Computational Complexity Analysis
of Genetic Programming

Frank Neumann
School of Computer Science
University of Adelaide

Joint work with Greg Durrett (UC Berkeley), Una-May
O’Reilly (MIT), Markus Wagner (Uni Adelaide), Timo
Kétzing (MPI), Reto Spdhel (MPI)

Life Impact

Introduction

There are many

* successful application
e experimental studies
of Genetic Programming.

We want to
e arguein arigorous way about GP algorithms and
e contribute to their theoretical understanding

This is also important for the acceptance of our
algorithms outside our community.

Life Impact | The University of Adelaide
Frank Neumann

Classical Optimization

Classical algorithm analysis has a large focus on
runtime and approximation behavior of
algorithms.

Our key questions:

* Which optimization problems can provably be
solved by (simple) EAs in polynomial time?

 Which functions can provably be learned by
(simple) GP systems in polynomial time?

Life Impact | The University of Adelaide
Frank Neumann

Theory of Evolutionary Computing

Solid Foundation of Evolutionary Computing:

* Understand how and why such algorithms
work.

* Algorithms make use of random decisions.
* Treat them as randomized algorithmes.

* Consider their expected runtime and/or
success probability.

1 Life Impact | The University of Adelaide
Frank Neumann

Computational Complexity Analysis

Black Box Scenario:

e Measure the runtime T by the number of fitness
evaluations.

 Consider time to reach
— An optimal solution.
— A good approximation.

Analyze:
* Expected number of fitness evaluation.
e Success probability after a fixed number of t steps.

5 Life Impact | The University of Adelaide
Frank Neumann

Current Status

Computational Complexity Analysis of evolutionary
computing

« EAs for discrete combinatorial optimization (lots of
results)

« Evolutionary Multi-Objective Optimization (many results)
* Ant Colony Optimization (some results)

« EAs for continuous optimization (initial results)

« Particle Swarm Optimization (initial results)

Goal: Rigorous insights into the working
principles of GP using this approach!

Life Impact | The University of Adelaide
Neumann, Frank

Methods

Huge set of methods for the analysis is available:

* Fitness-based partitions

 Expected distance decrease

* Coupon Collector's Theorem

 Markov, Chebyshev, Chernoff, Hoeffding bounds

* Markov chain theory: waiting times, first hitting times
* Rapidly Mixing Markov Chains

e Random Walks: Gambler's Ruin, drift analysis,
martingale theory

* |dentifying typical events and failure events
* Potential functions

Life Impact | The University of Adelaide
Frank Neumann

Genetic Programming (GP):

* High complex GP variants address challenging
problems for example in symbolic regression.

« Currently, seems to be impossible to analyze
these complex variants on complex problems.

This talk:

* Analyze (still relevant) versions of GP.

» Give some initial computational complexity results
 Discuss topics for future work

3 Life Impact | The University of Adelaide
Neumann, Frank

Genetic Programming

* Type of evolutionary algorithm

* Evolves tree structures for a given problem

e Often used to learn a function

* Consider simple mutation-based genetic

programming algorithms

Frank Neumann

Life Impact

Substitution

Substitution

Life Impact | The University of Adelaide
Frank Neumann

Insertion

Chosen node

Life Impact | The University of Adelaide
Frank Neumann

Frank Neumann

Deletion

Life Impact | The University of Adelaide

Simple GP Algorithm
Algorithm 1 ((1+1) GP).

1. Choose an initial solution X.

2. Set X' :=X.

3. Mutate X' by applying HVL-Mutate' k times. For each application, ran-
domly choose to either substitute, insert, or delete.

Substitute ® If substitute, replace a randomly chosen leaf of X' with a new leaf
u € L selected uniformly at random.

e [f insert, randomly choose a node v in X' and select u € L uniformly
at random. Replace v with a join node whose children are u and v,
with the order of the children chosen randomly.

Insert

Delete o If delete, randomly choose a leaf node v of X', with parent p and
sibling uw. Replace p with uw and delete p and v.

4. If f(X') > f(X), set X := X',

5. Go to 2.
. Algorithms:
k=1 called (1+1) GP-single

k-1 according to Pois(1) called (1+1) GP-multi

13 Life Impact | The University of Adelaide
Neumann, Frank

Rejecting Neutral Moves

Algorithm 2 (Acceptance for (14+1) GP*).
47 If f(X7) > f(X), set X := X'.

Life Impact | The University of Adelaide
Frank Neumann

ORDER and MAJORITY

Life Impact | The University of Adelaide
Frank Neumann

Simple Functions

ORDER and MAJORITY (Goldberg/O’ Reilly 1998)

o F:={J}, J has arity 2.

o L = {mlyfly"'7mn7£§n}

Properties of functions
« Separable
« Admit multiple solutions

16 Life Impact | The University of Adelaide
Neumann, Frank

ORDER

« Imitate semantics of a conditional execution path

« Output depends on the order of leaves in an in-order
parse of a program tree

1. Deriwe conditional execution path P of X:

Init: | an empty leaf list, P an empty conditional exe-
cution path

1.1 Parse X inorder and insert each leaf at the rear
of | as it 1s visited.

1.2 Generate P by parsing | front to rear and adding
(“expressing”) a leaf to P only if it or its com-
plement are not yet in P (i.e. have not yet been
expressed).

2. f(X) = {zi € P}|.

Example:X | = (1, T4, X2, X1, T3, Tg), P = (v1,T4, 72,23, %) and f(X) =3

Life Impact | The University of Adelaide

17 Neumann, Frank

Analysis for ORDER:
« Use fitness-based partitions

« Let current fitness be k and current tree size T then
probability for an improvement is

pe =14 <n$a;{]:;’),2n})

« Summing up waiting times, the expected optimization
time is upper bounded by O(nT,,)

18 Life Impact | The University of Adelaide

Neumann, Frank

MAJORITY

* Imitate semantics of multiple statements

* Output depends on the number of leaves in an in-order
parse of a program tree
1. Derive the combined execution statements S of X:

Init: | an empty leaf list, S is an empty statement list.

