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We define the different submodular problems included in the competition. We denote by c(x) the
cost of a solution z and f(z) the value of the (submodular) function applied to x.

1 Monotone Submodular Problems

1.1 Maximum Coverage

Given an undirected weighted graph G = (V, E, ¢) with costs c¢: V' — R>¢ on the vertices. We denote
by NV')={v;|Fe€ E:enV’' £ D ANeNwv; # D} the set of all nodes of V/ and their neighbors in G.
For a given search point @ € {0,1}" where n = |V, we have V'(z) = {v; | z; = 1} and c¢(z) =

ZvGV’(m) C(’U).

1.1.1 Deterministic Setting

In the deterministic setting, the goal is to maximize
f(@) =N(V'(z))

under the constraint that ¢(x) < B holds.
The fitness of a search point x is given as the 2-dimensional vector g(x) = (f/(x), c(x)) where

oy JT@) @) <B
/(@) {B—c(:c) c(lx)>B

1.1.2 Chance constrained setting

For the chance constraint setting, we assume that costs are chosen independently and uniformly at
random in ¢(v) € [a(v) — J,a(v) + §] where a(v) is the expected cost of node v and § is a parameter
specifying the level of uncertainty which is the same for all nodes. We have f(x) = N(V'(x)) as
defined in the deterministic setting. We take the cost of a node for the given benchmark instance as
expected cost and consider the uncertainty parameterized by 4.

The goal is to maximize f(x) under the chance constraint that Prob(c(z) > B) < a holds. Here a <
1/2 is a given parameter that limits the probability of a constraint violation. Let a(x) = 3_, ¢y () a(v)
be the expected cost of solution & and v(x) = |x|; - §2/3 be its variance.

Based on tail bounds, we consider the following cost functions to make sure that the chance con-
straint is met.

Cost function based on Chebyshev’ inequality We use the cost function

l1-«a 1-a
- ‘v(x) =a(x)+6- o™

CCheby(x) = a(x) + |z

based on Chebyshev’s inequality.



The fitness of a search point @ using ccpeby is given as the 2-dimensional vector gopepy(x) =
(fCheby (®); cCheby(x)) where

f(x) Coheby(x) < B
B — cchevy(T) cchevy(x) > B

fé’heby(w) = {

Cost function based on Chernoff bounds We use the cost function

coher(@) = a(x) + 6 v/In(1l/a) - 2|x|y

based on Chernoff bounds. The chance constraint is met if coper () < B holds.
The fitness of a search point @ using ccper is given as the 2-dimensional vector goper(x) =

(f/Cher(m)a CCher (%)) where

f(m) CCheT(m) S B
B — CCher(w) CCher(w) > B

féher(x) = {

1.2 Maximum Influence

Let a directed graph G(V, E) represent a social network, where each node is a user and each edge
(u,v) € E has a probability p,, , representing the strength of influence from user u to v.

A fundamental propagation model is independence cascade. Starting from a seed set X, it uses a
set Ay to record the nodes activated at time t, and at time ¢ 4 1, each inactive neighbor v of u € A,
becomes active with probability p, .. This process is repeated until no nodes get activated at some
time. The set of nodes activated by propagating from X is denoted as IC(X), which is a random
variable.

For a given search point « € {0,1}"™ where n = |V|, we have V'(x) = {v; | ; = 1} and ¢(x) =

ZvEV’(m) c(v).

1.2.1 Deterministic Setting

In the deterministic setting, the goal is to maximize the expected number of nodes activated by
propagating from V'(x), i.e.,
f(@) = E[IC(V'())]]

under the constraint that ¢(x) < B holds.
The fitness of a search point x is given as the 2-dimensional vector g(x) = (f'(x), c(x)) where

) — f(@) c(x) < B
f@) {Bc(az) c(x)> B

1.2.2 Chance constrained setting

For the chance constraint setting, we assume that costs are chosen independently and uniformly at
random in ¢(v) € [a(v) — 8, a(v) + §] where a(v) is the expected cost of node v and ¢ is a parameter
specifying the level of uncertainty which is the same for all nodes. We have f(z) = E[|[IC(V'(x))|] as
defined in the deterministic setting. We take the cost of a node for the given benchmark instance as
expected cost and consider the uncertainty parameterized by 9.

