
Life Impact | The University of Adelaide

Fixed-­‐Parameter	

Evolu2onary	
 Algorithms	

Frank	
 Neumann	

School	
 of	
 Computer	
 Science	

University	
 of	
 Adelaide	

Joint	
 work	
 with	
 Stefan	
 Kratsch	
 (U	
 Utrecht),	
 Per	
 Kris2an	
 Lehre	

(DTU	
 Informa2cs),	
 Pietro	
 S.	
 Oliveto	
 (U	
 Birmingham)	

Life Impact | The University of Adelaide

Computational Complexity of Evolutionary
Algorithms

Life Impact | The University of Adelaide
Frank	
 Neumann	
 17	

Theory	
 of	
 Evolu2onary	
 Algorithms	

•  Evolu2onary	
 algorithms	
 are	
 successful	
 for	
 many	

complex	
 op2miza2on	
 problems.	

•  Rely	
 on	
 random	
 decisions	
 ⇒	
 randomized	

algorithms	

•  Goal:	
 Understand	
 how	
 and	
 why	
 they	
 work	

•  Study	
 the	
 computa2onal	
 complexity	
 of	
 these	

algorithms	
 on	
 prominent	
 examples	
 	

	

	

Life Impact | The University of Adelaide
Frank	
 Neumann	
 18	

Run2me	
 Analysis	

Black	
 Box	
 Scenario:	

•  Measure	
 the	
 run2me	
 T	
 by	
 the	
 number	
 of	
 fitness	

evalua2ons.	

•  Studies	
 consider	
 2me	
 in	
 dependence	
 of	
 the	
 input	

to	
 reach	

– An	
 op2mal	
 solu2on.	

– A	
 good	
 approxima2on.	

	

Interest:	

•  Expected	
 number	
 of	
 fitness	
 evalua2ons	
 E[T].	

Life Impact | The University of Adelaide
Frank	
 Neumann	
 19	

Combinatorial	
 Op2miza2on	

Analysis	
 of	
 run2me	
 and	
 approxima2on	
 quality	
 on	

combinatorial	
 op2miza2on	
 problems,	
 e.	
 g.,	

•  sor2ng	
 problems	
 	

•  shortest	
 path	
 problems,	

•  subsequence	
 problems,	

•  vertex	
 cover,	

•  Eulerian	
 cycles,	

•  minimum	
 (mul2)-­‐cuts,	

•  minimum	
 spanning	
 trees,	

•  maximum	
 matchings,	

•  par22on	
 problem,	

•  set	
 cover	
 problem,	

•  .	
 .	
 .	

	

Understand	
 the	
 behavior	
 of	
 bio-­‐inspired	
 computa2on	
 on	
 “natural”	
 examples	

Book	
 available	
 at	
 	

www.bioinspiredcomputa2on.com	

Life Impact | The University of Adelaide
Frank	
 Neumann	
 20	

Fixed	
 Parameter	
 Evolu2onary	

Algorithms	

•  What	
 makes	
 a	
 problem	
 hard	
 for	
 an	
 EA?	

•  Consider	
 an	
 addi2onal	
 parameter	
 k	
 to	
 measure	

“hardness”	
 of	
 an	
 instance	
 	

•  Fixed	
 parameter	
 algorithm	
 runs	
 in	
 2me	
 O(f(k)	
 poly(n))	

•  Fixed	
 parameter	
 evolu2onary	
 algorithm	
 runs	
 	

	
 in	
 expected	
 2me	
 O(f(k)	
 poly(n))	

	

•  Consider	
 maximum	
 leaf	
 spanning	
 trees	
 and	
 minimum	

vertex	
 covers	
 as	
 ini2al	
 examples	

	

	

Life Impact | The University of Adelaide

Maximum Leaf Spanning Trees

Life Impact | The University of Adelaide

The Problem

The Maximum Leaf Spanning Tree Problem:
Given an undirected connected graph G=(V,E).

Find a spanning tree with a maximum number of leaves.

Life Impact | The University of Adelaide

The Problem

The Maximum Leaf Spanning Tree Problem:
Given an undirected connected graph G=(V,E).

Find a spanning tree with a maximum number of leaves.

NP-hard, different classical FPT-studies

Life Impact | The University of Adelaide

Two	
 Evolu2onary	
 Algorithms	

Frank	
 Neumann	

We consider two simple evolutionary algorithms which di�er by the choice of
the mutation operator. Both algorithms start with an arbitrary spanning tree T
of G. We denote by m the number of edges in G, and ⌥(T) the number of leaves
of the spanning tree T . A new solution is only accepted if it is a spanning tree
whose number of leaves is at least as high as the number of leaves in the current
solution. The first algorithm can be described as follows.

Algorithm 1 (Generic (1+1) EA)
1. Choose a spanning tree of T uniformly at random.
2. Produce T � by swapping each edge of T independently with probability 1/m.
3. If T � is a tree and ⌥(T �) ⇥ ⌥(T), set T := T �.
4. Go to 2.

Swapping an edge in step 2. of Algorithm 1 means that if an edge is present in
T then it is not contained in T � with probability 1/m. On the other hand, if an
edge is not present in T then it is contained in T � with probability 1/m. An edge
does not change from T to T � with probability 1�1/m in each mutation step in-
dependently of the other edges. Note, that the mutation operator of Algorithm 1
does not necessarily create an o�spring that is a tree. If the o�spring is not a
tree then this individual is discarded as it represents an infeasible solution.

Often it is assumed that choosing a mutation operator that is more tailored to
the problem gives a significant speed up. The second algorithm uses a problem-
specific mutation operator that ensures valid solutions, i. e. spanning trees.

