
Life Impact | The University of Adelaide 

Fixed-­‐Parameter	
  
Evolu2onary	
  Algorithms	
  

Frank	
  Neumann	
  
School	
  of	
  Computer	
  Science	
  

University	
  of	
  Adelaide	
  

Joint	
  work	
  with	
  Stefan	
  Kratsch	
  (U	
  Utrecht),	
  Per	
  Kris2an	
  Lehre	
  
(DTU	
  Informa2cs),	
  Pietro	
  S.	
  Oliveto	
  (U	
  Birmingham)	
  



Life Impact | The University of Adelaide 

Computational Complexity of Evolutionary 
Algorithms 



Life Impact | The University of Adelaide 
Frank	
  Neumann	
  17	
  

Theory	
  of	
  Evolu2onary	
  Algorithms	
  

•  Evolu2onary	
  algorithms	
  are	
  successful	
  for	
  many	
  
complex	
  op2miza2on	
  problems.	
  

•  Rely	
  on	
  random	
  decisions	
  ⇒	
  randomized	
  
algorithms	
  

•  Goal:	
  Understand	
  how	
  and	
  why	
  they	
  work	
  

•  Study	
  the	
  computa2onal	
  complexity	
  of	
  these	
  
algorithms	
  on	
  prominent	
  examples	
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Run2me	
  Analysis	
  

Black	
  Box	
  Scenario:	
  
•  Measure	
  the	
  run2me	
  T	
  by	
  the	
  number	
  of	
  fitness	
  
evalua2ons.	
  

•  Studies	
  consider	
  2me	
  in	
  dependence	
  of	
  the	
  input	
  
to	
  reach	
  
– An	
  op2mal	
  solu2on.	
  
– A	
  good	
  approxima2on.	
  

	
  
Interest:	
  
•  Expected	
  number	
  of	
  fitness	
  evalua2ons	
  E[T].	
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Combinatorial	
  Op2miza2on	
  
Analysis	
  of	
  run2me	
  and	
  approxima2on	
  quality	
  on	
  
combinatorial	
  op2miza2on	
  problems,	
  e.	
  g.,	
  
•  sor2ng	
  problems	
  	
  
•  shortest	
  path	
  problems,	
  
•  subsequence	
  problems,	
  
•  vertex	
  cover,	
  
•  Eulerian	
  cycles,	
  
•  minimum	
  (mul2)-­‐cuts,	
  
•  minimum	
  spanning	
  trees,	
  
•  maximum	
  matchings,	
  
•  par22on	
  problem,	
  
•  set	
  cover	
  problem,	
  
•  .	
  .	
  .	
  
	
  

Understand	
  the	
  behavior	
  of	
  bio-­‐inspired	
  computa2on	
  on	
  “natural”	
  examples	
  

Book	
  available	
  at	
  	
  
www.bioinspiredcomputa2on.com	
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Fixed	
  Parameter	
  Evolu2onary	
  
Algorithms	
  

•  What	
  makes	
  a	
  problem	
  hard	
  for	
  an	
  EA?	
  

•  Consider	
  an	
  addi2onal	
  parameter	
  k	
  to	
  measure	
  
“hardness”	
  of	
  an	
  instance	
  	
  

•  Fixed	
  parameter	
  algorithm	
  runs	
  in	
  2me	
  O(f(k)	
  poly(n))	
  

•  Fixed	
  parameter	
  evolu2onary	
  algorithm	
  runs	
  	
  
	
  in	
  expected	
  2me	
  O(f(k)	
  poly(n))	
  

	
  
•  Consider	
  maximum	
  leaf	
  spanning	
  trees	
  and	
  minimum	
  
vertex	
  covers	
  as	
  ini2al	
  examples	
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The Problem 

The Maximum Leaf Spanning Tree Problem: 
Given an undirected connected graph G=(V,E). 

