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We define the different submodular problems included in the competition. We denote by c(x) the
cost of a solution x and f(x) the value of the (submodular) function applied to x.

1 Monotone Submodular Problems

1.1 Maximum Coverage

Given an undirected weighted graph G = (V,E, c) with costs c : V → R≥0 on the vertices. We denote
by N(V ′) = {vi | ∃e ∈ E : e ∩ V ′ ̸= ∅ ∧ e ∩ vi ̸= ∅} the set of all nodes of V ′ and their neighbors in G.

For a given search point x ∈ {0, 1}n where n = |V |, we have V ′(x) = {vi | xi = 1} and c(x) =∑
v∈V ′(x) c(v).

1.1.1 Deterministic Setting

In the deterministic setting, the goal is to maximize

f(x) = N(V ′(x))

under the constraint that c(x) ≤ B holds.
The fitness of a search point x is given as the 2-dimensional vector g(x) = (f ′(x), c(x)) where

f ′(x) =

{
f(x) c(x) ≤ B

B − c(x) c(x) > B

1.1.2 Chance constrained setting

For the chance constraint setting, we assume that costs are chosen independently and uniformly at
random in c(v) ∈ [a(v) − δ, a(v) + δ] where a(v) is the expected cost of node v and δ is a parameter
specifying the level of uncertainty which is the same for all nodes. We have f(x) = N(V ′(x)) as
defined in the deterministic setting. We take the cost of a node for the given benchmark instance as
expected cost and consider the uncertainty parameterized by δ.

The goal is to maximize f(x) under the chance constraint that Prob(c(x) > B) ≤ α holds. Here α ≤
1/2 is a given parameter that limits the probability of a constraint violation. Let a(x) =

∑
v∈V ′(x) a(v)

be the expected cost of solution x and v(x) = |x|1 · δ2/3 be its variance.
Based on tail bounds, we consider the following cost functions to make sure that the chance con-

straint is met.

Cost function based on Chebyshev’ inequality We use the cost function

cCheby(x) = a(x) +

√
1− α

α
· v(x) = a(x) + δ ·

√
1− α

3α
· |x|1

based on Chebyshev’s inequality.
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The fitness of a search point x using cCheby is given as the 2-dimensional vector gCheby(x) =
(f ′

Cheby(x), cCheby(x)) where

f ′
Cheby(x) =

{
f(x) cCheby(x) ≤ B

B − cCheby(x) cCheby(x) > B

Cost function based on Chernoff bounds We use the cost function

cCher(x) = a(x) + δ ·
√
ln(1/α) · 2|x|1

based on Chernoff bounds. The chance constraint is met if cCher(x) ≤ B holds.
The fitness of a search point x using cCher is given as the 2-dimensional vector gCher(x) =

(f ′
Cher(x), cCher(x)) where

f ′
Cher(x) =

{
f(x) cCher(x) ≤ B

B − cCher(x) cCher(x) > B

1.2 Maximum Influence

Let a directed graph G(V,E) represent a social network, where each node is a user and each edge
(u, v) ∈ E has a probability pu,v representing the strength of influence from user u to v.

A fundamental propagation model is independence cascade. Starting from a seed set X, it uses a
set At to record the nodes activated at time t, and at time t + 1, each inactive neighbor v of u ∈ At

becomes active with probability pu,v. This process is repeated until no nodes get activated at some
time. The set of nodes activated by propagating from X is denoted as IC(X), which is a random
variable.

For a given search point x ∈ {0, 1}n where n = |V |, we have V ′(x) = {vi | xi = 1} and c(x) =∑
v∈V ′(x) c(v).

1.2.1 Deterministic Setting

In the deterministic setting, the goal is to maximize the expected number of nodes activated by
propagating from V ′(x), i.e.,

f(x) = E[|IC(V ′(x))|]

under the constraint that c(x) ≤ B holds.
The fitness of a search point x is given as the 2-dimensional vector g(x) = (f ′(x), c(x)) where

f ′(x) =

{
f(x) c(x) ≤ B

B − c(x) c(x) > B

1.2.2 Chance constrained setting

For the chance constraint setting, we assume that costs are chosen independently and uniformly at
random in c(v) ∈ [a(v) − δ, a(v) + δ] where a(v) is the expected cost of node v and δ is a parameter
specifying the level of uncertainty which is the same for all nodes. We have f(x) = E[|IC(V ′(x))|] as
defined in the deterministic setting. We take the cost of a node for the given benchmark instance as
expected cost and consider the uncertainty parameterized by δ.