Algorithm 2 (Tree-Based (1+1) EA)
1. Choose an arbitrary spanning tree T of G.
2. Choose S according to a Poisson distribution with parameter � = 1 and per-

form sequentially S random edge-exchange operations to obtain a spanning
tree T �. A random exchange operation applied to a spanning tree T̃ chooses
an edge e ⇤ E \ T̃ uniformly at random. The edge e is inserted and one
randomly chosen edge of the cycle in T̃ ⌅ {e} is deleted.

3. If ⌥(T �) ⇥ ⌥(T), set T := T �.
4. Go to 2.

Our goal is to point out the di�erences between the two algorithms. To do this,
we compare the expected number of iterations that our algorithms need to com-
pute an optimal solution. The expected number of iterations needed to obtain an
optimal solution is called the expected optimization time, and is the commonly
used performance measure in the rigorous runtime analysis of evolutionary algo-
rithms. We will show that choosing the more problem-specific mutation operator
of Algorithm 2 makes the di�erence between a fixed-parameter evolutionary algo-
rithm and an evolutionary algorithm that does not compute an optimal solution
within expected FPT-time.

We consider two simple evolutionary algorithms which di�er by the choice of
the mutation operator. Both algorithms start with an arbitrary spanning tree T
of G. We denote by m the number of edges in G, and ⌥(T) the number of leaves
of the spanning tree T . A new solution is only accepted if it is a spanning tree
whose number of leaves is at least as high as the number of leaves in the current
solution. The first algorithm can be described as follows.

Algorithm 1 (Generic (1+1) EA)
1. Choose a spanning tree of T uniformly at random.
2. Produce T � by swapping each edge of T independently with probability 1/m.
3. If T � is a tree and ⌥(T �) ⇥ ⌥(T), set T := T �.
4. Go to 2.

Swapping an edge in step 2. of Algorithm 1 means that if an edge is present in
T then it is not contained in T � with probability 1/m. On the other hand, if an
edge is not present in T then it is contained in T � with probability 1/m. An edge
does not change from T to T � with probability 1�1/m in each mutation step in-
dependently of the other edges. Note, that the mutation operator of Algorithm 1
does not necessarily create an o�spring that is a tree. If the o�spring is not a
tree then this individual is discarded as it represents an infeasible solution.

Often it is assumed that choosing a mutation operator that is more tailored to
the problem gives a significant speed up. The second algorithm uses a problem-
specific mutation operator that ensures valid solutions, i. e. spanning trees.

Algorithm 2 (Tree-Based (1+1) EA)
1. Choose an arbitrary spanning tree T of G.
2. Choose S according to a Poisson distribution with parameter � = 1 and per-

form sequentially S random edge-exchange operations to obtain a spanning
tree T �. A random exchange operation applied to a spanning tree T̃ chooses
an edge e ⇤ E \ T̃ uniformly at random. The edge e is inserted and one
randomly chosen edge of the cycle in T̃ ⌅ {e} is deleted.

3. If ⌥(T �) ⇥ ⌥(T), set T := T �.
4. Go to 2.

Our goal is to point out the di�erences between the two algorithms. To do this,
we compare the expected number of iterations that our algorithms need to com-
pute an optimal solution. The expected number of iterations needed to obtain an
optimal solution is called the expected optimization time, and is the commonly
used performance measure in the rigorous runtime analysis of evolutionary algo-
rithms. We will show that choosing the more problem-specific mutation operator
of Algorithm 2 makes the di�erence between a fixed-parameter evolutionary algo-
rithm and an evolutionary algorithm that does not compute an optimal solution
within expected FPT-time.

Does	
 the	
 muta2on	
 operator	
 make	
 the	
 difference	
 between	

FPT	
 and	
 non-­‐FPT	
 run2me?	

Life Impact | The University of Adelaide

Local	
 Op2mum	

Frank	
 Neumann	

r vertices

x

y

ui

vi

Fig. 1. Local optimum shown with dashed edges, global optimum with dotted edges,
shared edges are drawn solid.

3 Local Optima and Lower Bounds

The aim of this section is to point out structures of the problem that make it hard
for our algorithms to achieve an improvement. We discuss the presence of local
optima and present a graph that consists of a local optimum which has a large
distance (in terms of the number of edge exchanges) from the global optimum.
Using this observation, we show lower bounds on the expected optimization time
for the two algorithms under consideration.

Our graph called Gloc (see Figure 1) contains two components consisting of r
vertices each. In component i, 1 ⇥ i ⇥ 2, two vertices ui and vi are connected to
all the other vertices in that component. The vertex ui is connected to vertex x
which lies outside the component. Similarly vertex vi is connected to vertex y. In
addition, x and y share an edge. The graph is completed by attaching a path of
n�2r�2 vertices to the vertex x. A tree has to contain all the edges of the path
attached to x. For a given component, the maximal number of possible leaves
is at most r � 1. This can be obtained by attaching all nodes of the component
either to ui or vi.

The graph contains a local optimum Tlopt which consists of all edges attached
to the vertices vi, 1 ⇥ i ⇥ 2, the edge {x, y} and all path edges. The global
optimum Topt consists of all edges attached to the vertices ui, 1 ⇥ i ⇥ 2, the
edge {x, y} and all path edges. Compared to Tlopt, Topt has an extra leaf, namely
the vertex y. However, Tlopt and Topt di�er by 4(r�1) edges which make it hard
for the algorithms under consideration to obtain Topt if Tlopt has been produced
before.

Our goal is to study the expected optimization time of the algorithms intro-
duced in the previous section in dependence of the number of leaves which, in
turn, depends on r. To do this, we first consider the number of di�erent spanning
trees of Gloc in dependence of r.

Lemma 1. The number of spanning trees of Gloc is at most 24r.

Life Impact | The University of Adelaide

Lower	
 Bounds	

Frank	
 Neumann	

Proof. A spanning tree has to contain all edges of the path attached to x. The
path attached to x consists of n�2r�2 edges. A spanning tree contains exactly
n⇥ = n� 1� (n� 2r � 2) = 2r + 1 non-path edges.