The goal is to maximize f(x) under the chance constraint that Prob(c(x) > B) < a holds. Here o <
1/2is a given parameter that limits the probability of a constraint violation. Let a(x) =3,y (z) a(v)
be the expected cost of solution = and v(x) = |z|; - 2/3 be its variance.

Based on tail bounds, we consider the following cost functions to make sure that the chance con-
straint is met.



Cost function based on Chebyshev’ inequality We use the cost function

coneny (@) = a(@) + /7 o(a) = a(@) + /% - faly

based on Chebyshev’s inequality.
The fitness of a search point @ using ccpepy is given as the 2-dimensional vector gopepy(x) =

(fCheby (®); cCheby(x)) where

f(z) cCheby(T) < B
B — cchepy(T) cchevy(x) > B

fé’heby(x) = {

Cost function based on Chernoff bounds We use the cost function

coner(@) = a(x) + 6 /In(1l/a) - 2|x|y
based on Chernoff bounds. The chance constraint is met if coper () < B holds.

The fitness of a search point @ using ccoper is given as the 2-dimensional vector goper(x) =
(f/Cher(m)a CC}LGT'(:U)) where

f(m) CCher(m) S B
B — CCher(m) CCher(w) > B

féher(x) = {

2 Non-monotone Submodular Problems

2.1 Maximum Cut

Given an undirected weighted graph G = (V, E,w) with weights w: E — R on the edges, the goal
is to select a set V3 C V such that the sum of the weight of edges between Vi and Vo = V \ V; is
maximal.

For a given search point € {0,1}" where n = |V|, we have Vi(x) = {v; | z; = 1} and Va(x) =
{vi | &; =0}. Let C(x) ={e € E|enVi(z) # 0 AenVa(x) # 0} be the cut of a given search point
x. The goal is to maximize

fll@y= wle).

ecC(xz)

Note that every search point in {0,1}" is feasible and there is therefore no penalty or second objective
for treating potentially infeasible solutions.

2.2 Packing While Traveling

The Packing While Traveling (PWT) problem is a non-monotone submodular optimization problem
which is obtained from the Traveling Thief problem (TTP) when the route is fixed. It can be formally
defined as follows. Given n + 1 cities, distances d;, 1 < i < n, from city i to city ¢ + 1, and a set of
items M, |M| = m, distributed all over the first n cities. Each city i, 1 < i < n, contains a set of items
M; C M, |M;| = m;. Each item e;; € M;, 1 < j < m;, is characterised by its positive integer profit
Dij and weight Wi -

In addition, a fixed route N = (1,2,...,n + 1) is given that is traveled by a vehicle with velocity
U € [Umin, Umagz). Let z;; € {0,1} be a variable indicating whether or not item e;; is chosen in a
solution. Then a set S C M of selected items can be represented by a decision vector

® = (T11, 12, s Tlimy  T215 -+ Tnm,, ) € {0, 1}
The total benefit of selecting a subset of items selected by @ is given as

PWT(x)=P(x) — R-T(x),



where P(x) represents the total profit of selected items and T'(x) is the total travel time for the vehicle
carrying these items. Formally, we have

n m;

Px) =Y pijri

i=1 j=1

and

d.
T(:B) = Z 7 : my
= Vpar — VY Y WejThj
k=1j=1
Here, v = “mazztmin is the constant defined by the input parameters, where B is the capacity of
the vehicle.
The constraint is given as

C(:B) = ZZLU)HZL'” S B
i=1j=1
Use g(x) = (f'(®), c(x)) with
flz) = PWT(x) c(x) < B
® =B (@) - R-T(om) clz) > B

1

VUmin

n
where T (Umin) = - >~ d; is the travel time at speed vUmin.
i=1
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