Find a spanning tree with a maximum number of leaves. 
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The Problem 

The Maximum Leaf Spanning Tree Problem: 
Given an undirected connected graph G=(V,E). 

Find a spanning tree with a maximum number of leaves. 

NP-hard, different classical FPT-studies 
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We consider two simple evolutionary algorithms which di�er by the choice of
the mutation operator. Both algorithms start with an arbitrary spanning tree T
of G. We denote by m the number of edges in G, and ⌥(T ) the number of leaves
of the spanning tree T . A new solution is only accepted if it is a spanning tree
whose number of leaves is at least as high as the number of leaves in the current
solution. The first algorithm can be described as follows.

Algorithm 1 (Generic (1+1) EA)
1. Choose a spanning tree of T uniformly at random.
2. Produce T � by swapping each edge of T independently with probability 1/m.
3. If T � is a tree and ⌥(T �) ⇥ ⌥(T ), set T := T �.
4. Go to 2.

Swapping an edge in step 2. of Algorithm 1 means that if an edge is present in
T then it is not contained in T � with probability 1/m. On the other hand, if an
edge is not present in T then it is contained in T � with probability 1/m. An edge
does not change from T to T � with probability 1�1/m in each mutation step in-
dependently of the other edges. Note, that the mutation operator of Algorithm 1
does not necessarily create an o�spring that is a tree. If the o�spring is not a
tree then this individual is discarded as it represents an infeasible solution.

Often it is assumed that choosing a mutation operator that is more tailored to
the problem gives a significant speed up. The second algorithm uses a problem-
specific mutation operator that ensures valid solutions, i. e. spanning trees.

Algorithm 2 (Tree-Based (1+1) EA)
1. Choose an arbitrary spanning tree T of G.
2. Choose S according to a Poisson distribution with parameter � = 1 and per-

form sequentially S random edge-exchange operations to obtain a spanning
tree T �. A random exchange operation applied to a spanning tree T̃ chooses
an edge e ⇤ E \ T̃ uniformly at random. The edge e is inserted and one
randomly chosen edge of the cycle in T̃ ⌅ {e} is deleted.

3. If ⌥(T �) ⇥ ⌥(T ), set T := T �.
4. Go to 2.

Our goal is to point out the di�erences between the two algorithms. To do this,
we compare the expected number of iterations that our algorithms need to com-
pute an optimal solution. The expected number of iterations needed to obtain an
optimal solution is called the expected optimization time, and is the commonly
used performance measure in the rigorous runtime analysis of evolutionary algo-
rithms. We will show that choosing the more problem-specific mutation operator
of Algorithm 2 makes the di�erence between a fixed-parameter evolutionary algo-
rithm and an evolutionary algorithm that does not compute an optimal solution
within expected FPT-time.

We consider two simple evolutionary algorithms which di�er by the choice of
the mutation operator. Both algorithms start with an arbitrary spanning tree T
of G. We denote by m the number of edges in G, and ⌥(T ) the number of leaves
of the spanning tree T . A new solution is only accepted if it is a spanning tree
whose number of leaves is at least as high as the number of leaves in the current
solution. The first algorithm can be described as follows.

Algorithm 1 (Generic (1+1) EA)
1. Choose a spanning tree of T uniformly at random.
2. Produce T � by swapping each edge of T independently with probability 1/m.
3. If T � is a tree and ⌥(T �) ⇥ ⌥(T ), set T := T �.
4. Go to 2.

Swapping an edge in step 2. of Algorithm 1 means that if an edge is present in
T then it is not contained in T � with probability 1/m. On the other hand, if an
edge is not present in T then it is contained in T � with probability 1/m. An edge
does not change from T to T � with probability 1�1/m in each mutation step in-
dependently of the other edges. Note, that the mutation operator of Algorithm 1
does not necessarily create an o�spring that is a tree. If the o�spring is not a
tree then this individual is discarded as it represents an infeasible solution.

