
Evolutionary Submodular Optimisation Competition –
GECCO 2025
https://cs.adelaide.edu.au/~optlog/CompetitionESO20
25.php

This is a step-by-step instruction guide for using the Python version of
IOHexperimenter for the Evolutionary Submodular Optimisation competition.

You can use pip to install the latest version of IOHexperimenter:

You can verify the installation by using:

You will see some information about the tool, similar to the example shown below:

Once IOHexperimenter is installed, you can begin using it in your code. Start by
importing the ioh module.

You can retrieve submodular graph problems by calling the get_problem function
with their problem ID:

Here are the problem IDs associated with the available submodular functions:

Maximum Cut Problem: 2000 - 2004
Maximum Coverage Problem: 2100 - 2127

https://cs.adelaide.edu.au/~optlog/CompetitionESO2025.php
https://cs.adelaide.edu.au/~optlog/CompetitionESO2025.php

Maximum Influence Problem: 2200 - 2224

You can use these problems directly with your algorithms. As an example, below
is a basic implementation of a random search:

To record the results, you need to initialize a logger and attach it to the problem.
Here's how you can set up a logger:

The logger will automatically record the data for iterations where an improvement
occurs.

Finally, to run the algorithm with the problem "f", attach the logger to the problem,
call the algorithm function with the problem passed as an argument, and then
reset both the problem and the logger:

After running the code, a new folder will be created in the same repository,
containing a .json file and a .dat file that display the results obtained. You can
upload these files to the IOHanalyzer site to get a visualized analysis of the
experimental data.

https://iohprofiler.github.io/IOHanalyzer/

You can find the full code below. This code gets one of the maximum cut problems
in IOHprofiler (Id=2000), runs a random search algorithm on the problem, and logs
any evaluations that have improvement throughout the optimization process:

import ioh

import numpy as np

import os

help(ioh.problem)

f = ioh.get_problem(2000, problem_class=ioh.ProblemClass.GRAPH)

def Random_Search(problem: ioh.problem, n: int):

 for _ in range(n):

 x = np.random.randint(0, 2, size=problem.meta_data.n_variables)

 problem(x)

logger = ioh.logger.Analyzer(

 root=os.getcwd(), # Store data in the current working directory

 folder_name="my-experiment", # in a folder named: 'my-experiment'

 algorithm_name="random-search", # metadata for the algorithm used to

generate these results

 store_positions=False # disable storing x-variables in the logged

files

)

f.attach_logger(logger)

Random_Search(f, 100)

f.reset()

logger.close()

For more detailed instructions, refer to the following links:
https://github.com/IOHprofiler
https://iohprofiler.github.io

References:
1. Frank Neumann, Aneta Neumann, Chiao Qian, Viet Anh Do, Jacob de Nobel,

Diederick Vermetten, Saba Sadeghi Ahouei, Furong Ye, Hao Wang, Thomas Baeck.
Benchmarking algorithms for submodular optimization problems using IOHProfiler.
2023 IEEE Congress on Evolutionary Computation (CEC). IEEE (2023).
https://arxiv.org/abs/2302.01464

2. Jacob de Nobel, Furong Ye, Diederick Vermetten, Hao Wang, Carola Doerr, Thomas
Baeck. IOHexperimenter: Benchmarking platform for iterative optimization
heuristics. Evolutionary Computation 32.3 (2024): 205-210.
https://arxiv.org/abs/2111.04077

https://github.com/IOHprofiler
https://iohprofiler.github.io/
https://arxiv.org/abs/2302.01464
https://arxiv.org/abs/2111.04077