We count the total number of non-path edges in Gloc. Consider a component
consisting of r edges. The number of edges within such a component is 2r � 3
as ui and vi are connected to all other vertices and share an edge. In addition
there are two edges connecting each component to the outer part. Hence, the
total number of edges connected to vertices of a single component is 2r � 1. In
addition, there is the edge connecting x and y.

Summing up, the graph consists of m⇥ = 2(2r � 1) + 1 = 4r � 1 non-path
edges. The number of di�erent spanning trees is therefore at most

⇧
m⇥

n⇥

⌃
=

⇧
4r � 1

2r + 1

⌃
⇤ 24r.

⌃⇧

Using the previous lemma, we show the following lower bound on the ex-
pected optimization time of Generic (1+1) EA on Gloc.

Theorem 1. The expected optimization time of Generic (1+1) EA on Gloc is

lower bounded by
�
m
c

⇥2(r�2)
where c is an appropriate constant.

Proof. The number of spanning trees of Gloc is at most 24r. Therefore, the initial
spanning tree is Tlopt with probability at least 2�4r. This spanning tree is a local
optimum with 2(r�1)+2 leaves. In order to obtain a di�erent spanning tree with
at least as many leaves, r � 1 leaves have to be achieved in each component, or
at least r� 1 leaves have to be obtained in one component and y has to become
a leaf. Hence, in order to achieve an accepted solution that is di�erent from Tlopt

all (r � 2) nodes of at least one component i have to be assigned to ui instead
of vi. This implies that at least 2(r� 2) edges for a fixed component have to be
swapped to escape from the local optimum. There are two components where
this can happen which implies that the probability for such a step is at most

2
�

1
m

⇥2(r�2)
. The expected waiting time for such a step is at least 1

2 · m2(r�2).
Altogether the expected optimization time is lower bounded by

2�4r · 1
2
·m2(r�2) ⌅

⇤m
c

⌅2(r�2)
,

where c is an appropriate constant. ⌃⇧

Using the previous ideas, we can also lower bound the expected optimization
time of Tree-Based (1+1) EA on Gloc.

Theorem 2. The expected optimization time of Tree-Based (1+1) EA on Gloc

is lower bounded by (r�2
c)r�2 where c is an appropriate constant.

Proof. A spanning tree has to contain all edges of the path attached to x. The
path attached to x consists of n�2r�2 edges. A spanning tree contains exactly
n⇥ = n� 1� (n� 2r � 2) = 2r + 1 non-path edges.

We count the total number of non-path edges in Gloc. Consider a component
consisting of r edges. The number of edges within such a component is 2r � 3
as ui and vi are connected to all other vertices and share an edge. In addition
there are two edges connecting each component to the outer part. Hence, the
total number of edges connected to vertices of a single component is 2r � 1. In
addition, there is the edge connecting x and y.

Summing up, the graph consists of m⇥ = 2(2r � 1) + 1 = 4r � 1 non-path
edges. The number of di�erent spanning trees is therefore at most

⇧
m⇥

n⇥

⌃
=

⇧
4r � 1

2r + 1

⌃
⇤ 24r.

⌃⇧

Using the previous lemma, we show the following lower bound on the ex-
pected optimization time of Generic (1+1) EA on Gloc.

Theorem 1. The expected optimization time of Generic (1+1) EA on Gloc is

lower bounded by
�
m
c

⇥2(r�2)
where c is an appropriate constant.

Proof. The number of spanning trees of Gloc is at most 24r. Therefore, the initial
spanning tree is Tlopt with probability at least 2�4r. This spanning tree is a local
optimum with 2(r�1)+2 leaves. In order to obtain a di�erent spanning tree with
at least as many leaves, r � 1 leaves have to be achieved in each component, or
at least r� 1 leaves have to be obtained in one component and y has to become
a leaf. Hence, in order to achieve an accepted solution that is di�erent from Tlopt

all (r � 2) nodes of at least one component i have to be assigned to ui instead
of vi. This implies that at least 2(r� 2) edges for a fixed component have to be
swapped to escape from the local optimum. There are two components where
this can happen which implies that the probability for such a step is at most

2
�

1
m

⇥2(r�2)
. The expected waiting time for such a step is at least 1

2 · m2(r�2).
Altogether the expected optimization time is lower bounded by

2�4r · 1
2
·m2(r�2) ⌅

⇤m
c

⌅2(r�2)
,

where c is an appropriate constant. ⌃⇧

Using the previous ideas, we can also lower bound the expected optimization
time of Tree-Based (1+1) EA on Gloc.

Theorem 2. The expected optimization time of Tree-Based (1+1) EA on Gloc

is lower bounded by (r�2
c)r�2 where c is an appropriate constant.

Idea	
 for	
 lower	
 bounds:	

Both	
 algorithms	
 may	
 get	
 stuck	
 in	
 local	
 op2mum.	

	

For	
 the	
 Generic	
 (1+1)	
 EA	
 it	
 is	
 less	
 likely	
 to	
 escape	
 local	

op2mum	
 as	
 it	
 oben	
 flips	
 edges	
 on	
 the	
 path.	

Life Impact | The University of Adelaide

Structural	
 insights	
 	

Similar	
 to	
 Fellows,	
 Lokshtanov,	
 Misra,	
 Mnich,	
 Rosamond,	
 Saurabh	
 (2009)	
 	

	

Frank	
 Neumann	

Proof. We follow the ideas of the previous theorem. With probability at least
2�4r, Tlopt is chosen as the initial spanning tree. In order to produce from Tlopt

the optimal solution Topt, (r � 2) exchange operations have to be carried out in
a single mutation step. According to the Poisson distribution with � = 1, the
probability that this happens in the next step is

1

e(r � 2)!
⌅ 1⇤

2⇥(r � 2)
er�3(r � 2)�(r�2) ⌅ er�3(r � 2)�(r�2).