Often it is assumed that choosing a mutation operator that is more tailored to
the problem gives a significant speed up. The second algorithm uses a problem-
specific mutation operator that ensures valid solutions, i. e. spanning trees.

Algorithm 2 (Tree-Based (1+1) EA)
1. Choose an arbitrary spanning tree T of G.
2. Choose S according to a Poisson distribution with parameter � = 1 and per-

form sequentially S random edge-exchange operations to obtain a spanning
tree T �. A random exchange operation applied to a spanning tree T̃ chooses
an edge e ⇤ E \ T̃ uniformly at random. The edge e is inserted and one
randomly chosen edge of the cycle in T̃ ⌅ {e} is deleted.

3. If ⌥(T �) ⇥ ⌥(T ), set T := T �.
4. Go to 2.

Our goal is to point out the di�erences between the two algorithms. To do this,
we compare the expected number of iterations that our algorithms need to com-
pute an optimal solution. The expected number of iterations needed to obtain an
optimal solution is called the expected optimization time, and is the commonly
used performance measure in the rigorous runtime analysis of evolutionary algo-
rithms. We will show that choosing the more problem-specific mutation operator
of Algorithm 2 makes the di�erence between a fixed-parameter evolutionary algo-
rithm and an evolutionary algorithm that does not compute an optimal solution
within expected FPT-time.

Does	
  the	
  muta2on	
  operator	
  make	
  the	
  difference	
  between	
  
FPT	
  and	
  non-­‐FPT	
  run2me?	
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Fig. 1. Local optimum shown with dashed edges, global optimum with dotted edges,
shared edges are drawn solid.

3 Local Optima and Lower Bounds

The aim of this section is to point out structures of the problem that make it hard
for our algorithms to achieve an improvement. We discuss the presence of local
optima and present a graph that consists of a local optimum which has a large
distance (in terms of the number of edge exchanges) from the global optimum.
Using this observation, we show lower bounds on the expected optimization time
for the two algorithms under consideration.

Our graph called Gloc (see Figure 1) contains two components consisting of r
vertices each. In component i, 1 ⇥ i ⇥ 2, two vertices ui and vi are connected to
all the other vertices in that component. The vertex ui is connected to vertex x
which lies outside the component. Similarly vertex vi is connected to vertex y. In
addition, x and y share an edge. The graph is completed by attaching a path of
n�2r�2 vertices to the vertex x. A tree has to contain all the edges of the path
attached to x. For a given component, the maximal number of possible leaves
is at most r � 1. This can be obtained by attaching all nodes of the component
either to ui or vi.

The graph contains a local optimum Tlopt which consists of all edges attached
to the vertices vi, 1 ⇥ i ⇥ 2, the edge {x, y} and all path edges. The global
optimum Topt consists of all edges attached to the vertices ui, 1 ⇥ i ⇥ 2, the
edge {x, y} and all path edges. Compared to Tlopt, Topt has an extra leaf, namely
the vertex y. However, Tlopt and Topt di�er by 4(r�1) edges which make it hard
for the algorithms under consideration to obtain Topt if Tlopt has been produced
before.

Our goal is to study the expected optimization time of the algorithms intro-
duced in the previous section in dependence of the number of leaves which, in
turn, depends on r. To do this, we first consider the number of di�erent spanning
trees of Gloc in dependence of r.

Lemma 1. The number of spanning trees of Gloc is at most 24r.
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Proof. A spanning tree has to contain all edges of the path attached to x. The
path attached to x consists of n�2r�2 edges. A spanning tree contains exactly
n⇥ = n� 1� (n� 2r � 2) = 2r + 1 non-path edges.

We count the total number of non-path edges in Gloc. Consider a component
consisting of r edges. The number of edges within such a component is 2r � 3
as ui and vi are connected to all other vertices and share an edge. In addition
there are two edges connecting each component to the outer part. Hence, the
total number of edges connected to vertices of a single component is 2r � 1. In
addition, there is the edge connecting x and y.

