{0, 1}n

fOPT(x) =
n
∑

i=1

wixi

where wi ∈ {−1, 1}, 1 ≤ i ≤ n.
We call this the identification problem and investigate a

simple genetic programming algorithm that starts with a
(random) function f and evolves it over time. Given a dis-
tribution D over the inputs of the target function fOPT, the
goal is to obtain a function f that outputs function values
similar to those returned by fOPT on random inputs from D.
In this paper, we assume D to be the uniform distribution
over {0, 1}n and measure the quality of a solution f by the
expected error |fOPT(x)− f(x)| of a random bit string x. In
the ideal case, we would like to get f = fOPT but this is not
always possible and not required for our model of learning.

We do not have direct access to the expected error of a
given function f . Instead, we approximate the quality of
f (depending on the target function fOPT and the given
distribution D) by sampling a multi-set of points S from D
and then adding up relative errors of the x ∈ S with respect
to fOPT. Formally, we let the error of f with respect to
fOPT on a single bit string x ∈ {0, 1}n be

ex(f, fOPT) = |f(x)− fOPT(x)|,

and the error of f with respect to fOPT on a set S ⊆ {0, 1}n
be

eS(f, fOPT) =
∑

x∈S

ex(f, fOPT).

We denote by |S| the sample size that is used in each itera-
tion of the algorithm. Of course, the sample size is of major
importance: on the one hand, it needs to be high enough
for the algorithm to be able to distinguish the quality of
different search points; on the other hand, it should be low
for the efficiency of practical implementations. A crucial
point of our analysis below is to show that a low polynomial
number of samples suffices in our setting.

Note that, depending on the given distribution, elements
might occur in S more than once. However, if we consider
the uniform distribution in our analysis and assume that
the sample size is always small compared to the size of the
sample space, this is very unlikely.

Algorithm 1: Linear GP for learning functions.

1 input Black-box target function fOPT ;
2 input Sample size z;
3 initialization Uniformly at random choose an initial

function f =
∑n

i=1 wixi;
4 repeat
5 Choose i ∈ [n] uniformly at random;
6 Obtain f ′ from f by flipping the ith weight;
7 Sample a set S ⊆ {0, 1}n of size z;
8 if eS(f

′, fOPT) ≤ eS(f, fOPT) then f ← f ′

9 until forever ;

We consider a simple linear GP algorithm [5] called Lin-
ear GP (see Algorithm 1) which is similar to the evolution-
ary algorithm analyzed by Valiant for the optimization of
monotone conjunctions [15]. Note that it does not work
with a tree structure as the tree-based genetic programming
approach analyzed by Durrett et al. [2]. We are rather in-
terested in how the right coefficients can be learned for the
given class of functions.

Our algorithm starts with a randomly chosen function f
and generates, in each iteration, a new function f ′ by flip-
ping exactly one weight. Flipping a weight wi means that
wi is replaced by −(wi), i. e. +1 turns into −1 and −1 turns
into +1. The new function f ′ replaces f if it has a smaller
error according to the error function eS.

Our goal is to analyze the expected number of iterations
until Linear GP has produced, for the first time, a solution
f that makes with probability 1 − ε an error of at most δ
when choosing an element x ∈ {0, 1}n according to D. For
exact learning, we set δ = 0 and ε = 0 and call the expected
number of iterations to achieve a solution to this the expected
learning time of the algorithm.

3. PROPERTIESOFUNIFORMSAMPLING
As pointed out previously, we consider sampling from {0, 1}n

according to the uniform distribution. To analyze the progress
that our algorithm can make on the considered problem, we
have to figure out how it can distinguish between the quality
of solutions. Note that the fitness of a solution is not deter-
ministic but itself a random variable that is determined by
the set of samples that is chosen in each iteration.

We start with a lemma that will be important for our anal-
ysis. For all n, we denote with Sn and S′

n two independent
random variables which are both the sum of n independent
Bernoulli trials with success probability 1/2.