Altogether the expected optimization time is lower bounded by

2�4r · e�r+3(r � 2)(r�2) ⇧
�
r � 2

c

⇥r�2

,

where c is an appropriate constant. ⌥⌃

To show that both algorithms need not only in expectation that many steps,
but also with a high probability the graph can be modified such that it consists
of more than two components attached to x and y. Then a typical run can be
investigated to show that at least two components end up in the local optimum.

4 FPT of Edge Exchanges

In this section we prove that Algorithm 2 is an FPT algorithm for the maximum
leaf spanning tree problem with respect to the maximal number of leaves k.
Given that the maximal-leaf spanning tree has k leaves, in the following lemma
we derive upper bounds in dependence of k on the number of edges and on the
number of nodes of degree at least three that the graph may contain. These
bounds will allow us to prove the main result of this section presented in Theo-
rem 3.

The lemma is proven using an approach similar (but greatly simplified) to the
one used in [3]; our focus here is on giving a self-contained presentation su⇥cient
for obtaining the claimed expected runtime. Note also, that kernelization results,
such as [3], almost always require a modification of the problem instance while
we are interested in bounding the original instance.

Lemma 2. Any connected graph G on n nodes and with a maximum number
of k leaves in any spanning tree has at most n+5k2�7k edges and at most 10k�14
nodes of degree at least three.

Proof. Let G be a graph on n nodes and let T be a spanning tree of G with (the
maximum number of) k leaves. We let P0 denote the set of all leaves and all
nodes of degree at least three in T . (We denote the degree of node x within the
tree T by degT (x).) Furthermore, let P ⇤ P0 denote the set of all nodes that are
within distance of at most two of any node of P0 (distance and degree w.r.t. T).
We let Q denote the set of remaining nodes.

Proof	
 idea:	

•  Let	
 T	
 be	
 a	
 maximum	
 leaf	
 spanning	
 tree	
 with	
 k	
 leaves.	

•  Let	
 P0	
 be	
 the	
 set	
 of	
 all	
 leaves	
 and	
 all	
 nodes	
 of	
 degree	
 at	

least	
 three	
 in	
 T.	

•  Let	
 P	
 be	
 the	
 set	
 of	
 nodes	
 that	
 are	
 of	
 distance	
 at	
 most	
 2	
 	

(w.	
 r.	
 t.	
 to	
 T)	
 to	
 any	
 node	
 in	
 P0	
 and	
 let	
 Q	
 be	
 the	
 set	
 of	

remaining	
 nodes.	
 	

•  Show:	
 all	
 nodes	
 of	
 Q	
 have	
 degree	
 2	
 in	
 G.	

•  Implies:	
 Number	
 of	
 nodes	
 in	
 P	
 is	
 at	
 most	
 10k-­‐14	

•  No	
 node	
 has	
 degree	
 greater	
 than	
 k	
 which	
 implies	
 bound	

on	
 the	
 number	
 of	
 edges.	

Life Impact | The University of Adelaide

Upper	
 Bound	

Frank	
 Neumann	

than k leaves. Thus we get the claimed upper bound on the number m of edges:

m ⇤ 1

2
(k|P |+ 2|Q|) = k

2
|P |+ |Q| ⇤ 5k2 � 7k + n.

This completes the proof. ↵⌦

Now we are ready to prove the main result. Since a spanning tree always has
n�1 edges, from Lemma 2 there are at most 5k2 edges to choose from at each step
and at most all of them need to be replaced to reach the optimal spanning tree.
The proof of the following theorem first shows that the probability of increasing
the number of leaves by one in the current (non-optimal) spanning tree only
decreases with the fixed parameter k. The proof is concluded by showing that
the probability of exchanging all the 5k2 edges in one mutation step also depends
only on k leading to the claimed runtime.

Theorem 3. If the maximal number of leaf nodes in any spanning tree of G is
k, then Algorithm 2 finds an optimal solution in expected time O(215k

2 log k).

Proof. Let n⇥3 be the number of nodes with degree at least three. We call an edge
distinguished if it is incident on a node of degree at least 3, and non-distinguished
otherwise. By applying Lemma 2, the number of distinguished edges on any cycle
is at most 2n⇥3 ⇤ 20k� 28, since there are at most n⇥3 nodes of degree at least
3 on the cycle, and each node is incident with at most two edges of the cycle.

We first bound the probability of reducing the distance to an optimal span-
ning tree by 1. Let E� ⇥ E be the optimal spanning tree that is closest to the
current spanning tree, and let e be any edge in E� that is not yet in the current
spanning tree. By Lemma 2, the number of edges in the graph ism ⇤ n+5k2�7k.
So the probability that edge e is introduced in an edge exchange operation is
at least 1/(m � (n � 1)) ⌅ 1/5k2. Introducing edge e creates a cycle. Consider
first the case when the cycle consists only of distinguished edges. The length of
such a cycle is no more than 20k � 28, and the probability of removing one of
the edges that is not in the optimal spanning tree is at least 1/20k. In the case
where the cycle contains non-distinguished edges, we claim that it su⇥ces to
remove any non-distinguished edge e⇤ from the cycle. The claim obviously holds
when the chosen edge e⇤ is not in the optimal spanning tree, so assume that
edge e⇤ is in the optimal spanning tree. A bridge edge in a connected graph is
any edge e such that the subgraph on the edges E \ {e} is disconnected. Edge
e⇤ connects two components T1 and T2 in E�, and cannot be a bridge edge be-
cause then the edge could not have been part of a cycle. Since edge e connects
T1 and T2, the cycle must contain at least one other edge e⇤⇤ that connects T1

and T2, and this edge is not part of the optimal spanning tree E�. However, the
spanning tree (E� \ {e⇤}) ⇧ {e⇤⇤} must also be optimal, because adding edge e⇤⇤

decreases the number of leaf nodes by at most 2, and removing edge e⇤ increases
the number of leaf nodes by exactly 2. Hence, adding edge e and removing edge
e⇤ reduces the distance to an optimal spanning tree by 1. Let be the number
of non-distinguished edges on the cycle. No cycle contains more than 20k � 28
distinguished edges, so the probability of removing a non-distinguished edge is

Proof	
 Idea:	

•  We	
 call	
 an	
 edge	
 dis2nguished	
 if	
 it	
 is	
 adjacent	
 to	
 at	
 least	
 one	

node	
 of	
 degree	
 at	
 least	
 3	
 in	
 G.	