Summing up, the graph consists of m⇥ = 2(2r � 1) + 1 = 4r � 1 non-path
edges. The number of di�erent spanning trees is therefore at most

⇧
m⇥

n⇥

⌃
=

⇧
4r � 1

2r + 1

⌃
⇤ 24r.

⌃⇧

Using the previous lemma, we show the following lower bound on the ex-
pected optimization time of Generic (1+1) EA on Gloc.

Theorem 1. The expected optimization time of Generic (1+1) EA on Gloc is

lower bounded by
�
m
c

⇥2(r�2)
where c is an appropriate constant.

Proof. The number of spanning trees of Gloc is at most 24r. Therefore, the initial
spanning tree is Tlopt with probability at least 2�4r. This spanning tree is a local
optimum with 2(r�1)+2 leaves. In order to obtain a di�erent spanning tree with
at least as many leaves, r � 1 leaves have to be achieved in each component, or
at least r� 1 leaves have to be obtained in one component and y has to become
a leaf. Hence, in order to achieve an accepted solution that is di�erent from Tlopt

all (r � 2) nodes of at least one component i have to be assigned to ui instead
of vi. This implies that at least 2(r� 2) edges for a fixed component have to be
swapped to escape from the local optimum. There are two components where
this can happen which implies that the probability for such a step is at most

2
�

1
m

⇥2(r�2)
. The expected waiting time for such a step is at least 1

2 · m2(r�2).
Altogether the expected optimization time is lower bounded by

2�4r · 1
2
·m2(r�2) ⌅

⇤m
c

⌅2(r�2)
,

where c is an appropriate constant. ⌃⇧

Using the previous ideas, we can also lower bound the expected optimization
time of Tree-Based (1+1) EA on Gloc.

Theorem 2. The expected optimization time of Tree-Based (1+1) EA on Gloc

is lower bounded by ( r�2
c )r�2 where c is an appropriate constant.

Proof. A spanning tree has to contain all edges of the path attached to x. The
path attached to x consists of n�2r�2 edges. A spanning tree contains exactly
n⇥ = n� 1� (n� 2r � 2) = 2r + 1 non-path edges.

We count the total number of non-path edges in Gloc. Consider a component
consisting of r edges. The number of edges within such a component is 2r � 3
as ui and vi are connected to all other vertices and share an edge. In addition
there are two edges connecting each component to the outer part. Hence, the
total number of edges connected to vertices of a single component is 2r � 1. In
addition, there is the edge connecting x and y.

Summing up, the graph consists of m⇥ = 2(2r � 1) + 1 = 4r � 1 non-path
edges. The number of di�erent spanning trees is therefore at most

⇧
m⇥

n⇥

⌃
=

⇧
4r � 1

2r + 1

⌃
⇤ 24r.

⌃⇧

Using the previous lemma, we show the following lower bound on the ex-
pected optimization time of Generic (1+1) EA on Gloc.

Theorem 1. The expected optimization time of Generic (1+1) EA on Gloc is

lower bounded by
�
m
c

⇥2(r�2)
where c is an appropriate constant.

Proof. The number of spanning trees of Gloc is at most 24r. Therefore, the initial
spanning tree is Tlopt with probability at least 2�4r. This spanning tree is a local
optimum with 2(r�1)+2 leaves. In order to obtain a di�erent spanning tree with
at least as many leaves, r � 1 leaves have to be achieved in each component, or
at least r� 1 leaves have to be obtained in one component and y has to become
a leaf. Hence, in order to achieve an accepted solution that is di�erent from Tlopt

all (r � 2) nodes of at least one component i have to be assigned to ui instead
of vi. This implies that at least 2(r� 2) edges for a fixed component have to be
swapped to escape from the local optimum. There are two components where
this can happen which implies that the probability for such a step is at most

2
�

1
m

⇥2(r�2)
. The expected waiting time for such a step is at least 1

2 · m2(r�2).
Altogether the expected optimization time is lower bounded by

2�4r · 1
2
·m2(r�2) ⌅

⇤m
c

⌅2(r�2)
,

where c is an appropriate constant. ⌃⇧

Using the previous ideas, we can also lower bound the expected optimization
time of Tree-Based (1+1) EA on Gloc.