1.1 Parse X wnorder and insert each leaf at the rear
of | as it is visited.

1.2 For i < n: if count(x; € 1) > count(x; € 1) and
count(z; € 1) > 1, add x; to S

2. f(X) = |5].

Example:X [= ($17j47$27j17£37j67$17'x4)7 S — (5131,332,:134) and f(X) — 3

19 Life Impact | The University of Adelaide
Neumann, Frank

Analysis for MAJORITY:
Observation:

* Plateaus in the search space.
* |nserts are uniform.

* Probability for deletion of a certain type of
variable depends on its fraction in the current

tree.
* Enables to use random walk arguments.

20 Life Impact | The University of Adelaide
Neumann, Frank

Can not move on plateau:
* (1+1) GP*-single expected optimization time is infinite

« (1+1) GP*-multi expected optimization time is
exponential.

(1+1) GP-single
« Worst case bound: O(HQTmaX log n)
. Average case for uniform initialization: O(nTmax logn)

Life Impact | The University of Adelaide

21 Neumann, Frank

Results for ORDER and MAJORITY

ORDER
(1+1) GP (111) GP*
single O(nTmax) w.c. t O(n?*) w.c.
multi O(nTmax) w.c. t O(nTmax) w.c. t

MAJORITY
(1+1) GP (1+1) GP*
single | O(n*Tax logn) w.c. { (0c0) a.c.
O(nTnax logn) a.c.
multi ? () ((2%)%) W.cC.

Techniques: Fitness-based partitions (ORDER),
Random walks and general coupon collector arguments (MAJORITY).

Life Impact | The University of Adelaide
Frank Neumann

Sorting

Life Impact | The University of Adelaide
Frank Neumann

Dependent variables - Sorting

Order and Majority are in some sense easy as the
variables can be optimized independently.

What about dependent variables?

 We considered the sorting problem (first

combinatorial opitmization problem analyzed for
EASs).

* Many measures of sortedness work provably well for
permutation based EAs (Scharnow, Tinnefeld,
Wegener (2002))

Life Impact | The University of Adelaide
Frank Neumann

Measures of Sortedness

e INV(7), measuring the number of pairs in correct order,! which is the
number of pairs (7,7), 1 <i < j <mn, such that 7(i) < 7(j),

e HAM/(m), measuring the number of elements at correct position, which is
the number indices ¢ such that 7 (¢) = 4,

e RUN(m), measuring the number of maximal sorted blocks, which is the
number of indices 7 such that w(7 + 1) < 7(7) plus one,

e L AS(7), measuring the length of the longest ascending subsequence, which
is the largest k£ such that m(i1) < ... < w(i) for some i1 < ... < i,

e FX(C(7m), measuring the minimal number of pairwise exchanges in , in
order to sort the sequence.

Scharnow, Tinnefeld, Wegener (2002): Polynomial upper
bounds for all functions except RUN.

Life Impact | The University of Adelaide
Frank Neumann

GP and Sorting

Algorithms:

* Tree-based approach as for ORDER.

* Inorder Parse leads to (incomplete) permutation.
* Consider the different fitness measures

Results:

 GP approach has much more difficulties as variables
can block each other.

* Local optima where many variables have to be
changed/deleted.

* Worst case running time increases for most measures
from polynomial to exponential.

Life Impact | The University of Adelaide
Frank Neumann

PAC Learning

Life Impact | The University of Adelaide
Frank Neumann

PAC Learning and GP

Recently some papers appeared that study the learnability of
evolutionary algorithms in the probably approximately correct
(PAC) learning framework.

(series of papers of Valiant and Feldman)

Papers seem to be interesting for GP as GP is about learning
functions.

Problem: They use mutation operators that are very powerful
(only restriction that computation runs in polynomial time)

Question: Can we get results for simple (more
realistic) mutation operators?

Life Impact | The University of Adelaide
Frank Neumann

Our task: Learn a function fort(z szxz

where w; € {-1,1}, 1 <i <n.

Error of a function f with respect to a sample x is
ex(f, fort) = |f(x) — forr(z)|,

Error of a function f with respect to a sample set S is
es(f, forr) = > ex(f, for).

xeS

Goal: Find a function f that minimizes the error
(in the best case obtain f)

Life Impact | The University of Adelaide
Frank Neumann

Algorithm for Learning

Algorithm 1: Linear GP for learning functions.

e

input Black-box target function fopr ;

input Sample size z;

initialization Uniformly at random choose an initial
function f =" | wix;;

repeat

Choose i € [n] uniformly at random;

Obtain f’ from f by flipping the ith weight;
Sample a set S C {0,1}" of size z;

if es(f’, fort) < es(f, fopr) then f « f
until forever;

LN

© 00O O

Samples are chosen according to uniform distribution

Life Impact | The University of Adelaide
Frank Neumann

Results

Exact Learning:

THEOREM 3. If |S| > conlog(n), co a large enough con-
stant, the expected learning time of Linear GP is O(n?).

Approximative Learning:

THEOREM 4. If |S| > conlog(n), co a large enough con-
stant, the expected number of generations until the best-so-
far function found by Linear GP has an expected error < ¢

is O(nlogn + n?/6%).

Life Impact | The University of Adelaide
Frank Neumann

Future work / next steps:

* More complex functions

* Multi-Objective approach.

* Impact of populations and crossover

» Get input from GP practitioners about the
next steps.

32 Life Impact | The University of Adelaide
Neumann, Frank