•  Number	
 of	
 dis2nguished	
 edges	
 on	
 any	
 cycle	
 is	
 at	
 most	

20k-­‐28.	

•  Total	
 number	
 of	
 edges	
 in	
 G:	
 m	
 <=	
 n+5k2–7k	

•  Probability	
 to	
 introduce	
 a	
 specific	
 non-­‐chosen	
 dis2nguished	

edge	
 is	
 at	
 least	

•  Show:	
 Length	
 of	
 created	
 cycle	
 is	
 at	
 most	
 20k.	

•  Probability	
 to	
 remove	
 edge	
 of	
 the	
 cycle	
 that	
 does	
 not	
 belong	

to	
 op2mal	
 solu2on	
 is	
 at	
 least	
 	

than k leaves. Thus we get the claimed upper bound on the number m of edges:

m ⇤ 1

2
(k|P |+ 2|Q|) = k

2
|P |+ |Q| ⇤ 5k2 � 7k + n.

This completes the proof. ↵⌦

Now we are ready to prove the main result. Since a spanning tree always has
n�1 edges, from Lemma 2 there are at most 5k2 edges to choose from at each step
and at most all of them need to be replaced to reach the optimal spanning tree.
The proof of the following theorem first shows that the probability of increasing
the number of leaves by one in the current (non-optimal) spanning tree only
decreases with the fixed parameter k. The proof is concluded by showing that
the probability of exchanging all the 5k2 edges in one mutation step also depends
only on k leading to the claimed runtime.

Theorem 3. If the maximal number of leaf nodes in any spanning tree of G is
k, then Algorithm 2 finds an optimal solution in expected time O(215k

2 log k).

Proof. Let n⇥3 be the number of nodes with degree at least three. We call an edge
distinguished if it is incident on a node of degree at least 3, and non-distinguished
otherwise. By applying Lemma 2, the number of distinguished edges on any cycle
is at most 2n⇥3 ⇤ 20k� 28, since there are at most n⇥3 nodes of degree at least
3 on the cycle, and each node is incident with at most two edges of the cycle.

We first bound the probability of reducing the distance to an optimal span-
ning tree by 1. Let E� ⇥ E be the optimal spanning tree that is closest to the
current spanning tree, and let e be any edge in E� that is not yet in the current
spanning tree. By Lemma 2, the number of edges in the graph ism ⇤ n+5k2�7k.
So the probability that edge e is introduced in an edge exchange operation is
at least 1/(m � (n � 1)) ⌅ 1/5k2. Introducing edge e creates a cycle. Consider
first the case when the cycle consists only of distinguished edges. The length of
such a cycle is no more than 20k � 28, and the probability of removing one of
the edges that is not in the optimal spanning tree is at least 1/20k. In the case
where the cycle contains non-distinguished edges, we claim that it su⇥ces to
remove any non-distinguished edge e⇤ from the cycle. The claim obviously holds
when the chosen edge e⇤ is not in the optimal spanning tree, so assume that
edge e⇤ is in the optimal spanning tree. A bridge edge in a connected graph is
any edge e such that the subgraph on the edges E \ {e} is disconnected. Edge
e⇤ connects two components T1 and T2 in E�, and cannot be a bridge edge be-
cause then the edge could not have been part of a cycle. Since edge e connects
T1 and T2, the cycle must contain at least one other edge e⇤⇤ that connects T1

and T2, and this edge is not part of the optimal spanning tree E�. However, the
spanning tree (E� \ {e⇤}) ⇧ {e⇤⇤} must also be optimal, because adding edge e⇤⇤

decreases the number of leaf nodes by at most 2, and removing edge e⇤ increases
the number of leaf nodes by exactly 2. Hence, adding edge e and removing edge
e⇤ reduces the distance to an optimal spanning tree by 1. Let be the number
of non-distinguished edges on the cycle. No cycle contains more than 20k � 28
distinguished edges, so the probability of removing a non-distinguished edge is

at least ⇧/(20k � 28 + ⇧) ⌅ 1/20k. The probability of reducing the distance to a
global optimum by 1 is therefore at least 1/(20k · 5k2).

The number of edges r that must be inserted in the spanning tree is no more
than m� (n�1) ⇤ 5k2. The edges can be inserted in any order. The probability
that in Step 2 of the algorithm, we choose to do S = r operations is 1/er!. So,
the probability that in one step, we decide to do r edge exchange operations in
any of the r! orders, and each of the edge exchanges decreases the Hamming
distance to an optimal spanning tree is at least

r! · 1

er!
·
�

1

5k2
· 1

20k

⇥r

⌅ 1

e

�
1

100k3

⇥5k2

⌅ 1

e

�
1

100

⇥5k2 �
1

k

⇥3·5k2

,

which implies that the expected number of steps to find an optimal spanning
tree is at most O(215k

2 log k). ⌃⇧

Conclusions

The parameterized complexity analysis of evolutionary algorithms is a promising
research direction that is likely to become an important part in the theoretical
analysis of evolutionary computation during the next years. An advantage in
comparison to classical worst-case considerations is that this kind of analysis
gives characterizations of what di⇤cult instances for a specific algorithm look
like in relation to some parameter of the problem. Evolutionary algorithms have
produced very good results for di�erent kind of NP-hard spanning tree problems.
In this paper, we have studied evolutionary algorithms for the NP-hard maxi-
mum leaf spanning tree problem in the context of parameterized complexity. In
our case the parameter is the size of the global optimum. Our investigations show
that there may be local optima where the size of an inferior neighborhood grows
with the number of leaves in optimal solutions. Investigations of two common
mutation operators point out that a more problem-specific operator makes the
di�erence between a fixed parameter evolutionary algorithm for the maximum
leaf problem and an algorithm that does not have this property.