Theorem 2. The expected optimization time of Tree-Based (1+1) EA on Gloc

is lower bounded by ( r�2
c )r�2 where c is an appropriate constant.

Idea	
  for	
  lower	
  bounds:	
  

Both	
  algorithms	
  may	
  get	
  stuck	
  in	
  local	
  op2mum.	
  
	
  
For	
  the	
  Generic	
  (1+1)	
  EA	
  it	
  is	
  less	
  likely	
  to	
  escape	
  local	
  
op2mum	
  as	
  it	
  oben	
  flips	
  edges	
  on	
  the	
  path.	
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Proof. We follow the ideas of the previous theorem. With probability at least
2�4r, Tlopt is chosen as the initial spanning tree. In order to produce from Tlopt

the optimal solution Topt, (r � 2) exchange operations have to be carried out in
a single mutation step. According to the Poisson distribution with � = 1, the
probability that this happens in the next step is

1

e(r � 2)!
⌅ 1⇤

2⇥(r � 2)
er�3(r � 2)�(r�2) ⌅ er�3(r � 2)�(r�2).

Altogether the expected optimization time is lower bounded by

2�4r · e�r+3(r � 2)(r�2) ⇧
�
r � 2

c

⇥r�2

,

where c is an appropriate constant. ⌥⌃

To show that both algorithms need not only in expectation that many steps,
but also with a high probability the graph can be modified such that it consists
of more than two components attached to x and y. Then a typical run can be
investigated to show that at least two components end up in the local optimum.

4 FPT of Edge Exchanges

In this section we prove that Algorithm 2 is an FPT algorithm for the maximum
leaf spanning tree problem with respect to the maximal number of leaves k.
Given that the maximal-leaf spanning tree has k leaves, in the following lemma
we derive upper bounds in dependence of k on the number of edges and on the
number of nodes of degree at least three that the graph may contain. These
bounds will allow us to prove the main result of this section presented in Theo-
rem 3.

The lemma is proven using an approach similar (but greatly simplified) to the
one used in [3]; our focus here is on giving a self-contained presentation su⇥cient
for obtaining the claimed expected runtime. Note also, that kernelization results,
such as [3], almost always require a modification of the problem instance while
we are interested in bounding the original instance.

Lemma 2. Any connected graph G on n nodes and with a maximum number
of k leaves in any spanning tree has at most n+5k2�7k edges and at most 10k�14
nodes of degree at least three.

Proof. Let G be a graph on n nodes and let T be a spanning tree of G with (the
maximum number of) k leaves. We let P0 denote the set of all leaves and all
nodes of degree at least three in T . (We denote the degree of node x within the
tree T by degT (x).) Furthermore, let P ⇤ P0 denote the set of all nodes that are
within distance of at most two of any node of P0 (distance and degree w.r.t. T ).
We let Q denote the set of remaining nodes.

Proof	
  idea:	
  
•  Let	
  T	
  be	
  a	
  maximum	
  leaf	
  spanning	
  tree	
  with	
  k	
  leaves.	
  
•  Let	
  P0	
  be	
  the	
  set	
  of	
  all	
  leaves	
  and	
  all	
  nodes	
  of	
  degree	
  at	
  

least	
  three	
  in	
  T.	
  
•  Let	
  P	
  be	
  the	
  set	
  of	
  nodes	
  that	
  are	
  of	
  distance	
  at	
  most	
  2	
  	
  

(w.	
  r.	
  t.	
  to	
  T)	
  to	
  any	
  node	
  in	
  P0	
  and	
  let	
  Q	
  be	
  the	
  set	
  of	
  
remaining	
  nodes.	
  	