The following lemma analyzes, for different values of k,
the probability that Sn+k, the number of successes in n+ k
trials, is larger than S′

n, the number of successes in n trials.

Lemma 1. Let k, n ≥ 0 and pn = 1
2

(

2n
n

)

2−2n. Then

P (Sn+k > S′

n) =
1
2
+

k−1
∑

i=0

(

2n+ i
n

)

2−2n−i−1 − pn.

Note that pn is exactly the i = 0 term of the sum, and
that (by Stirling’s formula) we have

pn = (1 + o(1))
c√
n

for an appropriate constant c.

We proceed as follows. Section 2 introduces the problem
and the algorithms that are subject to our analysis. We
point out how the difference in the quality of solutions can
be observed by random sampling in Section 3. These in-
sights are used in Sections 4 and 5 to analyze the compu-
tational complexity for learning exact functions as well as
good approximations. Finally, we finish with some conclud-
ing remarks.
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P (Sn+k > S′

n) =
1
2
+

k−1
∑

i=0

(

2n+ i
n

)

2−2n−i−1 − pn.

Note that pn is exactly the i = 0 term of the sum, and
that (by Stirling’s formula) we have

pn = (1 + o(1))
c√
n

for an appropriate constant c.

We proceed as follows. Section 2 introduces the problem
and the algorithms that are subject to our analysis. We
point out how the difference in the quality of solutions can
be observed by random sampling in Section 3. These in-
sights are used in Sections 4 and 5 to analyze the compu-
tational complexity for learning exact functions as well as
good approximations. Finally, we finish with some conclud-
ing remarks.

2. PROBLEM AND ALGORITHMS
We want to study simple genetic programming models in

the PAC learning framework. In contrast to simple evo-
lutionary algorithms whose computational complexity has
been studied, we have to deal with two sources of random-
ness. The first source is due to the algorithm itself which is
based on random decisions. The second source of random-
ness is due to the PAC learning framework which returns the
quality of a potential solution based on random sampling.

Our goal is to learn a linear function on bit strings x ∈
{0, 1}n

fOPT(x) =
n
∑

i=1

wixi

where wi ∈ {−1, 1}, 1 ≤ i ≤ n.
We call this the identification problem and investigate a

simple genetic programming algorithm that starts with a
(random) function f and evolves it over time. Given a dis-
tribution D over the inputs of the target function fOPT, the
goal is to obtain a function f that outputs function values
similar to those returned by fOPT on random inputs from D.
In this paper, we assume D to be the uniform distribution
over {0, 1}n and measure the quality of a solution f by the
expected error |fOPT(x)− f(x)| of a random bit string x. In
the ideal case, we would like to get f = fOPT but this is not
always possible and not required for our model of learning.

We do not have direct access to the expected error of a
given function f . Instead, we approximate the quality of
f (depending on the target function fOPT and the given
distribution D) by sampling a multi-set of points S from D
and then adding up relative errors of the x ∈ S with respect
to fOPT. Formally, we let the error of f with respect to
fOPT on a single bit string x ∈ {0, 1}n be

ex(f, fOPT) = |f(x)− fOPT(x)|,

and the error of f with respect to fOPT on a set S ⊆ {0, 1}n
be

eS(f, fOPT) =
∑

x∈S

ex(f, fOPT).

We denote by |S| the sample size that is used in each itera-
tion of the algorithm. Of course, the sample size is of major
importance: on the one hand, it needs to be high enough
for the algorithm to be able to distinguish the quality of
different search points; on the other hand, it should be low
for the efficiency of practical implementations. A crucial
point of our analysis below is to show that a low polynomial
number of samples suffices in our setting.

Note that, depending on the given distribution, elements
might occur in S more than once. However, if we consider
the uniform distribution in our analysis and assume that
the sample size is always small compared to the size of the
sample space, this is very unlikely.

Algorithm 1: Linear GP for learning functions.