Acknowledgements Per Kristian Lehre was supported by EPSRC under grant
no. EP/D052785/1, and Deutsche Forschungsgemeinschaft (DFG) under grant
no. WI 3552/1-1. Pietro Simone Oliveto was supported by EPSRC under grant
no. EP/P502322/1.

References

1. R. G. Downey and M. R. Fellows. Parameterized Complexity (Monographs in
Computer Science). Springer, November 1998.

2. S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science, 276:51–81, 2002.

Life Impact | The University of Adelaide

Proof	
 Upper	
 bound	
 (con2nued)	

Frank	
 Neumann	

at least ⇧/(20k � 28 + ⇧) ⌅ 1/20k. The probability of reducing the distance to a
global optimum by 1 is therefore at least 1/(20k · 5k2).

The number of edges r that must be inserted in the spanning tree is no more
than m� (n�1) ⇤ 5k2. The edges can be inserted in any order. The probability
that in Step 2 of the algorithm, we choose to do S = r operations is 1/er!. So,
the probability that in one step, we decide to do r edge exchange operations in
any of the r! orders, and each of the edge exchanges decreases the Hamming
distance to an optimal spanning tree is at least

r! · 1

er!
·
�

1

5k2
· 1

20k

⇥r

⌅ 1

e

�
1

100k3

⇥5k2

⌅ 1

e

�
1

100

⇥5k2 �
1

k

⇥3·5k2

,

which implies that the expected number of steps to find an optimal spanning
tree is at most O(215k

2 log k). ⌃⇧

Conclusions

The parameterized complexity analysis of evolutionary algorithms is a promising
research direction that is likely to become an important part in the theoretical
analysis of evolutionary computation during the next years. An advantage in
comparison to classical worst-case considerations is that this kind of analysis
gives characterizations of what di⇤cult instances for a specific algorithm look
like in relation to some parameter of the problem. Evolutionary algorithms have
produced very good results for di�erent kind of NP-hard spanning tree problems.
In this paper, we have studied evolutionary algorithms for the NP-hard maxi-
mum leaf spanning tree problem in the context of parameterized complexity. In
our case the parameter is the size of the global optimum. Our investigations show
that there may be local optima where the size of an inferior neighborhood grows
with the number of leaves in optimal solutions. Investigations of two common
mutation operators point out that a more problem-specific operator makes the
di�erence between a fixed parameter evolutionary algorithm for the maximum
leaf problem and an algorithm that does not have this property.

Acknowledgements Per Kristian Lehre was supported by EPSRC under grant
no. EP/D052785/1, and Deutsche Forschungsgemeinschaft (DFG) under grant
no. WI 3552/1-1. Pietro Simone Oliveto was supported by EPSRC under grant
no. EP/P502322/1.

References

1. R. G. Downey and M. R. Fellows. Parameterized Complexity (Monographs in
Computer Science). Springer, November 1998.

2. S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science, 276:51–81, 2002.

•  Probability	
 to	
 obtain	
 a	
 specific	
 spanning	
 tree	
 that	

can	
 be	
 obtained	
 by	
 an	
 edge-­‐swap	
 is	
 at	
 least	

	

•  Probability	
 to	
 produce	
 op2mal	
 spanning	
 tree	
 which	

has	
 	
 distance	
 r	
 ≤	
 5k2	
 is	
 at	
 least	

•  Implies	
 that	
 expected	
 2me	
 to	
 get	
 maximum	
 leaf	

spanning	
 tree	
 is	
 at	
 most	
 	

at least ⇧/(20k � 28 + ⇧) ⌅ 1/20k. The probability of reducing the distance to a
global optimum by 1 is therefore at least 1/(20k · 5k2).

The number of edges r that must be inserted in the spanning tree is no more
than m� (n�1) ⇤ 5k2. The edges can be inserted in any order. The probability
that in Step 2 of the algorithm, we choose to do S = r operations is 1/er!. So,
the probability that in one step, we decide to do r edge exchange operations in
any of the r! orders, and each of the edge exchanges decreases the Hamming
distance to an optimal spanning tree is at least

r! · 1

er!
·
�

1

5k2
· 1

20k

⇥r

⌅ 1

e

�
1

100k3

⇥5k2

⌅ 1

e

�
1

100

⇥5k2 �
1

k

⇥3·5k2

,

which implies that the expected number of steps to find an optimal spanning
tree is at most O(215k

2 log k). ⌃⇧

Conclusions

The parameterized complexity analysis of evolutionary algorithms is a promising
research direction that is likely to become an important part in the theoretical
analysis of evolutionary computation during the next years. An advantage in
comparison to classical worst-case considerations is that this kind of analysis
gives characterizations of what di⇤cult instances for a specific algorithm look
like in relation to some parameter of the problem. Evolutionary algorithms have
produced very good results for di�erent kind of NP-hard spanning tree problems.
In this paper, we have studied evolutionary algorithms for the NP-hard maxi-
mum leaf spanning tree problem in the context of parameterized complexity. In
our case the parameter is the size of the global optimum. Our investigations show
that there may be local optima where the size of an inferior neighborhood grows
with the number of leaves in optimal solutions. Investigations of two common
mutation operators point out that a more problem-specific operator makes the
di�erence between a fixed parameter evolutionary algorithm for the maximum
leaf problem and an algorithm that does not have this property.