  

•  Show:	
  all	
  nodes	
  of	
  Q	
  have	
  degree	
  2	
  in	
  G.	
  
•  Implies:	
  Number	
  of	
  nodes	
  in	
  P	
  is	
  at	
  most	
  10k-­‐14	
  
•  No	
  node	
  has	
  degree	
  greater	
  than	
  k	
  which	
  implies	
  bound	
  

on	
  the	
  number	
  of	
  edges.	
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than k leaves. Thus we get the claimed upper bound on the number m of edges:

m ⇤ 1

2
(k|P |+ 2|Q|) = k

2
|P |+ |Q| ⇤ 5k2 � 7k + n.

This completes the proof. ↵⌦

Now we are ready to prove the main result. Since a spanning tree always has
n�1 edges, from Lemma 2 there are at most 5k2 edges to choose from at each step
and at most all of them need to be replaced to reach the optimal spanning tree.
The proof of the following theorem first shows that the probability of increasing
the number of leaves by one in the current (non-optimal) spanning tree only
decreases with the fixed parameter k. The proof is concluded by showing that
the probability of exchanging all the 5k2 edges in one mutation step also depends
only on k leading to the claimed runtime.

Theorem 3. If the maximal number of leaf nodes in any spanning tree of G is
k, then Algorithm 2 finds an optimal solution in expected time O(215k

2 log k).

Proof. Let n⇥3 be the number of nodes with degree at least three. We call an edge
distinguished if it is incident on a node of degree at least 3, and non-distinguished
otherwise. By applying Lemma 2, the number of distinguished edges on any cycle
is at most 2n⇥3 ⇤ 20k� 28, since there are at most n⇥3 nodes of degree at least
3 on the cycle, and each node is incident with at most two edges of the cycle.

We first bound the probability of reducing the distance to an optimal span-
ning tree by 1. Let E� ⇥ E be the optimal spanning tree that is closest to the
current spanning tree, and let e be any edge in E� that is not yet in the current
spanning tree. By Lemma 2, the number of edges in the graph ism ⇤ n+5k2�7k.
So the probability that edge e is introduced in an edge exchange operation is
at least 1/(m � (n � 1)) ⌅ 1/5k2. Introducing edge e creates a cycle. Consider
first the case when the cycle consists only of distinguished edges. The length of
such a cycle is no more than 20k � 28, and the probability of removing one of
the edges that is not in the optimal spanning tree is at least 1/20k. In the case
where the cycle contains non-distinguished edges, we claim that it su⇥ces to
remove any non-distinguished edge e⇤ from the cycle. The claim obviously holds
when the chosen edge e⇤ is not in the optimal spanning tree, so assume that
edge e⇤ is in the optimal spanning tree. A bridge edge in a connected graph is
any edge e such that the subgraph on the edges E \ {e} is disconnected. Edge
e⇤ connects two components T1 and T2 in E�, and cannot be a bridge edge be-
cause then the edge could not have been part of a cycle. Since edge e connects
T1 and T2, the cycle must contain at least one other edge e⇤⇤ that connects T1

and T2, and this edge is not part of the optimal spanning tree E�. However, the
spanning tree (E� \ {e⇤}) ⇧ {e⇤⇤} must also be optimal, because adding edge e⇤⇤

decreases the number of leaf nodes by at most 2, and removing edge e⇤ increases
the number of leaf nodes by exactly 2. Hence, adding edge e and removing edge
e⇤ reduces the distance to an optimal spanning tree by 1. Let  be the number
of non-distinguished edges on the cycle. No cycle contains more than 20k � 28
distinguished edges, so the probability of removing a non-distinguished edge is

Proof	
  Idea:	
  
•  We	
  call	
  an	
  edge	
  dis2nguished	
  if	
  it	
  is	
  adjacent	
  to	
  at	
  least	
  one	
  

node	
  of	
  degree	
  at	
  least	
  3	
  in	
  G.	
  