1 input Black-box target function fOPT ;
2 input Sample size z;
3 initialization Uniformly at random choose an initial

function f =
∑n

i=1 wixi;
4 repeat
5 Choose i ∈ [n] uniformly at random;
6 Obtain f ′ from f by flipping the ith weight;
7 Sample a set S ⊆ {0, 1}n of size z;
8 if eS(f

′, fOPT) ≤ eS(f, fOPT) then f ← f ′

9 until forever ;

We consider a simple linear GP algorithm [5] called Lin-
ear GP (see Algorithm 1) which is similar to the evolution-
ary algorithm analyzed by Valiant for the optimization of
monotone conjunctions [15]. Note that it does not work
with a tree structure as the tree-based genetic programming
approach analyzed by Durrett et al. [2]. We are rather in-
terested in how the right coefficients can be learned for the
given class of functions.

Our algorithm starts with a randomly chosen function f
and generates, in each iteration, a new function f ′ by flip-
ping exactly one weight. Flipping a weight wi means that
wi is replaced by −(wi), i. e. +1 turns into −1 and −1 turns
into +1. The new function f ′ replaces f if it has a smaller
error according to the error function eS.

Our goal is to analyze the expected number of iterations
until Linear GP has produced, for the first time, a solution
f that makes with probability 1 − ε an error of at most δ
when choosing an element x ∈ {0, 1}n according to D. For
exact learning, we set δ = 0 and ε = 0 and call the expected
number of iterations to achieve a solution to this the expected
learning time of the algorithm.

3. PROPERTIESOFUNIFORMSAMPLING
As pointed out previously, we consider sampling from {0, 1}n

according to the uniform distribution. To analyze the progress
that our algorithm can make on the considered problem, we
have to figure out how it can distinguish between the quality
of solutions. Note that the fitness of a solution is not deter-
ministic but itself a random variable that is determined by
the set of samples that is chosen in each iteration.

We start with a lemma that will be important for our anal-
ysis. For all n, we denote with Sn and S′

n two independent
random variables which are both the sum of n independent
Bernoulli trials with success probability 1/2.

The following lemma analyzes, for different values of k,
the probability that Sn+k, the number of successes in n+ k
trials, is larger than S′

n, the number of successes in n trials.

Lemma 1. Let k, n ≥ 0 and pn = 1
2

(

2n
n

)

2−2n. Then

P (Sn+k > S′

n) =
1
2
+

k−1
∑

i=0

(

2n+ i
n

)

2−2n−i−1 − pn.

Note that pn is exactly the i = 0 term of the sum, and
that (by Stirling’s formula) we have

pn = (1 + o(1))
c√
n

for an appropriate constant c.
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We proceed as follows. Section 2 introduces the problem
and the algorithms that are subject to our analysis. We
point out how the difference in the quality of solutions can
be observed by random sampling in Section 3. These in-
sights are used in Sections 4 and 5 to analyze the compu-
tational complexity for learning exact functions as well as
good approximations. Finally, we finish with some conclud-
ing remarks.

2. PROBLEM AND ALGORITHMS
We want to study simple genetic programming models in

the PAC learning framework. In contrast to simple evo-
lutionary algorithms whose computational complexity has
been studied, we have to deal with two sources of random-
ness. The first source is due to the algorithm itself which is
based on random decisions. The second source of random-
ness is due to the PAC learning framework which returns the
quality of a potential solution based on random sampling.

Our goal is to learn a linear function on bit strings x ∈
{0, 1}n

fOPT(x) =
n
∑

i=1

wixi

where wi ∈ {−1, 1}, 1 ≤ i ≤ n.
We call this the identification problem and investigate a

simple genetic programming algorithm that starts with a
(random) function f and evolves it over time. Given a dis-
tribution D over the inputs of the target function fOPT, the
goal is to obtain a function f that outputs function values
similar to those returned by fOPT on random inputs from D.
In this paper, we assume D to be the uniform distribution
over {0, 1}n and measure the quality of a solution f by the
expected error |fOPT(x)− f(x)| of a random bit string x. In
the ideal case, we would like to get f = fOPT but this is not
always possible and not required for our model of learning.