Acknowledgements Per Kristian Lehre was supported by EPSRC under grant
no. EP/D052785/1, and Deutsche Forschungsgemeinschaft (DFG) under grant
no. WI 3552/1-1. Pietro Simone Oliveto was supported by EPSRC under grant
no. EP/P502322/1.

References

1. R. G. Downey and M. R. Fellows. Parameterized Complexity (Monographs in
Computer Science). Springer, November 1998.

2. S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science, 276:51–81, 2002.

at least ⇧/(20k � 28 + ⇧) ⌅ 1/20k. The probability of reducing the distance to a
global optimum by 1 is therefore at least 1/(20k · 5k2).

The number of edges r that must be inserted in the spanning tree is no more
than m� (n�1) ⇤ 5k2. The edges can be inserted in any order. The probability
that in Step 2 of the algorithm, we choose to do S = r operations is 1/er!. So,
the probability that in one step, we decide to do r edge exchange operations in
any of the r! orders, and each of the edge exchanges decreases the Hamming
distance to an optimal spanning tree is at least

r! · 1

er!
·
�

1

5k2
· 1

20k

⇥r

⌅ 1

e

�
1

100k3

⇥5k2

⌅ 1

e

�
1

100

⇥5k2 �
1

k

⇥3·5k2

,

which implies that the expected number of steps to find an optimal spanning
tree is at most O(215k

2 log k). ⌃⇧

Conclusions

The parameterized complexity analysis of evolutionary algorithms is a promising
research direction that is likely to become an important part in the theoretical
analysis of evolutionary computation during the next years. An advantage in
comparison to classical worst-case considerations is that this kind of analysis
gives characterizations of what di⇤cult instances for a specific algorithm look
like in relation to some parameter of the problem. Evolutionary algorithms have
produced very good results for di�erent kind of NP-hard spanning tree problems.
In this paper, we have studied evolutionary algorithms for the NP-hard maxi-
mum leaf spanning tree problem in the context of parameterized complexity. In
our case the parameter is the size of the global optimum. Our investigations show
that there may be local optima where the size of an inferior neighborhood grows
with the number of leaves in optimal solutions. Investigations of two common
mutation operators point out that a more problem-specific operator makes the
di�erence between a fixed parameter evolutionary algorithm for the maximum
leaf problem and an algorithm that does not have this property.

Acknowledgements Per Kristian Lehre was supported by EPSRC under grant
no. EP/D052785/1, and Deutsche Forschungsgemeinschaft (DFG) under grant
no. WI 3552/1-1. Pietro Simone Oliveto was supported by EPSRC under grant
no. EP/P502322/1.

References

1. R. G. Downey and M. R. Fellows. Parameterized Complexity (Monographs in
Computer Science). Springer, November 1998.

2. S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science, 276:51–81, 2002.

⇤

Life Impact | The University of Adelaide

The Minimum Vertex Cover Problem

Life Impact | The University of Adelaide

The Problem

The Vertex Cover Problem:
Given an undirected graph G=(V,E).

Find a minimum subset of vertices such that each edge is covered at least once.
NP-hard, several 2-approximation algorithms.

Simple	
 single-­‐objec2ve	
 evolu2onary	
 algorithms	
 fail!!!	

Life Impact | The University of Adelaide

The Problem

The Vertex Cover Problem:
Given an undirected graph G=(V,E).

Decision problem:
Is there a set of vertices of size at most k covering all edges?

Our parameter: Value of an optimal solution (OPT)

min
Pn

i=1 xi

s.t. xi + xj � 1 ⇤ {i, j} ⇥ E

xi ⇥ {0, 1}

min
Pn

i=1 xi

s.t. xi + xj � 1 ⇤ {i, j} ⇥ E

xi ⇥ [0, 1]

Integer	
 Linear	
 Program	
 (ILP)	

Linear	
 Program	
 (LP)	

Life Impact | The University of Adelaide

Evolutionary Algorithm

Representation: Bitstrings of length n Minimize fitness function:

Neumann, Frank 32

Evolutionary Algorithm

  

  

  

     

!"#$"%"&'(')*&+,-)'%'$)&.% */,0"&.'1,&

  

2)&)3)4",/)'&"%%,/5&6')*&+

  

       

   

    

   

   

     

Neumann, Frank 32

Evolutionary Algorithm

  

  

  

     

!"#$"%"&'(')*&+,-)'%'$)&.% */,0"&.'1,&

  

2)&)3)4",/)'&"%%,/5&6')*&+

  

       

   

    

   

   

     

Neumann, Frank 32

Evolutionary Algorithm

  

  

  

     

!"#$"%"&'(')*&+,-)'%'$)&.% */,0"&.'1,&

  

2)&)3)4",/)'&"%%,/5&6')*&+

  

       

   

    

   

   

     

Neumann, Frank 32

Evolutionary Algorithm

  

  

  

     

!"#$"%"&'(')*&+,-)'%'$)&.% */,0"&.'1,&

  

2)&)3)4",/)'&"%%,/5&6')*&+

  

       

   

    

   

   

     

Life Impact | The University of Adelaide

Evolutionary Algorithm

Neumann, Frank 33

Evolutionary Algorithm

!"#$%&'(')#*$#+,-(')#*./

      

          
   







0,1)2,$&*)3#-%45$('$-(*2#%$"6)16$#+,-('#-$'#$&.,$)*$*,7'$)',-(')#*







Neumann, Frank 33

Evolutionary Algorithm

!"#$%&'(')#*$#+,-(')#*./

      