The goal is to maximize f(x) under the chance constraint that Prob(c(x) > B) ≤ α holds. Here α ≤
1/2 is a given parameter that limits the probability of a constraint violation. Let a(x) =

∑
v∈V ′(x) a(v)

be the expected cost of solution x and v(x) = |x|1 · δ2/3 be its variance.
Based on tail bounds, we consider the following cost functions to make sure that the chance con-

straint is met.
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Cost function based on Chebyshev’ inequality We use the cost function

cCheby(x) = a(x) +

√
1− α

α
· v(x) = a(x) + δ ·

√
1− α

3α
· |x|1

based on Chebyshev’s inequality.
The fitness of a search point x using cCheby is given as the 2-dimensional vector gCheby(x) =

(f ′
Cheby(x), cCheby(x)) where

f ′
Cheby(x) =

{
f(x) cCheby(x) ≤ B

B − cCheby(x) cCheby(x) > B

Cost function based on Chernoff bounds We use the cost function

cCher(x) = a(x) + δ ·
√

ln(1/α) · 2|x|1
based on Chernoff bounds. The chance constraint is met if cCher(x) ≤ B holds.

The fitness of a search point x using cCher is given as the 2-dimensional vector gCher(x) =
(f ′

Cher(x), cCher(x)) where

f ′
Cher(x) =

{
f(x) cCher(x) ≤ B

B − cCher(x) cCher(x) > B

2 Non-monotone Submodular Problems

2.1 Maximum Cut

Given an undirected weighted graph G = (V,E,w) with weights w : E → R≥0 on the edges, the goal
is to select a set V1 ⊆ V such that the sum of the weight of edges between V1 and V2 = V \ V1 is
maximal.

For a given search point x ∈ {0, 1}n where n = |V |, we have V1(x) = {vi | xi = 1} and V2(x) =
{vi | xi = 0}. Let C(x) = {e ∈ E | e ∩ V1(x) ̸= ∅ ∧ e ∩ V2(x) ̸= ∅} be the cut of a given search point
x. The goal is to maximize

f ′(x) =
∑

e∈C(x)

w(e).

Note that every search point in {0, 1}n is feasible and there is therefore no penalty or second objective
for treating potentially infeasible solutions.

2.2 Packing While Traveling

The Packing While Traveling (PWT) problem is a non-monotone submodular optimization problem
which is obtained from the Traveling Thief problem (TTP) when the route is fixed. It can be formally
defined as follows. Given n + 1 cities, distances di, 1 ≤ i ≤ n, from city i to city i + 1, and a set of
items M , |M | = m, distributed all over the first n cities. Each city i, 1 ≤ i ≤ n, contains a set of items
Mi ⊆ M , |Mi| = mi. Each item eij ∈ Mi, 1 ≤ j ≤ mi, is characterised by its positive integer profit
pij and weight wij .

In addition, a fixed route N = (1, 2, ..., n + 1) is given that is traveled by a vehicle with velocity
v ∈ [vmin, vmax]. Let xij ∈ {0, 1} be a variable indicating whether or not item eij is chosen in a
solution. Then a set S ⊆ M of selected items can be represented by a decision vector

x = (x11, x12, ..., x1m1
, x21, ..., xnmn

) ∈ {0, 1}m.

The total benefit of selecting a subset of items selected by x is given as

PWT (x) = P (x)−R · T (x),
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where P (x) represents the total profit of selected items and T (x) is the total travel time for the vehicle
carrying these items. Formally, we have

P (x) =

n∑
i=1

mi∑
j=1

pijxij

and

T (x) =

n∑
i=1

di

vmax − ν
i∑

k=1

mk∑
j=1

wkjxkj

Here, ν = vmax−vmin

B is the constant defined by the input parameters, where B is the capacity of
the vehicle.

The constraint is given as

c(x) =

n∑
i=1

mi∑
j=1

wijxij ≤ B

Use g(x) = (f ′(x), c(x)) with

f ′(x) =

{
PWT (x) c(x) ≤ B

B − c(x)−R · T (vmin) c(x) > B

where T (vmin) =
1

vmin
·

n∑
i=1

di is the travel time at speed vmin.
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