We do not have direct access to the expected error of a
given function f . Instead, we approximate the quality of
f (depending on the target function fOPT and the given
distribution D) by sampling a multi-set of points S from D
and then adding up relative errors of the x ∈ S with respect
to fOPT. Formally, we let the error of f with respect to
fOPT on a single bit string x ∈ {0, 1}n be

ex(f, fOPT) = |f(x)− fOPT(x)|,

and the error of f with respect to fOPT on a set S ⊆ {0, 1}n
be

eS(f, fOPT) =
∑

x∈S

ex(f, fOPT).

We denote by |S| the sample size that is used in each itera-
tion of the algorithm. Of course, the sample size is of major
importance: on the one hand, it needs to be high enough
for the algorithm to be able to distinguish the quality of
different search points; on the other hand, it should be low
for the efficiency of practical implementations. A crucial
point of our analysis below is to show that a low polynomial
number of samples suffices in our setting.

Note that, depending on the given distribution, elements
might occur in S more than once. However, if we consider
the uniform distribution in our analysis and assume that
the sample size is always small compared to the size of the
sample space, this is very unlikely.

Algorithm 1: Linear GP for learning functions.

1 input Black-box target function fOPT ;
2 input Sample size z;
3 initialization Uniformly at random choose an initial

function f =
∑n

i=1 wixi;
4 repeat
5 Choose i ∈ [n] uniformly at random;
6 Obtain f ′ from f by flipping the ith weight;
7 Sample a set S ⊆ {0, 1}n of size z;
8 if eS(f

′, fOPT) ≤ eS(f, fOPT) then f ← f ′

9 until forever ;

We consider a simple linear GP algorithm [5] called Lin-
ear GP (see Algorithm 1) which is similar to the evolution-
ary algorithm analyzed by Valiant for the optimization of
monotone conjunctions [15]. Note that it does not work
with a tree structure as the tree-based genetic programming
approach analyzed by Durrett et al. [2]. We are rather in-
terested in how the right coefficients can be learned for the
given class of functions.

Our algorithm starts with a randomly chosen function f
and generates, in each iteration, a new function f ′ by flip-
ping exactly one weight. Flipping a weight wi means that
wi is replaced by −(wi), i. e. +1 turns into −1 and −1 turns
into +1. The new function f ′ replaces f if it has a smaller
error according to the error function eS.

Our goal is to analyze the expected number of iterations
until Linear GP has produced, for the first time, a solution
f that makes with probability 1 − ε an error of at most δ
when choosing an element x ∈ {0, 1}n according to D. For
exact learning, we set δ = 0 and ε = 0 and call the expected
number of iterations to achieve a solution to this the expected
learning time of the algorithm.

3. PROPERTIESOFUNIFORMSAMPLING
As pointed out previously, we consider sampling from {0, 1}n

according to the uniform distribution. To analyze the progress
that our algorithm can make on the considered problem, we
have to figure out how it can distinguish between the quality
of solutions. Note that the fitness of a solution is not deter-
ministic but itself a random variable that is determined by
the set of samples that is chosen in each iteration.

We start with a lemma that will be important for our anal-
ysis. For all n, we denote with Sn and S′

n two independent
random variables which are both the sum of n independent
Bernoulli trials with success probability 1/2.

The following lemma analyzes, for different values of k,
the probability that Sn+k, the number of successes in n+ k
trials, is larger than S′

n, the number of successes in n trials.

Lemma 1. Let k, n ≥ 0 and pn = 1
2

(

2n
n

)

2−2n. Then

P (Sn+k > S′

n) =
1
2
+

k−1
∑

i=0

(

2n+ i
n

)

2−2n−i−1 − pn.

Note that pn is exactly the i = 0 term of the sum, and
that (by Stirling’s formula) we have

pn = (1 + o(1))
c√
n

for an appropriate constant c.
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f ′ (shift) condition
a-b r < s
b-a r > s
c-d r < s
d-c r > s

Table 2: Impact of possible shifts.

d(f) = d(f ′). We then call f ′ an a-b-shift (intuitively,
one bit position is shifted from region a to region b).