          
   







0,1)2,$&*)3#-%45$('$-(*2#%$"6)16$#+,-('#-$'#$&.,$)*$*,7'$)',-(')#*







Life Impact | The University of Adelaide

Keep trade-offs of the two criteria

Multi-Objective Approach:
Treat the different objectives in the same way

Neumann, Frank 36

!""#$%&'(")*++,$*+$%-"$%.*$/&0%"&0'

123%0)456"/%07"$8##&*'/-9
:&"'%$%-"$(0++"&";%$*56"/%07",$0;$%-"$,'<"$.'=





Neumann, Frank 36

!""#$%&'(")*++,$*+$%-"$%.*$/&0%"&0'

123%0)456"/%07"$8##&*'/-9
:&"'%$%-"$(0++"&";%$*56"/%07",$0;$%-"$,'<"$.'=





Life Impact | The University of Adelaide

Empty set included
in the population

Neumann, Frank 36

!""#$%&'(")*++,$*+$%-"$%.*$/&0%"&0'

123%0)456"/%07"$8##&*'/-9
:&"'%$%-"$(0++"&";%$*56"/%07",$0;$%-"$,'<"$.'=





Neumann, Frank 36

!""#$%&'(")*++,$*+$%-"$%.*$/&0%"&0'

123%0)456"/%07"$8##&*'/-9
:&"'%$%-"$(0++"&";%$*56"/%07",$0;$%-"$,'<"$.'=





Life Impact | The University of Adelaide

What can we say about these solutions?

Kernelization in expected polynomial time

Optimal solution

Expected time g(OPT)* poly(n)
Fixed parameter evolutionary algorithm

• Subset of a minimum vertex cover
• G(x) has maximum degree at most OPT
• G(x) has at most OPT + OPT2
 non-isolated vertices

(log n)-approximation (Friedrich, Hebbinghaus, He, N., Witt (2010))

Approach can be generalized to the SetCover Problem
(best possible approximation in polynomial time)

Neumann, Frank 36

!""#$%&'(")*++,$*+$%-"$%.*$/&0%"&0'

123%0)456"/%07"$8##&*'/-9
:&"'%$%-"$(0++"&";%$*56"/%07",$0;$%-"$,'<"$.'=





Neumann, Frank 36

!""#$%&'(")*++,$*+$%-"$%.*$/&0%"&0'

123%0)456"/%07"$8##&*'/-9
:&"'%$%-"$(0++"&";%$*56"/%07",$0;$%-"$,'<"$.'=





Life Impact | The University of Adelaide

Kernelization in expected polynomial time

Optimal solution

Fixed parameter evolutionary algorithm

• Subset of a minimum vertex cover
• G(x) has at most 2OPT non-isolated
 vertices

Neumann, Frank 36

!""#$%&'(")*++,$*+$%-"$%.*$/&0%"&0'

123%0)456"/%07"$8##&*'/-9
:&"'%$%-"$(0++"&";%$*56"/%07",$0;$%-"$,'<"$.'=





Neumann, Frank 38

!"#$"%&'()&*$ &$+",-".)"/+-*%0$*1&(%+)&1"

2-)&1(%+3*%4)&*$

5&,"/+-(#(1")"#+"6*%4)&*$(#0+(%7*#&)81



•94:3")+*;+(+1&$&141+6"#)",+.*6"#
•<=,>+8(3+()+1*3)+?2@A+$*$B&3*%()"/+
6"#)&."3

 

    Expected time O(4

OPT · poly(n))

Life Impact | The University of Adelaide

Linear Programming

Combination with Linear Programming
•  LP-relaxation is half integral, i.e.

Can we also say something about approximations?

Neumann, Frank 39

Linear Programming

Combination with Linear Programming

LP-relaxation is half integral, i.e.          

   
               
      


  


             
          


!"#$%&$"'()$("*$()+&,-.#/$"0)1,$"223)4.+",.)#(5Neumann, Frank 39

Linear Programming

Combination with Linear Programming

LP-relaxation is half integral, i.e.          

   
               
      


  


             
          


!"#$%&$"'()$("*$()+&,-.#/$"0)1,$"223)4.+",.)#(5

Neumann, Frank 39

Linear Programming

Combination with Linear Programming

LP-relaxation is half integral, i.e.          

   
               
      


  


             
          


!"#$%&$"'()$("*$()+&,-.#/$"0)1,$"223)4.+",.)#(5

Life Impact | The University of Adelaide

Approximations

Kernelization in expected polynomial time

Neumann, Frank 40

Approximations

!"#$"%&'()&*$ &$+",-".)"/+-*%0$*1&(%+)&1"



 

       

    

 
  

Neumann, Frank 40

Approximations

!"#$"%&'()&*$ &$+",-".)"/+-*%0$*1&(%+)&1"



 

       

    

 
  

Neumann, Frank 40

Approximations

!"#$"%&'()&*$ &$+",-".)"/+-*%0$*1&(%+)&1"



 

       

    

 
  

Neumann, Frank 40

Approximations

!"#$"%&'()&*$ &$+",-".)"/+-*%0$*1&(%+)&1"



 

       

    

 
  

Neumann, Frank 40

Approximations

!"#$"%&'()&*$ &$+",-".)"/+-*%0$*1&(%+)&1"



 

       

    

 
  

Neumann, Frank 40

Approximations

!"#$"%&'()&*$ &$+",-".)"/+-*%0$*1&(%+)&1"



 

       

    

 
  

Life Impact | The University of Adelaide

Summary

•  Evolutionary algorithms are successful for many
complex optimization problems.

•  Goal is to get a better theoretical understanding.
•  There are some nice results for combinatorial

optimization.
•  Using parameterized analysis looks very

promising.

Thank	
 you!	

