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Theory of Evolutionary Algorithms

Evolutionary algorithms are successful for many
complex optimization problems.

Rely on random decisions = randomized
algorithms

Goal: Understand how and why they work

Study the computational complexity of these
algorithms on prominent examples
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Runtime Analysis

Black Box Scenario:

 Measure the runtime T by the number of fitness
evaluations.

e Studies consider time in dependence of the input

to reach
— An optimal solution.
— A good approximation.

Interest:
e Expected number of fithess evaluations E[T].
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Combinatorial Optimization

Analysis of runtime and approximation quality on
combinatorial optimization problems, e. g.,

e sorting problems

* shortest path problems,

e subsequence problems, Frank Neumann - Cafsten Witk

Bioinspired Computation
in Combinatorial Optimization

e vertex cover,
* Eulerian cycles,

Algorithmsand Their
Computational Complexity

*  minimum (multi)-cuts,

* minimum spanning trees,
*  maximum matchings,

e partition problem,

* set cover problem, Book available at
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* ... www.bioinspiredcomputation.com

Understand the behavior of bio-inspired computation on “natural” examples
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Fixed Parameter Evolutionary
Algorithms

 What makes a problem hard for an EA?

* Consider an additional parameter k to measure
hardness of an instance

* Fixed parameter algorithm runs in time O(f(k) poly(n))

* Fixed parameter evolutionary algorithm runs
in expected time O(f(k) poly(n))

e Consider maximum leaf spanning trees and minimum
vertex covers as initial examples
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Maximum Leaf Spanning Trees
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The Problem

The Maximum Leaf Spanning Tree Problem:
Given an undirected connected graph G=(V,E).

Find a spanning tree with a maximum number of leaves.
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The Problem

The Maximum Leaf Spanning Tree Problem:
Given an undirected connected graph G=(V,E).

Find a spanning tree with a maximum number of leaves.

NP-hard, different classical FPT-studies
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Two Evolutionary Algorithms

Algorithm 1 (Generic (1+1) EA)
1. Choose a spanning tree of T" uniformly at random.

2. Produce T by swapping each edge of T independently with probability 1/m.
3. If T" is a tree and £(T") > ¢(T), set T :=1T".
4. Go to 2.

Algorithm 2 (Tree-Based (14+1) EA)

1. Choose an arbitrary spanning tree T' of G.

2. Choose S according to a Poisson distribution with parameter A = 1 and per-
form sequentially S random edge-exchange operations to obtain a spanning
tree T'. A random exchange operation applied to a spanning tree T chooses
an edge e € E \ T uniformly at random. The edge e is inserted and one
randomly chosen edge of the cycle in T U {e} is deleted.

3. If (1) > UT), set T :=1T".

4. Go to 2.

Does the mutation operator make the difference between
FPT and non-FPT runtime?
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Local Optimum

’ ’ - - ’ ’
- -
- -
- -
- -

r vertices

Life Impact
Frank Neumann



Lower Bounds

Theorem 1. The expected optimization time of Generic (1+1) EA on Gioe s

)2(7‘—2)

lower bounded by (m where c 1s an appropriate constant.

C

Theorem 2. The expected optimization time of Tree-Based (1+1) EA on Gioc
18 lower bounded by (%)T—2 where ¢ 1s an appropriate constant.

Idea for lower bounds:

Both algorithms may get stuck in local optimum.

For the Generic (1+1) EA it is less likely to escape local
optimum as it often flips edges on the path.
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Structural insights

Similar to Fellows, Lokshtanov, Misra, Mnich, Rosamond, Saurabh (2009)

Lemma 2. Any connected graph G on n nodes and with a mazximum number
of k leaves in any spanning tree has at most n+5k*—Tk edges and at most 10k—14
nodes of degree at least three.

Proof idea:

 Let T be a maximum leaf spanning tree with k leaves.

* Let P, be the set of all leaves and all nodes of degree at
least three in T.

* Let P be the set of nodes that are of distance at most 2
(w.r.t.to T) to any node in P, and let Q be the set of
remaining nodes.

* Show: all nodes of Q have degree 2 in G.

* Implies: Number of nodes in P is at most 10k-14

* No node has degree greater than k which implies bound

on the number of edges.
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Upper Bound

Theorem 3. If the maximal number of leaf nodes in any spanning tree of G is

k, then Algorithm 2 finds an optimal solution in expected time O(

215k2 log k)'

Proof Idea:

Frank Neumann

We call an edge distinguished if it is adjacent to at least one
node of degree at least 3 in G.