• a(f) = a(f ′) + 1, b(f) = b(f ′) − 1, c(f) = c(f ′) and
d(f) = d(f ′). We then call f ′ a b-a-shift.

• a(f) = a(f ′), b(f) = b(f ′), c(f) = c(f ′)−1 and d(f) =
d(f ′) + 1. We then call f ′ a c-d-shift.

• a(f) = a(f ′), b(f) = b(f ′), c(f) = c(f ′)+1 and d(f) =
d(f ′)− 1. We then call f ′ a d-c-shift.

It is easy to see that these cases cover all possibilities, as
fOPT does not change. Note that b-a-shifts and c-d-shifts
are desirable, while their opposities are not.

Let x ∈ {0, 1}n be a random bitstring sampled by the al-
gorithm. In order to analyze the drift towards fOPT, we con-
sider the difference in error E = ex(f, fOPT)− ex(f

′, fOPT)
of f and f ′ depending on x. If E is nonnegative, then we
prefer f ′ over f , given the sample x. Clearly, if x has a 0
at the bit position where f and f ′ differ, then E = 0. This
happens with probability 1/2. Otherwise, i.e., if x has a 1 at
the bit position where f and f ′ differ, we have E ∈ {−2,+2}
as follows.

Suppose x has r many 1s at the bit positions of b(f)
and s many 1s in the bit positions of c(f). Then we have
ex(f, fOPT) = |2r − 2s|, as the two different types of errors
that can be observed cancel each other out. We distinguish
the following cases.

• Suppose f ′ is an a-b-shift. Then ex(f ′, fOPT) = |2(r+
1) − 2s|. Thus we have E = +2 if r < s, and E = −2
otherwise.

• Suppose f ′ is a b-a-shift. Then ex(f
′, fOPT) = |2(r −

1) − 2s|. Thus we have E = +2 if r > s, and E = +2
otherwise.

• Suppose f ′ is a c-d-shift. Then ex(f
′, fOPT) = |2r −

2(s− 1)|. Thus we have E = +2 if r < s, and E = −2
otherwise.

• Suppose f ′ is a d-c-shift. Then ex(f
′, fOPT) = |2r −

2(s+ 1)|. Thus we have E = +2 if r > s, and E = +2
otherwise.

The necessary conditions for accepting possible shifts, de-
pending on x having a 1 where f and f ′ differ, are summa-
rized in Table 2.

Thus in all four cases we have to analyze the probability
of sampling an x with strictly more (strictly less) 1s in the
b(f) region than in the c(f) region, conditional on x having
a 1 where f and f ′ differ. If the position where f and f ′

differ is in the a- or d-region of f , this conditioning has no
effect; however, if it is in the b- or c-region, it guarantees us
a 1 where we would have a random coin toss otherwise. In
view of this and using that the number of 1s on a given set

f ′ (shift) P (E = +2|xi = 1)
a-b Sb(f) < S′

c(f)

b-a Sb(f)−1 ≥ S′

c(f)

c-d Sb(f) ≤ S′

c(f)−1

d-c Sb(f) > S′

c(f)

Table 3: Overview of Distributions for the Error
Terms

of k bits in a random bit string is distributed as Sk, we get
Table 3 showing the corresponding conditional probabilities
for E = +2. (Note that Sb(f)−1 ≥ S′

c(f) is equivalent to
1 + Sb(f)−1 > S′

c(f).)
We are now able to bound the runtime of the algorithm.

Recall that we have to deal with the fact that the fitness
values are random variables. We will do so as described in
Section 3. Recalling that pn is Θ(1/

√
n), we see that the

number of samples required is only z = O((pn)
−2 log n) =

O(n log n).

Theorem 3. If |S| ≥ c0n log(n), c0 a large enough con-
stant, the expected learning time of Linear GP is O(n2).