•  Number	
  of	
  dis2nguished	
  edges	
  on	
  any	
  cycle	
  is	
  at	
  most	
  

20k-­‐28.	
  
•  Total	
  number	
  of	
  edges	
  in	
  G:	
  m	
  <=	
  n+5k2–7k	
  
•  Probability	
  to	
  introduce	
  a	
  specific	
  non-­‐chosen	
  dis2nguished	
  

edge	
  is	
  at	
  least	
  
•  Show:	
  Length	
  of	
  created	
  cycle	
  is	
  at	
  most	
  20k.	
  
•  Probability	
  to	
  remove	
  edge	
  of	
  the	
  cycle	
  that	
  does	
  not	
  belong	
  

to	
  op2mal	
  solu2on	
  is	
  at	
  least	
  	
  

than k leaves. Thus we get the claimed upper bound on the number m of edges:

m ⇤ 1

2
(k|P |+ 2|Q|) = k

2
|P |+ |Q| ⇤ 5k2 � 7k + n.

This completes the proof. ↵⌦

Now we are ready to prove the main result. Since a spanning tree always has
n�1 edges, from Lemma 2 there are at most 5k2 edges to choose from at each step
and at most all of them need to be replaced to reach the optimal spanning tree.
The proof of the following theorem first shows that the probability of increasing
the number of leaves by one in the current (non-optimal) spanning tree only
decreases with the fixed parameter k. The proof is concluded by showing that
the probability of exchanging all the 5k2 edges in one mutation step also depends
only on k leading to the claimed runtime.

Theorem 3. If the maximal number of leaf nodes in any spanning tree of G is
k, then Algorithm 2 finds an optimal solution in expected time O(215k

2 log k).

Proof. Let n⇥3 be the number of nodes with degree at least three. We call an edge
distinguished if it is incident on a node of degree at least 3, and non-distinguished
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global optimum by 1 is therefore at least 1/(20k · 5k2).

The number of edges r that must be inserted in the spanning tree is no more
than m� (n�1) ⇤ 5k2. The edges can be inserted in any order. The probability
that in Step 2 of the algorithm, we choose to do S = r operations is 1/er!. So,
the probability that in one step, we decide to do r edge exchange operations in
any of the r! orders, and each of the edge exchanges decreases the Hamming
distance to an optimal spanning tree is at least
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which implies that the expected number of steps to find an optimal spanning
tree is at most O(215k

2 log k). ⌃⇧

Conclusions

The parameterized complexity analysis of evolutionary algorithms is a promising
research direction that is likely to become an important part in the theoretical
analysis of evolutionary computation during the next years. An advantage in
comparison to classical worst-case considerations is that this kind of analysis
gives characterizations of what di⇤cult instances for a specific algorithm look
like in relation to some parameter of the problem. Evolutionary algorithms have
produced very good results for di�erent kind of NP-hard spanning tree problems.
In this paper, we have studied evolutionary algorithms for the NP-hard maxi-
mum leaf spanning tree problem in the context of parameterized complexity. In
our case the parameter is the size of the global optimum. Our investigations show
that there may be local optima where the size of an inferior neighborhood grows
with the number of leaves in optimal solutions. Investigations of two common
mutation operators point out that a more problem-specific operator makes the
di�erence between a fixed parameter evolutionary algorithm for the maximum
leaf problem and an algorithm that does not have this property.
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The Minimum Vertex Cover Problem 



Life Impact | The University of Adelaide 

The Problem 

The Vertex Cover Problem: 
Given an undirected graph G=(V,E). 

Find a minimum subset of vertices such that each edge is covered at least once. 
NP-hard, several 2-approximation algorithms. 

Simple	
  single-­‐objec2ve	
  evolu2onary	
  algorithms	
  fail!!!	
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The Problem 

The Vertex Cover Problem: 
Given an undirected graph G=(V,E). 

Decision problem:  
Is there a set of vertices of size at most k covering all edges? 