Number of distinguished edges on any cycle is at most
20k-28.

Total number of edges in G: m <= n+5k?*-7k

Probability to introduce a specific non-chosen distinguished
edgeis at least 1/(m — (n — 1)) > 1/5k?

Show: Length of created cycle is at most 20k.

Probability to remove edge of the cycle that does not belong
to optimal solution is at least 1 /20k
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Proof Upper bound (continued)

* Probability to obtain a specific spanning tree that
can be obtained by an edge-swap is at least
1/(20k - 5k?)
* Probability to produce optimal spanning tree which
has distance r < 5k? is at least

1 1T 1N\ 1/ 1 N\ 17/ 1\ /1\*%*
rl. —. : > — > — | — — :
er! 5k2 20k /) — e \ 100k3 — e \ 100 k

 Implies that expected time to get maximum leaf
spanning tree is at most ~ O(2!5 e k)
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The Minimum Vertex Cover Problem
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The Problem

The Vertex Cover Problem:
Given an undirected graph G=(V,E).

Find a minimum subset of vertices such that each edge is covered at least once.
NP-hard, several 2-approximation algorithms.

Simple single-objective evolutionary algorithms fail!!!
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The Problem

The Vertex Cover Problem:
Given an undirected graph G=(V,E).

Integer Linear Program (ILP)
min Y " | x;
st.x;+x;,>1 V{ijlek

T; € {0, 1}

Linear Program (LP)

min )"
s.t. x;+x;,>1 VH{ijtekF
T; € [O, 1]

Decision problem:
|s there a set of vertices of size at most k covering all edges?

Our parameter: Value of an optimal solution (OPT)
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Evolutionary Algorithm

Representation: Bitstrings of length n Minimize fitness function:
— U
z1 =1 z3 = 1 s = 0 fi(z) = (lz]1, [U(z)])
) f fl (LU) — (27 2)
fa(x) = (|z|1, LP(x))
fa(z) = (2,1)
z2 =0 g =0 26 = 0

U(x): Edges not covered by x
G(z) = G(V,U(x))
LP(x): value of LP applied to G(x)
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Evolutionary Algorithm

1/n 1/n 1/2

_In 1/2 1/2
Two mutation operations:

1. Standard bit mutation with probability 1/n

2. Mutation probability 1/2 for vertices adjacent to edges of U(x).

Otherwise mutation probability 1/n.
Decide uniformly at random which operator to use in next iteration
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Multi-Objective Approach:
Treat the different objectives in the same way

Keep trade-offs of the two criteria

U()]
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‘ Empty set included
in the population

* /

U()]
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What can we say about these solutions?
(log n)-approximation (Friedrich, Hebbinghaus, He, N., Witt (2010))

Approach can be generalized to the SetCover Problem
(best possible approximation in polynomial time)

Kernelization in expected polynomial time

*Subset of a minimum vertex cover

*G(x) has maximum degree at most OPT

*G(x) has at most OPT + OPT?
non-isolated vertices

Optimal solution

Expected time g(OPT)* poly(n)
Fixed parameter evolutionary algorithm

U()]
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Kernelization in expected polynomial time

*Subset of a minimum vertex cover
*G(x) has at most 20PT non-isolated
vertices

Optimal solution
Expected time O(49F7T - poly(n))

Fixed parameter evolutionary algorithm

ILP(z)
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Linear Programming

Combination with Linear Programming
» LP-relaxation is half integral, i.e.
r; €{0,1/2,1},1<i<n

Theorem (Nemhauser, Trotter (1975)):
Let * be an optimal solution of the LP. Then there is a minimum vertex cover
that contains all vertices v; where z7 = 1.

Lemma:

All search points « with LP(x) = LP(0™) — |z|; are Pareto optimal.
They can be extended to minimum vertex cover by selecting additional
vertices.

Can we also say something about approximations?
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Approximations

lz]1 < (14+€)OPT

x| +2LP(x) < (1+¢€)OPT

/ Kernelization in expected polynomial time

@

Expected time \.'\‘\
041~ OFT . poly(n))
[ LP(z)|
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Summary

Evolutionary algorithms are successful for many
complex optimization problems.

Goal is to get a better theoretical understanding.

There are some nice results for combinatorial
optimization.

Using parameterized analysis looks very
promising.

Thank youl!
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