Proof. To prove the theorem, we consider a typical run
of the algorithm. We show that the algorithm will find the
function fOPT with probability at least α, where α is a con-
stant, within Cn2 generations, C a constant, independently
of the starting point of the algorithm. If we have not found
fOPT after this number of iterations, we view this as a restart
of the algorithm (with the current value of f as the new
starting value). As the expected number of such restarts is
at most α−1, i.e. constant, this suffices to guarantee an ex-
pected number of generations of O(n2) until fOPT is found.

We analyze the optimization time of Linear GP in two
phases, and upper bound the probabilities that undesired
events happen during the phases. The first phase ends as
soon as, for the current solution f , |b(f) − c(f)| ≤ 1. We
will see that this condition will never be violated once es-
tablished (with high probability; recall our assumption that
the bias is correctly identified in every iteration of Linear
GP from Section 3).

Phase 1: We consider a phase of c1n log n, where c1 an
appropriate constant, steps and show that this phase is suc-
cessful with probability α1 = 1− o(1/n).

Without loss of generality, assume b(f) ≥ c(f) + 2. We
show that, under the assumption that the bias is always cor-
rectly identified, the potential |b(f) − c(f)| never increases,
and decreases with probability at least |b(f) − c(f)|/n. By
a standard coupon-collector argument, this implies that the
first phase will finish in O(n log n) iterations with high prob-
ability.

We use Lemma 1 and Table 3 to get the following proba-
bilities for E = +2 for the different shifts f ′, given a sample
x.

f ′ (shift) P (E = +2|xi = 1)
a-b ≤ 1/2− pn
b-a ≥ 1/2 + pn
c-d ≤ 1/2 − pn/2
d-c ≥ 1/2 + pn/2

Thus, the undesired events consisting of a-b- and c-d- shifts
have a negative bias of at least pn/2 and are therefore never

accepted, while the desired b-a-shifts have a positive bias of
at least pn/2 and are always accepted. Furthermore, a b-a-
shift occurs with probability b(f)/n ≥ |b(f)−c(f)|/n, which
shows that our potential |b(f) − c(f)| is decreased with at
least the claimed probability. This completes our argument
for Phase 1.

We now show that once a function f with |b(f)−c(f)| ≤ 1
is reached, the condition |b(f) − c(f)| ≤ 1 also holds for all
subsequent generations. Clearly, if b(f) = c(f), no shift f ′

will have |b(f ′) − c(f ′)| > 1. Thus, without loss of gen-
erality, assume c(f) = b(f) + 1. The only shift f ′ with
|b(f ′)− c(f ′)| > 1 is an a-b-shift. According to Table 3, this
shift has a negative bias of at least pn/2 and is therefore not
accepted.

Phase 2: For Phase 2, we consider a phase of c2n
2 steps,

where c2 an appropriate constant, and show that this phase
is successful with probability α2 = Ω(1). For b(f) = c(f),
we get the following table of transition probabilities.

f ′ (shift) P (E = +2|xi = 1)
a-b ≤ 1/2− pn
b-a = 1/2
c-d = 1/2
d-c ≤ 1/2− pn

We get a b-a- or c-d-shift with probability (b(f) + c(f))/n,
and accept such a shift with probability 1/2 (and reject the
other possible shifts).

Without loss of generality, we focus on the case b(f) =
c(f) + 1, for which we get the following table of transition
probabilities.

f ′ (shift) P (E = +2|xi = 1)
a-b ≤ 1/2− pn
b-a ≥ 1/2 + pn
c-d ≤ 1/2− pn/2
d-c = 1/2

We get (and accept) a b-a-shift with probability b(f)/n.
Taking these two tables together, we see that, when b(f) =

c(f), neither b(f) nor c(f) can increase, and both can de-
crease. However, such a decrease might be reversed later:
If we start with a c-d-shift, then a d-c-shift has probability
1/2. However, a b-a-shift would also be accepted (since then
b(f) > c(f)), leading to b(f) = c(f) again (but both one
lower than at the start of the argument). As such a b-a-shift
has a probability ≥ b(f)/n, we will only repeat the initial
c-d-shift about n/b(f) times (in expectation) until we de-
creased both b(f) and c(f). As such a c-d-shift itself only
occurs about every n/b(f)-th generation, we obtain that in
total we have to wait an expected number of Θ((n/b(f))2)
steps to decrease b(f) = c(f) by 1.