Our parameter: Value of an optimal solution (OPT) 

min
Pn

i=1 xi

s.t. xi + xj � 1 ⇤ {i, j} ⇥ E

xi ⇥ {0, 1}

min
Pn

i=1 xi

s.t. xi + xj � 1 ⇤ {i, j} ⇥ E

xi ⇥ [0, 1]

Integer	
  Linear	
  Program	
  (ILP)	
  

Linear	
  Program	
  (LP)	
  



Life Impact | The University of Adelaide 

Evolutionary Algorithm 

Representation: Bitstrings of length n Minimize fitness function: 

Neumann, Frank 32

Evolutionary Algorithm

  

  

  

     

!"#$"%"&'(')*&+,-)'%'$)&.% */,0"&.'1,&

  

2)&)3)4",/)'&"%%,/5&6')*&+

  

       

   

    

   

   

     

Neumann, Frank 32

Evolutionary Algorithm

  

  

  

     

!"#$"%"&'(')*&+,-)'%'$)&.% */,0"&.'1,&

  

2)&)3)4",/)'&"%%,/5&6')*&+

  

       

   

    

   

   

     

Neumann, Frank 32

Evolutionary Algorithm

  

  

  

     

!"#$"%"&'(')*&+,-)'%'$)&.% */,0"&.'1,&

  

2)&)3)4",/)'&"%%,/5&6')*&+

  

       

   

    

   

   

     

Neumann, Frank 32

Evolutionary Algorithm

  

  

  

     

!"#$"%"&'(')*&+,-)'%'$)&.% */,0"&.'1,&

  

2)&)3)4",/)'&"%%,/5&6')*&+

  

       

   

    

   

   

     



Life Impact | The University of Adelaide 

Evolutionary Algorithm 

Neumann, Frank 33

Evolutionary Algorithm

!"#$%&'(')#*$#+,-(')#*./

      

          
   







0,1)2,$&*)3#-%45$('$-(*2#%$"6)16$#+,-('#-$'#$&.,$)*$*,7'$)',-(')#*







Neumann, Frank 33

Evolutionary Algorithm

!"#$%&'(')#*$#+,-(')#*./

      

          
   







0,1)2,$&*)3#-%45$('$-(*2#%$"6)16$#+,-('#-$'#$&.,$)*$*,7'$)',-(')#*









Life Impact | The University of Adelaide 

Keep trade-offs of the two criteria 

Multi-Objective Approach: 
Treat the different objectives in the same way 
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Empty set included  
in the population 
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What can we say about these solutions? 

Kernelization in expected polynomial time 

Optimal solution 

Expected time g(OPT)* poly(n) 
Fixed parameter evolutionary algorithm 

• Subset of a minimum vertex cover 
• G(x) has maximum degree at most OPT 
• G(x) has at most OPT + OPT2   
  non-isolated vertices  
 

(log n)-approximation (Friedrich, Hebbinghaus, He, N., Witt (2010)) 

Approach can be generalized to the SetCover Problem 
(best possible approximation in polynomial time) 
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Kernelization in expected polynomial time 

Optimal solution 

Fixed parameter evolutionary algorithm 

• Subset of a minimum vertex cover 
• G(x) has at most 2OPT non-isolated  
 vertices 

Neumann, Frank 36
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Linear Programming 

Combination with Linear Programming 
•  LP-relaxation is half integral, i.e.  

Can we also say something about approximations? 

Neumann, Frank 39

Linear Programming

Combination with Linear Programming

LP-relaxation is half integral, i.e.          

   
               
      


  


             
          

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Approximations 

Kernelization in expected polynomial time 

Neumann, Frank 40
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Summary 

•  Evolutionary algorithms are successful for many 
complex optimization problems. 

•  Goal is to get a better theoretical understanding. 
•  There are some nice results for combinatorial 

optimization. 
•  Using parameterized analysis looks very 

promising. 

Thank	
  you!	
  