Thus, Phase 2 is done after an expected number of ≤
∑n

i=1
n2

i2
= O(n2) many steps. Using Markov’s inequality

this phase is successful within c2n2 steps, c2 an appropriate
constant, with probability α2 = Ω(1).

Both phases are successful with probability α = α1 ·α2 =
Ω(1) which implies that the expected learning time is upper
bounded by

α−1 · (c1n log n+ c2n
2) = O(n2).

5. APPROXIMATIONS
The results presented so far gave bounds on the expected

time until the optimum is found. However, by taking a closer
look at the above analysis of the optimization behavior of
Linear GP, we also see that Linear GP exhibits a good ap-
proximation behavior in asymptotically less time than what
is needed for exact identification.

Theorem 4. If |S| ≥ c0n log(n), c0 a large enough con-
stant, the expected number of generations until the best-so-
far function found by Linear GP has an expected error ≤ δ
is O(n log n+ n2/δ2).

In particular, we can find a function with expected error
at most

√

n/ log(n) in time O(n log n).

Proof. We use the notation of the proof of Theorem 3.
Note that a function f with b(f) = c(f) =: t has expected
error 2E[Sb(f) − S′

c(f)] = O(
√
t). Thus we have an approxi-

mation as desired if we find a function f with b(f) = c(f) =
O(δ2).

As we saw in the proof of Theorem 3, a time of O(n log n)
suffices to find a function f with |b(f)− c(f)| ≤ 1.

For Phase 2, we are now interested in the potential %(b(f)+
c(f))/2&. As we have seen in the proof of Theorem 3, this po-
tential never increases (with high probability), and decreases
with probability Ω((b(f)/n)2). Thus by a coupon-collector
type argument, the expected time until the potential falls be-

low δ2 is O(
∑n

i=δ2
n2

i2
) = O(n2/δ2). This proves the claimed

bound on the number of generations until an approximation
as desired is found.

Note that Theorem 4 holds for all choices of fOPT. How-
ever, for many choices of fOPT, we get better time bounds
for the expected time until a good approximation is reached.

Theorem 5. Suppose fOPT has a linear number of weights
1 and −1 each. If |S| ≥ c0n log(n), c0 a large enough con-
stant, the expected number of generations until the best-so-
far function found by Linear GP has an expected error ≤ δ
is O(n+ n2/δ2).

Proof. We use the notation of proof of Theorem 3. The
first phase of the Linear GP finishes as soon as, for the
current best solution f , |b(f)−c(f)| ≤ 1. From the condition
on fOPT we get initial values for b(f) and c(f) linear in
n. As the smaller of two does not decrease during Phase 1
(see proof of Theorem 3), Linear GP will (in expectation)
lower the potential |b(f) − c(f)| by a constant. Thus, after
time linear in n, Phase 1 will be over. The initialization or
Phase 1 fails with a sufficiently small probability, such that
the result follows in that case from Theorem 4. Otherwise,
the remainder of the analysis is as in the proof of Theorem 4
and gives the desired bound.

The other extreme case for fOPT compared with Theo-
rem 5 is when only constantly many weights are +1 (or −1).
In this case we also get a fast optimization behavior.

Theorem 6. Suppose fOPT has either constantly many
weights 1 or constantly many weights −1. If |S| ≥ c0n log(n),
c0 a large enough constant, the expected number of genera-
tions until the best-so-far function found by Linear GP has
an expected error O(1) is O(n log n).

Proof. We use the notation of proof of Theorem 3. We
have seen that Phase 1 ends after O(n log n) steps. From
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Future work / next steps: 
•  More complex functions 
•  Multi-Objective approach. 
•  Impact of populations and crossover 
•  Get input from GP practitioners about the 

next steps. 


